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The aviation industry has implemented targets to reduce their greenhouse gas 
emissions footprint, in which, some of these measures are known as market-
based measures (MBM). This effort to enact decarbonisation of the industry is 
mainly accounted by certified “drop-in” fuel, also known as alternative 
sustainable fuel or bio-jet fuel. Carbon Offsetting and Reduction Scheme for 
International Aviation (CORSIA), has placed carbon taxation on airline operators 
and the industry is at a tipping point to balance increase in air traffic and the cost 
of carbon emission. Production of enough bio-jet fuel could curb the cost of 
carbon emission; however adequate sustainable bio-jet fuel needs to be 
produced to meet a growing demand. Therefore, this study investigates the 
availability of sustainable biomass in Malaysia, evaluating the best conversion 
process, and determine the economic feasibility to produce a minimum quantity 
of bio-jet fuel. For Malaysia, the based quantity to produce is at least 2% of its 
annual consumption, which is roughly 60,000,000 million litres of bio-jet fuel (40 
to 50 million kg of bio-jet fuel). Certified bio-jet fuel is currently only certified 
through 5 pathways (ASTM D7566), each of which has its set of preferred 
feedstock, economics, and technology maturity level. Assessment from these 5 
technologies was performed from two aspects, (i) technological (maturity, 
process complexity, etc.) and (ii) economical, using through cost simulation, 
Discounted Cash Flow Rate of Return (DCFROR), and business potential for the 
country. It has been identified through analysis that two possible routes are 
possible for Malaysia as a country to take. For an oil-based route, a mature and 
cost-effective process known as Hydro-processed Esters and Fatty Acids 
(HEFA). For carbohydrate route, certified processes known as Fischer-Tropsch 
can be deployed. The acceptable price ranges from the industry, namely AirAsia 
and Malaysian Airlines, is to have Kerosene Jet A-1 grade fuel to be not above 
USD 0.70 per litre of fuel. With feedstock corresponding from 20% to 40% of the 
cost of production, the cost of production for bio-jet fuel (Jet A-1 grade) is 
considered higher than conventional jet fuel (fossil fuel based). Through a cost 
sensitivity analysis, it has been determined that a biorefinery using HEFA 
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technology will have an investment of USD 122,941,946 (MYR 489,310,789), 
considering Cost Index and Location Factor to Malaysia. This plant will require a 
feed-in of 55,556 to 71,429 tonnes of sustainable oil per year. For a FT- plant, 
an investment cost of USD 304,300,041 is required, or MYR 1,211,118,728, with 
a feed-in between 238,095 to 384,615 dry tonnes of lignocellulose per year. This 
study calculates that for FT, a general investment of 6086 USDCAPEX/tonneJet Fuel, 
and 2,460 USDCAPEX /tonneJet Fuel

 for HEFA, through a DCFROR analysis, backed 
up by process study and modelling. As for feedstock, HEFA feedstock will require 
to be lower than 475 USD/tonneFeed(Oil), and for FT feedstock to be lower than 32 
USD/tonneFeed(Lignocellulose). Considering feedstock price (HEFA) and plant capital 
cost (FT), the study shows the potential to meet industrial demand (USD 0.70 
per litreFuel), with ideal plant parameters. From the study, HEFA has the highest 
potential for implementation and meeting industry’s requirements. 
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Industri penerbangan telah melaksanakan sasaran untuk mengurangkan jejak 
pelepasan gas rumah hijau, di mana beberapa langkah ini dikenali sebagai 
langkah-langkah berasaskan pasaran (MBM). Usaha ini untuk membubarkan 
peyahkarbonan industri terutamanya diambil kira oleh bahan api "drop-in" yang 
disahkan, juga dikenali sebagai bahan bakar lestari alternatif atau bahan api bio-
jet. Skim Pengimbangan dan Pengurangan Karbon untuk Penerbangan 
Antarabangsa, CORSIA, telah meletakkan cukai karbon ke atas pengendali 
syarikat penerbangan dan industri ini berada pada tahap yang kritikal untuk 
mengimbangi peningkatan trafik udara dan kos pelepasan karbon. Pengeluaran 
bahan api bio-jet yang mencukupi dapat membendung kos pelepasan karbon, 
namun bahan bakar bio-jet yang mampan perlu dihasilkan untuk memenuhi 
permintaan yang semakin meningkat. Namun demikian, kajian ini meneliti 
ketersedian bahan api bio yang mampa di Malaysia, penilaian proses laluan 
bahan mentah yang terbaik, dan menentukan kelayaka ekonomi untuk 
penghasilan biojet dalam kuantiti yang paling rendah. Bagi Malaysia, keperluan 
untuk menghasilkan sekurang-kurangnya 2% daripada penggunaan 
tahunannya, ialah 60,000,000 juta liter bahan bakar bio-jet (40 hingga 50 juta kg 
bahan bakar bio-jet). Bahan api bio-jet yang disahkan pada masa ini hanya 
diperakui melalui 5 laluan proses (ASTM D7566), setiap proses laluan 
mempunyai keperluan bahan mentah, ekonomi, dan kematangan teknologi 
pilihan masing-masing. Penilaian dari 5 teknologi ini dijalani dari segi dua aspek, 
(i) teknologi (kematangan teknologi proses laluan dan kompleksiti) dan (ii) 
ekonomi, menggunakan simulasi kos, dan potensi perniagaan untuk negara. 
Analisa telah dilaksanakan dan dua proses lalaun telah dikenal pasti untuk 
pengesahan dalam negara Malaysia, iaitu proses laluan dengan pengunaan 
bahan mentah karbohidrat dan proses laluan bahan mentah berasaskan minyak. 
Untuk proses laluan berasaskan minyak, proses yang matang dan kos efektif 
ialah proses laluan Hydro-processed Esters and Fatty Acids (HEFA).  Secara 
langsung, proses laluan bahan mentah karbohidrat, proses yang berpotensi 
untuk digunakan ialah proses Fischer- Tropsch (FT). Jumlah harga yang 
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diterima dari industri, iaitu AirAsia dan Malaysian Airlines, adalah untuk memiliki 
bahan api gred Kerosene Jet A-1 yang tidak melebihi USD 0.70 seliter. Kos 
bahan mentah adalah sebagai 20% sampai 40% daripada kos pengeluaran dan 
kos ini dianggap lebih tinggi daripada bahan bakar jet konvensional (bahan 
mentah berasaskan bahan bakar fosil). Walau bagaimanapun, melalui hasil 
analisis kepekaan kos, kos pelaburan bagi kilang penapisan bio yang 
menggunakan teknologi HEFA adalah sebanyak USD 122,941,946 (MYR 
489,310,789), kos ini telah mangambil kira indeks kos dan factor lokasi di 
Malaysia. Kilang ini memerlukan bekalan bahan mentah berasaskan minyak 
sebanyak 55,556 kepada 71,429 tan setahun. Untuk kilang yang menggunakan 
teknologi FT, sebanyak USD 304,300,041 (MYR 1,211,118,728) kos pelaburan 
telah diperlukan, dengan bekalan bahan mentah kering lignoselulosa antara 
238,095 hingga 384,615 tan setahun. Kajian ini didapati bahawa kos pelaburan 
am bagi teknologi FT dan teknologi HEFA adalah 6086 USDCAPEX/tonneJet Fuel

-1 
dan 2,460 USDCAPEX/tonneJet Fuel

-1. Kajian ini telah dilaksanakan melalui Analisis 
Kadar Pulangan Tunai Diskaun (DCFROR), disokongi oleh kajian proses dan 
pemodelan. Disamping itu, kos bahan mentah untuk HEFA dihendaki lebih 
rendah daripada 475 USD/tonneFeed(Oil) dan kos bahan mentah untuk FT adalah 
lebih rendah daripada 32 USD/tonneFeed(Lignocellulose). Memandangkan harga 
bahan mentah (HEFA) dan kos modal (FT), kajian ini menunjukan potensi untuk 
memenuhi keperluan industry (USD 0.70 per liter bahan bakar). 
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CHAPTER 1 
 

1 INTRODUCTION 
 

1.1 Background of Study 
 

Global production of aviation fuel, particularly Kerosene Jet A-1, has a market 
presence of 80 billion gallons per year, or 302.8 billion litre per year. In the United 
States alone, 83.3 billion litre of aviation fuel per year is refined, as reported by 
Davidson et al. (2014). Of the 302.8 billion litres, 12% is used for the military 
while the other 88% is used for commercial flights, with North America having 
the highest rate of consumption of ca. 102 billion litres. Asia and Russia 
combined has a fuel consumption of ca. 61.2 billion litres (IATA, 2011). Malaysia 
consumes roughly 3 billion litres of kerosene jet fuel per year (2010), which only 
accounts close to 0.01% of global aviation usage, (EIA, 2016). Compared to 
other countries around the world, Malaysia, with its high biodiversity due to its 
equatorial climate, boasts a large potential to develop and produce alternative 
fuel for its transportation industry – whereas other less biodiverse country will 
lesser options and may rely on bio-fuel imports. While aviation fuel competes 
with road transportation fuel, especially the source feedstock, road transportation 
has the luxury of convenient refuel stations and the implementation of alternative 
power drive trains such as electric motors with batteries. For aviation, however, 
alternative options to power the aircraft are limited, not to mention any 
prospective technologies such as batteries, fuel cells, hybrid propulsion, etc. are 
still rather immature to have short-term impact. The development and roll-out of 
alternative jet fuel / bio-jet fuel is seen to have the potential to meet the industrial 
movement towards carbon footprint reduction, able to utilize on current 
infrastructure, and with quick adoption period (IATA, 2009). Malaysia, as part of 
IATA and as part of UN, has agreed to reduce the country’s carbon footprint. The 
aviation industry sees an unprecedented unity as an industry compared to many 
other CO2 producing industries (automotive, agriculture, maritime, etc.), 
therefore, any produced bio-jet fuel must meet stringent international standards 
such as the ASTM D7166. However, wide-scale commercialization and 
deployment are mainly hampered by the availability of sustainable biomass 
feedstock, investment costs to enable production of the bio-jet fuel, and the 
stringent safety requirement.  
 

Asia-Pacific is a region of great interest for the aviation industry, as by 2030, the 
Asia-Pacific region will see an increase by over 15,000 new aircraft, (GMF, 
2018). This increase in air traffic warrants the need to have sustainable fuel to 
be implemented in this region, to keep its carbon emissions controlled and 
limited. Malaysia has seen a considerable increase in air traffic recently and is 
one of the region’s larger user of aviation jet fuel. Malaysia is a member of the 
International Civil Aviation Organization (ICAO), as well as the IATA 
(International Air Transport Association), and these international organizations 
have pledged to decrease climate impact from the aviation industry, such as the 
4-pillar movement and recently CORSIA. Carbon Offsetting and Reduction 
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Scheme for International Aviation, or simply CORSIA, is a global initiative by the 
United Nations (UN) to address and offset aviation emissions through “offset 
credits” and “allowances” from emissions trading scheme. Malaysia has pledged 
itself towards CORSIA and the implementation phase is in 2020 (CORSIA 
States, 2018). While CORSIA’s initiative helps account and reduce greenhouse 
gas emissions from the industry, it also has the adverse effect of curving aviation 
growth. Therefore, it is imperative that Malaysia has offset credits to address its 
aviation emissions - one such credit gains could be the utilization of bio-jet fuel. 
Furthermore, Europe will start to implement regulations to tax incoming flights 
without carbon neutral fuel / sustainable bio-jet fuel entering its airspace. In order 
for Malaysia not to be at a disadvantage for such movements, as well as to 
prevent from falling behind on other countries such as Indonesia, Thailand, 
Canada, the United States, Europe, China, and Japan on the introduction of bio-
jet fuel in flights, Malaysia has to protect, among others, its foreign investment, 
tourism economy, and aviation expansion, through energy security with 
sustainable bio-jet fuel production locally. 
 

Bio-jet fuel implementation introduced by the previously mentioned countries are 
at a level between 2 to 5 vol%. Indonesia, has mandated that a 2% bio-jet fuel 
(certified blended) implementation in 2018 to its fleet, increasing it to 5% by 2020. 
For Malaysia to follow this trend, a 2% of bio-jet fuel in Malaysia, equates to 
roughly 60 million litres (or ca. 40 – 50 million kg, density depending), of bio-jet 
fuel is required. Assuming a process conversion efficiency of 40% (feedstock to 
fuel), (Capareda, 2014; Worldwatch Institute, 2016; and Vello et al., 2014), this 
comes to a rough estimate of 18.4 to 20 million kg of biomass. It is estimated 
that there are roughly 54 million kg of biomass residue in Malaysia, this indicates 
that there is enough biomass residue available (Roda et al., 2015). However, 
asides from securing available sustainable biomass for conversion, which 
certified conversion pathway still needs to be determined. A robust consideration 
on the balance of economics (feedstock, production, distribution, product, and 
social impact) and technological maturity in these processes must be analysed, 
compared, and modelled to determine the potentiality of which feedstocks and 
its corresponding processes will enable a viable bio-jet fuel business in Malaysia. 
To appropriately compare, the processes of the various pathways need to be 
simulated in chemical process simulation programs such as ASPEN Plus, used 
in both academic and in the industrial world (Bonomi et al., 2016; Wooley et al., 
1996). Through modelling and simulation, energetics of the conversion pathway 
(feed to fuel) can be identified, compared, and assessed on the efficiency of the 
process and product formation. Lastly, economics, such as feedstock cost, plant 
cost, and production cost, will be calculated for the investment cost structure for 
a bio-refinery plant (using these conversion pathways), operational costs, and 
cost per litre of bio-jet fuel production needs to be considered (Towler et al., 
2015; Aspen Richardson, 2013; Gong et al., 2011). The feedstock cost for oil-
based feedstock is USD 700/tonne, whilst carbohydrate-based feedstocks are 
USD 35/tonne. The current jet-fuel price is approximately USD 324/tonne. 
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1.2 Problem Statement 
 

The motivation behind this study is based on the aviation industry’s 
implementation of a set of targets and to reduce its carbon footprint (IATA, 2013), 
which goals from IATA are: 
 

 From now to year 2020, fuel efficiency to be improved by 1.5% per 
annum.  

 By year 2020, net carbon emissions from aviation will be capped through 
carbon neutral growth 

 By year 2050, 50% reduction in net aviation CO2 emissions over year 
2005 levels.  

 

Thus, the study defines its problem statements in three (3) folds. (i) Does 
Malaysia have enough sustainable biomass to be converted into bio-jet fuel, to 
meet the aviation fuel demand within Malaysian airports? (ii) Does it make 
economic benefits to build and operate a bio-refinery plant? This may provide 
Malaysia with a new source of revenue, independent from fossil base income. 
And lastly, (iii) is the bio-refinery plant able to produce price competitive bio-jet 
fuel for the aviation industry? This is vital to be price competitive to ensure the 
industry’s willingness to adopt and compensate.  
 

1.3 Objectives of Research 
 

The project principally aims to support Malaysia’s carbon footprint reduction and 
to determine the feasibility of producing sustainable bio-jet fuel derived from 
sustainable biomass or biomass residues for the aviation industry’s fuel demand.   
 

The focus of the research is divided into three major areas: 
 

1. To investigate the potential sustainable biomass annual availability and 
price to match potential demand of bio-jet fuel (annually). 

2. To evaluate the Fuel Readiness Level of various conversion processes 
for Malaysia, and to determine the technical and economic parameters. 

3. To determine the quantity of bio-jet fuel able to be produced in Malaysia, 
given a sustainable roadmap, and provide a brief business case.  
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1.4 Research Hypothesis 
 

The hypothesis of this research is, “Malaysia has sufficient land and local 
sustainable biomass (and biomass residue) to replace 2 - 5% of Malaysia’s 
consumption of aviation turbine jet fuel”. This hypothesis can be achieved 
through a technical and economical approach, knowing Malaysia’s abundance 
amount of biomass diversity and marginal lands potential, that ensures certifiable 
bio-jet fuel. The introducing bio-jet fuel into the local supply will provide an 
economic boost to the country, such as gross domestic product (GDP), through 
feedstock value and bio-jet fuel sales. This is also in-line with the aviation 
industry, specifically Airbus, as it is coherent with their global pledge and the 
elements within their Sustainable Aviation Action globally. Hence, the hypothesis 
encompasses synergistic effects with both industry and academia, which from 
this work, supports an adoption of a bio-jet fuel business in Malaysia. 
 

1.5 Research Significance and Scope of Study 
 

This research has a countrywide to regional impact, providing a platform to 
enable Malaysia to produce its own bio-jet fuel together with the other major 
aviation countries in the world, such as the United States, Canada, Europe, 
Japan, and Indonesia. This will also place Malaysia in a strategic position to fulfil 
its commitments to the United Nations (UN) in greenhouse gas reduction and 
decarbonisation of the country, in an initiative called CORSIA (Annex 16, 2018).  
In the region, Asia Pacific, Malaysia will be one of the pioneers to enable the 
country to produce its own bio-jet fuel, using sustainable feedstock. 
 

However, the limitation of this research relies on the availability of sustainable 
biomass in Malaysia. Indirectly, also the technical and technology competence 
level of Malaysia to adopt conversion technologies needed for certified bio-jet 
fuel. Malaysia should have enough capacity to localise these technologies and 
obtain certification stage, however if a learning curve is required, it may increase 
the adoption cost and thereby decrease cost competitiveness of the bio-jet fuel 
cost. 
 

1.6 Significance of Study 
 

The significance of this study is to support the Malaysian government is 
determining the investment and collaboration (industrial, governmental and 
academics) required to have Malaysia produce its own bio-jet fuel, rather than 
rely on imports other countries. This study is the first to compare the various 
conversion pathways, focus on determining the potential to reach a minimum jet 
fuel selling price which the industry can accept (offtake). The field of study is 
highly relevant and impactful to the Institute of Forestry and Forest Product 
(INTROP), in particular bioresource management, as the jet fuel selling price will 
determine which process and feedstock (biomass/bioresource) is best suited to 
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achieve commercial potential (fuel sales to the airlines), and therefore how UPM 
and INTROP is best able further investigate this new stream of supply chain and 
bio-jet fuel product. 
 

1.7 Thesis Outline 
 

The thesis introduces the overall stance of the current aviation industry, and how 
steps the industry has taken to be responsible and accountable for its carbon 
footprint, this is highlighted in detail in Chapter 2. Chapter 3 provides the 
technical assessment and literature review of the various certified pathways for 
bio-jet fuel conversion (technical), and economical assessment required for 
parameters input to Chapter 4. Chapter 4 is process modelling and parameters 
calculations for inputs into the economic modelling. Chapter 5, using the 
discounted cash flow rate of return method to determine the best bio-refinery 
cost possible, given industrial price point demands, and utilizing Monte Carlo 
simulation to determine the confidence level of the data. Chapter 6 summaries 
this study and draws the conclusion of the ideal bio-refinery plant, feedstock, and 
possible ways forward for implementation. 
 

1.8 Research Methodology 
 

This study’s research methodology can be represented in the following diagram: 
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Figure 1.1: Research Methodology of this study 
 

This research follows the Type I quantitative research method, which is industry 
driven through the undertaking of research and investigation. The hypotheses 
are a positivistic approach, which is data centric through model and process 
analysis. This study takes research and industrial inputs and correlate the data 
based on the deduction method and analysis. The sources within this study is a 
mixture of primary and secondary data. 
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