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Silicon (Si) has a wide range of beneficial impacts on rice (Oryza sativa L.) including 

mitigating salt stress. Planting of existing rice genotypes with Si fertilization is of great 

importance among the salt mitigation techniques. A series of experiments were carried 

out to investigate the Si uptake ability of popular indica type rice genotypes, Bw 367, At 

362, Bg 359, Bg 360, Bg 94-1, and MR 297 and to explore their tolerance to salt stress 

with the provision of Si. Genotypic variation was observed in tissue Si concentration 

(µg/100 mg) ranging from 104.0 (Bg 94-1) to 151.0 (Bw 367) in the experiment 

conducted in nutrient solution using a split plot design. Silicon concentration of 2 mM 
was found as the adequate level for the highest Si accumulation and to improve plant 

growth. The different Si rates were tested with genotype Bw 367 in a pot experiment 

conducted in randomized complete block design. Basal application of Si at the rate of 

100 kg SiO2/ha recorded the highest tissue Si concentration of 395.3 µg/100 mg and the 

highest uptake (mg/pot) of 1912.5, 291.7 and 424.6 for K, Mg and P, respectively 

resulting in the maximum yield of 104.6 g/pot. The estimated Si rate for optimum yield 

was 115 kg SiO2/ha. Two Si transporter genes, OsLsi2 and OsLsi6 were found in all the 

tested genotypes. The highest relative expression of OsLsi2 gene was observed in 

genotype Bw 367 (0.85) and the lowest in Bg 360 (0.38) which was similar to Bg 94-

1(0.39). Consequently, Si content (µg/100 mg) in plant tissue followed the same trend 

with Bw 367 (153.07) and Bg 94-1 (105.05). Rice genotypes were tested in a split-split 

plot design with Si application revealed that Bw 367 and Bg 94-1 were tolerant and Bg 
359, At 362, and MR 297 were moderately tolerant in the highest salinity level of 12 

dS/m in solution culture. Accumulation of Si was comparatively higher in stressed plants 

(salinity level 12 dS/m), as indicated by genotypes Bw 367 and Bg 94-1 accumulating 

similar Si contents (about 228.00 µg/100 mg), where 3 and 16.4% reductions were 

observed in their shoot growth, respectively in contrast to the non-saline condition. 

Applied Si reduced the electrolyte leakage by 53% in Bg 94-1 and Na+/K+ ratio by 82% 

in Bw 367 even at a salinity level of 12 dS/m. Further, proline content and catalase 

activity were increased by 77 and 106%, respectively in Bw 367, which was statistically 

similar to Bg 94-1. Similar relative water content was observed in Si treated Bw 367, Bg 



© C
OPYRIG

HT U
PM

 

ii 

94-1 plants, and salinity resistant Pokkali plants which were about 70%. In conclusion, 

Si fertilization had promising effects on the amelioration of salt stress in indica rice 

genotypes which could accumulate more Si in saline conditions. Except for Bg 360, with 

Si fertilization, all tested genotypes could successfully be cultivated on marginal lands 

in saline or salinity-prone areas to keep sustainable rice production.  
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Silikon (Si) mempunyai banyak faedah ke atas padi (Oryza sativa L.) termasuklah 

mengurangkan tekanan garam. Pembajaan Si merupakan teknik yang terbaik untuk 

mengurangkan tekanan garam di dalam penanaman genotip padi sedia ada. Satu siri 

kajian telah dijalankan untuk menilai keupayaan pengambilan Si ke atas genotip padi 

terkenal jenis indica, Bw 367, At 362, Bg 359, Bg 360, Bg 94-1, dan MR 297 dan 

toleransinya terhadap tekanan garam melalui pemberian Si. Variasi genotip telah 

diperhatikan dalam kepekatan Si di dalam tisu (µg/100 mg) di antara 104.0 (Bg 94-1) 
sehingga 151.0 (Bw 367). Kajian tersebut dijalankan dengan menggunakan larutan 

nutrient dalam rekabentuk ‘split plot’. Kepekatan Si pada 2 mM didapati sebagai aras 

yang mencukupi untuk pengumpulan Si paling tinggi dalam meningkatkan pertumbuhan 

padi. Genotip Bw 367 telah diuji dengan pemberian Si pada kadar yang berbeza di dalam 

tanah dengan menggunakan rekabentuk blok secara rawak. Aplikasi Si pada tanah 

dengan kadar 100 kg SiO2/ha mencatatkan kepekatan Si tertinggi di dalam tisu, 395.3 

µg/100 mg dan pengambilan tertinggi (mg/pot) masing-masing 1,912.5, 291.7, dan 424.6 

untuk K, Mg and P dengan memberikan hasil maksimum (104.6 g/pot). Anggaran kadar 

Si untuk hasil optimum ialah 115 kg SiO2/ha. Dua gen pengangkut Si, OsLsi2 dan OsLsi6 

telah ditemui dalam semua genotip yang diuji. Ekspresi relatif gen OsLsi2 dalam genotip 

adalah lebih tinggi dalam Bw 367 (0.85) berbanding Bg 360 (0.39) yang hampir sama 

dengan Bg 94-1(0.38)). Selanjutnya, kandungan Si (µg/100 mg) dalam tisu tumbuhan 
mengikuti trend yang sama dengan Bw 367 (153.07) dan Bg 94-1 (105.05). Selepas 

dirawat dengan Si dalam rekabentuk kajian ‘split split plot’ didapati genotip padi, Bw 

367 dan Bg 94-1 adalah toleran, manakala Bg 359, At 362, dan MR297 adalah toleran 

sederhana di paras kemasinan tertinggi 12 dS/m dalam kultur larutan. Pengumpulan Si 

adalah lebih tinggi dalam tumbuhan yang tertekan (pada 12 dS/m), seperti yang 

ditunjukkan oleh genotip Bw 367 dan Bg 94-1 dengan kandungan Si yang hampir serupa 

(kira-kira 228.00 µg/100 mg), di mana pengurangan 3 dan 16.4% adalah diperhatikan 

dalam pertumbuhan pucuk, masing-masing berbeza dibandingkan dengan pertumbuhan 

biasa. Pada masa yang sama, Si yang ditambah pada paras 12 dS/m berjaya 
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mengurangkan kebocoran elektrolit (EL) sebanyak 53% dalam Bg 94-1 dan nisbah 

Na+/K+ sebanyak 82% dalam Bw 367. Seterusnya, kandungan prolin dan aktiviti katalase 

telah meningkat sebanyak 77 dan 106% masing-masing dalam Bw 367, yang secara 

statistik sama dengan Bg 94-1. Kandungan air relatif yang sama telah ditunjukkan pada 

genotip Bw 367, Bg 94-1 yang dirawat dengan Si berbanding genotip Pokkali yang 

resistan kemasinan iaitu kira-kira 70%. Sebagai kesimpulan, pembajaan Si mempunyai 
kesan yang baik terhadap pemulihan tekanan garam dalam genotip padi indica, di mana 

pengumpulan Si lebih banyak berlaku dalam keadaan kemasinan. Selain Bg 360, dengan 

pembajaan Si, semua genotip yang diuji boleh berjaya ditanam pada tanah marginal di 

kawasan yang terdedah kepada kemasinan atau cenderung kemasinan dalam 

mengekalkan pengeluaran beras yang mapan di negara ini. 
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1 

CHAPTER 1 

1 INTRODUCTION 

1.1 Overview  

Rice (Oryza sativa L.), a premier cereal crop feeds about half of the population around 

the world. It is occupied more than 165 million hectares of land worldwide. 

Approximately, 1.3 billion Asians heavily depend on rice (Cuong et al., 2017) and their 
per capita rice consumption is about 130 kg per annum, which provides a substantial 

amount of daily calorie requirement (Dhakal et al., 2019; Pee, 2014). However, rice 

production is restricted by different abiotic and biotic anxieties (Datta et al., 2017). Soil 

salinity, iron toxicity, flash floods, ill-drained condition, drought and soil acidity are the 

dominant abiotic stresses that affect rice production globally. 

Soil salinization has become the main consideration affecting both crop quality 

and quantity of the glycophytic plants. A million hectares of paddy land are abandoned 

or marginal in production as a result of soil salinity (Reddy et al., 2017).  In Sri Lankan 

context, salinity-prone paddy land extent is being increased along the coastal belt as well 

as inland (Perera et al., 2018). The coastal area of Sri Lanka is 22% of the country’s total 

land area and nearly 0.112 million ha of land are affected by the soil salinity.  Further, 

in this coastal belt,  abandoned unproductive land has been increased (Perera et al., 

2018). 

Rice is a glycophyte plant that is more susceptible to salt stress during the seedling stage 

and reproductive stages (Ali et al., 2014). Osmotic stress, nutrient imbalance and ion 

toxicity are the main negative effects of salt stress. An excessive amount of sodium ions 

present in soil interferes with the absorption of other nutrients particularly potassium 

(K). Salt susceptible rice varieties accumulate a high amount of Na+, a low amount of 

proline and K+ in the plant tissues. Other than the nutrient imbalance in the plant, soil 
salinity imparts the physiological process including photosynthesis and respiration. Poor 

seed germination, stunted growth, chlorosis, the formation of sterile spikelets, partially 

filled grains and lower yields are the other negative effects of salinity imposed on rice 

plants. 

Rice is a silicon (Si) accumulator. It accumulates Si up to 10% of its dry weight of shoot. 

The beneficial effects of Si are mostly attributed to the high accumulation of Si in plant 

shoots. Moreover, the Si accumulation in rice plants differs greatly among genotypes, 

which is attributed to the differences in the roots' Si uptake (Ma et al., 2007). The 

expression level of Si transporter genes OsLsi1, OsLsi2 and OsLsi6 determine the uptake 

ability of rice plant. 

Second to oxygen, Si is the most abundant element present in the soil. However, the 

arable lands are having an insufficient level of plant available Si (Nwajiaku et al., 2018). 

Further, over a long period, growing of rice genotypes with high yield potential depletes 
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available Si in the soil. Silicon enhances the growth of the plant and improves the plant's 

defence system against multiple biotic and abiotic stresses, including salinity (Javaid et 

al., 2019), metal toxicities (Huang et al., 2018)  and drought (Guntzer et al., 2012). 

Many research findings have shown the promising results of exogenous applied Si on 

amelioration of salt stress in many plants, including rice. Silicon in saline soil promotes 

rice plant growth and reduces the reduction of grain yield. Silicon-nutrition improves the 

nutrient uptake and keeps the leaves more erect to prevent mutual shading. Enhanced 

potassium and reduced sodium uptake resulted in a high K+/Na+ ratio in rice plant tissues. 

The stomatal conductance and leaf transpiration rate were also improved due to the 

deposition of Si in guard cells of stomata thereby controlling the osmotic stress in the 

rice plant. 

During the last decades, the development of salt-tolerant rice genotypes and screening 

of rice genotypes for salt tolerance have been accorded top research priority in food 

security. Using growth regulators, such as gibberellic acid (Rodriguez et al., 2006) and 
microbes (Zhang et al., 2018) are other possible alternatives for rectifying salt stress in 

rice. However, applied Si will be more advantageous over the other salt amelioration 

approaches, as it has a multifaceted role in growth of rice plant and combating against 

biotic and abiotic stresses as well. 

1.2 Problem statement  

Food security has become an imperative and important factor worldwide due to the 

increasing global population, decreasing arable land and dramatic climate change. 
Global food production has been badly affected by environmental damage due to 

unsatisfactory agricultural activities and ever-increasing population pressure. Hence, 

world food production may soon become insufficient to feed world hunger. The ever-

increasing demand imposed on agricultural land by burgeoning population has resulted 

land degradation thus, the rice cultivation has been shifted to the more marginal areas 

which demand heavier inputs for higher agricultural productivity. 

According to the comprehensive review, the development of different rice varieties for 

salt-tolerance, management of soil nutrients and drainage improvement is the feasible 

approaches to enhance the production in salt-affected paddy lands. However, Si 

fertilization in salt affected paddy lands are more advantageous among them due to its 

many beneficial effects on growth and development of rice plant. Even though three Si 

transporter genes: OsLsi1, OsLsi2 OsLsi6 are involved in accumulation of Si in various 

parts of the rice plant, their relative expression differs among the genotypes resulting 

different Si uptakes. However, research findings on identification of indica rice varieties 

having high silicon uptake ability and their performance against salt stress are scanty. 
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1.3 Objectives 

The overall objective was to improve the productivity of salt-affected paddy lands with 

Si nutrition.  

Specific objectives were: (i) To study the Si uptake of lowland rice, (ii) To study the Si 

requirement for higher plant growth and grain yield, (iii) To screen rice varieties for the 

presence of, OsLsi2 and OsLsi6 genes and elucidate their expression involved in plants 

for Si uptake and accumulation and (iv) To study the rice genotypes tolerance to salt 

stress with Si fertilization at the seedling stage. 
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