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MYCOTOXINS BY Fusarium spp. AT GERMINATION STAGE

By
MSHELIA LADI PETER
December 2020
Chairman  : Professor Jinap binti Selamat, PhD
Institute : Tropical Agriculture and Food Security

Maize is an important crop cultivated for food and feed in different parts of the
world. Like any cereal, maize grain is susceptible to mycotoxin contamination on
the farm, during storage and processing. Therefore, the aims of the present work
were to (1) evaluate the biodiversity of Fusarium spp. in maize and soil samples
collected from different farms, (2) access the effects of climate change factors (aw,
CO; and temperature) on the production of parent and masked mycotoxins in
maize-based growth medium (in vitro), and, (3) determine the effect of climate
change factors (aw, CO; and temperature) on gene expression and production of
parent and masked mycotoxins in germinating and autoclaved maize kernels by F.
verticillioides and F. graminearum. A total of 68 Fusarium spp. were isolated from
maize and soil samples. Molecular identification by DNA sequencing of TEF-1a
gene regions confirmed the isolates. The fungal isolates found were F.
verticillioides, F. graminearum, and F. incarnatum. Fusarium spp. contamination
was found to be significantly higher in maize (p < 0.05) as compared to the soil
samples regardless of the growth medium used. All representative isolates tested
using LC-MS/MS were found to be mycotoxigenic. F. verticillioides tested showed
Fumonisin production ability, FB; (12.0 + 0.9 to 15,200 + 432 pg/kg), FB> (3.39 +
0.70 to 2510 £ 692 pg/kg) and FB3 (12.0 = 0.4 to 20.1 = 2.1 pg/kg). While for F.
graminearum DON (4,760 + 580 pg/kg), 3-ADON (3,980 + 62 ng/kg) and ZEN
(50 £ 0.1 pg/kg) was detected and F. incarnatum produced FB; (14.3 + 1.2 to 4,670
+ 835 pg/kg). F. verticillioides and F. graminearum were further selected because
F. incarnatum could not withstand elevated temperature. F. verticillioides was
acclimatised at 30 and 35°C while F. graminearum at 30 and 33°C. The effect of
aw, CO2 and temperature were tested on the growth and mycotoxin production
maize-based medium. F. verticillioides appears to be more tolerant to elevated
temperature, a, and CO> as compared to F. graminearum. However, F.
verticillioides produced FB; (29.07 £ 6.70 to 140.49 = 1.45 pg/kg) and FB; (21.46



+ 14.10to 32.17 + 0.54 pg/kg). For the studies on gene expression, the total fungal
biomass of the isolate was drastically reduced which was suspected to occur as a
result of the effect of climate change factors. This negatively affected the extraction
of RNA for further determination of the mycotoxigenic gene expression. However,
the results obtained in the present study revealed that mycotoxins were detected in
germinating and autoclaved maize kernel by those two acclimatised isolates. The
optimum conditions for mycotoxin production were detected at 0.98 aw, 400 ppm
CO; and 30°C for both isolates in germinating and autoclaved maize kernel.
However, masked mycotoxin was not detected in this study. At 30°C, the
mycotoxins produced by F. verticillioides were FB; and FB: while, F.
graminearum produced DON, ZEA and a-ZEA. Comparing Fusarium spp. and
other species, Aspergillus spp. grow faster and have a high resistance to
temperature than Fusarium spp. Therefore, more emphasis must be given to such
species. However, it must be noted that the production of mycotoxins other than the
targeted ones by these isolates may be possible under the effects of climate change
factors. Also, further acclimatisation of the isolates to both temperature and CO-
might affect the mycotoxigenic fungi due to their flexibility. Therefore, more
research is also needed in this area to determine the general types of mycotoxins
produced.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

KESAN SUHU, KARBON DIOKSIDA DAN AKTIVITI AIR TERHADAP
PENGHASILAN MIKOTOKSIN UTAMA DAN TERSEMBUNYI OLEH
Fusarium spp. PADA PERINGKAT PECAMBAHAN

Oleh
MSHELIA LADI PETER
Disember 2020
Pengerusi : Profesor Jinap binti Selamat, PhD
Institut : Pertanian Tropika dan Sekuriti Makanan

Jagung adalah tumbuhan yang sangat penting di beberapa kawasan di dunia sebagai
makanan bagi manusia dan haiwan. Seperti bijirin yang lain, bijirin jagung juga
mudah terdedah kepada pencemaran mikotoksin di ladang, semasa penyimpanan
dan pemprosesan. Oleh itu, objektif kajian ini adalah untuk; (1) menilai biodiversiti
Fusarium spp. di dalam sampel jagung dan tanah yang diambil dari beberapa
ladang jagung, (2) mengakses kesan faktor-faktor perubahan iklim (suhu, karbon
dioksida dan aktiviti air) terhadap pengeluaran mikotoksin utama dan mikotoksin
tersembunyi di dalam medium pertumbuhan berasaskan jagung (in vitro) dan, (3)
mengenalpasti kesan faktor-faktor perubahan iklim (suhu, karbon dioksida dan
aktiviti air) terhadap ekspresi gen dan penghasilan mikotoksin utama dan
mikotoksin tersembunyi. Sejumlah 68 Fusarium spp. telah diasingkan daripada
sampel jagung dan tanah. Pengenalan molekul menggunakan penjujukan DNA
TEF-1o kawasan gen telah memastikan isolat tersebut. Tanpa mengambilkira
media yang digunakan, jumlah bilangan kulat iaitu F. verticillioides, F.
graminearum, and F. incarnatum. Fusarium spp. yang dihasilkan daripada sampel
jagung adalah lebih tinggi (p < 0.05) berbanding sampel tanah. Semua isolat diuji
menggunakan LC-MS/MS didapati adalah mikotoksigenik. F. verticillioides
menunjukkan kebolehan untuk menghasilkan Fumonisin, FB1 (12.0 = 0.9 hingga
15,200 + 432 pg/kg), FB2 (3.39 + 0.70 hingga 2510 + 692 pg/kg) dan FB3 (12.0 +
0.4 hingga 20.1 + 2.1 pug/kg). Manakala, untuk F. graminearum, DON (4,760 + 580
pg/kg), 3-ADON (3,980 + 62 pg/kg) dan ZEN (50 + 0.1 pg/kg) telah dikesan dan
F. incarnatum menghasilkan FB; (14.3 + 1.2 hingga 4,670 + 835 pg/kg). Hanya F.
verticillioides dan F. graminearum telah dipilih selanjutnya kerana F. incarnatum
tidak boleh menahan suhu yang tinggi. F. verticillioides telah disesuaikan pada
suhu 30 dan 35°C, manakala, F. graminearum pada suhu 30 dan 33°C. Kesan
aktiviti air, karbon dioksida dan suhu telah diuji pada pertumbuhan dan
pengeluaran mikotoksin pada medium berasaskan jagung. F. verticillioides lebih
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bertoleransi terhadap suhu yang tinggi, aktiviti air dan karbon dioksida, jika
dibandingkan dengan F. graminearum. Namun begitu, F. verticillioides
menghasilkan FB; (29.07 + 6.70 hingga 140.49 + 1.45 pg/kg) dan FB> (21.46 +
14.10 hingga 32.17 + 0.54 pg/kg). Untuk kajian mengenai gen ekspresi, jumlah
biomass kulat yang telah diisolat berkurang secara drastik di mana disyaki berlaku
akibat faktor perubahan iklim. Ini memberi kesan negatif kepada pengekstrakan
RNA untuk penentuan lanjut tentang mikotoksigenik gen ekspresi. Walau
bagaimanapun, hasil yang diperoleh dalam kajian ini menunjukkan bahawa
mikotoksin berjaya dikesan di dalam biji jagung bercambah dan diautoklaf oleh
kedua-dua isolat tersebut. Keadaan optima untuk penghasilan mikotoksin dikesan
pada 0.98 aw, 400 ppm CO: dan 30°C bagi kedua-dua isolat dalam biji jagung
bercambah dan diautoklaf. Walau bagaimanapun, mikotoksin tersembunyi tidak
dikesan dalam kajian ini. Pada suhu 30°C, mikotoksin yang dihasilkan oleh F.
verticillioides adalah FB; dan FB», manakala, F. graminearum menghasilkan DON,
ZEA dan o-ZEA. Jika dibandingkan Fusarium spp. dengan spesis yang lain,
Aspergillus spp. tumbuh lebih cepat dan mempunyai rintangan tinggi terhadap suhu
berbanding Fusarium spp. Oleh itu, penekanan lebih tinggi perlu diberikan kepada
spesis ini. Walau bagaimanapun, perlu diingatkan bahawa penghasilan mikotoksin
selain daripada yang ditarget oleh isolat tersebut adalah berkemungkinan di bawah
faktor-faktor perubahan iklim. Selain itu, aklimatisasi selanjutnya bagi isolat
terhadap suhu dan karbon dioksida mungkin mempengaruhi kulat mikotoksigenik
disebabkan kelenturannya. Oleh itu, penyelidikan yang Ilebih banyak perlu
dijalankan bagi bidang ini bagi menentukan jenis-jenis mikotoksin umum yang
dapat dihasilkan.

v



ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisor Professor Dr Jinap
Selamat who played the most vital role in my PhD study. With her support,
motherly care and listening ears to my challenges and high level of patience,
tolerances, motivation, and immense knowledge. I would also want to thank my co-
supervisors, Dr Nik Iskandar Putra Bin Samsudin, Prof Raffi Mohd Yusop and
Assoc. Prof Franz Berthiller for their valuable advice and contribution to my
studies.

My heartfelt gratitude goes to my husband, Mr Peter Mshelia who has been by my
side throughout my study. I truly want to thank my kids, Lisa, David and Lenah for
their patience, and prayers for my success, who brings joy in my life. Special
thanks to my parents, Mr and Mrs Hyelsinta Katsalla for their prayers, support and
patience throughout my study. I also want to thank my sisters for their moral
support. I am also grateful for having great family in-laws for their moral support,
prayer and patience.

Lastly, I would like to thank my good friend Norlia Mohror for her encouragement
and kindness. I also want to appreciate my Lab mates who during my laboratory
work we became good friends especially Izzati, Farah, Rachan, Aliah, Sharina,
Aida, Fida and Din. I thank the UPM family for their prayers throughout my stay in
Malaysia and my life in general. I pray that we shall all live long to enjoy the fruit
of this labour. I thank the UPM community and I remain in awe of the mode of
organization and proficiency of this great institution.



This thesis was submitted to the Senate of the Universiti Putra Malaysia and has
been accepted as fulfilment of the requirement for the degree of Doctor of
Philosophy. The members of the Supervisory Committee were as follows:

Jinap binti Selamat, PhD

Professor

Faculty of Food Science and Technology
Universiti Putra Malaysia

(Chairman)

Mohd Rafii bin Yusop, PhD
Professor

Faculty of Agriculture
Universiti Putra Malaysia
(Member)

Nik Iskandar Putra bin Samsudin, PhD
Senior Lecturer

Faculty of Food Science and Technology
Universiti Putra Malaysia

(Member)

Franz Berthiller, PhD

Associate Professor

Institute of Bioanalytics and Agro-Metabolomics
University of Natural Resources and Life Sciences, Vienna
Austria

(Member)

ZALILAH MOHD SHARIFF, PhD
Professor and Dean

School of Graduate Studies
Universiti Putra Malaysia

Date: 11 May 2023

vil



TABLE OF CONTENTS

ABSTRACT
ABSTRAK
ACKNOWLEDGEMENTS
APPROVAL
DECLARATION
LIST OF TABLES
LIST OF FIGURES
LIST OF APPENDICES
LIST OF ABBREVIATIONS
CHAPTER
1 INTRODUCTION
1.1 Background of the study
1.2 Problem statement
1.3 Significance of the study
1.4  Objective
1.4.1  Objective of the study
1.4.2  Specific objectives
1.5 Research approach
2 LITERATURE REVIEW
2.1 Maize Plant
2.1.1 Developmental stages of a maize plant
2.1.2  Nutritional value of maize
2.1.3  Production and consumption of maize for feed
in Malaysia
2.1.4  Mycotoxigenic contamination of maize feed by
Fusarium spp.
2.2 Fusarium spp.
2.2.1  Overview of the genus Fusarium
2.2.2  Chemical characteristics of Fusarium toxins
2.2.3  Toxicological effects of Fusarium mycotoxins
2.2.4  Morphological and molecular identification of
Fusarium spp.
2.3 Mycotoxins (parent)
2.3.1  Occurrence of mycotoxins in maize and feed
2.3.2  Metabolism of parent mycotoxins
2.3.3  Masked mycotoxins
2.3.4  Types of masked mycotoxins
2.3.5 Metabolism of masked mycotoxins
2.3.6 International regulations of mycotoxins in feed
2.3.7 Malaysian regulatory limit for mycotoxins
2.4  Determination of parents and masked mycotoxins

Page

iil

vi
viil
X1V

XVii
XIX

XX

O S R

~Na D

10
10
10
11
12

13
15
15
16
17
18
19
20
21
24



2.4.1 LC-MS/MS method of determination of parent
and masked mycotoxins
2.5  Climate change
2.5.1 Factors affecting climate change
2.5.2  Effect of climate change on parent and masked
mycotoxins in maize
2.6 Biosynthetic genes for mycotoxin production by
Fusarium spp.
2.7  Effect of temperature, CO; and ay on gene expression
by Fusarium spp.

DIVERSITY AND MYCOTOXIGENIC POTENTIALS OF
Fusarium SPP. FROM MAIZE AND SOIL SAMPLES
3.1 Introduction
3.2 Materials and methods
3.2.1.1 Sampling
3.2.2  Mycotoxin standards and chemicals
3.2.3  Measurement of moisture content in maize and
soil samples
3.2.4 Enumeration, isolation and identification of
fungi
3.2.5 Isolation frequency
3.2.6  Molecular identification
3.2.6.1 DNA extraction
3.2.6.2 PCR amplification and sequencing of
TEF-1a genes
3.2.6.3 Gel electrophoresis
3.2.7 Determination of toxigenic potential of
Fusarium spp.
3.2.7.1 Preparation of growth media
3.2.7.2 Inoculation of Fusarium isolates
3.2.7.3 Extraction of mycotoxins
3.2.7.4 UPLC-MS method
3.2.8  Statistical Analysis
3.3 Results
3.3.1 Moisture content of maize and soil samples
3.3.2  Fungal populations isolated from maize and soil
samples
3.3.3  Isolation frequency of Fusarium spp.
3.3.4  pH ofthe soil samples
3.3.5 Morphological and molecular identification of
Fusarium spp.
3.3.5.1 Macro morphological appearance of
Fusarium spp.
3.3.5.2 Micro-morphological appearance of
Fusarium spp.
3.3.5.3 Molecular identification of Fusarium
spp. using PCR amplification

X1

24
28
28

29

30

31

32
32
35
35
35

35

35
37
37
37

38
39

40
40
40
40
41
41
42
42

44
46
48
50
50
54

54



3.3.6 Mycotoxin production potential of Fusarium
Spp.
34 Discussion
3.5 Conclusion

EFFECT OF TEMPERATURE, CO; AND Aw ON
GROWTH AND THE PRODUCTION OF PARENT AND
MASKED MYCOTOXINS BY F. verticillioides AND F.
graminearum
4.1 Introduction
4.2 Materials and methods
4.2.1 Fungal isolates, mycotoxin standards and
chemicals
4.2.2  Acclimatisation of the fungal isolates
4.2.3  Experimental design
4.2.4  Modified atmosphere
4.2.5 Preparation of culture medium and inoculation
of fungal strain
4.2.6  Measurement of diametric growth rate
4.2.7  Extraction of mycotoxins
4.2.8  Determination of mycotoxins by LC-MS/MS
4.2.9 Statistical analysis
4.3 Results
4.3.1 Effect of temperature, CO2 and ay on the
diametric growth rate of F. verticillioides and
F. graminearum
4.3.2 Effect of temperature, CO; and ay on
mycotoxins produced by F. verticillioides and
F. graminearum
4.4  Discussion
4.5 Conclusion

EFFECT OF TEMPERATURE, CARBON DIOXIDE AND
WATER ACTIVITY ON GENE EXPRESSION AND
PRODUCTION OF PARENT AND MASKED
MYCOTOXINS IN GERMINATING AND
AUTOCLAVED MAIZE KERNELS BY F. verticillioides
AND F. graminearum
5.1 Introduction
5.2 Materials and methods
5.2.1 Mycotoxin standards and chemicals
5.2.2  Experimental design
5.2.3  Modified atmosphere
5.2.4  Sample preparation
5.2.5 Inoculation and incubation of F. verticillioides
and F. graminearum on germinating and
autoclaved maize kernels
5.2.6  Extraction of mycotoxins
5.2.7  Determination of mycotoxins using LC-MS/MS

Xii

56
59
61

62
62
63

63
64
64
65

66
66
67
67
67
67

67

72
78
81

82
82
83
&3
83
&3
83

84
85
85



5.2.8
5.2.9
5.2.10

53 Results
5.3.1

532
533

534

588 5

5.3.6

Gene expression

Extraction of RNA

Reverse transcription to convert mRNA into
cDNA

Effect of temperature CO», and aw on gene
expression

Expression of RNA gene on gel electrophoresis
Effect of temperature, CO; and aw on the
production of parent mycotoxins by the
acclimatised strain of F. verticillioides in
germinating maize kernel

Effect of temperature, CO2 and aw on the
production of parent and masked mycotoxins
by the acclimatised strain of F. graminearum
on germinating maize kernels

Effect of temperature, CO> and ay on the
production of parent and masked mycotoxins
by the acclimatised isolate of F. verticillioides
on autoclaved maize kernels

Effect of temperature, CO> and ay on the
production of parent and masked mycotoxins
by the acclimatised strain of F. graminearum
on autoclaved maize kernels

5.4 Discussion
5.5 Conclusion

6 SUMMARY, CONCLUSION AND RECOMMENDATION
FOR FURTHER RESEARCH
6.1 Summary
6.2 Conclusion
6.3 Recommendation for future research

REFERENCES
APPENDICES

BIODATA OF STUDENT
LIST OF PUBLICATIONS

xiii

&5
86

&7
88

88
90

90

93

96

99
102
105

106
106
108
108

109
131
142
143



Table

2.1

2.2

23

2.4

2.5

3.1

3.2

3.3

3.4

3.5

3.6

3.7

4.1

4.2

4.3

44

LIST OF TABLES

Proximate composition of maize grain per 100g of the edible portion
Global occurrence of mycotoxins in maize and Finished feed
Types of masked mycotoxins

Maximum levels of mycotoxins in feed materials set by the
European Commission (moisture content: 12%)

LCMS/MS determination of mycotoxins in maize, feed and other
cereals

50 uL reactions for PCR

GenBank accession number of ex- type isolates of Fusarium spp.
used for the phylogenic analysis

Moisture content (%) of maize and soil samples obtained from
different farms

Fungal load (log CFU/g) of maize and soil samples. cultivated on
PDA, DG18 and DRBC at 30°C for 7 days

Isolation frequency (%) of Fusarium spp. from sterilized and non-
sterilized maize kernels obtained from different locations cultivated
on PDA, DG18 and DRBC at 30°C for seven days

pH of soil samples obtained from different farms

Mycotoxins produced by Fusarium spp. (ng/kg) incubated at 30°C
on a maize-based medium for 21 days

Experimental design (factorial) on the effect of climate change
factors (aw, temperature and CO>) for F. verticillioides

Experimental design (factorial) on the effect of climate change
factors (aw, temperature and CO,) for F. graminearum

Effect of temperature, (30, 35°C), CO> levels (400, 800, 1200 ppm),
and ay (0.92, 0.95, 0.98 ay) on the diametric growth rate of
acclimatised strain of F. verticillioides on MMA

Analysis of variance of the effect of temperature, CO2 and ay on the
diametric growth rate of F. verticillioides

Xiv

Page

16

18

22

25

38

39

43

45

47

49

58

65

65

68

69



4.5

4.6

4.7

4.8

4.9

4.10

5.1

5.2

53

54

5.5

5.6

5.7

5.8

5.9

Effect of temperature, (30, 35°C), CO> levels (400, 800, 1200 ppm),
and ay (0.92, 0.95, 0.98 ay) on the diametric growth rate of
acclimatised strain of F. graminearum on MMA

Analysis of variance of the effect of temperature, CO2 and aw on the
diametric growth rate of F. graminearum

Total concentration of FBi, and FB> produced by F. verticillioides

on milled maize agar at various temperatures, aw and CO> levels
after 21 days

Analysis of variance of the effect of temperature, CO2 and aw on
the production of FB1 and FB2 by F. verticillioides

Total concentration of DON and ZEA produced by F. graminearum
on milled maize agar at various temperatures aw and CO> levels after
21 days

Analysis of variance of the effect of temperature, aw and CO2 on the
production of DON and ZEA by F. graminearum

Master mix for reverse transcription per reaction

Concentration of RNA extracted from F. verticillioides on
autoclaved maize

Concentration of RNA extracted from F. graminearum on
autoclaved maize

Fumonisins B1, B2 and B3 concentration (pg/kg) produced by F.
verticillioides on germinating maize kernels at 30°C and various aw
and CO; levels after 21 days

Analysis of variance of the effect of temperature, aw and CO; on the
production of FB; and FB; by the strain of F. verticillioides

Total concentration of DON, 3-ADON, ZEA, and a- ZEA by the
acclimatised strain F. graminearum on germinating maize kernels at
30°C at various temperature, a, and CO- levels after 21 days

Analysis of variance of the effect of temperature, aw and CO2 on the
production of DON, 3-ADON, ZEA and o- ZEA by F.
graminearum

Fumonisins B, B> and B; concentration (pg/kg) produced by F.
verticillioides on autoclaved maize kernels at 30°C at various
temperature, aw and CO: levels after 21 days

Analysis of variance of the effect of temperature, aw and CO2 on the
production of FB1 and FB, by F. verticillioides

XV

71

71

74

75

77

78

87

89

89

92

93

95

96

98

99



5.10

5.11

Total concentration of DON, ZEA and 3-ADON (ug/kg) produced
by the strain F. graminearum on autoclaved maize kernels at 30°C at
various temperature, ay and CO; levels after 21 days

Analysis of variance of the effect of temperature, ay and CO2 on the
production of DON, 3-ADON and ZEA by F. graminearum

Xvi

101

102



Figure
1.1

2.1

2.2
23
2.4
2.5
2.6
2.7
2.8
3.1
3.2
33

34

3.5

3.6

4.1

LIST OF FIGURES

Flow chart of the study

Developmental stages of maize plant (vegetative and reproductive
stages)

Malaysian maize feed importation from 1960 to 2019
Malaysian maize feed consumption from 1960 to 2019
Structures of major important Fusarium spp.

Morphological characteristics of Fusarium spp in situ on CLA
Metabolism of zearalenone in animals

Conversion of DON and ZEA to DON-3-Glc and ZEA-14-Glc
Conversion of ZEA to several metabolites
Macro-morphological appearance of F. verticillioides
Macro-morphological appearance of F. incarnatum
Macro-morphological appearance of F. graminearum

Micromorphology of Fusarium spp. observed on Spezieller
Nahrstoffarmer Agar (SNA) in a petri dish under low power
microscope 10x

Amplification of the TEF-1a gene (~700 bp) of the representative
Fusarium spp. from maize and soil samples. M: 1 kb DNA ladder;
C: negative control (without DNA templates)

Maximum likelihood phylogenetic tree of Fusarium spp. based on
TEF-a gene sequence. Other isolates of Fusarium spp. from the
GenBank were chosen as reference isolates for phylogenetic
analysis

The effect of carbon dioxide (400, 800, 1200 ppm), water activity
(0.92, 0.95, 0.98 ay) and temperature (30, 35°C) levels on diametric
growth rate (mm/d) of acclimatised strain of F. verticillioides
cultivated on milled-maize agar for seven days

Xvii

Page

12

14

17

19

20

51

52

53

54

55

56

70



4.2

4.3

4.4

5.1

5.2

53

5.4

5.5

5.6

5.7

5.8

The effect of carbon dioxide (400, 800, 1200 ppm), water activity
(0.92, 0.95, 0.98 ay) and temperature (30, 35°C) levels on diametric
growth rate (mm/d) of acclimatised strain of F. graminearum
cultivated on milled-maize agar for seven days

The effect of carbon dioxide (400, 800, 1200 ppm) and water
activity (0.92, 0.95, 0.98 aw) on fumonisins (FB1, FBz) production
(ng/kg) by acclimatised strain of F. verticillioides cultivated on
milled-maize agar for 21 days at 30°C

The effect of carbon dioxide (400, 800, 1200 ppm) and water
activity (0.92, 0.95, 0.98 ay) on mycotoxin (DON, ZEA) production
(ng/kg) by acclimatised strain of F. graminearum cultivated on
milled-maize agar after 21 days at 30°C

Moisture adsorption curve of maize kernels

Flow chart of the gene expression analysis of F. verticillioides and
F. graminearum

Growth of F. verticillioides and F. graminearum under the effect of
different a at 30°C and 400 ppm CO: on autoclaved maize kernels

RNA gene of Fusarium spp. on gel electrophoresis.

The effect of CO, (400, 800, 1200 ppm) and water activity (0.92,
0.95, 0.98 ay) on fumonisins (FBi, FB2) production (pg/kg) by
acclimatised strain of F. verticillioides cultivated on germinating
maize after 21 days at 30°C

The effect of carbon dioxide (400, 800, 1200 ppm) and water
activity (0.92, 0.95, 0.98 aw) on. DON, 3-ADON, ZEN and a-ZEA
production (pg/kg) by acclimatised strain of F. graminearum
cultivated on germinating maize after 21 days at 30°C

The effect of CO2 (400, 800, 1200 ppm) and water activity (0.92,
0.95, 0.98 ay) on fumonisins (FBi, FB2) production (png/kg) by
acclimatized strain of F. verticillioides cultivated on autoclaved
maize after 21 days at 30°C

The effect of carbon dioxide (400, 800, 1200 ppm) and water
activity (0.92, 0.95, 0.98 ay) on DON, ZEA and a-ZEA production
(ug/kg) by acclimatized strain of F. graminearum cultivated on
autoclaved maize after 21 days at 30°C

Xviii

72

73

76

84

86

88

90

91

94

97

100



LIST OF APPENDICES

Appendix

A Image of maize-based media inoculated with F. verticillioides

B Effect of climate change factors (Temperature, CO», and ay ) on the
production of parent and masked mycotoxins inoculated on maize-
based media by F. verticillioides and F. graminearum

C Effect of climate change factors (Temperature, CO2, and ay )on the
production of parent and masked mycotoxins in germinating maize
kernels by F. verticillioides and F. graminearum (in planta)

D Effect of climate change factors(Temperature, CO, and aw ) on the

production of parent and masked mycotoxins in autoclaved maize
kernels by F. verticillioides and F. graminearum

XIX

Page

131

132

135

138



Aw

BLAST
CFU

CO2

DGI18
DON
3-ADON
DRBC

EU

FB:

FB»

FB;

FAO
FAOSTAT
F. graminearum
F. verticillioides
GMP
HRMS
IARC
IPCC

IF

Kg
LC-MS/MS

LOD

LIST OF ABBREVIATIONS

Water activity

Basic Local Alignment Search Tool

Colony Forming Unit

Carbon dioxide

Dichloran 18% glycerol agar

deoxynivalenol

3-acetyl-Deoxynivalenol

Dichloran Rose Bengal Chlorophenerin
European Union

Fumonisin B;

Fumonisin B2

Fumonisin B3

Food and Agriculture Organization of the United Union
FAO Statistical Databases (United Nations)
Fusarium graminearum

Fusarium verticillioides

Good Manufacturing Practice
High-resolution mass spectrometry
International Agency for Research on Cancer
International Panel on Climate Changes
Isolation frequency

Kilogram

Liquid chromatography-tandem mass spectrophotometry

Limit of detection

XX



LOQ
MEA
MeOH

ML

MMA
TEF

ULPC
WHO

a-ZEA

Limit of quantification

Malt Extract Agar

Methanol

Maximum Likelihood

Millilitre

Milled maize agar

Translation elongated factor

Ultra Performance Liquid Chromatography
World Health Organization

Alpha - Zearalenol

XX1



CHAPTER 1

INTRODUCTION

1.1 Background of the study

Climate change is described as a global change of weather that may occur as a
result of human activities such as clearing of the forest, burning of fossil fuel and
others (Paterson and Lima, 2011), causing a drastic increase in carbon dioxide
(CO2) and temperature in the atmosphere resulting to drought, precipitation and
change in rainfall (Chakraborty et al., 1998). The climate change scenario has
become the center of attention to the scientific community due to the impact it may
have on plants, mycotoxigenic fungi, and mycotoxin contamination. Several
researchers have predicted that about 1.5 pmol of CO; and also 0.03% of
temperature is expected to increase yearly (Medina et al., 2017; Magan et al.,
2011). However, based on the presently available data, in the next 20-50 years, the
concentration of atmospheric CO: is expected to double or tripled (from 350 - 400
to 800 - 1200 ppm) (Medina et al., 2015).

Vaughan et al., (2014) reported that in the future, climate change would increase
the susceptibility of crops such as maize, rice, and wheat to mycotoxigenic fungal
pathogens. Based on a global basis, about 1/3 variations in the yield of crops may
be as a result effect of climate change (Ray et al., 2015). In Europe, the European
Food Safety (EFSA) has examined the potential impact of climate change and
suggested that this could depend on geographical region, which could be
detrimental or advantageous (Medina et al., 2015). Similarly, climate change is
also expected to have a negative impact in some parts of Asia, Central and South
America, they are important producers of various crops such as wheat, maize and
soya beans.

Mycotoxigenic fungi can be affected by the impact of climate change factors.
Mycotoxins produced by these fungi are toxic chemical substances of secondary
metabolites (Andrade et al., 2017; Rahmani et al., 2009). Aspergillus, Fusarium
and Penicillium are the most important fungal genera that can produce mycotoxins
under suitable conditions (Lee and Ryu, 2017; Roseanu et al., 2010). Currently,
more than 400 fungal metabolites have been discovered however, not all are
toxigenic (Paterson and Lima, 2011). The major fungi associated with maize is
Fusarium spp. especially F. verticillioides and F. proliferatum (Cendoya et al.,
2014).

Plants are capable of protecting themselves against xenobiotic compounds such as
mycotoxins by transforming them into conjugated forms (Berthiller et al., 2005).
These conjugated compounds are referred to as masked mycotoxins due to their
ability to escape the normal routine analytical methods. Their mechanism of
production could be natural or could be formed as a defense against infection by
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xenobiotics (Rychlik et al., 2014). Furthermore, these metabolites can be formed as
a result of metabolism by plant, animal or alongside during processing of foods
from contaminated raw materials.

Several researchers have reported that Fusarium spp. are the major species
affecting cereal grains during pre and post-harvest under favorable environmental
conditions such as temperature, water activity and CO (Smith et al.,2016; Medina
et al., 2015). The species of Fusarium is a natural producer of both parent and
masked mycotoxins which are mainly isolated from various food and feed
products. Most of the frequently occurring Fusarium mycotoxins are DON, 3-
ADON, 15-ADON, ZEA, NIV, DAS, HT-2 toxins, T-2 toxins, NEO
(Mankevicien¢ et al.,, 2011). In cereals, some of the mycotoxins produced
accumulated in the kernel as a result of fungal contamination which may lead to
their carryover in processed food and feed in toxicologically relevant
concentrations (Duan et al., 2016; Rodrigues and Naehrer, 2012). Hence, this has
become a global issue.

In Malaysia, maize has been recently gazetted as one of several wealth-creating
crops. The interest in maize plantation stemmed from the need to reduce the
country’s dependence on maize import to feed its livestock. Basically, nearly 100%
maize for feed is imported from other countries which caused a heavy economic
burden. Therefore, the Malaysian government under the Department of Agriculture
with co-operation from Green World Genetics (GWQ), has taken an initiative to
cultivate Malaysian first commercialized maize. The pilot project of maize
cultivation was carried out using GWG 888 (maize seed).

Therefore, there is a need to carry out extensive research on the prevalence of
Fusarium spp., and the effect of climate change on the prevalent species at
different stages in maize and their mycotoxigenic potentials.

1.2 Problem statement

Mycotoxins are toxic chemical substances contaminating a large variety of food
and feed in a relevant toxicological quantity. This occurs due to suitable
environmental conditions such as temperature, humidity, water activity and CO,.
Indeed, many researchers in Malaysia have reported contamination of animal feed.
Malaysia is a tropical country with high humidity, temperature and rainfall
therefore a high risk of mycotoxin contamination is expected to occur (Bhat et al.,
2010). However, Fusarium spp. is among the mycotoxigenic fungi that invade
many varieties of agricultural products and can produce both parent and masked
mycotoxins that are harmful to both human and animals.



Masked mycotoxin is of great threat to both human and animal health due to its
ability to hydrolysed into their parent compound in the animal and human body, it
is reabsorbed into the blood thereby increasing its exposure and toxicological
properties (Berthiller et al., 2009). Although, various research has been conducted
on the co-occurrence of parent and masked mycotoxins in different varieties of
food and feed, unfortunately, classical risk analysis does not include the presence
of masked mycotoxin into account as the total mycotoxins and current regulatory
limits for food and feed are based on parent mycotoxins only.

Besides, contamination of maize in the field cannot be totally overcome due to the
ubiquitous nature of fungi. Several issues of Fusarium contamination in different
product has been reported in Malaysia. Therefore, due to these reasons, extensive
research focusing on the diversity, identification, toxigenic potentials and the
influence of climate change on Fusarium spp. is needed in order to ensure the
safety of both humans and animal and also to recommend a relevant way to tackle
the issue of contamination by Fusarium spp. as a result of future climate change.

Furthermore, the gene expression by the Fusarium spp. must also be investigated
based on the effect of climate change to understand the impact on the clustered
gene of Fusarium spp. in maize since there are no reported kinds of literature on
such study. This information is important in order to understand the behavior of
Fusarium spp. in maize under certain climatic conditions, which in turn could be
used as an actual dataset based on the previous prediction about the effect of
climate change factors on mycotoxigenic fungi.

1.3 Significance of the study

The data obtained from this study will contribute to better awareness of the
prevalent Fusarium spp. in maize. The data and information will also be useful to
the Policy Makers (National Policy on Climate Change) about the current
occurrence and the feature perception of Fusarium based on the influence of
climate change, the target for intervention due to the present occurrence of
Fusarium spp. in maize.



14 Objective

14.1 Objective of the study

Generally, this study aimed to evaluate the prevalent Fusarium spp. in maize and
determine the effect of climate change on the production parent and masked
mycotoxins by the Fusarium spp. in maize at different developmental stages.

1.4.2 Specific objectives

1. To evaluate the biodiversity of Fusarium spp. in maize and soil samples
collected from different maize farms.

2. To access the effects of climate change factors (CO,, temperature and ay)
on the production of parent mycotoxins in maize-based growth medium (in
Vitro).

3. To determine the effect of climate change factors (CO», temperature and ay)
on gene expression and production of parent and masked mycotoxins in
germinating and autoclaved maize kernels by F. verticillioides and F.
graminearum



1.5

Research approach

Obj 1

Obj 2

Obj 3

Determine the biodiversity and mycotoxigenic
potentials of Fusarium spp. in maize and soil samples

Isolation and
identification of
Fusarium spp.

Morphological and
molecular
Identification of
Fusarium spp.

Mycotoxigenic potentials of Fusarium spp.

generation)

Acclimatisation of the prevalent strain (F. verticillioides
and F. graminearum by sub culturing to the 10"

Determine the effect of climate change factors on the
production of parent and masked mycotoxins produced
by F. verticillioides and F. graminearum in vitro

Determine the effect of climate change factors on the
production of parent and masked mycotoxins
germinating maize kernels and gene expression (FUM 1,
TRI 5 and PKS4) by the acclimatised isolate of F.
verticillioides and F. graminearum

in

Figure 1.1 : Flow chart of the study
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