UNIVERSITI PUTRA MALAYSIA

EQUINE HERPESVIRUS TYPE 4 INFECTION:
SEROEPIDEMIOLOGY, PATHOGENESIS AND THE EFFECT ON
RACING PERFORMANCE

KAMARUDIN MD ISA

FPV 2002 9
EQUINE HERPESVIRUS TYPE 4 INFECTION: SEROEPIDEMIOLOGY, PATHOGENESIS AND THE EFFECT ON RACING PERFORMANCE

By

KAMARUDIN MD ISA

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirement for the Degree of Doctor Philosophy

July 2002
Abstract of the thesis submitted to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the Degree of Doctor of Philosophy

EQUINE HERPESVIRUS TYPE 4 INFECTION: SEROEPIDEMIOLOGY, PATHOGENESIS AND THE EFFECT ON RACING PERFORMANCE

By

KAMARUDIN MD ISA

July 2002

Chairman: Prof. Dr. Mohd Zamri Saad
Faculty: Veterinary Medicine

Equine rhinopneumonitis is an equine respiratory disease caused by equine herpesvirus type 4 (EHV-4). This study provides the first information on the disease status in Malaysia. Serological survey conducted on 1,023 blood samples, representing 23% of equid population in Malaysia (including Sabah and Sarawak) reveals a moderate seroprevalence rate of 60%. However, the prevalence ranges between 0 and 100%. The state that has 0% prevalence maintained the ponies as a closed herd in contrast the states that have 100% prevalence, which are active in importing equids.
Sero-prevalence to EHV-4 varies significantly between states, districts, stables, horse and pony types and age but not affected by upgrading of pony blood through cross breeding. Based on the equid types, thoroughbred racehorse has the highest prevalence of 100%, followed by the warm-blooded horse at 46.8% while pony and pony crosses has the lowest prevalence of 36.9%.

Intranasal infection of EHV-4 on serologically negative local yearling ponies results in a disease characterised by clinical signs of nasal discharge and fever. The fever is not typical of the hyperthermia caused by viral infection since the biphasic temperature increment is absent. Transient leukopaenia is absent while the arterial oxygen and carbon dioxide partial pressures are not altered. All the changes reflect the mild nature of the EHV-4 infection.

The histological and ultra-structural examinations of the mucosa of the respiratory tract indicated a substantial damage of the upper respiratory tract and tracheal mucosa. Multifocal erosion and extensive accumulation of serous, mucus and dead cells on epithelial surface have been observed. Changes in the nucleus include swelling, nuclear lysis, nuclear membrane disintegration and dilation of
perinuclei membrane. In the cytoplasm, the changes observed include vacuolar degeneration, mitochondria swelling with disintegrated cristae and accumulation of fluid in cytocavity.

Following intra-nasal inoculation, the infectious virus is rapidly transported to the upper respiratory tract and primary bronchiole. By day 7 post-infection, expression of antigen in sub-mandibular lymph node is markedly reduced as compared to day 3, suggesting a quick elimination of EHV-4 antigen.

Successful detection of EHV-4 antigen from the nasal swab samples using nested PCR at 24-48 hours post-race provides evidence that racing could reactivate latent infection and increase the risk of pony contracting the disease. The EHV-4 infection is found to have a negative effect on racing performance. Racehorses that are sero-negative had higher chances of improving or maintaining finishing position. The effect is more prominent in pony where sero-positive pony is less likely to win the race.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai keperluan untuk Ijazah Doktor Falsafah

JANGKITAN HERPESVIRUS EKUIN JENIS 4: SEROEPIDEMIOLOGI, PATOGENESIS DAN KESAN KE ATAS PRESTASI BERLUMBA

Oleh

KAMARUDIN MD ISA

Julai 2002

Pengerusi: Prof. Dr. Mohd Zamri Saad

Fakulti: Perubatan Veterinar

Rhinopneumonitis ekuin adalah penyakit sistem pernafasan kuda yang disebabkan oleh herpesvirus ekuin jenis 4 (EHV-4). Kajian ini memaparkan maklumat, buat kali pertamanya, mengenai status penyakit ini di Malaysia. Bancian ke atas 1,023 sampel darah yang mewakili 23% populasi ekuid di Malaysia (termasuk Sabah dan Serawak) mendapati seroprevalen yang sederhana pada tahap 60%. Namun begitu, julat seroprevalen adalah luas, daripada 0% hingga...
100%. Negeri yang menunjukkan seroprevalen terendah (0%) mempraktikkan pengurusan tertutup sedangkan negeri yang tinggi prevalen (100%) aktif mengimport ekuid.

Seroprevalen adalah berbeze di antara negeri, daerah, kandang, jenis kuda dan usia tetapi tidak dipengaruhi oleh kacukan kuda padi. Berdasarkan jenis kuda, kuda lumba baka thoroughbred mempunyai kadar tertinggi, iaitu 100%, diikuti kuda darah panas lain (46.8%) manakala kuda padi mempunyai kadar terendah (36.9%).

Jangkitan EHV-4 melalui hidung dikalangan kuda padi berumur setahun yang negatif sera menyebabkan penyakit dengan tanda-tanda demam dan berhingus. Akan tetapi demam tidak seperti jangkitan biasa oleh virus di mana peningkatan suhu badan dua kali tidak berlaku. Sel darah putih pula tidak berkurangan dan tekanan separa oksigen dan karbon dioksida darah tidak terjejas. Ini menunjukan yang jangkitan disebabkan EHV-4 adalah sederhana.

Walau bagaimanapun, pemeriksaan histologi dan microskop elektron mendapati lesi pada mukosa salur pernafasan atas agak buruk. Hakisan terjadi di banyak tempat sementara pemendapan
lendiran serta sel mati dipermukaan salur pernafasan hingga ke trakea turut berlaku. Begitu juga perubahan pada nukleus dan sitoplasma sel terjangkit menunjukan yang sel mengalami degenerasi dan kematian.

Sebaik sahaja virus masuk ke dalam hidung, ia merebak dalam saluran pernafasan atas dan turun sehingga bronki utama. Menjelang hari ketujuh, antigen kelihatan berkurangan di dalam nodus limfa sub-mandibular yang meggambarkan pemusnahan virus yang cepat.

ACKNOWLEDGMENTS

I am grateful to my supervisory committee chairman, Professor Dr. Mohd Zamri Saad for his valuable advice and guidance throughout this study. My sincere thanks are due to Associate Professor Dr. Mohd Azmi Lila and Associate Professor Dr. Noordin Mohamed Mustapha who have provided advice and useful comments.

My appreciation goes to the Public Services Department Malaysia for granting the scholarship and to the Director General Department of Veterinary Services Malaysia for giving me the opportunity to pursue the study and providing ponies for the experiment. I also would like to record my deep appreciation to Dr H.J. Field for his kind assistance and care while I am on a month attachment at the Veterinary School, University of Cambridge.

My sincere thanks are to directors of states veterinary services, turf clubs management and stables owners for their cooperation and assistance in blood sampling for the epidemiological study. I also would like to express my gratitude and appreciation to the followings who have been of great help in my study: Dr Aziz Jamaludin, Dr Md.
Sabri Mohd Yusoff, Dr Yuslan Sanuddin, Dr Bashir Ahmad, Dr Rahim Saibu, Dr Cik Zalina Mohd Zain, En Jamil Abdul Samad, En Mohd Nurul Ikwan Yosminar, En Shukor Ahmad, Cik Azilah Jalil, En Ho Oi Kuan, En Salehuddin, En Ismail Md. Shairi, En Kamarudin Awang Isa and members of the Faculty of Veterinary Medicine for sharing their technical skills and their ever available assistance’s.

This study is dedicated to my wife Rohimah Mohd Rashid and my juniors Farid Wakim, Farul Izzat, Fadzlin Syazana and Fareth Azedy for being understanding throughout the study.
I certify that an Examination Committee met on 18th July 2002 to conduct the final examination of Kamarudin Md Isa on his Doctor of Philosophy thesis entitled "Equine Herpesvirus Type 4 Infection: Seroepidemiology, Pathogenesis and the Effect on Racing Performance" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that candidate be awarded the relevant degree. Members of Examination Committee are as follows:

ABDUL RANI BAHAMAN, Ph.D.
Professor
Faculty of Veterinary Medicine
University Putra Malaysia
(Chairman)

MOHD ZAMRI SAAD, Ph.D.
Professor/Deputy Dean
Faculty of Veterinary Medicine
University Putra Malaysia
(Member)

MOHD AZMI MOHD LILA, Ph.D.
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

NOORDIN MOHAMED MUSTAPHA, Ph.D.
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

HUGH J FIELD, Ph.D.
University of Cambridge, UK
(External Examiner)

SHAMSHER MOHAMAD RAMADILI, Ph.D.
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia
Date: 31 JUL 2002
This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy.

[Signature]

AINI IDERIS, Ph.D.
Professor
Dean, School of Graduate Studies
Universiti Putra Malaysia

Date: 12 SEP 2002
DECLARATION

I hereby declare that the dissertation is based on my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

KAMARUDIN MD ISA
Date: 27/07/02
TABLE OF CONTENTS

ABSTRACT ... ii
ABSTRAK ... v
ACKNOWLEDGEMENTS ... viii
APPROVAL SHEETS .. x
DECLARATION ... xii
LIST OF TABLES ... xviii
LIST OF FIGURE .. xxi
LIST OF PLATES ... xxii
LIST OF ABBREVIATIONS AND SYMBOLS .. xxv

CHAPTER

1 INTRODUCTION ... 1

2 LITERATURE REVIEW .. 8
 2.1. The Virus ... 8
 2.2. Disease Caused by EHV-4 ... 10
 2.2.1. Respiratory Disease .. 10
 2.2.2. Non-Respiratory Disease .. 11
 2.3. Risk Factors Associated With EHV4 Infection 13
 2.3.1. Age ... 13
 2.3.2. Season ... 14
 2.3.3. Weaning Status of Foals ... 15
 2.3.4. Exposure .. 15
 2.3.5. Exercise ... 16
 2.3.6. Concurrent Infection .. 16
 2.4. Diagnosis and Identification of EHV4 Infection 17
 2.4.1. Virus Isolation .. 17
 2.4.2. Virus Neutralization Test (VNT) ... 18
 2.4.3. Enzyme-Linked Immunosorbent Assay (ELISA) 18
 2.4.4. Restriction Fragment Patterns (RFPs) 19
 2.4.5. Polymerase Chain Reaction (PCR) .. 20
 2.4.6. In-Situ PCR .. 23
 2.4.7. Immunoperoxidase ... 24
 2.4.8. Agar Gel Immunodiffusion Test (AGID) 25
 2.4.9. Indirect Immunofluorescence Assay (IFFA) 25
 2.4.10. Sensitivity and Specificity of Various Testing Procedures 26
 2.4.10.1. VNT and ELISA .. 26

xlll
2.4.10.2. The PCR and Isolation 27
2.4.10.3. Immunoperoxidase and Fluorescent Antibodies 28
2.4.10.4. ELISA, AGID and CF 28
2.5. Prevalence of EHV-4 Infection 29
 2.5.1. Sero-prevalence.......................... 29
 2.5.2. Non-Serological Prevalence 31
2.6. Pathogenesis of EHV-4 Infection 32
 2.6.1. General 32
 2.6.2. Cell Tropism.............................. 34
 2.6.3. The EHV-4 Distribution 35
 2.6.4. Histological Changes 37
 2.6.5. Ultra-Structural Changes 38
 2.6.6. Latency of EHV-4 39
 2.6.7. Reactivation of Latent Infection 41
 2.6.8. Protection Against Re-Infection and Reactivation 43
2.7. Effect of Respiratory Infection on Gas Tension 44
2.8. Effect of Respiratory Disease on Horse’s Performances 46
2.9. Focus of The Research 46

3 SEROEPIDEMIOLOGY OF EQUINE HERPESVIRUS TYPE 4 (EHV-4) IN MALAYSIA 48
3.1. Introduction 48
3.2. Materials and Methods 49
 3.2.1. Sampling Strategy 49
 3.2.2. Samples Collection 52
 3.2.3. Virus Strain and Tissue Culture 53
 3.2.4. Virus Neutralization Test (VNT) 53
 3.2.5. Enzyme-Linked Immunosorbent Assay (ELISA) 54
 3.2.6. Prevalence Estimates 55
 3.2.7. Statistical Analysis 57
3.3. Results 58
 3.3.1. Overall Sero-prevalence of EHV-4 58
 3.3.2. Sero-prevalence According to States 58
 3.3.3. Sero-prevalence According to Districts 60
 3.3.4. Sero-prevalence According to Stables 62
 3.3.5. Sero-prevalence According to Horse and
 Pony Types 63
 3.3.6. Sero-prevalence According to Age 63
 3.3.7. Sero-prevalence According to Grade of
Pony (effect of cross-breeding) 63

3.4. Discussion ... 66

4 EXPERIMENTAL INFECTION OF SEROLOGICALLY
NEGATIVE MALAYSIAN PONIES WITH EHV-4:
CLINICAL SIGNS, BLOOD LEUKOCYTES, AND
BLOOD GAS TENSION ... 72

4.1. Introduction ... 72

4.2. Materials and Methods 73
 4.2.1. Yearling Ponies 73
 4.2.2. Virus Strain ... 74
 4.2.3. Experimental Design 75
 4.2.4. Clinical Signs ... 76
 4.2.5. Arterial Blood Collection 76
 4.2.6. Determination of Blood pO2 and pCO2 77
 4.2.7. Blood Collection for White Blood Cells
 Parameter ... 77
 4.2.8. Statistical Analysis 77

4.3. Results ... 78
 4.3.1. Clinical Signs ... 78
 4.3.1.1. Rectal Temperature 78
 4.3.1.2. Nasal Discharge 79
 4.3.2. White Blood Cells Parameters 81
 4.3.3. Arterial Blood Oxygen (pO2) and Carbon
 Dioxide (pCO2) ... 83

4.4. Discussion ... 85

5 HISTOLOGICAL AND ULTRASTRUCTURAL
CHANGES IN THE RESPIRATORY MUCOSA OF
SEROLOGICALLY NEGATIVE YEARLING PONIES
INFECTED WITH EHV-4 ... 92

5.1. Introduction ... 92

5.2. Materials and Methods 94
 5.2.1. Yearling Ponies 94
 5.2.2. Virus Strain ... 94
 5.2.3. Experimental Design 94
 5.2.4. Sample Collection 95
 5.2.5. Histological Processing 95
 5.2.6. Statistical Analysis 97
 5.2.7. Transmission Electron Microscopy (TEM)
 Examination ... 98
 5.2.8. Ultra-Structural Changes 99

5.3. Results ... 99

xv
5.3.1. Histological Changes 99
5.3.2. Lesion Score .. 101
5.3.3. Detection of Virus Using TEM 101
5.3.4. Ultra-Structural Changes 103
 5.4.4.1. The Nucleus .. 104
 5.4.4.2. The Cytoplasmic Organelles 104
5.4. Discussion .. 105

6 IMMUNOHISTOLOGICAL DETECTION OF VIRAL ANTIGEN EXPRESSION IN YEARLING PONIES INFECTED INTRANASALLY WITH EHV-4 120
6.1. Introduction .. 120
6.2. Materials and Methods 122
 6.2.1. Yearling Ponies 122
 6.2.2. Virus Strain ... 123
 6.2.3. Experimental Design 123
 6.2.4. Samples Collection 123
 6.2.5. Production of Hyperimmune Serum 123
 6.2.6. Indirect Immunoperoxidase Staining Method ... 124
 6.2.7. Viral Antigen Expression 125
6.3. Results .. 126
 6.3.1. The EHV-4 Virus Expression 126
 6.3.2. Comparison of Antigen Expression Between Day 3 and 7 Post-Infection 127
6.4. Discussion .. 131

7 DETECTION OF EHV-4 ANTIGEN FROM NASAL SWABS OF WINNERS AND NON-WINNING RACING PONIES USING A NESTED POLYMERASE CHAINREACTION (PCR) TECHNIQUE 136
7.1. Introduction .. 136
7.2. Materials and Methods 137
 7.2.1. Sampling of Ponies 137
 7.2.2. Swab Samples 138
 7.2.3. Blood Collection 138
 7.2.4. Enzyme-Linked Immunosorbent Assay (ELISA) ... 138
 7.2.5. Isolation of Genomic DNA 139
 7.2.6. Primers .. 139
 7.2.7. Polymerase Chain Reaction (PCR) 140
 7.2.8. Experimental Design and Statistical
Analysis ... 142
7.3. Results .. 143
 7.3.1. PCR and ELISA Results 143
 7.3.2. Relations of PCR and Racing Results 144
 7.3.3. Comparison of PCR and ELISA Results 144
7.4. Discussion.. 145

8 ANALYSIS ON RACING PERFORMANCE OF
HORSES AND PONIES SERO-POSITIVE TO
EQUINE HERPES VIRUS TYPE 4 148
8.1. Introduction ... 148
8.2. Material and Methods 150
 8.2.1. Animals ... 150
 8.2.2. Performance Indicators 151
 8.2.3. Samples Collection 151
 8.2.4. Enzyme-Linked Immunosorbent Assay
 (ELISA) ... 152
 8.2.5. Statistical Analysis 152
 8.2.6. Second Observation on Racing Ponies 154
8.3. Results .. 154
 8.3.1. Prevalence of EHV-4 infection 154
 8.3.2. Racing Performance of Racehorses 155
 8.4.2.1. Current Finishing Position 155
 8.4.2.2. Comparison Between Current and
 Previous Finishing Position 155
 8.3.3. Racing Performance of Race Ponies 156
 8.3.4. Repeat Observation of Racing Ponies 160
8.4. Discussion .. 161

9 GENERAL DISCUSSION AND CONCLUSION 165
REFERENCES .. 174
VITA .. 195
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Some of the primers used in detecting/differentiating EHV-4 and EHV-1 and their PCR products</td>
<td>22</td>
</tr>
<tr>
<td>3.1</td>
<td>Seroprevalence of EHV-4 in Malaysian horse and pony population according to cluster</td>
<td>59</td>
</tr>
<tr>
<td>3.2</td>
<td>Seroprevalence of EHV-4 in Malaysian horse and pony population according to states</td>
<td>60</td>
</tr>
<tr>
<td>3.3</td>
<td>Seroprevalence of EHV-4 in Sabah horse and pony populations according to districts</td>
<td>61</td>
</tr>
<tr>
<td>3.4</td>
<td>Seroprevalence of EHV-4 in Kelantan pony population according to districts</td>
<td>62</td>
</tr>
<tr>
<td>3.5</td>
<td>Seroprevalence of EHV-4 in central peninsular Malaysia according to stable</td>
<td>64</td>
</tr>
<tr>
<td>3.6</td>
<td>Overall seroprevalence of EHV-4 in Malaysia according to horse and pony types</td>
<td>64</td>
</tr>
<tr>
<td>3.7</td>
<td>Effect of age on prevalence of EHV-4 infection detected by virus neutralization test in Sabah equid</td>
<td>65</td>
</tr>
<tr>
<td>3.8</td>
<td>Effect of horse blood level of Sabah graded ponies on prevalence of EHV-4 infection</td>
<td>66</td>
</tr>
<tr>
<td>4.1</td>
<td>Secretion of nasal discharge from yearling ponies infected with EHV-4</td>
<td>80</td>
</tr>
<tr>
<td>4.2</td>
<td>Effect of EHV-4 infection on absolute number of total white blood cells (WBC) of yearling ponies (x10^3/mm^3)</td>
<td>82</td>
</tr>
<tr>
<td>4.3</td>
<td>Effect of EHV-4 infection on absolute number of total lymphocytes of yearling ponies (x10^3/mm^3)</td>
<td>82</td>
</tr>
<tr>
<td>4.4</td>
<td>Effect of EHV-4 infection on arterial blood oxygen</td>
<td></td>
</tr>
</tbody>
</table>
partial pressure (pO₂) of yearling ponies (mmHg) 84

4.5 Effect of EHV-4 infection on arterial blood carbon dioxide partial pressure (pCO₂) of yearling ponies (mmHg) ... 84

5.1 Histological lesion scoring of the upper respiratory tract and trachea (Lu et al., 1982) 96

5.2 Lesion indices of upper respiratory tract mucosa of individual yearling pony infected with EHV-4 at days 3 and 7 post-infection ... 102

5.3 Mean (±SD) lesion indices of upper respiratory tract mucosa of yearling ponies infected with EHV-4 at days 3 and 7 post-infection (DPI) .. 103

6.1 Expression of EHV-4 viral antigen (Immunoperoxidase staining) in respiratory tract of yearling ponies after intranasal inoculation at 3rd and 7th days post-infection ... 129

7.1 The primers used for amplifying the DNA of EHV-4 From nasal swab samples .. 140

7.2 The PCR mix for amplifying EHV-4 DNA from nasal swab samples .. 141

7.3 The relationship of racing results (winner and non-winner) on the PCR results 144

7.4 The relationship between ELISA and PCR results 145

8.1 Mean ELISA OD₄₅₀ values according to finishing positions in 25 races .. 157

8.2 Comparison between previous and current racing performance of racehorses in relation to ELISA results against EHV-4 ... 158

8.3 Relation between ELISA optical density and proportion of racehorses that improved or maintained finishing position in the current racing
as compared to previous racing 159

8.4 Comparison on the racing performance of race ponies according to the ELISA results against EHV-4 ... 160

8.5 Second observation on independency of winning according the ELISA test results against EHV-4 161
LIST OF FIGURE

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Sampling clusters for sero-epidemiology study of EHV-4 in Malaysia</td>
<td>51</td>
</tr>
<tr>
<td>4.1 Effect of EHV-4 infection on rectal temperature of serologically negative Malaysian yearling ponies. Each bar represents the mean ± S.D (n=3). Symbols (*) indicate significantly different (P<0.05)</td>
<td>79</td>
</tr>
<tr>
<td>6.1 The dissemination and fate of EHV-4 antigen following intranasal inoculation (a proposal)</td>
<td>135</td>
</tr>
<tr>
<td>Plates</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>4.1</td>
<td>Photographs of infected yearling pony (Y3) secreting serous nasal discharge and control yearling pony not showing nasal discharge</td>
</tr>
<tr>
<td>5.1</td>
<td>Photomicrograph of the cranial lobe of lung of a yearling pony 7 days PI by EHV-4 showing normal bronchiole and alveoli (H&E, x40)</td>
</tr>
<tr>
<td>5.2</td>
<td>Photomicrograph of the sub-mandibular lymph node of a yearling pony after 3 days PI by EHV-4 showing the medullar region with normal looking medullary sinuses and reticular cell network (H&E, x250)</td>
</tr>
<tr>
<td>5.3</td>
<td>Photomicrograph of the anterior nasal mucosa of a yearling pony after 3 days PI by EHV-4 showing degeneration of the epithelial cells disruptive of mucosal arrangement, and the surface cells that devoid of cilia (H&E, x250)</td>
</tr>
<tr>
<td>5.4</td>
<td>Photomicrograph of the middle nasal mucosa of a yearling pony after 3 days PI by EHV-4 showing extensive accumulation of cellular debris, mucus and blood cells on the affected epithelial surface (H&E, x100)</td>
</tr>
<tr>
<td>5.5</td>
<td>Photomicrograph of the posterior nasal mucosa of a yearling pony showing the stages of epithelium layer damage – almost all epithelium cells on the right side have been eroded exposing the basement membrane while on the left side the ciliated epithelium cells are still intact (H&E, x100)</td>
</tr>
<tr>
<td>5.6</td>
<td>Photomicrograph of the anterior nasal mucosa of a yearling pony at 7 days PI by EHV-4 showing epithelium layer completely eroded exposing the basement membrane (arrows)</td>
</tr>
</tbody>
</table>
5.7 Photomicrograph of the middle nasal mucosa of a yearling pony at 7 days PI by EHV-4 showing most of the epithelium layer that has been eroded with dead cells and mucus on the epithelial surface (H&E, x100).

5.8 Photomicrograph of the posterior nasal mucosa of a yearling pony at 7 days PI by EHV-4 showing accumulation of mucus, cell debris and blood cells on the epithelial surface (H&E, x40).

5.9 Photomicrograph of the trachea of a yearling pony at 7 days post-infection by EHV-4 showing erosion of the epithelial layer (thin arrow) and accumulation of mucus and cell debris on ciliated epithelial cells (thick arrow) (H&E, x100).

5.10 TEM. Epithelium of nasal mucosa of yearling pony infected with EHV-4, 3 days after infection showing viral particles budding out of nuclear membrane (arrows).

5.11 TEM. Epithelium of nasal mucosa of yearling pony infected with EHV-4, 3 days after infection showing viral particles in cytoplasmic vacuoles (arrows).

5.12 TEM. Epithelium of nasal mucosa of a yearling pony infected with EHV-4. Nuclei changes, A. Swollen nucleus, with nuclear body (thin arrow), lysis of nucleoplasm and disintegration of nuclei membrane (x8000), B. Dilation of perinuclear space (thick arrow)(x50000).

5.13 TEM. Epithelium of nasal mucosa of yearling pony infected with EHV-4. Nucleus changes, 3 days after infection A. Nuclear swelling in degenerated cell, and B. Nucleus contraction in necrotic cell (x5300).

5.14 TEM. Epithelium of the nasal mucosa of a yearling
pony infected with EHV-4. Cytoplasmic changes. Accumulation of fluid in the cytocavity including, mitochondria and endoplasmic reticulum (x25000) B. Vacuolar degeneration – accumulation of fluid in vacuoles and swelling of mitochondria (x8000)..

5.15 TEM. Epithelium of the nasal mucosa of a yearling Pony infected with EHV-4. Cytoplasmic change, A. Presence of dense granules with swollen mitochondria (x6300), B. Swollen mitochondria-disintegration of cristae (thin arrow) and completely lysed cristae (thick arrow) (x20000)

6.1 Photomicrograph of the eroded and detached epithelial cells of posterior nasal mucosa of a yearling pony expressing EHV-4 viral antigen, 7 days PI (IP, x400) .. 128

6.2 Photomicrograph of the surface of epithelial cells of trachea expressing EHV-4 antigen, 7 days PI (IP, x1000) .. 128

6.3 Photomicrograph of the medular sinuses of sub-mandibular lymph node showing numerous (arrows) brown colouration expressing the EHV-4 antigen, 3 days PI (IP, x100).............. 130

6.4 Photomicrograph of sub-mandibular lymph node of the yearling pony, 3 days PI showing reticular cells (thick arrows) of medulary sinuses and lymphoblast cells (thin arrow) In sub-mandibular expressing EHV-4 antigen (IP, x1000) .. 130

7.1 Electrophoretic analysis of PCR amplification from nasal swab of racing ponies. Sixteen amplificates (W1, W2, W3, W4, W5, W6, L1, L2, L3, L4, L6, L7, L8, L9, W8 and W9) were positive to EHV-4 with band size of 580 bp and two amplificates (L5 and W7) were negative. Molicular markers (1kb) were denoted as M, and CN was control negative. Ws are winners and Ls are non-winners .. 143