

TECHNICAL AND ECONOMIC ASSESSMENT OF PRODUCING SUSTAINABLE BIO-JET FUEL IN MALAYSIA

By

CHEN JIA TIAN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Philosophy

November 2019

IPTPH 2019 22

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

TECHNICAL AND ECONOMIC ASSESSMENT OF PRODUCING SUSTAINABLE BIO-JET FUEL IN MALAYSIA

By

CHEN JIA TIAN

November 2019

Chairman : Professor Luqman Chuah bin Abdullah, PhD Institute : Tropical Forestry and Forest Products

The aviation industry has implemented targets to reduce their greenhouse gas emissions footprint, in which, some of these measures are known as marketbased measures (MBM). This effort to enact decarbonisation of the industry is mainly accounted by certified "drop-in" fuel, also known as alternative sustainable fuel or bio-jet fuel. Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA), has placed carbon taxation on airline operators and the industry is at a tipping point to balance increase in air traffic and the cost of carbon emission. Production of enough bio-jet fuel could curb the cost of carbon emission; however adequate sustainable bio-jet fuel needs to be produced to meet a growing demand. Therefore, this study investigates the availability of sustainable biomass in Malaysia, evaluating the best conversion process, and determine the economic feasibility to produce a minimum quantity of bio-jet fuel. For Malaysia, the based quantity to produce is at least 2% of its annual consumption, which is roughly 60,000,000 million litres of bio-jet fuel (40 to 50 million kg of bio-jet fuel). Certified bio-jet fuel is currently only certified through 5 pathways (ASTM D7566), each of which has its set of preferred feedstock, economics, and technology maturity level. Assessment from these 5 technologies was performed from two aspects, (i) technological (maturity, process complexity, etc.) and (ii) economical, using through cost simulation, Discounted Cash Flow Rate of Return (DCFROR), and business potential for the country. It has been identified through analysis that two possible routes are possible for Malaysia as a country to take. For an oil-based route, a mature and cost-effective process known as Hydro-processed Esters and Fatty Acids (HEFA). For carbohydrate route, certified processes known as Fischer-Tropsch can be deployed. The acceptable price ranges from the industry, namely AirAsia and Malaysian Airlines, is to have Kerosene Jet A-1 grade fuel to be not above USD 0.70 per litre of fuel. With feedstock corresponding from 20% to 40% of the cost of production, the cost of production for bio-jet fuel (Jet A-1 grade) is considered higher than conventional jet fuel (fossil fuel based). Through a cost sensitivity analysis, it has been determined that a biorefinery using HEFA technology will have an investment of USD 122,941,946 (MYR 489,310,789), considering Cost Index and Location Factor to Malaysia. This plant will require a feed-in of 55,556 to 71,429 tonnes of sustainable oil per year. For a FT- plant, an investment cost of USD 304,300,041 is required, or MYR 1,211,118,728, with a feed-in between 238,095 to 384,615 dry tonnes of lignocellulose per year. This study calculates that for FT, a general investment of 6086 USD_{CAPEX}/tonne_{Jet Fuel}, and 2,460 USD_{CAPEX}/tonne_{Jet Fuel} for HEFA, through a DCFROR analysis, backed up by process study and modelling. As for feedstock, HEFA feedstock will require to be lower than 475 USD/tonne_{Feed(Oil}), and for FT feedstock to be lower than 32 USD/tonne_{Feed(Lignocellulose}). Considering feedstock price (HEFA) and plant capital cost (FT), the study shows the potential to meet industrial demand (USD 0.70 per litre_{Fuel}), with ideal plant parameters. From the study, HEFA has the highest potential for implementation and meeting industry's requirements.

Abstrak tesis yang dikemukakan kepada Universiti Putra Malaysia Sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENILAIAN TEKNIKAL DAN EKONOMI DALAM PENGHASILAN BAHAN BAKAR PESAWAT BIO YANG MAMPAN DI MALAYSIA

Oleh

CHEN JIA TIAN

November 2019

Pengerusi : Profesor Luqman Chuah bin Abdullah, PhD Institut : Perhutanan Tropika dan Produk Hutan

Industri penerbangan telah melaksanakan sasaran untuk mengurangkan jejak pelepasan gas rumah hijau, di mana beberapa langkah ini dikenali sebagai langkah-langkah berasaskan pasaran (MBM). Usaha ini untuk membubarkan peyahkarbonan industri terutamanya diambil kira oleh bahan api "drop-in" yang disahkan, juga dikenali sebagai bahan bakar lestari alternatif atau bahan api biojet. Skim Pengimbangan dan Pengurangan Karbon untuk Penerbangan Antarabangsa, CORSIA, telah meletakkan cukai karbon ke atas pengendali syarikat penerbangan dan industri ini berada pada tahap yang kritikal untuk mengimbangi peningkatan trafik udara dan kos pelepasan karbon. Pengeluaran bahan api bio-jet yang mencukupi dapat membendung kos pelepasan karbon, namun bahan bakar bio-jet yang mampan perlu dihasilkan untuk memenuhi permintaan yang semakin meningkat. Namun demikian, kajian ini meneliti ketersedian bahan api bio yang mampa di Malaysia, penilaian proses laluan bahan mentah yang terbaik, dan menentukan kelayaka ekonomi untuk penghasilan biojet dalam kuantiti yang paling rendah. Bagi Malaysia, keperluan menghasilkan sekurang-kurangnya 2% daripada untuk penggunaan tahunannya, ialah 60,000,000 juta liter bahan bakar bio-jet (40 hingga 50 juta kg bahan bakar bio-jet). Bahan api bio-jet yang disahkan pada masa ini hanya diperakui melalui 5 laluan proses (ASTM D7566), setiap proses laluan mempunyai keperluan bahan mentah, ekonomi, dan kematangan teknologi pilihan masing-masing. Penilaian dari 5 teknologi ini dijalani dari segi dua aspek, (i) teknologi (kematangan teknologi proses laluan dan kompleksiti) dan (ii) ekonomi, menggunakan simulasi kos, dan potensi perniagaan untuk negara. Analisa telah dilaksanakan dan dua proses lalaun telah dikenal pasti untuk pengesahan dalam negara Malaysia, iaitu proses laluan dengan pengunaan bahan mentah karbohidrat dan proses laluan bahan mentah berasaskan minyak. Untuk proses laluan berasaskan minyak, proses yang matang dan kos efektif ialah proses laluan Hydro-processed Esters and Fatty Acids (HEFA). Secara langsung, proses laluan bahan mentah karbohidrat, proses yang berpotensi untuk digunakan ialah proses Fischer- Tropsch (FT). Jumlah harga yang diterima dari industri, iaitu AirAsia dan Malaysian Airlines, adalah untuk memiliki bahan api gred Kerosene Jet A-1 yang tidak melebihi USD 0.70 seliter. Kos bahan mentah adalah sebagai 20% sampai 40% daripada kos pengeluaran dan kos ini dianggap lebih tinggi daripada bahan bakar jet konvensional (bahan mentah berasaskan bahan bakar fosil). Walau bagaimanapun, melalui hasil analisis kepekaan kos, kos pelaburan bagi kilang penapisan bio yang menggunakan teknologi HEFA adalah sebanyak USD 122,941,946 (MYR 489,310,789), kos ini telah mangambil kira indeks kos dan factor lokasi di Malaysia. Kilang ini memerlukan bekalan bahan mentah berasaskan minyak sebanyak 55,556 kepada 71,429 tan setahun. Untuk kilang yang menggunakan teknologi FT, sebanyak USD 304,300,041 (MYR 1,211,118,728) kos pelaburan telah diperlukan, dengan bekalan bahan mentah kering lignoselulosa antara 238,095 hingga 384,615 tan setahun. Kajian ini didapati bahawa kos pelaburan am bagi teknologi FT dan teknologi HEFA adalah 6086 USD_{CAPEX}/tonne_{Jet Fuer}¹ dan 2,460 USD_{CAPEX}/tonne_{Jet Fuel}^{-1.} Kajian ini telah dilaksanakan melalui Analisis Kadar Pulangan Tunai Diskaun (DCFROR), disokongi oleh kajian proses dan pemodelan. Disamping itu, kos bahan mentah untuk HEFA dihendaki lebih rendah daripada 475 USD/tonneFeed(Oil) dan kos bahan mentah untuk FT adalah lebih rendah daripada 32 USD/tonneFeed(Lignocellulose). Memandangkan harga bahan mentah (HEFA) dan kos modal (FT), kajian ini menunjukan potensi untuk memenuhi keperluan industry (USD 0.70 per liter bahan bakar).

ACKNOWLEDGEMENTS

Firstly, I would like to convey my deepest gratitude to my supervisor Prof. Dr. Luqman Chuah Abdullah for his excellent guidance, encouragement and limitless support through the course of this research. I am also thankful to my cosupervisors Prof. Ir. Dr. Thomas Choong Shean Yew and Prof. Dr. Paridah Md. Tahir for their sincerest advices and support throughout the journey.

I would like to extend my profound gratitude to Dr. Liew Kan-Ern, the Head of Technology, Airbus Malaysia and also the CEO of Aerospace Malaysia Innovation Centre for providing me the opportunity to pursue this PhD in UPM, also his endless support and his continuous patience in guiding me on the industrial part of the research, exposing my knowledge to not only on the academic side but to know what is the current trend of the aerospace industry in and out of Malaysia.

I am also thankful to the members of Centre of Excellence of Biomass Valorisation for Aviation and the Institute of Tropical Forestry and Forest Products (INTROP) for their valuable advices, help, motivation and friendship to keep me going through this journey of research.

Lastly, heartfelt thanks to my family for their understanding and emotional support for everything upon the completion of this research.

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Luqman Chuah Abdullah, PhD

Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Paridah binti Md Tahir, PhD

Professor Faculty of Forestry Universiti Putra Malaysia (Member)

Thomas Choong Shean Yaw, PhD

Professor, Ir. Faculty of Engineering Universiti Putra Malaysia (Member)

ZALILAH MOHD SHARIFF, PHD

Prof<mark>essor and</mark> Dean School of Graduate Studies Universiti Putra Malaysia

Date: 12 March 2020

Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature:	
Name of	
Chairman of	
Supervisory	Desferrer De Lucence Obuch Abdullah
Committee:	Professor Dr. Luqman Chuah Abdullah
Signature:	
Name of	
Member of	
Supervisory	
Committee:	Professor Ir. Dr. Thomas Choong Shean Yew
Signature:	
Name of Member of	
Supervisory	
Committee:	Professor Dr. Paridah binti Md. Tahir
Committee.	

TABLE OF CONTENTS

		Page			
ABSTRAC	т	i			
ABSTRAK	iii				
ACKNOW	V				
APPROVA	vi viii				
	DECLARATION LIST OF TABLES				
		xii			
LIST OF F	BBREVIATIONS	xv xxi			
		~~!			
CHAPTER					
1		1			
	.1 Background of Study	1			
	.2 Problem Statement	3			
1	.3 Objectives of Research	3			
	.4 Research Hypothesis	4			
	.5 Research Significance and Scope of Study	4			
	.6 Significance of Study	4			
	.7 Thesis Outline	5			
I	.8 Research Methodology	5			
2 A	VIATION INDUSTRY REVIEW	7			
2	.1 Aerospace Industry	7			
	2.1.1 Industry Forecast	7			
	2.1.2 Implementation of Carbon Offsetting and Reduction Scheme for International Aviation				
	(CORSIA)	12			
	2.1.3 Greenhouse Gas Emissions and Aviation	15			
	2.1.4 Carbon Emission	21			
2	.2 Aviation Jet Fuel	22			
	2.2.1 Type of Aviation Jet Fuel	24			
	2.2.2 Challenges to Aviation Jet Fuel	26			
2	.3 Alternative Fuels	30			
	2.3.1 Type of Alternative Fuels	34			
	2.3.2 Benefits of Alternative Fuels2.3.3 Alternative Jet Fuel Production Capabilities	37 39			
2	.4 Alternative Fuel System Approach	44			
	ECHNICAL ASSESSMENT AND REVIEW	48			
3	.1 Sustainable Biomass	48			
	3.1.1 Sustainability 3.1.2 Global View	48 51			
	3.1.2 Global View 3.1.3 Sustainable Biomass in Malaysia	55			
3	.2 Biomass Conversion Overview	59			
	.3 Type of Conversion Pathways	60			
	3.3.1 Biochemical Conversion	62			

	 3.3.2 Thermochemical Conversion 3.4 MEROX 3.5 Certified Conversion Pathways 3.5.1 Hydroprocessed Esters and Fatty Acids (HEFA) 	63 66 70 71
	 3.5.2 Fischer-Tropsch (FT) 3.5.3 Alcohol-to-Jet (ATJ) 3.5.4 SIP 3.6 Economic Assessment 3.7 Results and Discussion 	73 74 75 76 77
4	PROCESS SIMULATION 4.1 Overview	81 81
	 4.1.1 Process Simulation Methodology 4.2 HEFA Process 4.2.1 Steam Reforming (STR) 4.2.2 Water and Power 4.3 FT Process 4.3.1 Autothermal Reforming (ATR) 4.3.2 Water and Power 4.4 Results and Discussion 	81 82 86 87 90 94 95 98
5	 ECONOMIC ASSESSMENT 5.1 Overview 5.1.1 Investment in a Bio-refinery 5.1.2 Jet Fuel Selling Price 5.1.3 Case Study for Malaysia 5.2 Case Study 1: HEFA 5.2.1 Discounted Cash Flow Rate of Return 5.2.2 Monte Carlo 5.3 Case Study 2: FT-Gasification 5.3.1 Discounted Cash Flow Rate of Return 5.3.2 Monte Carlo 5.4 Results and Discussion 5.4.1 Business Case for Malaysia 	100 100 100 103 105 107 109 129 130 133 153 154 159
6	CONCLUSION AND FUTURE WORK6.1 Conclusion6.2 Future Works	161 161 164
		166 179 188 189

LIST OF TABLES

Table		Page
2.1	Mass of carbon dioxide emitted as per energy value for various fuels	16
2.2	Carbon dioxide (CO_2) emission per litre of various commercial fuel types	16
2.3	List of additives to Kerosene Jet A-1 and its allowance	26
2.4	Comparison of bio-energy progression from 2007 to 2017	31
2.5	Various countries around the world and their biodiesel blend	32
2.6	Selected properties of Kerosene Jet A-1 from ASTM D1655	34
2.7	Comparison of Kerosene Jet A-1 with bio-jet fuel types	35
2.8	Adoption of bio-jet fuel by airlines	43
2.9	European based companies and their refineries to produce bio-jet fuel	44
3.1	Biomasses in Malaysia and its types for potential bio-jet fuel	55
3.2	Biomass matrix against sustainability criteria	56
3.3	Comparison table of various sustainable local feedstock, their respective potential of dry biomass and bio-jet fuel potential	57
3.4	Selected oil and their respective yields and area required for global fuel demand	60
3.5	Equivalence ratio of thermochemical processes	65
3.6	Composition of crude oil by hydrocarbon families and their distribution	68
3.7	Composition of crude oil by weight percentage	68
3.8	Table of desired Sustainable Aviation Fuel criteria (technical and sustainable)	70
3.9	Certified pathways for bio-jet fuel / sustainable jet fuel conversion, with its various feedstocks, blending limits and date of approval	71

	3.10	Properties of waste vegetable cooking oil	72
	3.11	Fuel Readiness Level description and gates	78
	3.12	Assessment of fuel conversion pathways to feasibility to be implemented in Malaysia	79
	4.1	Process conversion sensitivity table for HEFA	84
	4.2	List of major equipment required within a HEFA plant	85
	4.3	Power utilization analysis of the HEFA process, depending on process output (conversion efficiency)	87
	4.4	Power requirements for each major equipment in the HEFA plant across conversion efficiencies	88
	4.5	Water requirement and recycled water from the HEFA process for bio-jet fuel production	89
	4.6	Process conversion ranges for FT-Gasification	91
	4.7	Process conversion sensitivity table for FT	92
	4.8	List of major equipment required within a FT-gasifier plant	92
	4.9	Power utilization analysis of the FT-Gasifier process, depending on process efficiency output	95
	4.10	Net power requirement of FT-Gasification, considering co- product usage for power generation	96
	4.11	Breakdown of power requirements by components within the FT-gasification plant	97
	4.12	Water requirement and recycled water from the FT- Gasification process for bio-jet fuel production	98
	4.13	Comparison table between HEFA and FT-Gasification for Jet Fuel Production	99
	5.1	Cost comparison, normalized to 2018 by CEPCI, of various commercial scale HEFA and FT plants	102
(\mathbf{O})	5.2	Jet fuel prices and their desirable level by airline operators	104
	5.3	List of assumptions and corresponding value for DCFROR inputs on HEFA and FT-Gasification plants	105

5.4	Staffing and salaries for FT-Gasification and HEFA plant in Malaysia, 2018	106
5.5	Capital Cost for HEFA plant.	107
5.6	Operational Cost for HEFA	108
5.7	Capital Cost for FT-Gasification plant	131
5.8	Operational Cost for FT-Gasification Plant	131
5.9	NPV Close to Zero that given Conversion Efficiency and MJSP	154
5.10	Ideal plant parameters for HEFA and FT-Gasification	159

LIST OF FIGURES

Figure		Page
1.1	Research Methodology of this study	6
2.1	Air traffic data in RPK over time and future prediction by Airbus GmbH	8
2.2	Airbus Global Market Forecast 2018 – 2037, Demand by Region	9
2.3	Trend and Growth of Malaysia Jet Fuel Consumption (Kerosene Jet A-1) from 1986 to 2030 (est.).	10
2.4	International Tourist and Malaysia's Tourism Revenue compared 2007 – 2017	10
2.5	Comparison of Jet Fuel consumption and International Tourists in Malaysia	11
2.6	CO ₂ emissions from passenger transport	12
2.7	CORSIA coverage globally as of January 2019, at various entry into 3 Phases	13
2.8	Various phases of CORSIA from 2019 to 2035	14
2.9	Distribution of greenhouse gas in the atmosphere	15
2.10	Output of engine fuel combustion, complete combustion versus actual combustion	17
2.11	Water vapour lifetime in various altitudes in the atmosphere	18
2.12	Global radiative forcing (RF) effect of young contrail (top) and aftereffects (bottom)	19
2.13	Effect of various radiative forcing elements and its impact	20
2.14	(left) Price of kerosene-type jet fuel 1990 - 2016; (right) Price of kerosene-type jet fuel 2015 to February 2016	23
2.15	Crude oil distillation process to yield Kerosene Jet-grade fuel (blue process)	24
2.16	Kerosene Jet-A1 chemical distribution by hydrocarbon classes (%vol)	25

	2.17	ATAG's Four Pillar Emissions reduction roadmap	27
	2.18	Comparison of energy density by mass and by volume of fuels and energy storage medium	28
	2.19	A comparison chart on current and developing battery technologies	29
	2.20	Fuel production process, upstream, midstream, to downstream	30
	2.21	Well to wake of comparison of traditional (fossil) jet fuel and renewable (bio-jet) fuel supply chain	31
	2.22	Comparison in carbon number distribution of some common fuels	33
	2.23	Various process pathways to produce certifiable alternative bio-jet fuel	36
	2.24	Process pathways of various feeds to certification of fuel	37
	2.25	Experimentation of bio-jet fuel surrogates compared to conventional Kerosene Jet A-1, a) Kerosene Jet A-1, b) 2% FAME, c) 50% blend, d) 100% synthetic Jet A-1	38
	2.26	Sharing of resources in a refinery between renewable and crude oil processes	40
	2.27	Integration concept for a bio-refinery with biomass inputs	41
	2.28	Global activities on bio-jet fuel	42
	2.29	Visual comparison between conventional aircraft systems (left) and MEA systems (right)	45
	2.30	Systems no longer required when a multifunctional fuel cell system is introduced	46
\bigcirc	3.1	ICAO and the United Nations Sustainable Development Goals	49
	3.2	Bioenergy distribution from biomass materials (2016)	51
	3.3	Changes in biofuel utilization across different regions of the world, in thousands of barrels per day (x-axis)	52
	3.4	Distribution of types of biofuel utilized (left), and distribution of biofuel producers (right)	53

3.5	Distribution of biofuel production over time (1993 – 2014)	54
3.6	Potential lignocellulosic biomass residue in Malaysia, with high potential to be deemed sustainable	56
3.7	General conversion pathway from biomass to products	60
3.8	Thermal processes for conversion of biomass	61
3.9	Process flow diagram of lignocellulosic conversion to ethanol through a biochemical process	62
3.10	Yield distribution of different pyrolysis modes	64
3.11	Operating temperatures and air-fuel ratios for various thermochemical processes	65
3.12	Crude oil distillation to products	67
3.13	The MEROX process by UOP for treatment/sweetening of aviation jet fuel	69
3.14	Simplified block process diagram for Hydroprocessed Esters and Fatty Acid (HEFA)	72
3.15	Simplified block process diagram for Fischer-Tropsch (FT) process with gasification	74
3.16	Simplified block process diagram for Alcohol-to-Jet (ATJ) process	74
3.17	Simplified block process diagram for Hydroprocessed Fermented Sugars to Synthetic Iso-Paraffins (SIP)	75
3.18	Fuel readiness level of the certified pathways, adapted from literature study	79
4.1	Process flow diagram of HEFA pathway	82
4.2	Hydrogenation process within the HEFA process.	83
4.3	Upstream portion of the HEFA process from input Oil source to hydrocracking reactor	85
4.4	Downstream portion of the HEFA process from input hydrocracked hydrocarbons to jet fuel and co-product streams	85
4.5	Overall Steam reforming (STR) process.	87

	4.6	Power Utilization window based on HEFA plant capacity output	88
	4.7	Process flow diagram of FT-Gasification pathway	90
	4.8	Gasifier upstream portion of the FT-Gasifier process from input biomass feed to hot syngas	93
	4.9	Midstream portion of the FT-Gasifier process from input clean syngas to hydrocracking reactor	93
	4.10	Downstream portion of the FT-Gasifier process from FT liquid+gas to FT-products (Jet and Naphtha)	93
	4.11	Overall Autothermal reforming process	94
	4.12	Power Utilization window based on FT-Gasification plant capacity output	95
	5.1	Various global comme <mark>rcial scale pla</mark> nts for biofuel production (HEFA & FT), plant cost capacity (USD/tonne/yr)	101
	5.2	Kerosene-type jet fuel spot price (USD/kg)	104
	5.3	DCFROR HEFA (Low Rate – Low Price) Y1 – Y8	109
	5.4	DCFROR HEFA (Low Rate – Low Price) Y8 – Y20	110
	5.5	DCFROR HEFA (Low Rate – Mid Price) Y1 – Y8	111
	5.6	DCFROR HEFA (Low Rate – Mid Price) Y9 – Y20.	112
	5.7	DCFROR HEFA (Low Rate – High Price) Y1 – Y8	113
	5.8	DCFROR HEFA (Low Rate – High Price) Y9 – Y20	114
	5.9	DCFROR HEFA (Mid Rate – Low Price) Y1 – Y8	115
	5.10	DCFROR HEFA (Mid Rate – Low Price) Y9 – Y20	116
	5.11	DCFROR HEFA (Mid Rate – Mid Price) Y1 – Y8	117
\bigcirc	5.12	DCFROR HEFA (Mid-Rate – Mid-Price) Y9 – Y20	118
	5.13	DCFROR HEFA (Mid-Rate – High Price) Y1 – Y8	119
	5.14	DCFROR HEFA (Mid-Rate – High Price) Y9 – Y20	120
	5.15	DCFROR HEFA (High Rate – Low Price) Y1 – Y8	121

	5.16	DCFROR HEFA (High Rate – Low Price) Y9 – Y20	122
	5.17	DCFROR HEFA (High Rate – Mid Price) Y1 – Y8	123
	5.18	DCFROR HEFA (High Rate – Mid Price) Y9 – Y20	124
	5.19	DCFROR HEFA (High Rate – High Price) Y1 – Y8	125
	5.20	DCFROR HEFA (High Rate – High Price) Y9 – Y20	126
	5.21	DCFROR HEFA (High Rate – MJSP Price) Y1 – Y8	127
	5.22	DCFROR HEFA (High Rate – MJSP Price) Y9 – Y20	128
	5.23	Monte Carlo Simulation on Probability of Returns (USD) between Year 10 and Year 20 for MJSP in Percentile Distribution	129
	5.24	Monte Carlo Simulation on Probability of Returns (USD) between Year 10 and Year 20 for MJSP – Frequency of range	130
	5.25	DCFROR FT-Gasification (Low Rate – Low Price) Y1 – Y8	133
	5.26	DCFROR FT-Gasification (Low Rate – Low Price) Y8 – Y20	134
	5.27	DCFROR FT-Gasification (Low Rate – Mid Price) Y1 – Y8	135
	5.28	DCFROR FT-Gasification (Low Rate – Mid Price) Y9 – Y20	136
	5.29	DCFROR FT-Gasification (Low Rate – High Price) Y1 – Y8	137
	5.30	DCFROR FT-Gasification (Low Rate – High Price) Y9 – Y20	138
	5.31	DCFROR FT-Gasification (Mid Rate – Low Price) Y1 – Y8	139
	5.32	DCFROR FT-Gasification (Mid Rate – Low Price) Y9 – Y20	140
	5.33	DCFROR FT-Gasification (Mid-Rate – Mid Price) Y1 – Y8	141
	5.34	DCFROR FT-Gasification (Mid Rate – Mid Price) Y9 – Y20	142
\bigcirc	5.35	DCFROR FT-Gasification (Mid Rate – High Price) Y1 – Y8	143
	5.36	DCFROR FT-Gasification (Mid-Rate – High Price) Y9 – Y20	144
	5.37	DCFROR FT-Gasification (High Rate – Low Price) Y1 – Y8	145
	5.38	DCFROR FT-Gasification (High Rate – Low Price) Y9 – Y20	146
	5.39	DCFROR FT-Gasification (High Rate – Mid Price) Y1 – Y8	147

5.40	DCFROR FT-Gasification (High Rate – Mid Price) Y9 – Y20.	148
5.41	DCFROR FT-Gasification (High Rate – High Price) Y1 – Y8	149
5.42	DCFROR FT-Gasification (High Rate – High Price) Y9 – Y20	150
5.43	DCFROR FT-Gasification (High Rate – MJSP) Y1 – Y8	151
5.44	DCFROR FT-Gasification (High Rate – MJSP) Y9 – Y20	152
5.45	Monte Carlo Simulation on Probability of Returns (USD) between Year 10 and Year 20 for MJSP in Percentile Distribution (FT-Gasification)	153
5.46	Monte Carlo Simulation on Probability of Returns (USD) between Year 10 and Year 20 for MJSP – Frequency of range (FT-Gasification)	154
5.47	Conversion rate (HEFA and FT) vs. MJSP.	155
5.48	FT-Gasification - %Change in Feedstock Price and Capital Expenditure Impact on MJSP	156
5.49	HEFA - %Ch <mark>ange in Feedstock Price and C</mark> apital Expenditure Impact on MJSP	157
5.50	Changes in Capital Expenditure (USD) of HEFA and FT- Gasification against MJSP (USD)	158
5.51	Changes in <mark>Feedstock Cost (USD/tonne) of HEFA</mark> and FT- Gasification against MJSP (USD)	158

G

LIST OF ABBREVIATIONS

\$MM % ℃		USD Millions	
		Percent	
		degrees Celsius	
	AEA	All Electric Aircraft	
	AFR	Air-Fuel Ratio	
	AGO	Atmospheric Gasoil	
	AMIC	Aerospace Malaysia Innovation Centre	
	APU	Auxiliary Power Unit	
	ARPA-E	Advance Research Projects Agency - Energy	
	ASTM	American Standard of Testing and Materials	
	ATAG	Air Transport Action Group	
	ATC	Air Traffic Control	
ATJ ATR		Alcohol to Jet	
		Autothermal Reforming	
	Avgas	Aviation Gasoline	
\$MM % °C		USD Millions	
		Percent	
		degrees Celsius	
	AEA	All Electric Aircraft	
	AFR	Air-Fuel Ratio	
	B.o.P	Balance of Plant	
	BTL	Biomass to Liquid	
	CAAM	Civil Aviation Authority of Malaysia	

 \overline{O}

	CAGR	Compound Annual Growth Rate
	Сар	Capacity
	CAPEX	Capital Expenditure
	CEPCI	Chemical Engineering Plant Cost Index
	СН	Catalytic Hydro-thermolysis
	CH ₄	Methane
	CNG	Carbon Neutral Growth
	СО	Carbon Monoxide
	CO ₂	Carbon Dioxide
	CORSIA	Carbon Offsetting and Reduction Scheme
	CPO	Crude Palm Oil
	CTL	Coal to Liquid
	DCFROR	Discounted Cash Flow Rate of Return
	Def. Stan	British Defence Standardization
	DFBG	Dual Fluidized Bed Gasification
	DLR	Deutsches Zentrum Fuer Luft- und Raumfahrt (German Aerospace Centre)
	DOE	Department of Energy (United States)
	DSHC	Direct Sugar to Hydrocarbon
	ECS	Environmental Control System
	EEA	European Environment Agency
	EFB	Empty Fruit Bunches
(\mathbf{C})	EPA	Environmental Protection Agency
	EPF	Employee Pension Fund
	est.	Estimate

	et al.	et alia (latin)
	etc.	et cetera (so forth)
	EtOH	Ethanol
	ETS	Emission Trading Scheme
	EU	European Union
	EX	Exchange Rate
	FAME	Fatty Acid Methyl Esters
	FAO	Food and Agriculture Organization
	FFB	Fresh Fruit Bunches
	FOREX	Foreign Exchange Rate
	FRL	Fuel Readiness Level
	FT	Fischer-Tropsch
	g	grams
	gal	Gallon
	GBEP	Global Bioenergy Partnership
	GDP	Gross Domestic Product
	GHG	Greenhouse Gas
	GMF	Global Market Forecast
	GMO	Genetically Modified Organism
	GOST	Gosudarstvennyy Standart (Russia Standardization)
	GTL	Gas to Liquid
	H ₂ O	Water
(\mathbf{O})	ha	hectare
	HC	Hydrocarbon

HDCJ	Hydrotreated Depolymerized Cellulosic Jet
HEFA	Hydro-processed Esters and Fatty Acids
HMF	Hydroxymethylfurfural
HRJ	Hydroprocessed Renewable Jet
HTL	Hydrothermal Liquefaction
HVO	Hydrogenated Vegetable Oil
ΙΑΤΑ	International Air Transport Association
ICAO	International Civil Aviation Organization
IPCC	Intergovernmental Panel on Climate Change
IRR	Internal Rate of Return
ISCC	International Sustainability & Carbon Certification
ISO	International Organization of Standardization
JP	Jet Propellant
kg	kilogram
km	kilometre
kWh	kilowatt hour
L	Litre
LCC	Low Cost Carrier
LF	Location Factor
LHSV	Liquid Hourly Space Velocity
LOSU	Level of Scientific Understanding
m ²	square meter
m ³	cubic metre
MARCS	Modified Accelerated Cost Recovery System

G

MBM	Market-Based Measures
MEA	More Electric Aircraft
MEROX	Mercaptan Oxidation
MgO	Magnesium oxide (magnesia)
MIDA	Malaysia Investment Development Authority
MJ	Mega Joules
MJSP	Minimum Jet Fuel Selling Price
ММ	Millions
МоТ	Ministry of Transport
MoTAC	Ministry of Tourism, Arts and Culture
MPI	Ministry of Primary Industries
MPOB	Malaysian Palm Oil Board
MRO	Maintenance Repair and Overhaul
MRV	Monitoring Reporting Verify
MSW	Municipal Solid Wastes
MtCO2	Metric Tonne of Carbon Dioxide
mW	milli-Watt
MW	Mega Watt
MY	Malaysia
MYR	Malaysian Ringgit
Ν	Nitrogen
NEO	New Engine Option
Ni	Nickel
NOx	Nitrogen Oxides

NPV	Net Present Value
NREAP	National Renewable Action Plan
O&G	Oil & Gas
OPEX	Operating Expenditures
P&ID	Process and Instrument Diagram
Pd	Palladium
PEMFC	Proton Exchange Membrane Fuel Cell
PFAD	Palm Fatty Acid Distillate
PFD	Process Flow Diagram
PM	Particulate Matters
POME	Palm Oil Mill Effluent
POX	Partial Oxidation
ppm	parts per million
PPP	Purchasing Power Parity
PSA	Pressure Swing Absorption
Pt	Platinum
RAT	Ram Air Turbine
RED	Renewable Energy Directive
REDD+	Reducing emissions from deforestation, forest degradation; the role of conservation, sustainable, management of forests + enhancement of forest carbon stocks in developing countries
RF	Radiative Forcing
RFS	Renewable Fuel Standard
RM	Ringgit Malaysia
RPK	Revenue Passenger Kilometres
	NREAP O&G OPEX P&ID Pd PEMFC PFAD PFD PM POME POME POME POX POME POX POME POX POME POX POME POA POME POA POME POA POME RF RED RED RES RM

	RSB	Roundtable on Sustainable Biomaterials
	RTK	Revenue Tonnes Kilometre
	S	Sulphur
	SAGE	Sustainable and Green Engine
	SAK	Synthesized Aromatic Kerosene
	SDG	Sustainability Development Goals
	SIP	Synthesized Iso-Paraffins
	SK	Synthesized Kerosene
	SO ₂	Sulphur Dioxide
	SOx	Sulphur Oxides
	SPAN	National Water Services Commission
	SPK	Synthetic Paraffinic Kerosene
	SOx	Sulphur Oxides
	SST	Sales and Service Tax
	STR	Steam Reforming
	synfuel	synthetic fuel
	t	Tonne
	tCO ₂ e	Tonne of Carbon Dioxide Equivalent
	TNB	Tenaga National Berhad
	TRL	Technology Readiness Level
	U.S	United States
	UN	United Nations
\mathbf{U}	V.O.C	Volatile Organic Compounds
	VGO	Vacuum Gas Oil

vol%	Percent Volume
VS.	versus
W	Watt
wt%	Percent Weight
yr	year
η	Efficiency (Conversion)

CHAPTER 1

INTRODUCTION

1.1 Background of Study

Global production of aviation fuel, particularly Kerosene Jet A-1, has a market presence of 80 billion gallons per year, or 302.8 billion litre per year. In the United States alone. 83.3 billion litre of aviation fuel per year is refined, as reported by Davidson et al. (2014). Of the 302.8 billion litres, 12% is used for the military while the other 88% is used for commercial flights, with North America having the highest rate of consumption of ca. 102 billion litres. Asia and Russia combined has a fuel consumption of ca. 61.2 billion litres (IATA, 2011). Malaysia consumes roughly 3 billion litres of kerosene jet fuel per year (2010), which only accounts close to 0.01% of global aviation usage, (EIA, 2016). Compared to other countries around the world, Malaysia, with its high biodiversity due to its equatorial climate, boasts a large potential to develop and produce alternative fuel for its transportation industry - whereas other less biodiverse country will lesser options and may rely on bio-fuel imports. While aviation fuel competes with road transportation fuel, especially the source feedstock, road transportation has the luxury of convenient refuel stations and the implementation of alternative power drive trains such as electric motors with batteries. For aviation, however, alternative options to power the aircraft are limited, not to mention any prospective technologies such as batteries, fuel cells, hybrid propulsion, etc. are still rather immature to have short-term impact. The development and roll-out of alternative jet fuel / bio-jet fuel is seen to have the potential to meet the industrial movement towards carbon footprint reduction, able to utilize on current infrastructure, and with quick adoption period (IATA, 2009). Malaysia, as part of IATA and as part of UN, has agreed to reduce the country's carbon footprint. The aviation industry sees an unprecedented unity as an industry compared to many other CO₂ producing industries (automotive, agriculture, maritime, etc.), therefore, any produced bio-jet fuel must meet stringent international standards such as the ASTM D7166. However, wide-scale commercialization and deployment are mainly hampered by the availability of sustainable biomass feedstock, investment costs to enable production of the bio-jet fuel, and the stringent safety requirement.

Asia-Pacific is a region of great interest for the aviation industry, as by 2030, the Asia-Pacific region will see an increase by over 15,000 new aircraft, (GMF, 2018). This increase in air traffic warrants the need to have sustainable fuel to be implemented in this region, to keep its carbon emissions controlled and limited. Malaysia has seen a considerable increase in air traffic recently and is one of the region's larger user of aviation jet fuel. Malaysia is a member of the International Civil Aviation Organization (ICAO), as well as the IATA (International Air Transport Association), and these international organizations have pledged to decrease climate impact from the aviation industry, such as the 4-pillar movement and recently CORSIA. Carbon Offsetting and Reduction

Scheme for International Aviation, or simply CORSIA, is a global initiative by the United Nations (UN) to address and offset aviation emissions through "offset credits" and "allowances" from emissions trading scheme. Malaysia has pledged itself towards CORSIA and the implementation phase is in 2020 (CORSIA States, 2018). While CORSIA's initiative helps account and reduce greenhouse gas emissions from the industry, it also has the adverse effect of curving aviation growth. Therefore, it is imperative that Malaysia has offset credits to address its aviation emissions - one such credit gains could be the utilization of bio-jet fuel. Furthermore, Europe will start to implement regulations to tax incoming flights without carbon neutral fuel / sustainable bio-jet fuel entering its airspace. In order for Malaysia not to be at a disadvantage for such movements, as well as to prevent from falling behind on other countries such as Indonesia, Thailand, Canada, the United States, Europe, China, and Japan on the introduction of biojet fuel in flights, Malaysia has to protect, among others, its foreign investment, tourism economy, and aviation expansion, through energy security with sustainable bio-jet fuel production locally.

Bio-jet fuel implementation introduced by the previously mentioned countries are at a level between 2 to 5 vol%. Indonesia, has mandated that a 2% bio-jet fuel (certified blended) implementation in 2018 to its fleet, increasing it to 5% by 2020. For Malaysia to follow this trend, a 2% of bio-jet fuel in Malaysia, equates to roughly 60 million litres (or ca. 40 - 50 million kg, density depending), of bio-jet fuel is required. Assuming a process conversion efficiency of 40% (feedstock to fuel), (Capareda, 2014; Worldwatch Institute, 2016; and Vello et al., 2014), this comes to a rough estimate of 18.4 to 20 million kg of biomass. It is estimated that there are roughly 54 million kg of biomass residue in Malaysia, this indicates that there is enough biomass residue available (Roda et al., 2015). However, asides from securing available sustainable biomass for conversion, which certified conversion pathway still needs to be determined. A robust consideration on the balance of economics (feedstock, production, distribution, product, and social impact) and technological maturity in these processes must be analysed, compared, and modelled to determine the potentiality of which feedstocks and its corresponding processes will enable a viable bio-jet fuel business in Malaysia. To appropriately compare, the processes of the various pathways need to be simulated in chemical process simulation programs such as ASPEN Plus, used in both academic and in the industrial world (Bonomi et al., 2016; Wooley et al., 1996). Through modelling and simulation, energetics of the conversion pathway (feed to fuel) can be identified, compared, and assessed on the efficiency of the process and product formation. Lastly, economics, such as feedstock cost, plant cost, and production cost, will be calculated for the investment cost structure for a bio-refinery plant (using these conversion pathways), operational costs, and cost per litre of bio-jet fuel production needs to be considered (Towler et al., 2015; Aspen Richardson, 2013; Gong et al., 2011). The feedstock cost for oilbased feedstock is USD 700/tonne, whilst carbohydrate-based feedstocks are USD 35/tonne. The current jet-fuel price is approximately USD 324/tonne.

1.2 **Problem Statement**

The motivation behind this study is based on the aviation industry's implementation of a set of targets and to reduce its carbon footprint (IATA, 2013), which goals from IATA are:

- From now to year 2020, fuel efficiency to be improved by 1.5% per annum.
- By year 2020, net carbon emissions from aviation will be capped through carbon neutral growth
- By year 2050, 50% reduction in net aviation CO₂ emissions over year 2005 levels.

Thus, the study defines its problem statements in three (3) folds. (i) Does Malaysia have enough sustainable biomass to be converted into bio-jet fuel, to meet the aviation fuel demand within Malaysian airports? (ii) Does it make economic benefits to build and operate a bio-refinery plant? This may provide Malaysia with a new source of revenue, independent from fossil base income. And lastly, (iii) is the bio-refinery plant able to produce price competitive bio-jet fuel for the aviation industry? This is vital to be price competitive to ensure the industry's willingness to adopt and compensate.

1.3 Objectives of Research

The project principally aims to support Malaysia's carbon footprint reduction and to determine the feasibility of producing sustainable bio-jet fuel derived from sustainable biomass or biomass residues for the aviation industry's fuel demand.

The focus of the research is divided into three major areas:

- 1. To investigate the potential sustainable biomass annual availability and price to match potential demand of bio-jet fuel (annually).
- 2. To evaluate the Fuel Readiness Level of various conversion processes for Malaysia, and to determine the technical and economic parameters.
- 3. To determine the quantity of bio-jet fuel able to be produced in Malaysia, given a sustainable roadmap, and provide a brief business case.

1.4 Research Hypothesis

The hypothesis of this research is, "Malaysia has sufficient land and local sustainable biomass (and biomass residue) to replace 2 - 5% of Malaysia's consumption of aviation turbine jet fuel". This hypothesis can be achieved through a technical and economical approach, knowing Malaysia's abundance amount of biomass diversity and marginal lands potential, that ensures certifiable bio-jet fuel. The introducing bio-jet fuel into the local supply will provide an economic boost to the country, such as gross domestic product (GDP), through feedstock value and bio-jet fuel sales. This is also in-line with the aviation industry, specifically Airbus, as it is coherent with their global pledge and the elements within their Sustainable Aviation Action globally. Hence, the hypothesis encompasses synergistic effects with both industry and academia, which from this work, supports an adoption of a bio-jet fuel business in Malaysia.

1.5 Research Significance and Scope of Study

This research has a countrywide to regional impact, providing a platform to enable Malaysia to produce its own bio-jet fuel together with the other major aviation countries in the world, such as the United States, Canada, Europe, Japan, and Indonesia. This will also place Malaysia in a strategic position to fulfil its commitments to the United Nations (UN) in greenhouse gas reduction and decarbonisation of the country, in an initiative called CORSIA (Annex 16, 2018). In the region, Asia Pacific, Malaysia will be one of the pioneers to enable the country to produce its own bio-jet fuel, using sustainable feedstock.

However, the limitation of this research relies on the availability of sustainable biomass in Malaysia. Indirectly, also the technical and technology competence level of Malaysia to adopt conversion technologies needed for certified bio-jet fuel. Malaysia should have enough capacity to localise these technologies and obtain certification stage, however if a learning curve is required, it may increase the adoption cost and thereby decrease cost competitiveness of the bio-jet fuel cost.

1.6 Significance of Study

The significance of this study is to support the Malaysian government is determining the investment and collaboration (industrial, governmental and academics) required to have Malaysia produce its own bio-jet fuel, rather than rely on imports other countries. This study is the first to compare the various conversion pathways, focus on determining the potential to reach a minimum jet fuel selling price which the industry can accept (offtake). The field of study is highly relevant and impactful to the Institute of Forestry and Forest Product (INTROP), in particular bioresource management, as the jet fuel selling price will determine which process and feedstock (biomass/bioresource) is best suited to

achieve commercial potential (fuel sales to the airlines), and therefore how UPM and INTROP is best able further investigate this new stream of supply chain and bio-jet fuel product.

1.7 Thesis Outline

The thesis introduces the overall stance of the current aviation industry, and how steps the industry has taken to be responsible and accountable for its carbon footprint, this is highlighted in detail in Chapter 2. Chapter 3 provides the technical assessment and literature review of the various certified pathways for bio-jet fuel conversion (technical), and economical assessment required for parameters input to Chapter 4. Chapter 4 is process modelling and parameters calculations for inputs into the economic modelling. Chapter 5, using the discounted cash flow rate of return method to determine the best bio-refinery cost possible, given industrial price point demands, and utilizing Monte Carlo simulation to determine the confidence level of the data. Chapter 6 summaries this study and draws the conclusion of the ideal bio-refinery plant, feedstock, and possible ways forward for implementation.

1.8 Research Methodology

This study's research methodology can be represented in the following diagram:

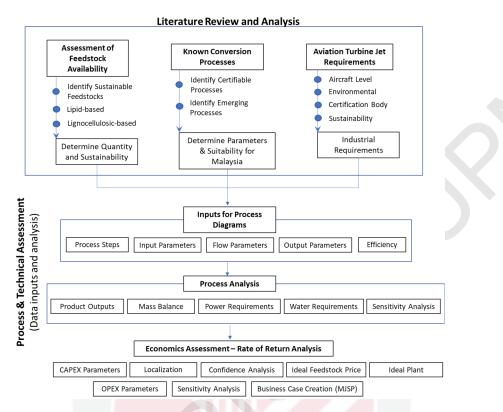


Figure 1.1: Research Methodology of this study

This research follows the Type I quantitative research method, which is industry driven through the undertaking of research and investigation. The hypotheses are a positivistic approach, which is data centric through model and process analysis. This study takes research and industrial inputs and correlate the data based on the deduction method and analysis. The sources within this study is a mixture of primary and secondary data.

REFERENCES

- AirAsia (2018). *AirAsia Group 2017 fleet analysis*, CAPA. Retrieved from https://centreforaviation.com/analysis/reports/airasia-group-2017-fleetanalysis-fleet-reaches-200-aircraft-expansion-reaccelerates-392568, 20 November 2018.
- AIRBUS (2010). Airbus Global Market Forecast 2010 2029. Retrieved from http://www.airbus.com/, 18 May 2019.
- AIRBUS (2018). *Global Market Forecast, Global Networks, Global Citizen 2018-*2037. Retrieved from http://airbus.com/, 26 January 2019.
- Aliza, M. (2018). 25.9 million International Tourists Visited Malaysia in 2017. Retrieved from https://www.tourism.gov.my/media/view/25-9-millioninter national-tourists-visited-malaysia-in-2017, 20 November 2018.
- Araujo, K., Mahajan, D., Kerr, R., da Silva, M. (2017). Global Biofuels at the Crossroads: An Overview of Technical, Policy, and Investment Complexities in the Sustainability of Biofuel Development. *MDPI Agriculture*, 7(4):32.
- Ardila, Y.C., Figueroa, J.E.J., Lunelli, B., Filho, R., Maciel, M., (2014). Simulation of Ethanol Production Via Fermentation of the Synthesis Gas Using Aspen Plus. *AIDIC*, Vol 37: 637-642.
- Aro, E.M. (2016). From first generation biofuels to advanced solar biofuels. *J. Human Environ.*, 45(1):24-31
- ASTM (2015). ASTM Standard D 1655, *Standard Specification for Aviation Turbine Fuels*, ASTM International, West Conshohocken, PA, 2015, DOI: 10.1520/D1655-15DE01.
- ASTM (2016). ASTM Standard D 7566, 2016, *Specification for Aviation Turbine Fuel Containing Synthesized Hydrocarbon*, ASTM International, West Conshohocken, PA, 2016, DOI: 10.1520/D7566-15C.
- ASTM (2019). ASTM D 7566-11 "Specification for Aviation Turbine Fuel Containing Synthesized Hydrocarbons". Accessed 28-09-2019.
- ATAG (2016). Supporting jobs, economic growth and sustainable development through aviation. Retrieved from https://aviationbenefits.org/ newswire/2016/07/supporting-jobs-economic-growth-and-sustainabledevelopment-through-aviation/, 19th July 2016.
- ATAG (2017). *Beginner's Guide to Sustainable Aviation*, 3rd Edition. Retrieved from https://aviationbenefits.org/media/166152/beginners-guide-to-saf_web.pdf, 8th June 2019.

- ATAG (2018). *Facts and Figures*. Retrieved from atag.org/facts-figures.html, 6 June 2019.
- Atsumi, S., Cann, A.F., Connor M.R., Shen C.R., Smith K.M., Brnildsen M.P., Chou K.J.Y., Bacovsky D., Ludwiczek N., Ognissanto M., Woergetter M., (2013). Status of advanced biofuels demonstration facilities: A report to IEA Bioenergy, IEA Bioenergy Task 39.
- Attilio Bisio (1995). "Aircraft Fuels Energy, Technology and the Environment", in *Encyclopedia of Energy Technology and the Environment, Vol.1*, Attilio Bisio and Sharon Boots (Eds.), New York: John Wiley and Sons, Inc., pp. 257-259.
- Barreto, H., Howland, F., (2006). Introductory Econometrics Using Monte Carlo Simulation with Microsoft Excel. New York: Cambridge University Press
- Berlowitz, I., Melnichanskaya N. (2011). Proceedings of the 51st Israeli Conference on Aerospace Sciences. *All/More electric aircraft engine & airframe systems implementation*. Vol 1., Tel-Aviv, Israel
- Bitnere, K., Searle, S. (2017). Effective policy design for promoting investment in advanced alternative fuels. Retrieved from https://www.theicct.org/sites/default/files/publications/Advancedalternative-fuels_ICCT-white-paper_21092017_vF.pdf, 8th June 2019
- Boeing (2010). *Current Market Outlook 2012 2031,* retrieved from www.boeing.com, 18th May 2019.
- Bonomi, A., Cavalett O., Cunda, M.P., Lima, M.A.P (2016), *Virtual biorefinery: An optimization strategy for renewable carbon valorization*. New York: Springer.
- Burkill, L.H. (1966). A dictionary of the economic products of the Malay Peninsula Vol 2. Ministry of Agriculture and Cooperatives, Kuala Lumpur, Malaysia.
- Capareda, S.C., (2014), Introduction to Biomass Energy Conversions. Florida: CRC Press
- Cleveland, C.J., Morris, C. (2013). *Handbook of Energy: Vol 1, Diagrams, Charts and Tables.* Amsterdam: Elsevier Inc.
- Coordinating Research Council, Inc. (2004). *Handbook of Aviation Fuel Properties,* CRC Report No. 635, 3rd Edition, Coordinating Research Council Inc.
- CORSIA (2018). Annex 16 Environmental Protection CORSIA, (2018), ICAO, Vol. IV. Retrieved from https://www.icao.int/environmentalprotection/ CORSIA/,19 July 2019

- David, S., Jones J., Pujado, P.R., (2015). Petroleum Refinery Planning and Economics, *Handbook of Petroleum Processing*, Springer, 2015, pp 685-786.
- Davidson, C., Newes, E., Schwab, A., Vimmerstedt, L. (2014). An Overview of Aviation Fuel Markets for Biofuels Stakeholder. Technical Report NREL/TP-6A20-60254, National Renewable Energy Laboratory. Retrieve from (http://www.nrel.gov/docs/), 20 November 2018
- De Blasio, C. (2019). Fischer-Tropsch Synthesis to biofuels, in Fundamentals of Biofuels Engineering and Technology, New York, Springer.
- De Jong S., Hoefnagels R., Van Stralen J., Londo M., Slade R., Faaij A., Junginger M. (2017). *Renewable jet fuel in the european union* – *scenarios and preconditions for renewable jet fuel deployment towards* 2030. (University Technical Report). Utrecht University.
- de Jong, S., Antonissen, K., Hoefnagels, R., Lonza, L., Wang, M., Faaij, A., Junginger, M. (2007). Life-cycle analysis of greenhouse gas emissions from renewable jet fuel production. *Biotechnology for Biofuels*, 10:64.
- De Klerk, A. (2000). *Kirk-Othmer Encyclopedia of Chemical Technology*, New York: Wiley & Sons.
- Deane, P., Pye, S. (2016). Biofuels for Aviation: Review and analysis of options for market development, European Commission INSIGHT_E, Policy Report, February 2016. Retrieved from https://www.innoenergy.com, 18 June 2019
- Deloitte (Malaysia) (2019). *International Tax Malaysia Highlights 2019,* February 2019. Retrieved from www.deloitte.com, 20 December 2019.
- Dincer, A. (2018). Comprehensive Energy Systems: Energy Fundamentals. Amsterdam: Elsevier Inc.
- Dollmayer, J., Bundschuh, N., Carl, U.B. (2006). Fuel mass penalty due to generators and fuel cells as energy source of the all-electric aircraft. *Aerosp. Sci. Technol.*, 10: 686-694.
- Doughman S.D., Krupanidhi S., Sanjeevi C.B. (2007). Omega-3 fatty acids for nutrition and medicine: Considering microalgae oil as a vegetarian source of EPA and DHA. *J Diabetes Reviews*, 3(3),198-203.
- Dutta, A., Talmadge, M., Hensley, J., Worley, M. Dudgeon, D., Barton, D., Groenendijk, P., Ferrari, D., Stears, B., Searcy, E., Wright, C., Hess, J. (2011). Process design and economics for conversion of lignocellulosic biomass to ethanol: Thermochemical pathway by indirect gasification and mixed alcohol synthesis. *National Renewable Energy Laboratory*, Colorado.

- Dyer, J.M., Stymne, S., Green, A.G., Carlsson, A., (2008). High-Value oils from plants. *The Plant Journal*, 54,640-655
- Edwards, T. (2002). Proceedings of 38th American Institute of Aeronautics and Astronautics (AIAA/ASME/SAE/ASEE) Joint Propulsion Conference & Exhibit: *Kerosene Fuels for Aerospace Propulsion – Composition and Properties*. Indiana, Air Force Research Lab.
- Edwards, T., and Maurice, L. Q. (2001). Surrogate Mixtures to Represent Complex Aviation and Rocket Fuels. *J. Propul. Power*, 17:461-466.
- EEA (2014). Focusing on environmental pressures from long-distance transport, Report No. 7/2014. Retrieved from https://www.eea.europa.eu/ publications/ term-report-2014/at_download/file, 20 November 2018
- Ekbom, T., Hjerpe, C., Hagström, M., Hermann, F. (2009). *Pilot Study of Bio-Jet A-1 Fuel Production for Stockholm-Arlanda Airport*. Stockholm: Varmesfork Service AB.
- Ertl, G., Knoezinger, H., Weitkamp, J. (1997). *Handbook of heterogeneous catalysis*. Berlin: Wiley-VCH.
- European Commission (2014). *Bioenergy in Europe*. Retrieved from https://www.ec.europa.eu, 8 June 2019
- European Commission (2016). *The EU Emissions Trading System (EU ETS),* 2016. Retrieved from https://ec.europa.eu, 8 June 2019
- European Commission (2019). *Renewable Energy Progress Report, RED II.* Retrieved from https://ec.europa.eu/transparency/regdoc/rep/1/2019/EN /COM-2019-142-F1-EN-MAIN-PART-1.PDF), 18 July 2019.
- ExxonMobil (2019). ExxonMobil and Synthetic Genomics Algae Biofuels Program Targets 10,000 barrels per day by 2025. Retrieved from https://news.exxonmobil.com/press-release/exxonmobil-and-syntheticgenomics-algae-biofuels-program-targets-10000-barrels-day-202, 18 July 2019.
- Farias, F.E.M., Fernandes, F.A.N., Sales, F.G. (2010). Effect of operating conditions of Fischer-Tropsch Liquid products produced by unpromoted and potassium-promoted iron catalyst. *App. Research Latin America*, 40(2), 161-166.
- Friedrich, K.A., Kallo, J., Schirmer, J., Schmithals, G. (2010). Proceedings from International Symposium: Introduction of Fuel Cell Systems to Early Markets: *Fuel Cells in the Aircraft Industry: Concepts and Development Progress*. Berlin: Germany
- Gong S., Shinozaki A., Shi M., and Qian E. (2011). Hydrotreating of jatropha oil over alumina based catalysts. *Energy & Fuels*, 26(4), 2394-2399.

- Goyal H.B., Seal D., Saxena R.C. (2008). Bio-fuels from thermochemical conversion of renewable resources: A review. *Renewable and Sustainable Energy Reviews*, 12(2): 504-517.
- Gracia-Salcedo C.M., Brabbs T.A., McBride B.J. (1998). Experimental verification of the thermodynamic properties of Jet-A fuel. NASA Technical Memorandum 101475.
- Guo, Y., Yeh, T., Song, W., Xu, D., Wang, S, (2015). A review of bio-oil production from hydrothermal liquefaction of algae. *Renewable and Sustainable Energy Reviews*, 48: 776-790.
- Hakeem, K. R., Jawaid, M., Rashid, U. (2014). *Biomass and bioenergy: Processing and Properties*. Singapore: Springer.
- Harmon, L., Hallen, R., Lilga, M., Heijstra, B., Palou-Rivera, I., Handler, R. (2017). *A hybrid catalytic route to fuels from biomass syngas*, LanzaTech Inc., U.S. Retrieved from https://www.osti.gov/biblio/1423741, 20 November 2018.
- Heminghaus, G., Boval T., Bacha, J., Barnes, F., Franklin, M., Gibbs, L., Hogue, N., Jones, J., Lesnini, D., Lind, J., Morris, J. (2006). Aviation Fuels Technical Review, Chevron Corporation. Retrieved from www.cgabusinessdesk.com, 20 March 2019
- Heyne, S., Liliedahl, T., Marklund, M. (2013). *Biomass gasification A synthesis of technical barriers and current research issues for deployment at large scale*. Swedish Knowledge Centre for Renewable Transportation Fuels, Sweden.
- Holladay, J., Albrecht, K., Hallen, R. (2014). *Renewable routes to jet fuel*. Retrieved from http://aviation.u-tokyo.ac.jp/eventcopy/ws2014/2014 1105 _07DOE%EF%BC%BFHolladay.pdf., 13 August 2018.
- Huerta, M. (2014). Federal Aviation Administration speech, CAAFI General Meeting, January 28, 2014., Retrieved from http://www.faa.gov/news/ speeches, 8 December 2018.
- Huo, H., Wang, M., Bloyd, C., Putsche, V. (2008). Life-cycle assessment of energy and greenhouse gas effects of soybean-derived biodiesel and renewable fuels. *Argonne National Laboratory*, Lemont, IL.
- IATA (2009). *The IATA Technology Roadmap Report 3rd Edition*, June 2009 issue. Retrieved from https://www.escholar.manchester.ac.uk/api/data stream?publicationPid=uk-ac-man-scw:106699&datastreamId=FULL-TEXT.PDF, 20 November 2018
- IATA (2013). IATA Technology Roadmap (4th ed.). Retrieved from https://www.iata.org/whatwedo/environment/ document, 20 November 2018

- IATA (2016). *Current price of aviation jet fuel*. Retrieved from http://www.iata.org/publications/economics/fuel-monitor/, 20 November 2018
- IATA (2018). An Airline Handbook on CORSIA. Retrieved from https://www.iata.org/policy/environment/Documents/corsiahandbook.pdf, 20 November 2018
- IATA (2019). *Fact sheet: CORSIA*. Retrieved from https://www.iata.org/pressroom/facts_figures/fact_sheets/Documents/cor sia-fact-sheet.pdf, 18 June 2019.
- ICAO (2012). Briefing for RIO +20, Global aviation and our sustainable future. Retrieved from http://iso.org/, 8 December 2018
- ICAO (2018). CORSIA States for Chapter 3 State Paris. Retrieved from https://www.icao.int/environmental-protection/CORSIA/Pages/statepairs.aspx, 19 July 2019
- ICAO (2019). CORSIA eligible fuels. Retrieved from https://www.icao.int/environmental-protection/CORSIA/Documents/ CORSIA%20Leaflets/CorsiaLeaflet-EN-9-WEB.pdf, 8th June 2019
- ICAO (2019). Sustainable Development Goals. Retrieved from https://www.icao.int/about-icao/aviation-development/pages/sdg.aspx, 8 June 2019
- ICAO (2019). The CORSIA: ICAO's market based measure and implications for Europe. Retrieved from https://carbonmarketwatch.org, 9 December 2019
- ICCT (2019). Alternative Jet Fuel Cost for EU Implementation. Retrieved from https://theicct.org/sites/default/files/publications/Alternative_jet_fuels_cos t_EU_20190320.pdf, 8th June 2019.
- IndexMundi (2018). Cost of palm oil. Retrieved from https://www.indexmundi.com/commodities/?commodity=palmoil&months=60, 8th June 2019.
- International Air Transport Association (2011). Advance aviation biofuel flight path. Retrieved from https://www.iata.org/whatwedo/environment/ Documents/safr-1-2015.pdf, 20 November 2018.
- IPCC (1999). Aviation and the global atmosphere. Intergovernmental Panel on *Climate Change*. Retrieved from https://www.ipcc.ch/report/aviation-andthe-global-atmosphere-2/, 20 November 2018.
- ISCC (2016). Sustainability requirements, Version 3.0. Retrieved from https://www.iscc-system.org/wp-content/uploads/2017/02/ ISCC_202_Sustainability_Requirements_3.0.pdf, 9 July 2019.

- ISO (2015). Sustainability criteria for bioenergy, ISO 13065:2015. Retrieved from https://www.iso.org/standard/52528.html, 9 July 2019.
- John, D., Anderson, Jr. (2007). *Introduction to flight (6th Ed)*. United States: McGraw-Hill Book Company.
- Jones, S., Holladay, J., Valkenburg, C., Stevens, D., Walton, C., Kinchin, C., Czernik, D., Elliott,S. (2009). Production of gasoline and diesel from biomass via fast pyrolysis, hydrotreating and hydrocracking: A design case. *Pacific Northwest National Laboratory*, Washington, 2009.
- JRC (2014). International Bioeconomy Profile, Malaysia. Joint-Research Centre, European Commission,
- Kargobo, F. R., Xing, J., Zhang, Y. (2010). Property analysis and pretreatment of rice straw for energy use in grain drying: A review. *Agric. Biol. J. N. Am.*, 1(3): 195-200
- Katiyar, R., Gurjar, BR., Biswas S., Pruthi, V., Kumar, N., Kumar P. (2017). Microalgae: An emerging source of energy based bio-products and a solution for environmental issues. *Renew. Susta. Energ.* 72, 1083-1093
- Keyrilainen, J., Koskinen, M. (2011). Renewable fuels and biofuels in a petroleum refinery. Neste Jacobs. Retrieved from http://www.eptq.com/articles/neste_13012011112425.pdf, 8 June 2019
- Kharina, A., Rutherford, D. (2015). Fuel efficiency trends for new commercial jet aircraft. The International Council on Clean Transportation.
- Klarenbach S.W., Tonelli M., Chui B., Manns B.J., (2014) Economic Evaluation. Nature Reviews Nephrology, 10, 644-652.
- Knoezinger H., Kochloefl K. (2003). *Heterogeneous catalysis and solid catalysts*. Berlin: Wiley-VCH.
- Kumar, R., Rana, B. S., Tiwari, R., Verma, D., Kumar, R., Joshi, R.K., Garg, M.O., Sinha A. K. (2010). Hydroprocessing of jatropha oil and its mixtures with gas oil. *Green Chemistry*, 12(12), 2232-2239.
- Kumar, S., Lange, J-P., van Rossum, G., Kersten, S.R. (2015). Liquefaction of lignocellulose in fractionated light bio-oil: Proof of concept and technoeconomic assessment. ACS Sustainable Chem. Eng., 3(9): 2271-2280.
- Lai, O.M., Tan, C.P., Akoh, C.C., (2012). *Palm oil production, processing, characterization and uses.* New York: AOCS Press.
- Lappas, A., Heracleous,E. (2016). Handbook of biofuels production, 2nd Ed. *Production of biofuels via Fischer-Tropsch synthesis: Biomass-to liquid* (pp 549-593). UK: Woodhead Publishing

- Lavoie, J. M., Beauchet, R., Berberi, V., Chornet, M. (2011). Biofuel's Engineering Process Technology. (Ed). Biorefining lignocellulosic biomass via the feedstock impregnation rapid and sequential steam treatment (pp 685-714). Croatia: Intech Publishing.
- Law, B. (2011). Proceedings of the International Conference and Exhibition on Hydrogen, Fuel Cells and Electric Drives: Airbus multifunctional fuel cell integration, Airbus Operations GmbH. Hamburg, Germany.
- Laws of Malaysia (1967). *Petroleum (Income Tax) Act 1967,* Malaysian Government, retrieved from http://www.agc.gov.my/agcportal/uploads/files /Publications/LOM/EN/Petroleum%20(Income%20Tax)%20Act%201967 %20%5BAct%20543%5D%20(As%20at%201%20December%202015).p df, 8 June 2019.
- Lee, D.S., Fahey, D.W., Forster, P.M., Newton, P.J., Wit, R.C.N., Lim, L.L., Owen, B., Sausen, R. (2009). Aviation and global climate change in the 21st century. *Atmos. Environ.*, 43: 3520-3527.
- Lee, D.S., Pitari, G., Grewe, V., Gierens, K., Penner, J.E., Petzold, A., Prather, M.J., Schumann, U., Bais, A., Berntsen, T., Iachetti, D., Lim, L.L., Sausen R. (2010). Transport impacts on atmosphere and climate: Aviation. *Atmos. Environ.*, 44: 4678-4734.
- Lee, R.A., Lavoie, J.M. (2013). From first- to third-generation biofuels: challenges of producing a commodity from a biomass of increasing complexity. *Animal Frontiers*, 3(2): 6-11.
- Liew, K.E., Ohnesorg, A., Wolff, C., Oberpriller, H., Godula-Jopek, A., Nzereogu,D., Li, G., Soh, I.F., Stenwandel, J. (2011). Proceedings of the 8th International Conference and Exhibition on Hydrogen, Fuel Cells and Electric Drives: Hydrogen generation onboard an aircraft for fuel cell system via partial dehydrogenation of Kerosene Jet A-1. Hamburg, Germany.
- Luo, Z., Zhou, J. (2012). Handbook of Climate Change Mitigation, *Thermal Conversion of Biomass*. New York: Springer.
- Luque, R., Lin, C.S.K., Wilson, K., Clark, J. (2016). *Handbook of Biofuels Production. Sawston:* Woodhead Publishing
- Martel, C.R. (1988). Molecular weight and average composition of JP-4, JP-5, JP-8 and Jet A, Air Force Wright Aeronautical Laboratories AFWAL/POSF, Ohio, US.
- McCall, M., Kocal, J., Bhattacharyya, A., Kalnes, T. and Brandvold, T. (2009). *Production of Aviation Fuel from Renewable Feedstocks. Washington.* DC: U.S. Patent and Trademark Office. Patent U.S. No. 0283 442 A1.

- McLaren, S. (2015). Evaluating the fast pyrolysis and hydrodeoxygenation process for the production of jet fuel and jet-fuel aromatics. Master's Dissertation, University of Stellenbosch.
- Mousdale, D.M. (2008). *Biofuels: Biotechnology, chemistry, and sustainable development*. Boca Taton: CRC Press.
- Muntean, M., Guizzardi, D., Schaaf, E., Solazzo, E., Olivier, J. (2018). Fossil CO₂ emissions of all world countries – 2018 report, European Commission. Retrieved from https://ec.europa.eu/jrc/en/publication/eur-scientific-andtechnical-research-reports/fossil-co2-emissions-all-world-countries-2018report, 8 June 2019
- National Institute of Standards and Technology (2016). Retrieved from http://webbook.nist.gov/chemistry, 8 December 2018.
- Nguyen, H.L, Ying, S.J. (1990). Proceedings of 26th American Institute of Aeronautics and Astronautics (AIAA/ASME/SAE/ASEE) Joint Propulsion Conference & Exhibit, *Critical evaluation of jet-A spray combustion using propane chemical kinetics in gas turbine combustion simulated by KIVA-II*. Florida, US.
- Nojoumi, H., Dincer, I., Naterer, G.F. (2009). Greenhouse gas emissions assessment of hydrogen and kerosene-fueled aircraft propulsion. *Int. J Hydrogen Energy*, 34: 1363-1369.
- Nunes. A.D.S., Garcia A., Santos, L., (2015). Thermochemical conversion of lignocellulosic biomass into biofuels with Aspen Plus simulation., University of Coimbra, Portugal.
- OECD (2012). CO₂ Emissions from Fuel Combustion, Organization for Economic Co-Operation and Development. International Energy Agency.
- Parker, S. P. (1997). Aircraft Fuel, in *McGraw-Hill Encyclopedia of Science and Technology*. 8th ed., The Lakeside.
- Pasel, J., Meiβner, J., Porš, Z., Samsum, R. C., Tschauder, A., Peters, R. (2007). Autothermal reforming of commercial Jet A-1 on a 5 kWe scale. *Int. J. Hydrogen Energy*, 32:4847-4858.
- Pavlenko N., Searle S., Christensen A. (2019). The cost of supporting alternative jet fuels in the European Union, ICCT Working Paper 2019-5.
- Pearlson, M. N. (2011). "A techno-economic and environemental assessment of hydroprocessed renewable distillate fuels," Master's Dissertation, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
- Petersen, A., Farzad S. and Görgens, J. (2015). Techno-economic assessment of integrating methanol or Fischer-Tropsch synthesis in a South African sugar mill. *Bioresource Technology*, 183:141-152.

- Phang, S. M. and Chu, W. L. (1999). University of Malaya Algae Culture Collection (UMACC) catalogue of strains, Institute of Postgraduate Studies and Research, Kuala Lumpur.
- Population and Migration, (2017). Office for National Statistics, United Kingdom. Retrieved from https://www.ons.gov.uk/peoplepopulation andcommunity/populationandmigration, 20 November 2018
- Provost, M. (2002). Proceedings of the International Conference on Power Electronics, Machines and Drives: *The more electric aero-engine: a* general overview from an engine manufacturer, Sante Fe, USA.
- Pucher, G., Allan, W., & Poitras, P. (2010). Emissions from a gas turbine sector rig operated with synthetic aviation and biodiesel fuel. *Journal of Engineering for Gas Turbines and Power*, 133(11): 1-8.
- Rachner, M. (1998). *The Properties of Kerosene Jet A-1*. Deutsches Zentrum fuer Luft-und Raumfahrt e.V (DLR), Koeln, Germany.
- Radich, T. (2015). *The flight paths for biojet fuel*. Independent Statistics & Analysis, U.S. Energy Information Administration. Retrieved from http://www.eia.gov, 20 November 2018.
- Renouard-Vallet, G., Kallo, J., Saballus, M., Schmithals, G., Schirmer, J. (2010). Proceedings of the Fuel Cell Seminar: *Fuel cells for aircraft applications*. San Antonio, USA.
- Richardson A., (2013), International Construction Cost Factor Location Manual, Richardson Eng. Services Inc.
- Robota, H. J., Alger, J. C., Shafer, L. (2013). Converting algal triglycerides to diesel and HEFA jet fuel fractions. *Energy & Fuels*, 27(2): 985-966.
- Roda, J.M., Goralski, M., Benoist. A., Baptiste, A., Boudjema, V., Galanos, T., Georget, M., Hévin, J.E., Lavergne, S., Eychenne, F., Liew, K.E., Schwob, C., Djama M., Tahir, P.M. (2015). Sustainability of bio-jet fuel in Malaysia. Malaysia: CIRAD
- Savas, S.A., Hasim,, K., Goekhan, C.K. (2018). Reducing operational fuel costs of airlines: a model for monitoring and managing fuel consumption using unified modelling language. *J. of Sci.*, 14(1): 105-111.
- Schenk, P.M., Thomas-Halll, S.R., Stephens, E., Marx, U.C., Mussgnug J.H., Posten, C., Kruse, O., Hankamer, B. (2008). Second generation biofuels: High-efficiency microalgae for biodiesel production. *BioEnergy*, 1: 20-43.
- Schill, R.S. (2008). Roundtable for Sustainable Biofuels releases proposed standards for review, *Biomass Magazine*. Retrieve from http://www.biomassmagazine.com/articles, 8 December 2018.

- Seeckt, K., Krammer, P., Scholz, D., Schwarze, M. (2011). "Mitigating the climate impact of aviation – What does hydrogen hold in prospect?. The Economic, Social and Political Elements of Climate Change". Climate Change Management, pp. 649-667. DOI: 10.1007/978-3-642-14776-0_39
- SMECorp (2018), List of Loan Schemes. Retrieve from http://smecorp.gov.my, 25 November 2019.
- Soudham, V.P. (2015). "Biochemical conversion of biomass to biofuels", PhD Thesis, Umea University, Sweden.
- Spath, P., Aden, A., Eggeman, T., Ringer, M., Wallace, B., and Jechura, J. (2005). Biomass to hydrogen production detailed design and economics utilizing the battelle columbus laboratory indirectly-heated gasifier. National Renewable Energy Laboratory, Colorado.
- Speight, J.G. (2011). Handbook of Industrial Hydrocarbon Processes. Oxford: Elsevier Inc.
- Straathof, A.J.J. (2014). Transformation of biomass into commodity chemicals using enzymes. *Chem. Rev*, 114(3): 1871-1908.
- Suzuki, T., Iwanami, H-I., Yoshinari, T.(2000). Steam reforming of kerosene on Ru/Al₂O₃ catalyst to yield hydrogen. *Int. J. Hydrogen Energy*, 25: 119-126.
- Swanson, R.M., Satrio, J. A., Brown, R. C., Platon, A. (2010). Techno-economic analysis of biofuels production based on gasification. National Renewable Energy Laboratory, Colorado.
- Tanger, P., Field, J.L., Jahn, C.E., DeFoort, M.W., Leach J.E. (2013). Biomass for thermochemical conversion: targets and challenges. *Front Plant Sci*, 4: 218
- Tenenbaum, D.J. (2008). Food vs fuel: Diversion of crops could cause more hunger. *Environ. Health Prospect*, 116(6): A254-A257.
- Towler G., Sinnott R. (2013). *Chemical Engineering Design: Principles, Practice and Economics of Plant and Process Design* (2nd Ed.). Oxford, Butterworth-Heinemann
- U.S Department of Energy (2013). *Replacing the whole barrel*. Retrieved from https://energy.gov/, 8 June 2019
- U.S Department of Energy (2016). *Biomass Conversion: From Feedstocks to Final Product.* DOE/EE 1436. Retrieved from https://www.energy.gov/sites/ prod/files/2016/07/f33/conversion_factsheet.pdf, 8 June 2019

- U.S. Department of Energy (2016). *Energy information administration, independent statistics & analysis: Consumption of jet fuel, Malaysia, annual.* Retrieved from http://www.eia.gov/, 20 November 2018
- U.S. Environmental Protection Agency (2014). The new specific volume standards for cellulosic biofuel, biomass-based diesel, advance biofuel, and total renewable fuel by year. Retrieved from https://www.epa.gov/renewable-fuel-standard/, 8 June 2019.
- Ulrike, B. (2010). Contrail cirrus and their climate impact. Wakenet Workshop, DLR – Institute for Atmospheric Physics. Retrieved from http://wakenet.eu/fileadmin/user_upload/2nd_major_WN3E-Workshop /presentations/WN3E_Session_special_Burkhardt.pdf, 20 November 2018
- UNFCCC (2017). United Nation Framework Convention on Climate Change, Doc. FCCC/CP/2017/L.13. Retrieved from https://unfccc.int, 8th June 2019.
- Vello, V., Phang, S. M., Chu, W. L., Nazia Abdul Majid, Lim, P. E. and Loh, S. K. (2014). Lipid productivity and fatty acid composition-guided selection of Chlorella strains isolated from Malaysia for biodiesel Phycol. 26: 1399–1413.
- Velmurugan, S., Shankar N., Aneesh, V., (2015). Aspen Hysys based Simulation and Analysis of Crude Distillation Unit. *Int. J. Current Eng. & Tech.*, 5(4), 2833-2837.
- Voskuijl, M., van Bogaert, J. & Rao A.C. (2018). Analysis and design of hybrid electric regional turboprop aircraft. *CEAS Aeronaut J.*, 9(1): 15-25.
- Votsmeier, M., Kreuzer, T., Gieshoff, J., Lepperhoff, G. (2009). Automobile exhaust control. Berlin: Wiely-VCH.
- Wang, W.C., Tao, L., Markham, J., Zhang, Y., Tan, E., Batan, L., Warner, E., Biddy, M. (2016). *Review of biojet fuel conversion technologies*. NREL, TP-5100-66291. Retrieved from https://www.nrel.gov/docs/fy16osti/66291.pdf, 20 November 2018
- Webb, A. (2013). A brief history of biofuels: from ancient history to today, Biofuel Net. Retrieve from http://www.biofuelnet.ca/2013, 20 November 2018.
- Wooley, R.J., Putsche, V. (1996), Development of an ASPEN PLUS physical property database for biofuels components. National Renewable Energy Laboratory, NREL/TP-425-20685.
- World Bioenergy Association (2016). Retrieved from https://worldbioenergy.org/uploads/WBA%20Global%20Bioenergy%20St atistics%202016.pdf, 8th June 2019.

- World Economic Outlook Database (2018). International monetary fund. Retrieved from https://www.imf.org/external/pubs/ft/weo/2018/02/weodata/ weorept.aspx, 20 November 2018.
- World Energy Council (2016). World Energy Resources Bioenergy 2016. Retrieved from https://www.worldenergy.org/, 8 June 2019.
- World Energy Resources (2016). World Energy Counsel. Retrieved from https://www.worldenergy.org/publications/, 8 June 2019.
- Worldwatch Institute (2016). *Biofuels for transport: Global potential and implications for sustainable energy and agriculture*. UK: EarthScan.
- Wright, M., Satrio, J., Brown, D., Daugaard, D., Hsu, D. (2010). Technoeconomic analysis of biomass fast pyrolysis to transportation fuels. National Renewable Energy Laboratory, Colorado.
- Yamashita K., Barreto, L. (2004). Biomass gasification for the co-production of Fischer-Tropsch liquids and electricity. Int. Inst. App. Sys. Retrieved from http://pure.iiasa.ac.at/id/eprint/7401/1/IR-04-047.pdf, 8 June 2019
- Zhang, L.L., Wang, Z.L., Xu, D., Zhang, X.B., Wang, L.M. (2013). The development and challenges of aqueous lithium-air batteries. *Int. J Smart and Nano Materials*, 4(1): 27-46.