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Abstract
The diffusion-weighted imaging (DWI) technique is known for its capability to differentiate the diffusion of
water molecules between cancerous and non-cancerous cervix tissues, which enhances the accuracy of
detection. Despite the potential of DWI-MRI, its accuracy is limited by technical factors influencing in vivo
data acquisition, thus impacting the quantification of radiomics features. This study aimed to measure the
radiomics stability of manual and semi-automated segmentation on contrast limited adaptive histogram
equalization (CLAHE)-enhanced DWI-MRI cervical images. Eighty diffusion-weighted MRI images were
obtained from patients diagnosed with cervical cancer, and an active contour model was used to analyze the
data. Radiomics analysis was conducted to extract the first statistical order, shape, and textural features with
intraclass correlation coefficient (ICC) measurement. The results of the CLAHE segmentation approach
showed a marked improvement when compared to the manual and semi-automated segmentation methods,
with an ICC value of 0.990 ± 0.005 (p<0.05), compared to 0.864 ± 0.033 (p<0.05) and 0.554 ± 0.185 (p>0.05),
respectively. The CLAHE segmentation displayed a higher level of robustness than the manual groups in
terms of the features present in both categories. Thus, CLAHE segmentation is owing to its potential to
generate radiomics features that are more durable and consistent.

Categories: Medical Physics, Radiation Oncology, Radiology
Keywords: magnetic resonance imaging (mri), diffusion-weighted imaging (dwi), clahe, standardized radiomics,
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Introduction
Cervical cancer ranks as the fourth most prevalent malignancy to affect women and the third most
frequently diagnosed cancer in females worldwide [1]. At the initial stages, cervical cancer may not present
any symptoms; however, as it progresses, it may manifest as bleeding after sexual intercourse, between
menstrual cycles, or post-menopause, as well as an excessive amount of watery, bloody vaginal discharge [2].
Early detection of cervical cancer is associated with more favorable outcomes, with treatments such as
surgery or radiotherapy proving to be effective. Unfortunately, it is estimated that the mortality rate of
women aged 30 to 60 due to cervical cancer has increased significantly [3]. Low- and middle-income
countries account for the majority of newly diagnosed cases and fatalities. In comparison to men, the most
commonly diagnosed cancer in women is mainly comprised of two cancer sites: breast cancer (in 159
countries) and cervical cancer (in the remaining 23 out of 26 countries) [4]. The International Agency for
Research on Cancer GLOBOCAN 2020 estimates that cancer incidence and mortality will rise in 2040 (28.4
million cases) [2]. This has been on the upswing due to the heightened risk factors associated with
globalization and an expanding economy. It is essential for global cancer control to create a sustainable
framework for the distribution of cancer prevention strategies and the delivery of cancer treatment in
transitioning countries [5]. In order to effectively tackle global cancer control, a sustainable structure for the
circulation of cancer prevention strategies and the provision of cancer treatment in transitioning countries
needs to be established [6]. It is recommended that at least 90% of girls be vaccinated by the age of 15 in
order to meet the World Health Organization's (WHO) global strategy of eliminating cervical cancer by 2030.
Cervical cancer screening should begin at the age of 25 and should include primary human-papillomavirus
testing every five years up until age 65 [7].

In contrast to CT and PET scans, MRI techniques enable a more comprehensive analysis of tumor biology,
present greater sensitivity in soft tissue contrast, and offer a more detailed understanding of the tumor's
microenvironment and microcellular activity [8]. Diffusion-weighted imaging (DWI) is a non-invasive MRI
technique that allows for the observation of water molecules' movements within biological tissues [9]. Due
to Brownian motion, water molecules in tissues have random motion, which can be hindered by cell
components such as cell membranes and organelles. Areas of high-water diffusion appear brighter on DWI
images, while areas of low-water diffusion appear darker [10]. Regions with restricted diffusion, such as
those found in tumors, infections, or areas of inflammation, will appear dark on DWI images [11]. To
generate DWI, a series of MR images are acquired by utilizing several diffusion-weighting gradients that are
positioned in different orientations. DWI and apparent diffusion coefficient (ADC) are vital parameters that
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aid in measuring water molecule diffusion in tissue.

The integration of radiomics in tumor classification has been particularly evident in several studies. Two
common approaches are typically used to identify the performance between observers: repeatability and
reproducibility assessment [12,13]. Repeatability enables the production of consistent results by applying
the same segmentation approach to the same imaging data multiple times. Meanwhile, reproducibility is
used to assess the consistency of results when different segmentation techniques are employed on the same
imaging data [14]. As the output varied in terms of consistency, there has been a rise in research
investigating the repeatability and reproducibility of radiomics characteristics [15]. The test-retest method
serves as a crucial measure of feature repeatability, derived from images of the same patient that were
obtained within a relatively brief time frame [16]. The application of radiomics analysis involves the
utilization of sophisticated computational techniques to transform imaging data from a specific area into a
set of high-dimensional feature data [17]. This process enables the provision of valuable information
regarding prognosis and the identification of potential predictive biomarkers [18,19]. However, the
irregularity in both reporting and analyzing features presents a substantial hindrance to the ability to repeat
and compare studies [20].

Studies have demonstrated the potential of radiomics models based on T2-weighted MRI in predicting
treatment response and prognosis in various types of cancer [21,22]. These models have demonstrated high
sensitivity and specificity in differentiating between different tumor types. Nevertheless, DWI-MRI also has
the potential to provide valuable data for diagnosis, prognosis, and treatment response evaluation in various
types of cancer [23]. The inclusion of DWI-MRI in radiomics analysis could potentially enhance the precision
of predictive models due to the access it provides to additional functional and diffusion-related information
[24,25]. Semi-automated segmentation techniques have been proven to be more effective than manual
segmentation approaches. Furthermore, when compared to adaptive histogram equalization (AHE) and
histogram equalization (HE), contrast-limited AHE (CLAHE) offers a more effective contrast enhancement
option, leading to a faster volumetric measurement of the cervix segment and improved results. Thus, this
study aims to assess the impact of CLAHE on DWI-MRI cervical cancer images and to compare the radiomics
features in order to optimize the accuracy of clinical diagnosis.

Materials And Methods
Study design
This retrospective clinical study was approved by the Medical Research and Ethical Committee of the
Ministry of Health in Malaysia on August 10, 2022, with an ethics initial approval number of NMRR ID-22-
01426-OU4 (IIR). Data from all the images was acquired from the Infinitt PACS system at the Institut Kanser
Negara in Putrajaya, Malaysia, within the period from January 1, 2014, to December 31, 2019. This
retrospective analysis was conducted to examine the resilience of characteristics obtained from a cohort of
80 individuals diagnosed with cervical cancer. The random sampling approach was employed to obtain
radiologist reports and patient demographic data, thus eliminating any biases and enabling the gathering of
the most accurate data.

Scanning acquisition protocols
Of 150 patients, only 80 patients (with a mean ± SD of age 55 ± 12.45 y/o and a weight range of 53.2 ± 5.31
kg) fulfilled the inclusion and exclusion criteria. For this study, the inclusion criteria were patients who had
preoperative MRI evaluations, were diagnosed with cervical cancer stages II-IV, and had DWI pre- and post-
contrast images completed. Figure 1 illustrates the selection of inclusion and exclusion criteria. As per
exclusion, it comprises 20 patients exhibiting image artifacts, 30 patients who did not have both DWI and
post-contrast images, and 20 patients with only pre-contrast imaging.
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FIGURE 1: Patient selection based on inclusion and exclusion criteria
DWI: diffusion-weighted imaging

A comprehensive scan of the uterus and ovaries was conducted using a Siemens 3 Tesla MRI (2013,
Magnetom Vario Erlangen, Germany), with the axial scan angle tailored to the specific pathology being
examined. Standardized parameters were used for all sequences, including DWI sequences with a slice
thickness of 3.0 mm, a base resolution of 140, a time repetition of 6300 ms, a time echo of 69.0 ms, a field of
view of 220 mm, and a phase resolution of 100%. Diffusion was evaluated using pre-established b-values at
B:50, B:400, and B:900, and the results were categorized and differentiated into Stage II, Stage III, and Stage
IV.

Feature extraction of cervical cancer DWI-MRI
In this study, a single-blind design was employed, with the exception of the researcher, who had access to
the patient report. By randomly selecting a sample of individuals with stages II-IV cervical cancer diagnoses,
two senior radiologists with more than 10 years of experience in MRI scan reporting were asked to analyze
the same set of images without being aware of the diagnosis. In order to reduce any potential bias in the
process of image segmentation, the patient identities were deliberately withheld until the segmentation
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phase, at which point they were disclosed using a numerical sequence.

There have been three distinct groups established for the purpose of assessing the dependability
characteristics generated through the segmentation process: based on texture, first-order statistics, and
shape. The radiomics information was procured via the utilization of the active contour model (ACM) with
MATLAB (version R2022b, MathWorks, USA) by two independent observers, who identified a volume of
interest and performed semi-automated segmentation and CLAHE segmentation on two distinct instances.

The ACM approach is based on mathematical principles, specifically the classical snake’s energy
minimization I of curve evolution I through α, β, γ.

where C(q) of 0 to 1 is the planar curve with given matrices of pixels, I, parameters α and β is control for
internal energy and γ specifically for external energy. Subsequently, the curve smoothing will be
demonstrated by incorporating the gradient finite function with β = 0.

with E0 ≠ 0, the Euler-Lagrange is applied to fill C(0) = C0, the evolution of  is Euclidean curve with unit of

inward, N now

adapting C with level-set of u and, computed , gives

This iterative approach, which is often referred to as the snake's method, is used to divide images into
sections. Subsequently, four independent observers were enlisted to compare it with manual segmentation.

Manual and semi-automated segmentation
All segmentation processes were done by two experienced radiologists, to be used as a reference point. This
image served as the basis for the manual segmentation process. Figure 2 demonstrates the manual
segmentation of an axial DWI-weighted MRI cervical image. The process of semi-automatic segmentation
involves the utilization of the ACM. The initial curves on an image are constructed using the active contour
algorithm. Thereafter, the active contour function is employed to facilitate the growth of the curves toward
the object boundaries. Figure 3 demonstrates the region of interest (ROI) of semi-automatic segmentation
with CLAHE enhancement on DWI-MRI images.
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FIGURE 2: Manual segmentation on DWI-weighted MRI (axial plane
stage IV) of cervical image

FIGURE 3: Semi-automated segmentation with CLAHE enhanced on
axial plane of cervical DWI-MRI image

CLAHE enhancement

The use of CLAHE-based semi-automated segmentation for image data enhancement requires two
significant hyperparameters: clip limit (CL) and number of tiles (NT). CL is a numerical value that
determines the amplification of noise, and 0.9 was chosen from the spectrum of 0 to 1 as it provided the best
balance of contrast while avoiding the CL exceeding its maximum. The image data was enhanced using the
CLAHE algorithm. The suspected lesion was manually marked with the region-growing algorithm, and the
ROIs were divided into anterior and posterior regions and converted to binary images. To assess intra-
observer reproducibility, two radiologists independently delineated the tumor area in the enhanced images
twice. The iteration count for semi-automated segmentation was standardized at 100 iterations.
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Statistical analysis
Pyradiomics was employed to eliminate any discrepancies in in-plane resolutions that could lead to
confusion, thereby advancing techniques, encouraging advanced methodologies, and promoting a culture of
responsibility. Table 1 presents the features that have been extracted in this study. The features were
assessed using SPSS Statistics version 29.0 (IBM Corp. Released 2022. IBM SPSS Statistics for Windows,
Version 29.0. Armonk, NY: IBM Corp). The research utilized three techniques, namely manual, semi-
automated, and CLAHE segmentation, to extract 37 features that were subsequently categorized into three
distinct groups: (1) first-order statistical features, (2) second-order statistical features utilizing gray level co-
occurrence matrix (GLCM), and (3) shape features. Figure 4 illustrates the procedures involved in the manual
for repeatability, semi-automated, and CLAHE segmentation for reproducibility studies.

GLCM features (GLCM_) (n=21) First-order statistics (n=6) Shape features (n=9)

Correlation Entropy Area

Contrast Kurtosis Major axis length

Autocorrelation Skewness Minor axis length

Difference variance Energy Perimeter

Homogeneity Variance Equivdiameter

Dissimilarity Mean Convex area

Entropy  Orientation

Energy  Solidity

Homogeneity  Eccentricity

Cluster shade   

Maximum probability   

Sum of variance   

Sum square   

Sum average   

Sum entropy   

Cluster prominence   

Information measure of correlation2   

Information measure of correlation1   

Difference entropy   

Inverse difference normalized   

Inverse difference moment normalized   

TABLE 1: Selection of radiomics features extracted from the images
GLCM: gray level co-occurrence matrix
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FIGURE 4: Systematic flow of manual, semi-automated, and CLAHE
enhancement and analysis by the observers
CLAHE: contrast limited adaptive histogram equalization

The intraclass correlation coefficient (ICC) was employed in this study to determine the correlation between
two datasets. It is a numerical measure of consistency, with values ranging from 0 to 1, and is used by
researchers in various fields [14,24]. The selection of a suitable ICC model is dependent on the particulars of
the study, and there exist three separate models that can be opted for. This study utilized a two-way mixed
effect model of ANOVA to calculate the ICC by deriving variance estimates for the repeatability and
reproducibility segmentations. The ICC equation is described as follows:

where MSC stands for mean square for columns, MSR for mean square for rows, MSE for mean square error,

and MSW for mean square for residual sources of variance. The letters k and n are employed to denote the

number of observers and participants in the research, respectively. ANOVA was utilized to compute the ICC
coefficients for the purpose of evaluating the reproducibility of intra-observer segmentation. The ICC (C,1)
was applied to data collected by a single observer who segmented 80 patients at two-month intervals using
two distinct segmentation methods. The Wilcoxon rank-sum test was conducted with a significance level of
p<0.05 to assess the difference in reproducibility across all segmentations.

Results
The radiomics quality score 2.0 for this study attained a score of 37.59/36 (98.6%), indicating an optimized
pipeline for the ICC assessment [25]. This score provides a standardized approach for measuring consistency,
reproducibility, and accuracy. The score is a testament to its quality and reliability, making radiomics
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features robust and ready for further analysis, thus giving accurate and meaningful insights for clinical use
and research. Intra-observe analysis pertains to the measurement sets conducted by a single observer or
researcher. Table 2 presents the variations in ICC when comparing manual, semi-automated segmentation,
and CLAHE with regard to textural features, shape, and first-order (intensity) histogram features.

Reproducibility group Manual Semi-automated CLAHE

Poor (ICC < 0.4) 38 (47.50%) 0 (0%) 0 (0%)

Fair (0.4 ≤ ICC ≤ 0.6) 26 (32.50%) 5 (6.25%) 0 (0%)

Good (0.6 ≤ ICC ≤0.75) 14 (17.50%) 20 (25.00%) 1 (1.25%)

Excellent (0.75 ≤ ICC ≤ 1) 1 (1.25%) 55 (68.75%) 79 (98.75%)

TABLE 2: Reproducibility group of features according to segmentation technique and image
enhancement
CLAHE: contrast limited adaptive histogram equalization, ICC: intraclass correlation coefficient

The results indicate that the ICC for segmentation technique and image enhancement for CLAHE (ICC =
0.990 ± 0.005, p<0.05) was significantly higher than those from semi-automated segmentation (ICC = 0.864 ±
0.033, p<0.05) and manual segmentation (ICC = 0.554 ± 0.185, p>0.05). All 37 features showed excellent
performance in CLAHE image data segmentation. The ICC values suggest that the image dataset with CLAHE
contrast enhancement exhibited an excellent reproducibility of 98.75%, compared to 68.75% for semi-auto
and 1.25% for manual. As a result of its application, CLAHE was found to improve image consistency with
respect to the identified characteristics. Figures 5-7 illustrate the comparison of ICC for first-order, shape,
and textural features, respectively.

FIGURE 5: A comparison of the ICC between segmentation for first-order
histogram-based features
ICC: intraclass correlation coefficient, CLAHE: contrast limited adaptive histogram equalization
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FIGURE 6: A comparison of the ICC value between segmentation for
shape-based features
ICC: intraclass correlation coefficient, CLAHE: contrast limited adaptive histogram equalization

FIGURE 7: A comparison of the ICC value for the textural features
ICC: intraclass correlation coefficient, CLAHE: contrast limited adaptive histogram equalization

Table 3 indicates that in manual segmentation for shape features (ICC= 0.554 ± 0.185) p>0.05) only four
shape features demonstrated excellent reproducibility. Reproducibility for first-order (intensity) histogram
features was significantly greater in images improved by CLAHE (ICC = 0.985 ± 0.01, p<0.05) and semi-
automated segmentation (ICC = 0.837 ± 0.03, p<0.05). The observation results demonstrate that the
application of CLAHE for image enhancement was highly consistent for all features when compared to other
segmentation techniques.

Features Original Manual Semi-automated CLAHE

Autocorrelation 0.677 0.761 0.961

Contrast* 0.183 0.502 0.998

Correlation 0.678 0.781 0.982

Cluster prominence 0.674 0.797 0.855

Cluster shade 0.693 0.753 0.808
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GLCM textural features

Dissimilarity 0.592 0.892 0.988

Energy* 0.174 0.351 0.978

Entropy 0.704 0.804 0.963

Homogeneity 0.655 0.756 0.987

Maximum probability 0.622 0.822 0.989

Sum of squares* 0.204 0.604 0.927

Sum average 0.698 0.804 0.916

Sum variance* 0.298 0.698 0.986

Sum entropy 0.662 0.762 0.887

Difference variance* 0.672 0.772 0.998

Difference entropy 0.603 0.803 0.898

Information measure of correlation1 0.623 0.823 0.899

Information measure of correlation2 0.678 0.888 0.911

Inverse difference normalized 0.734 0.834 0.998

Inverse difference moment normalized 0.878 0.978 0.979

Mean 0.805 0.875 0.989

Varience 0.842 0.842 0.999

First-order statistics features

Skewness 0.806 0.806 0.994

Kurtosis 0.846 0.846 0.971

Energy 0.841 0.811 0.979

Entropy 0.837 0.837 0.981

Area 0.886 0.807 0.987

Major axis length 0.868 0.868 0.908

Shape-based features

Minor axis length 0.893 0.793 0.942

Eccentricity* 0.244 0.649 0.834

Orientation* 0.162 0.662 0.963

Convex area* 0.169 0.569 0.949

Equiv-diameter* 0.104 0.678 0.999

Perimeter 0.666 0.766 0.959

Solidity 0.805 0.605 0.833

TABLE 3: Variations in ICC value obtained from selected subject
GLCM: gray level co-occurrence matrix, ICC: intraclass correlation coefficient, CLAHE: contrast limited adaptive histogram equalization

The robustness of the technique was evaluated by analyzing the inter- and intra-observer ICC
characteristics. Figure 8 presents the ICC value for the inter-observer segmentation group. Segmentation
with CLAHE enhanced with semi-automated exhibited the highest ICC value, 0.977±0.579. This finding holds
true for all 12 segmentation datasets, which are comprised of four manual sets, four semi-automated sets,
and four CLAHE sets.
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FIGURE 8: Comparison of selected ICC value among different observers
GLCM: gray level co-occurrence matrix, CLAHE: contrast limited adaptive histogram equalization, ICC: intraclass
correlation coefficient

Discussion
DWI-MRI plays a crucial role in radiomics for various cancer types. It quantitatively measures ADC, which
reflects water diffusivity, and provides information on cell membrane integrity and tumor cellularity.
Images acquired from DWI-MRI were utilized because of their ability to serve as an initial surrogate imaging
biomarker for therapy responsiveness. Moreover, DWI-MRI has been identified as valuable in the evaluation
of cervical cancer, providing essential information for diagnosis and treatment planning. Zhang et al. (2022)
demonstrated that radiomics models with a combination of multi-parametric DWI showed high clinical
value in predicting concurrent chemoradiotherapy for cervical cancer [26].

The importance of the quality of the input image cannot be emphasized enough in terms of improving the
robustness of radiomics characteristics. Employing higher-resolution images can prove to be highly
beneficial, as they provide a more advanced visual depiction of the segmentations, thereby resulting in
enhanced outcomes [27]. In order to achieve an exact localization of the neoplasm and assess the intricate
nuances of the picture, it is essential to utilize pre-processing imaging methods such as contrast
enhancement. Utilization of image enhancement can lead to a substantial improvement in contrast, thereby
facilitating the precise segmentation of tumors [24].

This study involved the precise semi-automated segmentation of the tumor lesion using ACM, and it was
determined to have superior accuracy when compared to manual segmentation. The quantization of the
tumor lesion was deemed accurate in comparison to manual segmentation based on the uniform color
present within the area of interest. Radzi et al. (2021) previously showed that in order to accurately quantify
the ROI, the optimal segmentation method requires images with good contrast enhancement [17,28]. In
comparison to manual segmentation, it has been observed that a significant proportion of the tumor first-
order features demonstrate a higher degree of reproducibility.

Upon examination of the ICC values for reproducibility between CLAHE, semi-automated segmentation, and
manual segmentation, it was found that CLAHE had a higher repeatability, with a 98% rate of
reproducibility. The use of semi-automated segmentation techniques with image enhancement resulted in
improved reproducibility compared to manual segmentation methods. This is due to the reduced
segmentation time and the use of standardized viewing settings, which aid in evaluating the intracellular
changes of cervical cancer in DWI-MRI images [8,10]. The use of a standardized workstation for clinical
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image reporting and viewing is recommended in the research findings to ensure accurate interpretation
during cervical cancer tumor segmentation. It is important to emphasize the consistent maintenance of
equipment in medical settings.

Furthermore, it has been observed that the CLAHE technique can result in an amplification of the
background noise present within an image. Nevertheless, it is achievable to address this issue by minimizing
the extent to which the noise is amplified. By utilizing the CLAHE technique, it is possible to modify the
contrast of the image to achieve a clear and enhanced appearance while avoiding any noise. One study that
previously combined CLAHE and other filtration for early detection of breast cancer has proven to be
effective; the noise in the background has been eliminated by the filtration, resulting in an accuracy of
97.54% [29].

The findings indicate that the application of the CLAHE technique in segmentations resulted in
substantially greater ICC values compared to the semi-automatic technique and manual delineations.
Although the semi-automated segmentation techniques yielded slightly lower values than the CLAHE
techniques, they exhibited significantly higher levels of robustness compared to manual delineations [19,30].
The algorithm initialization enabled the semi-automated segmentation to accurately quantize the tumor
region, thereby eliminating the need for observer intervention and ensuring precise segmentation. CLAHE
basically enhances the HE in each region, thereby emphasizing and sharpening the elements of cervical
tumors such as edges, boundaries, and contrast. The research has shown that the use of CLAHE results in
increased uniformity in the extraction of radiomics features from semi-automated segmentation.

Conclusions
This study demonstrates that the use of semi-automated CLAHE image enhancement on DWI-MRI images
results in excellent reproducibility and repeatability compared to other methods. All 37 radiomics features
performed exceptionally well with CLAHE, leading to improved accuracy and delineation of the subject-of-
interest in DWI-MRI. When comparing the ICC values for reproducibility between CLAHE, semi-automated
segmentation, and manual segmentation, it is clear that CLAHE shows superior repeatability, achieving a
98% rate of reproducibility. Therefore, it is crucial to maintain consistency in radiomics value by ensuring
uniformity and optimizing the acquisition parameters of the MRI system.
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