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The focus of this thesis is on finding the unconstrained minimizer of a 

function, w hen the d imension n i s  l arge. S pecifically, we will focus on the well-

known class of optimization methods called the quasi-Newton methods. First we 

briefly give some mathematical background. Then we discuss the quasi-Newton's 

methods, the fundamental method in underlying most approaches to the problems of 

large-scale u nconstrained o ptimization, a s  w ell a s  t he r elated so-called line search 

methods. A review of the optimization methods currently available that can be used 

to solve large-scale problems is also given. 

The mam practical deficiency of quasi-Newton methods is the high 

computational cost for search directions, which is the key issue in large-scale 

unconstrained optimization. Due to the presence of this deficiency, we introduce a 

variety of techniques for improving the quasi-Newton methods for large-scale 

problems, including scaling the SRI update, matrix-storage free methods and the 
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extension of modified BFGS updates to limited-memory scheme. Comprehensive 

theoretical and experimental results are also given. 

Finally we comment on some achievements III our researches. Possible 

extensions are also given to conclude this thesis. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 
memenuhi keperluan ijazah Doktor Falsafah 

KAEDAH KUASI-NEWTON TERUBAHSUAI UNTUK PENGOPTIMUMAN 
TAK BERKEKANGAN BERSKALA BESAR 

Oleh 

LEONG WAH JUNE 

Januari 2003 

Pengerusi: Profesor Madya Malik Hj. Abu Hassan, Ph.D. 

Fakulti: Sains dan Pengajian Alam Sekitar 

Penumpuan tesis ini adalah untuk mencari peminimum tak berkekangan bagi 

suatu fungsi, apabila dimensi n besar. Khususnya, kami akan menumpu kepada 

suatu kelas kaedah pengoptimuman terkenal yang dipanggil kaedah kuasi-Newton. 

Pertama, kami memberi secara ringkas sedikit latarbelakang matematik. Kemudian 

kami membincang kaedah kuasi-Newton, iaitu kaedah asas yang memperihalkan 

kebanyakan pendekatan kepada masalah pengoptimuman tak berkekangan berskala 

besar, bersama-sama dengan sesuatu yang berkait dengan kaedah gelintaran garis. 

Satu sorotan bagi kaedah pengoptimuman sedia ada yang boleh digunakan untuk 

menyelesaikan masalah berskala besar juga diberi. 

Kekurangan utama secara praktik kaedah kuasi-Newton ialah kos pengiraan 

yang tinggi bagi arah gelintaran, yang menjadi isu utama dalam pengoptimuman tak 

berkekangan berskala besar. Oleh kerana wujudnya kekurangan tersebut, kami 

memperkenalkan pe1bagai teknik bagi memperbaiki kaedah kuasi-Newton untuk 

masalah berskala besar, tennasuk menskala rumus kemaskini SRI, kaedah bebas-
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storan matrik dan lanjutan rumus kemaskini BFGS terubahsuai kepada skema 

ingatan terhad. Keputusan teori dan berangka yang menyeluruh juga diberikan. 

Akhimya kami memberi komen tentang beberapa pencapalan dalam 

penyelidikan kami. Kemungkinan lanjutan juga diberi untuk mengakhiri tesis ini. 
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LIST OF NOTATIONS 

1 .  m n denotes the linear n-dimensional Real space. 

2. g is the n x 1 gradient vector of a function f , with components 

(i) _ Of . -1 2 g - -(0) , 1 - , J"" n . ax I 

3 .  G is the n x n Hessian matrix of  f, that is the (i,j) th element of  G is given 
by 

G(i,j) - a2f '-1 2 d '-1 2 - (OJ (OJ' 1 - , , ... ,n an ) - , , ... ,n. 
ax'axJ 

4. xk is the k th approximation to x * , a minimum of f. 

5. gk is the gradient vector of f at xk• 

6. B k is an n x n k th matrix approximation to G. 

7. H k is an n x n matrix that is a k th approximation to G-1• 

8. AT denotes the transpose of matrix A. 

9. IIYII denotes an arbitrary norm of y .  

10. min denotes the minimum. 
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CHAPTER I 

INTRODUCTION 

Preliminaries 

Many application problems in engmeenng, decision SCiences, and operations 

research can be formulated as optimization problems. Such applications include 

digital processing, structural optimization, engineering design, database design and 

processing, mechanical engineering and chemical process control. Optimal solutions 

in these applications have significant economical and social impact. Better designs 

often result in lower implementation and more robust operation under a variety of 

operating conditions. 

Problems of Optimization 

Optimization problems are made up of three basic components: a set of unknowns or 

variables, an objective function to be minimized or maximized, and a set of 

constraints t hat s pecify f easible v alues 0 f t he variables. The optimization problem 

entails finding values of the variables that optimize (minimize or maximize) the 

objective function while satisfying the constraints. 
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In the following, we formally define optimization problems and identify the 

classes of problems addressed in this thesis. 

Problem 1.1. Optimization Problems 

A general minimization problem is defined as follows: 

Given a set D and a function f : D -+ P ,  find at least one point x* E D that 

satisfies f ( x*) :s; f ( x) for all xED, or show the non-existence of such a point. 

A mathematical formulation of a minimization problem is as follows: 

Minimize f ( x ) , 

subject to XED. ( 1 . 1 )  

In this formulation, x = (Xl' x2' . . . , XJT is an n-dimensional vector of unknowns. 

The function f is the objective function of the problem, and D is the feasible 

domain of x specified by constraints. 

Definition 1.1. A vector x* ED, satisfying f( x*) 5:. f( x) for all XED is 

called a global minimizer of f over D. The corresponding value of f is called a 

global minimum. 

Definition 1.2. A vector x* E D is called a local minimizer of f over D if 

f ( x*) :s; f ( x) for all XED closed to x * . The corresponding value of f is called a 

local minimum. 

1 7  



Note that smce max f ( x ) = -min (-f ( x)), maximization problems can be 

transformed into minimization problems shown in (1.1). We use optimization and 

minimization interchangeably in this thesis. 

Optimization problems are further classified into constrained optimization 

and unconstrained optimization based on the presence of constraints. Problems 

without constraints fall into the class of unconstrained optimization; D = �nn 

The scope of this thesis is limited to unconstrained optimization problems, in 

which the variables are continuous, f is differentiable, and a local minimizer 

provides a satisfactory solution. This probably reflects available software as well as 

the needs of practical applications. 

A number of books give substantial attention to unconstrained optimization 

and are recommended t o  readers w ho desire a dditional information on this t opic. 

These include Ortega and Rheinboldt (1970), Fletcher (1980), Gill et al. (1981), and 

Dennis and Schnabel (1983). 

Existence and Uniqueness of Solutions 

Let g denotes the n component gradient column vector of first partial derivatives 

of f; in general 

[g{X)]j = 8f{x), j = 1,K,n. 
8xj 

(1.2) 
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Also, G d enotes t he n x n Hessian matrix 0 f s econd p artial derivatives of f; in 

general 

( 1 .3) 

Note that G is symmetric if f is twice continuously differentiable. 

Definition 1.3. A function f of the n - vector x is said to be Lipschitz 

continuous with constant r in an open neighbourhood D c m n , written 

fELiPr(D),if for all x,YED, 

If ( x) - f ( Y )1 � rllx - YII 

where IHI is an appropriate norm. 

(1 .4) 

Most methods for optimizing nonlinear differentiable functions of 

continuous variables rely heavily upon Taylor series expansions of these functions. 

We will briefly review the Taylor series expansions used in unconstrained 

optimization and a few mathematical properties of these expansions. 

The fundamental Taylor series expansion used in unconstrained optimization 

is the first three terms of the Taylor series ()f f around x , 

(1 .5) 

The standard Taylor series with remainder results from the calculus of one 

variable can also be extended to single valued functions of multiple variables. For 

any direction d E m n there exist £\' £ 2 E [0, r] for which 
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( 1 .6) 

and 

( 1 .7) 

These results are the keys to the necessary and sufficient conditions for 

unconstrained minimization that we consider next. 

Necessary and Sufficient Conditions for Unconstrained Optimization 

Algorithms for solving the unconstrained minimization problem are based 

upon the first and second order conditions for a point x * to be a local minimizer of 

! . These conditions are briefly reviewed in this subsection. 

Theorem 1.1. First Order Condition 

Let ! : 9t n � 9t be continuously differentiable, and let y E 9t n • If g( y ) :I; 0, then 

y is not a local minimizer of ! ( x ) . 

Proof. If g( y ) :I; 0, then there exist directions d E 9t n for which 

g( Y l d < 0; an example is d = -g( y). For any such direction d, we have from 

(1.6) that 

( 1 .8) 

for some 'f ( E (0, 'f). Also by the continuity of ! ( x), there exists 0 > 0 such that 

g{x + 'f\dY d < 0 for any 'f\ E (O, 'f). Thus for any step-length 'f < 0, 

/(y+rd)<!(y). ( 1 .9) 
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Therefore y cannot be a local minimizer of f . 0 

Directions d for which g( y f d < 0 are called descent directions for f at 

y. Descent directions play an important role in the numerical methods for 

unconstrained optimization and w ill be discussed further in other s ections 0 f this 

thesis. 

The above argument in Theorem 1.1 is equivalent to say that for x * to be a 

local minimizer, it is necessary that g( x*) = O. Any point x* E illn such that 

g( x*) = 0 is called stationary point of f .  To distinguish between minimizers and 

other stationary points it is necessary to consider the second derivative matrix G 

defined in (1 .3). First we need the definition of a positive definite matrix. 

Definition 1.4. Let G E ill nxn be symmetric. Then G is positive definite if 

vT Gv > 0 for all nonzero v E 9t n • 

There are several equivalent characterizations of positive definite matrices; 

another common one is that a symmetric matrix G E ill nxn is positive definite if and 

only if all its eigenvalues are positive. If vT Gv � 0 for all v, G is said to be positive 

semi-definite. 

Theorem 1.2. Let f : 9tn � 9t be twice continuously differentiable, and let 

x* E ill n • If g( x*) = 0 and G( x*) is positive definite, then x * is a local minimizer 

of f .  
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Proof. By (1.7) for any d E  mn , 

1 f(x * +d) = f( x*) + g(x *Y d + _dT G(x * +-rd)d 
2 

(1.10) 

for some r E (0,1). By the continuity of f and the positive definiteness of G( x*), 

there exists 8 > 0 such that for any direction d with IIdll < 8 and any scalar '[ with 

l-rl ::; 1, G(x * +-rd) is positive definite. Thus for any d with Ildll < 8 ,  we have from 

(1.10) and g(x*)=0 that 

f(x * +d) > f( x*). (1.11) 

Therefore x * is a local minimizer of f. 0 

By a similar argument it is easy to show that a necessary condition for x * to 

be a local minimizer of a twice continuously differentiable f( x) is that g( x*) = 0 

and H (x*) is positive semi-definite; in this case, it is necessary to examine higher 

order derivatives to determine whether x * is a local minimizer of f (x). 

We can make the following summary for second order conditions: 

Property 1.1. Second Order Conditions 

The second order necessary (and sufficient) condition for X* E 9ln to be a 

local minimizer of a twice continuously differentiable function f is that the Hessian 

matrix O( x*) is positive semi-definite (and positive definite). 
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If g( x*) = 0 and G( x*) has both positive and negative eigenvalues, then x * 

is said to be a saddle point of f. A saddle point is a local minimizer of some cross

section of f and a local maximizer of some other cross-section. 

Convexity 

A very important concept in minimization theory is that of convexity. 

Definition 1.5. A set n � m n is said to be convex if z = Ax + (1-A}Y En, 

for each X,YEn and O �A � l. 

Definition 1.6. A function f " D � m is said to be convex if D is a convex 

set and in addition, 

f(Ax+(I-A)Y} $; A/(x) + (1-A}f( y) (1.12) 

for each x ,y E D and 0 $; A$; 1. 

It is called strictly convex if the inequality (1.12) becomes a strict inequality. 

If a function is twice continuously differentiable, one can provide the 

following convenient necessary and sufficient conditions for convexity . 
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Theorem 1.3. If f .' m" � m is continuously differentiable on a convex set 

D � m n , and f is strictly convex then 

f ( y ) > f ( x) + g( x l ( y -x) 

for each x,y ED. 

Proof. From ( 1 . 1 2), 

f(AY +(1- A}x) < .1(( y} +(1-A)f( x), A E [0,1] , 

f(X+A{y-X»-f(x} < f(y)-f(x}. 
A 

By ( 1 .6), ( 1 . 1 4) becomes 

4(Y-XY g(X+'\A(y-X» < f(y)-f(x) 
A 

for some 'I E [0,1] . When A � 0 ,  we have the result. 0 

( 1 . 1 3) 

( 1 . 1 4) 

Theorem 1.4. If f.' mn � m is twice continuously differentiable on a 

convex set D c m n , and f is strictly convex then its Hessian matrix has positive 

eigenvalues for each xED. 

Proof. From (1.l3), 

f(y)- f(x}-g(xl (y-x) > 0 ,  ( 1 . 1 5) 

for each x,y ED. 

Taylor series ( 1 .7) for x,y E D and A E [0 ,1] give us the following: 

f(y)= f(x} + g(xY{y-x)+.!.(y-xY G(x+ '2A(y -x)xY-x), 2 

with '2 E [0,1] . 

Then, for z = x + '2 A(y - X) E D and v = y - X E m n , 
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