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Abstract: Anthropogenic activities have led to hydrocarbon spills, and while traditional bioremedia-
tion methods are costly and time-consuming, recent research has focused on engineered enzymes for
managing pollutant. The potential of enzymes for resolving wax flow problems in the petroleum in-
dustry remains unexplored. This paper offers a comprehensive review of the current state of research
activities related to the bioremediation of petroleum-polluted sites and the biodegradation of specific
petroleum hydrocarbons. The assayed enzymes that took part in the degradation were discussed in
detail. Lipase, laccase, alkane hydroxylase, alcohol dehydrogenase, esterase, AlkB homologs and
cytochrome P450 monooxygenase are among the enzymes responsible for the degradation of more
than 50% of the hydrocarbons in contaminated soil and wastewater and found to be active on carbon
C8 to C40. The possible biodegradation mechanism of petroleum hydrocarbons was also elucidated.
The enzymes’ primary metabolic pathways include terminal, subterminal, and ω-oxidation. Next,
given the successful evidence of the hydrocarbon treatment efficiency, the authors analyzed the
opportunity for the enzymatic degradation approach if it were to be applied to a different scenario:
managing wax deposition in petroleum-production lines. With properties such as high transforma-
tion efficiency and high specificity, enzymes can be utilized for the treatment of viscous heavy oil
for transportability, evidenced by the 20 to 99% removal of hydrocarbons. The challenges associated
with the new approach are also discussed. The production cost of enzymes, the characteristics of
hydrocarbons and the operating conditions of the production line may affect the biocatalysis reaction
to some extent. However, the challenges can be overcome by the usage of extremophilic enzymes.
The combination of technological advancement and deployment strategies such as the immobilization
of a consortium of highly thermophilic and halotolerant enzymes is suggested. Recovering and
reusing enzymes offers an excellent strategy to improve the economics of the technology. This paper
provides insights into the opportunity for the enzymatic degradation approach to be expanded for
wax deposition problems in pipelines.

Keywords: enzyme; alkane degradation; petroleum hydrocarbon; wax deposition; production line

1. Introduction

Petroleum hydrocarbons are a blend of aromatic and aliphatic carbon compounds,
with the composition changing depending on where the reservoir is found [1]. The com-
position of petroleum hydrocarbons can be characterized into four primary categories:
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saturates, aromatics, asphaltenes (which include phenols, fatty acids, and ketones), and
resins (which include pyridines and amides) [2,3]. Saturates are nonpolar hydrocarbons that
are also called waxes. Aromatic hydrocarbons contain polarizable rings, while resins and
asphaltenes have polar substituents with oxygen, sulfur, and nitrogen [4]. These organic
compounds are highly insoluble in water, which limits the hydrocarbon uptake needed for
microorganisms to perform degradation [5]. Anthropogenic activities, such as petroleum
exploration, transportation and refining accumulated hydrocarbon spillage at sites, conse-
quently harm beaches, animal habitats, mangrove forests and human settlements. Figure 1
visualizes some of the oil spill disasters that have ensued over time. The situation had a
major ecological impact on the environment, which must be managed responsibly.
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Historically, research has focuses more on microbial degradation or the bioremedi-
ation of toxic pollutants in water and soil using microbes. This technique was costly,
time-consuming, and limited by severe conditions of extreme pH, temperature, and chem-
ical shock [6]. Over the past 15 years, research has focused on the use of enzymes for
pollution management.

In the petroleum industry, hydrocarbons are not only managed for their spillage but
also from the perspective of flow assurance during the transportation of hydrocarbons
in pipelines. When a hydrocarbon is high in wax content, the wax crystallizes and is
deposited on the pipeline wall, especially in cold environments where the production is
farther offshore [7]. The wax accumulation restricts the flow of hydrocarbon and causes
blockages [8]. Oil companies are applying chemicals to reduce the wax, combined with
pipeline thermal insulation, and pigging to scrap off the wax deposit [9]. However, these
strategies are expensive, inefficient, and less robust due to a lack of understanding of
their workability in different fields’ operating conditions [7]. This gap creates a greater
opportunity for novel discoveries, as conceptualized in Figure 2. To the authors’ knowledge,
the enzymatic degradation of hydrocarbons for managing wax deposition in production
lines has not been widely studied.
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2. Wax Deposition Scenario and the Limitations of Existing Wax Treatment

Wax deposition occurs when wax precipitates out of the petroleum when its temper-
ature is reduced. This is because alkanes that are heavier than carbon number C18 has a
lower solubility in the liquid phase [10]. There are many factors affecting wax deposition in
production lines, such as molecular diffusion, operating temperature, pressure, asphaltene
composition, hydrocarbon flow velocity and pipeline design [11]. One of the adverse effects
of wax deposition in the petroleum industry is the blockage of the pipeline, which causes
an increase in pressure drop and decrease in flowability. For petroleum-production lines in
cold regions or pipelines located below sea level, the wax build-up issue is very alarming [8].
Substantial expenditures are required for wax deposition control and remediation. The
prevention and treatment of the wax deposition problem are conventionally performed
using thermal, mechanical, chemical, and biological methods.

2.1. Thermal Treatment

The thermal method involves the installation of a heat tracing device and suitable
insulation materials in a transportation pipeline to minimize wax deposition on the walls,
and hot fluid circulates to keep the crude oil above its wax appearance temperature [12].
However, electrical heaters are prone to burn-out, which prompts an automatic cut-off
system when overheating occurs [13]. The integrated production and transportation system
of crude oil will be majorly impacted by this interruption. On the other hand, the limitation
of the insulation technique is that it requires a material with suitable conductivity and
chemical-resistance properties [12].

2.2. Mechanical Treatment

The mechanical method involves frequently scraping the pipeline using a rubber or
metal tool before the wax begins to build up, together with the continuous injection of a
solvent or wax inhibitor [14]. This technique has an advantage for a non-heating pipeline
whereby the significant energy consumption can be reduced. However, the cutting force of
the wax layer is dependent on the tool geometry and the friction at the wax–tool interface.
A study that investigates the effect of tool geometry on wax scraping demonstrated that a
45◦ rake angle removed more of the wax layer than a negative 30◦ angle [15]. The efficiency
of wax removal is also affected by the sliding speed of the scraper, which influences the
rubbing force of the wax layer [16]. In addition, there is also the risk of a wax plug forming
and the scraper becoming wedged inside the pipeline when handling viscous crude oil [14].

2.3. Ultrasonic and Electromagnetic Wave Propagation

The displacement of wax by ultrasonic and electromagnetic wave propagation is
a relatively new approach. It was reported that when the crude oil was treated with
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ultrasonic waves, the resin and asphaltene fractions in the crude oil were increased due
to the modification of the wax structure, which became a more polar compound. These
increased fractions were regarded as natural surfactants in crude oil and caused the wax
appearance temperature to reduce by 12 ◦C [17]. A morphological study has shown that
the size of the wax crystals became smaller and rounded after irradiation treatment due
to a decrease in wax molecules [18]. However, research has indicated that this technique
requires combination with chemical [19–21] or thermal treatment [22] for it to be effective,
which risks doubling the treatment cost.

2.4. Chemical Treatment

Chemical injection is by far the most effective and mature method. Chemicals like
solvents, surfactants, wax inhibitors and pour-point depressants were injected to alter the
surface characteristics and solubilize the wax deposits, leading to reduction in wax appear-
ance temperature and pour point, so the wax would not form in cold environments [23].
It was reported that wax was reduced by 65 to 73% when a polyacrylate polymer-based
pour-point depressant was applied to a waxy crude oil [24]. However, chemicals like wax
inhibitors and pour-point depressants are typically solids at operating sites, thus requiring
dilution with a solvent, which in turn increases the expenses and the number of possible
operational hazards [25]. Additionally, the performance of the chemical is not universal.
Its effectiveness is chemically specific to the composition of the crude oil [26,27]. Various
type of copolymers that functioned as wax crystal modifiers produced different results,
and their mechanisms are poorly understood despite many reported studies [28]. Some
research has found that asphaltene constituents in crude oil can hinder the effectiveness of
the chemicals [29]. Solvents like kerosene, gasoline and benzol are relatively cheap and are
used to solubilized wax deposits. A combination of diesel, xylene, toluene, naphthalene and
dispersant was formulated at an optimum ratio, which resulted in more than 85% of wax
solubilization [23]. However, the usage of solvents posed toxicity and flammability threats
to the handlers, and the effectiveness of the solvents also depends on the permeability of
the wax deposits [23].

2.5. Biological Treatment

The biological method highlights an efficient and environmentally friendly solution in-
volving hydrocarbon-degrading microbes. Bacteria are readily obtainable and inexpensive,
and their handling is convenient. Because of this, bacteria have been utilized successfully
for decades in the bioremediation of hydrocarbon-polluted sites [30,31]. The microbial
degradation of petroleum was proven successful for ocean clean-up and onshore wastewa-
ter treatment. During the oil spill from the Exxon Valdez tanker, the microbial populations
sampled from the shoreline of Prince William Sound beach showed the foremost ability to
degrade aromatic hydrocarbons; subsequently, alkane degradation became more dominant
over time [32]. Another study examined microbial communities from the Gulf of Mexico
shoreline contaminated by the Deepwater Horizon blowout, which was also shown to be
responsible for the major degradation of polyaromatic hydrocarbons [33]. A bioreactor was
used to treat industrial wastewater rich in hydrocarbons through the acclimatization of mi-
crobial consortium, resulting in a hydrocarbon degradation of more than 97%, especially on
alkanes C10 to C35 [34]. In fact, many advanced bioreactors have been designed to allow for
the precise control of biodegradation parameters to increase the mass transfer and reaction
rates during the microbial degradation reaction [35]. However, the survivability of bacteria
is dependent on nutrients and growth enhancers. This approach may not be suitable for
petroleum-production lines due to factors such as the high temperature and pressure of the
incoming petroleum, seawater salinity, the availability of microbial substrates, the nutrient
solution, dissolved oxygen and nitrogen sources, whereby bacteria are commonly sensitive
to the changes of these factors [36]. On top of that, the presence of sulfate-reducing bacteria
leads to biofouling, where the microbial growth forms biofilms that can clog and damaged
the production lines [37]. The waxy petroleum treatment in production lines requires a
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less-complex and faster degradation of the high-molecular-weight hydrocarbons [25], but at
the same time, it does not impact the low-molecular-weight hydrocarbons that are valuable
to the sale value of the petroleum. However, there is no means to control degradation using
the microbial method. Table 1 summarizes the limitations of each wax treatment method.

Table 1. Wax treatment/inhibition strategies and their limitations.

Wax Treatment/Inhibition Strategy Positive Findings from Previous
Experimental Studies Limitations

Scraping of pipelines using rubber/metal
tool before the wax begin to buildup

Suitable for non-heating pipeline, can
reduce energy consumption for pipeline
transportation [14]

1. The cutting force of the wax layer is
dependent on the tool geometry
and friction at its surface, e.g., wax
removal is better at 45◦ rake angle
than a negative 30◦ angle [15]

2. The sliding speed of the scraper
affects the rubbing force, thus the
wax deposit removal [38,39]

3. Formation of wax plug or scrapper
became stuck caused by viscous
petroleum [14]

Electrical heating, insulation and
circulation of hot fluid to keep the oil
above wax appearance temperature

Wax removal below wax appearance
temperature was possible for wax content
below 14% [40]
More effective when asphaltene content
in oil is high because activated
asphaltenes have strong interactions with
wax then decrease the wax appearance
temperature [41]

4. Electrical heaters frequently burn
out thus require an automatic cut
off system when overheating
occurs [12]

5. The insulation technique requires
suitable material with low
conductivity and
chemical-resistance properties [12]

Ultrasonic and electromagnetic waves
propagation to create cavitation and
displace the wax

The wax appearance temperature of oil
was reduced by 12 ◦C related to an
increased in natural surfactant fractions,
i.e., resin and asphaltene caused by
modified composition after being treated
with ultrasonic wave [17]
By morphology, the size of wax crystals
was reduced and rounded after
irradiation due to decreased in wax
molecules [18]

6. Requires combination with
chemical [19–21,42] or thermal [22]
to increase wax removal efficiency

Injection of chemical, e.g., wax inhibitor
or pour-point depressant to reduce wax
appearance temperature

65–73% wax reduced using polyacrylate
polymer-based pour-point
depressant [24]

7. Wax inhibitors are typically solids
at the operating site. Dilution with
solvent increased expenses and
raised possible hazards [12]

8. Not universal, effectiveness is
chemically specific to oil
composition, varying from different
well and over time. Various types of
copolymers that functioned as wax
crystal modifiers produced
different results, and its mechanism
is poorly understood despite many
reported studies [28]

9. Asphaltene content in oil may
hindered chemical performance [29]
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Table 1. Cont.

Wax Treatment/Inhibition Strategy Positive Findings from Previous
Experimental Studies Limitations

Injection of solvents, e.g., kerosene,
gasoline or benzol to solubilize wax
deposits

Solvent formulation consisted of diesel,
xylene, toluene, naphthalene and
dispersant solubilized >85% of wax
without requires heating above 90 ◦C [23]

10. The effectiveness depends on the
permeability of the wax deposit

11. Posed toxicity and flammability
risks to handlers [23]

Hydrocarbon-degrading bacteria to
cleanly degrade the hydrocarbon

Bacteria is easy to get, inexpensive, easy
to handle and biodegradable
(environmentally friendly) [12]

12. Dependent on nutrients and growth
enhancers, and in the presence of
sulfate-reducing bacteria, pipeline
corrosion is a showstopper [37]

The advancements in technology and knowledge in protein engineering, recombi-
nant DNA, synthetic biology, and metabolic engineering have enabled the design of novel
enzymes with desired properties such as high catalytic activity, substrate specificity, and
thermostability, tailored for wax treatment conditions. In this regard, the enzymatic degra-
dation of waxy petroleum in production lines represents a novel approach.

3. Microbial Degradation of Petroleum Hydrocarbon and Enzymes Involved in
the Reaction

Since enzymes’ potential can be maximized in a lab setting, biocatalysis— a technique
that uses enzymes to perform chemical transformation—is a more strategic approach than
dealing with the entire microorganism [43]. Within the biocatalytic degradation research,
previous studies have described biodegradation pathways, genes, and the characterization
of the biodegradative enzymes. The usage of these enzymes as biocatalysts either for
making a useful compound or to transform toxic compounds into nontoxic compounds
has also been described [44]—for example, the bioremediation of waste materials such as
organic and inorganic pollutants and pharmaceutically active compounds in wastewater,
industrial chemicals, and pesticides [45–55].

On the other hand, there are also specific studies on the biocatalytic degradation of
petroleum, which is the main topic of this paper. For the past 10 years, the trend in research
publications related to the specific biocatalytic degradation of hydrocarbon pollutants is
more common than for hydrocarbon wax (Figure 3), probably because pollution clean-up is
a more pressing matter globally, while the wax issue is specifically managed in the oil and
gas sector. Both subjects are elaborated in detail in the next section, focusing on the species
of bacteria hosting the enzymes responsible for removing the petroleum hydrocarbons.
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3.1. Bioremediation of Petroleum-Contaminated Sites

The effective bioremediation of polluted sites depends on the survivability of the
degrading microbes. One study sought to solve the low yield of degradative enzymes and
biosurfactants by the intermittent inoculation of microbial consortia S. chilikensis, B. firmus
and H. hamiltonii, to maintain a constant level of the degradative enzymes oxidoreductase,
lipase, and catalase, and lipoprotein biosurfactants. As a result, a steep decrement of
petroleum was observed [56]. Petroleum-polluted sites are commonly associated with
high metal and salinity content. The metal-tolerant bacterium Novosphingobium panipatense
P5:ABC was able to degrade 90% of petroleum, and alkane hydroxylase was responsible
for this [57]. A comparison between free P. stutzeri and immobilized P. stutzeri showed
that immobilized bacteria are more efficient in removing hydrocarbons from produced
water and were reused repeatedly for 10 cycles, due to the sorbent-degrader synergies [58].
The microbial consortia consisted of salt-tolerant and biosurfactant producers from Dietzia
sp. CN-3 and Acinetobacter sp. HC8–3S had achieved 95.8% degradation efficiency of
petroleum, whereby alkane hydroxylase genes alkB and alkM degraded the medium-
chain alkane C14-C26 [59]. Immobilized indigenous bacteria with high adaptability to
petroleum-refining oil sludge showed a great advantage, with an 88.78% degradation of
petroleum due to the high catalytic activity of enzymes [60]. Immobilized microorganisms
may suffer from the inconsistency of degradation performance because only the external
cells exhibit high metabolic activity, while the cells in the support pores are unable to access
the hydrocarbon [61]. These issues were solved with the assistance of a bioemulsifier agent,
produced by the biocatalyst from Aspergillus brasiliensis, when exposed to the electrical
field. The in situ biosurfactant production modified the surface properties and sorption
capacity, improving the hydrocarbon attachment [62]. Very recent studies have used
transposon mutagenesis technology to increase the biosurfactant production of Enterobacter
xiangfangensis [63] and Enterobacter hormaechei [64] mutants to enhance the bioavailability of
petroleum. As a result, the degradation of recalcitrant petroleum in oil sludge was achieved
to a high degree.

These studies demonstrate the high efficacy of enzymes as bioremediation agents
in polluted sites where the hydrocarbon load is low (Table 2). On the contrary, treating
waxy hydrocarbons in production lines is more challenging than the bioremediation of
hydrocarbon-polluted sites. The treatment requires enzymes to perform in a non-aqueous,
hydrocarbon-rich environment that is probably hostile to the enzymes. In this scenario,
petroleum has a higher fraction of high-molecular-weight carbon that makes up the wax
composition, limiting the susceptibility of the enzymes to the hydrocarbon. The next section
describes the biodegradation of specific waxy petroleum and the enzymes taking part in
the reaction.

Table 2. Microbial treatment of petroleum-contaminated sites and the assayed enzymes.

Source of
Hydrocarbon

Hydrocarbon-Degrading
Microbe

Reported
Enzymes

Hydrocarbon
Treatment
Condition

Hydrocarbon
Removal
Efficiency

Reference

Contaminated soil Pseudomonas aeruginosa Not described
Strains inoculated
to 500 g of
contaminated soil

55–84% in
consortium;
25–47% in
individual cultures

[65]

Oil sludge from
petroleum refinery

Wild-type strains
Enterobacter xiangfangensis
STP-3; mutant strains
Enterobacter Xiangfangensis
M257 and Enterobacter
Xiangfangensi M916

Lipase, laccase,
alkane
hydroxylase,
alcohol
dehydrogenase,
esterase

10 g oil sludge and
20 g bacterial
culture in 500 mL
reactor

82–87.5% in
mutant strains;
72.15% in
wild-type strains;
in 7 days.

[63]
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Table 2. Cont.

Source of
Hydrocarbon

Hydrocarbon-Degrading
Microbe

Reported
Enzymes

Hydrocarbon
Treatment
Condition

Hydrocarbon
Removal
Efficiency

Reference

Polluted seawater

biosurfactant-producing
hydrocarbonoclastic
bacteria Enterobacter
hormaechei

Lipase, laccase,
alkane
hydroxylase,
alcohol
dehydrogenase,
esterase

5 liter polluted
seawater with 10 g
strains treated in
8 liter tank with
bottom aeration.

85% in 10 days [64]

Oil sludge Acinetobacter sp. SCYY-5 Not described Incubated at 30 ◦C
at 150 rpm 69.17% in 10 days [66]

Oil sludge from
refinery

Pseudomonas aeruginosa;
Staphylococcus sp. Not described

Lab
scale-anaerobic
bioreactors

90% in 14 days [67]

Contaminated soil
from oil processing

Immobilized consortium of
Flavobacterium johnsoniae BS1
and Shewanella baltica BS2

Not described
Incubated at 30 ◦C
at 150 rpm, and
pH 7.5

93.32% in 3 days [68]

Oil sludge from
refinery

Indigenous
hydrocarbonoclastic
bacteria

Lipase, laccase,
esterase

5 g oil sludge with
5 g immobilized
bacteria

88.78% in 7 days [60]

Contaminated soil

Consortium of halotolerent
and biosurfactant producing
bacteria, Dietzia sp. CN-3
and Acinetobacter sp.
HC8-3S

Alkane
hydroxylase genes,
alkB and alkM

100 g of soil with
5 g of crude oil,
inoculated with
10 mL bacteria
consortium, mixed
and kept at 30 ◦C

95.8% in 10 days [59]

Contaminated soil Indigenous bacteria Not described

Dual-chamber
reactors with
membrane, filled
with 250 mL
saturated soil and
artificial
groundwater at
22 ◦C

37.5% in 137 days [69]

Oil-in-saltwater
emulsions

Pseudomonas stutzeri
immobilized on xerogel
microspheres

Not described

0.15 g bacteria
inoculated into
15 mL of
oil-in-water
emulsions cultured
at 150 rpm and
35 ◦C

10% in
immobilized
bacteria; 61% in
free bacteria in 72 h

[58]

Crude oil
Acinetobacter sp.; Bacillus sp.;
Pantoea sp. and
Enterobacter sp.

Not described

Addition of
nitrogen,
phosphorus and
potassium (NPK)

20–40% in 28 days [70]

Contaminated soil
Heavy metal tolerant
bacterium Novosphingobium
panipatense P5:ABC

Alkane
hydroxylase,
catechol
1,2-dioxygenase
and catechol
2,3-dioxygenase

Incubated at 25 ◦C
at 130 rpm

90% degradation
in 6 days [57]
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Table 2. Cont.

Source of
Hydrocarbon

Hydrocarbon-Degrading
Microbe

Reported
Enzymes

Hydrocarbon
Treatment
Condition

Hydrocarbon
Removal
Efficiency

Reference

Oily sludge from
refinery

Bacteria consortium of
Shewanalla chilikensis,
Bacillus firmus and
Halomonas hamiltonii

Lipase, catalase,
oxidoreductase Incubated at 37 ◦C 96% in 30 days [56]

Contaminated
sediment from oil
platform

Indigenous bacteria Not described

10 g oily sediments
with additional
surfactants,
incubated at 30 ◦C
at 120 rpm

51.29% in 28 days [71]

Polluted water

Consortium of protozoan
species, Aspidisca sp.,
Trachelophyllum sp. And
Peranema sp.,

Not described

Bioreactor at 30 ◦C,
shaken
continuously at
100 rpm

61–90% by natural
attenuation;
22–55% by nutrient
supplementation
with glucose;
10–67% by
biostimulation
with surfactant

[72]

Crude oil Pseudomonas aeruginosa
NCIM 5514 Not described Incubated at 37 ◦C

at180 rpm

Oil viscosity
reduced from
1883-1002 cp;
61.03% and 60.63%
biodegradation of
C8–C36+

[73]

Dehydrated crude
oil

Pseudomonas sp., Bacillus sp.,
Ochrobactrum sp. Not described

10% inoculation,
and shaking at
120 rpm

47% in
immobilized
bacteria; 26% in
free bacteria in
5 days

[74]

Hexadecane Aspergillus niger Not described Electric field
pretreatment 53–86% in 48 h [75]

Polluted seawater
Dietzia maris CBMAI 705
and Micrococcus sp.
CBMAI 636

Not described Incubated at 28 ◦C
at 120 rpm 99% in 21 days [76]

Refinery
wastewater

Alcaligenes odorans, Bacillus
subtilis, Corynebacterium
propinquum and
Pseudomonas aeruginosa

Not described 37 ◦C in aerobic
condition 70% [77]

3.2. Biodegradation of Waxy Petroleum Hydrocarbons

Waxy hydrocarbons are associated with long-chain alkane compounds of C17 to C55
that tend to deposit on the cold surface [78]. According to a study, methane-monooxygenase
enzymes oxidize short-chain alkanes C1–C4, cytochrome P450 enzymes oxidize medium-
chain alkanes C5–C16, and essentially unknown enzyme systems oxidize long-chain alkanes
C17+ [79]. However, a study on the biocatalytic degradation of high-paraffinic crude oil has
characterized long-chain alkane hydroxylase homologues AlkMa and AlkMb and encoded
a putative flavin-binding monooxygenase, AlmA [80]. AlkB-type alkane hydroxylase ho-
mologues alkMa and alkMb, from Alcanivorax borkumensis SK2 [81,82] and Acinetobacter
DSM 17874 [83], have been demonstrated to be involved in the degradation of n-alkanes
with chain lengths of C10 to C20. It was also reported that AlkB genes in Anoxybacillus sp.
WJ-4 were responsible for a 58.75% degradation of C8 to C22 [84]. It has been discovered
that the cytochrome P450 monooxygenases gene in Alcanivorax dieselolei B-5 can grow on
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C6 to C12. [85]. The flavin-dependent monooxygenase LadA was discovered in Geobacillus
thermodenitrificans NG80-2, which degrades C15 to C36 [86]. AlmA is the first cloned gene
proven to be involved in the bacterial degradation of long-chain n-alkanes of C32 and
longer [83]. Other than alkane hydrolase and monooxygenase, lipase in Stenotrophomonas
maltophilia was found able to degrade 94.13% of diesel oil, which was mainly composed
of C12 to C20 [87]. Asphaltene, a fraction of petroleum, has a complex structure; hence,
it is difficult to break down. A study reported that catechol dioxygenase and laccase in
Pestalotiopsis sp. NG007 played an important role in the 77% degradation of C13-C30 as-
phalt [88]. Moreover, 82–90% of C32 and 82–88% of long-chain alkane C40 were degraded
by thermophile bacteria strains Geobacillus stearothermophilus IR2, Geobacillus thermoparaf-
finivorans IR4 and Bacillus licheniformis MN6. The enzyme assays showed the presence of
alkane hydroxylase, alcohol dehydrogenase and lipase [89]. A study on the degradation
rate of motor oil using Alcanivorax borkumensis successfully achieved a 75% degradation
due to the production of biosurfactants, which allowed the media to mix well with the
hydrocarbon sample through reduction of interfacial tension, thus allowing degradation to
happen [90]. These studies highlight a few important hydrocarbon-degrading enzymes that
can be potentially sourced for the purpose of managing wax deposition in transportation
lines (Table 3).

Table 3. Microbial treatment of petroleum hydrocarbons and the assayed enzymes.

Source of
Hydrocarbon

Hydrocarbon-Degrading
Microbe

Reported
Enzymes

Hydrocarbon
Treatment
Condition

Hydrocarbon
Removal
Efficiency

Reference

Crude oil Bacillus subtilis SL and
Pseudomonas aeruginosa WJ-1 Not described

Incubated for 7
days at 37 ◦C at
180 rpm

32.61% in Bacillus
subtilis SL; 54.35%
in Pseudomonas sp.
WJ-1; 58.60% in SL
and WJ-1

[91]

n-hexadecane Immobilized Bacillus
thuringiensis (BTS) Not described 37 ◦C at 120 rpm,

and pH 7
81.62–86.65% in
192 h [92]

Alkane C7-C25 Bacillus subtilis BL-27 Not described Incubated at 45 ◦C
at 150 rpm 65% in 5 days [93]

Crude oil

Raoultella ornithinolytica PS,
Bacillus subtilis BJ11,
Acinetobacter lwoffii BJ10,
Acinetobacter pittii BJ6,
Serratia marcescens PL

Not described

0.2 g crude oil with
5 mL strain,
incubated at 30 ◦C
at 180 rpm for
10 days.

70–94% in 10 days [94]

Crude oil

Rhodococcus erythropolis
OSDS1, Serratia
proteamaculans S1BD1,
Alcaligenes sp. OPKDS2,
Rhizobium erythropolis
OSDS1, Rhizobium sp. PNS1,
Pseudomonas sp. BSS9BS1

Not described Incubated at 30 ◦C
at 130 rpm 85.26% 15 days [95]

Crude oil
Cupriavidus sp. OPK,
Rhodococcus erythropolis
OSPS1, Pseudomonas sp. BSS

Not described
Incubated at
120 rpm in dark
room

74–83% in 3 days [96]

Diesel Halomonas sp. and
Aneurinibacillus sp. Not described Incubated at

151 rpm at 30 ◦C 82.65% in 12 days [97]

Bonny light crude
oil

Bacillus sp. SB4,
Pseudomonas sp. SC8,
Serratia sp. SC11, and
Acinetobacter sp. SC12

Not described Incubated at
180 rpm at 30 ◦C 12–36% [98]
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Table 3. Cont.

Source of
Hydrocarbon

Hydrocarbon-Degrading
Microbe

Reported
Enzymes

Hydrocarbon
Treatment
Condition

Hydrocarbon
Removal
Efficiency

Reference

Petroleum
hydrocarbons,
hexane,
hexadecane and
motor oil

Alcanivorax borkumensis
Alkane
hydroxylase, lipase
and esterase

Incubated at 30 ◦C
at 150 rpm 75–81.5% in 72 h [90]

Hexadecane and
BTEX Alcanivorax borkumensis SK2

Alkane
hydroxylase, lipase
and esterase

Incubated at 32 ◦C
at 120 rpm 79–96.7% [82]

Long-chain
n-alkanes C32 and
C40

Geobacillus
thermoparaffinivorans IR2,
Geobacillus
stearothermophillus IR4 and
Bacillus licheniformis MN6

Alkane
hydroxylase,
alcohol
dehydrogenase
and lipase

Incubated at 50 ◦C
at 120 rpm

87–90% in 20 days
(for C32); 82–88%
in 20 days (for C40)

[89]

Belayim Mix crude
oil

Lipomyces tetrasporus RS-Y1
and Paecilomyces variotii
RS-F3

Not described Incubated at 28 ◦C
at 150 rpm

58.15–68.3% in
30 days [99]

Alkane mixture
C8–C22 Anoxybacillus sp. WJ-4 alkB homologs

genes
Incubated at 70 ◦C
at 180 rpm 58.75% in 40 days [84]

Crude oil
(C12-C25) and
asphalt (C13-C30)

Pestalotiopsis sp. NG007

Catechol
1,2-dioxygenase,
catechol 2,3
dioxygenase,
laccase, manganese
peroxidase, lignin
peroxidase

Incubated at 25 ◦C 77–92% in 30 days [88]

Crude oil Scenedesmus obliquus and
Chlorella vulgaris Not described

Incubated at 25 ◦C
at 80 rpm under
dark condition

46–88% in 6 weeks [100]

Crude oil
Bacillus atrophaeus 5-2a,
Bacillus aryabhattai 6-2a and
Bacillus amyloliquefaciens 6-2c

Not described

2 g crude oil in 20
mL bacterial
suspension,
incubated at 40 ◦C

82.32–94.50% [101]

Diesel oil and used
engine oil

Stenotrophomonas maltophilia,
Bacillus cereus and Bacillus
pumilus

Lipase Aerobic conditions
at 30 ◦C

94.13% in diesel oil;
99.77% in used
engine oil

[87]

Alkane C8–C36 Alcanivorax dieselolei B-5

AlkB homologs
(AlkB1 and AlkB2),
CYP153 homolog
(P450), alkane
hydroxylase
(AlmA)

Incubated at 28 ◦C
at 200 rpm

p450 was
upregulated on
C8–C16; AlmA on
C22–C36; alkB1
and alkB2 C12–C26

[85]

Alkane C5–C36 Geobacillus
thermodenitrificans NG80-2

Alkane
monooxygenase
LadA

LadA was
upregulated on
C15–C36

[86]

4. Biodegrading Mechanism of Petroleum Hydrocarbons

The degradation of petroleum hydrocarbons is a complex process involving a variety
of enzymes that work synergistically to break down the complex hydrocarbon molecules
into simpler compounds. Some of the key enzymes in hydrocarbon degradation are
the oxygenases, dehydrogenases, hydrolases and reductases. Oxygenases are enzymes
that introduce one or two oxygen atoms derived from molecular oxygen in the alkane
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substrate [102], which are monooxygenases and dioxygenases, respectively. Alkane hy-
droxylases and cytochrome P450 monooxygenases are an example of monooxygenases that
have been reported widely. Dioxygenases such as catechol dioxygenase and naphthalene
dioxygenase incorporated both atoms of molecular oxygen to cause a ring cleavage in an
aromatic compound [103]. Dehydrogenases are the enzymes that catalyze the removal of
hydrogen atoms from the hydrocarbon molecules, leading to a formation of oxidized prod-
ucts and facilitating the further breakdown of the hydrocarbon. Alcohol dehydrogenase
and aldehyde dehydrogenase have been reported in this category [104,105]. Hydrolases
catalyze the hydrolysis reaction, which involves the cleavage of a chemical bond using
water. For example, esterase breaks down ester linkages present in some of the hydrocarbon
derivatives [106]. Finally, reductases catalyze the addition of hydrogen atoms to a certain
hydrocarbon intermediate, where the reduction step helps to activate the molecule for
further degradation processes. As an example, carbonyl reductase catalyzes the reduction
of carbonyl groups (C=O) present in aldehyde and ketones, and the products can be further
metabolized by other enzymes [107,108].

Alkanes are also known as paraffins, which translates to the alkanes having low chem-
ical reactivity [109]. To biodegrade a petroleum, the alkane molecules need to be activated
to initiate and continue the stepwise metabolisms [110]. The regio- and stereoselective
oxidation of non-activated methyl or methylene groups is a challenging, but it is a cru-
cial chemical process [111]. Alkane degradation can be achieved via oxygen-dependent
oxygenase, which triggers the initial activation and breaking of C-H bonds in aerobic
conditions [112].

Alkane degradation in microorganisms had been described and illustrated by three pe-
ripheral metabolic pathways, which include terminal oxidation, subterminal oxidation, and
ω-oxidation (Figure 4). The methyl group of alkanes is oxidized by the alkane-activation
enzyme alkane monooxygenase (AMO), involved in both the terminal and subterminal
pathways. The reactions render a primary alcohol in terminal oxidation and a secondary
alcohol in subterminal oxidation. Alcohol dehydrogenase (ADH) converts the alcohol into
aldehydes (for terminal) and ketones (for subterminal). Aldehydes are further oxidized
to fatty acid by aldehyde dehydrogenase (ADH), while ketones are oxidized by Baeyer–
Villiger monooxygenase (BVMO) to render esters, which are subsequently hydrolyzed to
alcohol and fatty acid by carboxylesterase (CE). The fatty acids are conjugated to coenzyme
A and enter the β-oxidation cycle to generate acetyl-CoA [113,114]. Alkane molecules can
also be oxidized at both ends through the ω-hydroxylation of fatty acids at the terminal
ω-methyl group, rendering an ω-hydroxy fatty acid that is further converted into a dicar-
boxylic acid and processed by β-oxidation. The subterminal oxidation of alkanes generates
a secondary alcohol, which is converted to the corresponding ketone and then oxidized by
a Baeyer–Villiger monooxygenase to render an ester. The ester is hydrolyzed by an esterase,
generating an alcohol and a fatty acid, and enters β-oxidation. β-oxidation plays a crucial
role in fatty acid metabolism and energy production, but it is not directly involved in the
breakdown of alkane molecules during alkane degradation. Both terminal and subterminal
oxidations can coexist in the microorganisms [113–115].

The research related to the biodegradation of wax has led to the discovery of many
bacteria species hosting enzymes involved in the initial step of aerobic degradation path-
ways. Acinetobacter sp., Alcanivorax sp., Arthrobacter sp., Bacillus sp., Dietzia sp., Geobacillus
sp., Marinobacter sp., Mycobacterium sp., Pseudomas sp., and Rhodococcus sp. are among the
bacterial strains capable of utilizing C18 and more [116]. A similar discovery is that alkanes
are oxidized to the corresponding primary and secondary alcohol by substrate-specific ter-
minal and subterminal monooxygenases or alkane hydroxylases. Alkane hydroxylases are
flexible biocatalysts that perform a variety of beneficial oxidation reactions. Pseudomonas
putida GPo1 encoded the functional alkane hydroxylase that oxidizes C5 to C16 [117].
AlkB-type enzymes work with two electron-transfer proteins—a dinuclear iron rubredoxin
and a mononuclear iron rubredoxin reductase—to transfer electrons from NADH to the
active site of alkane hydroxylase [113]. Acinetobacter sp. Strain M-1 was shown to harbor
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two integral membrane alkane hydroxylases responsible for the degradation of C10 to
C30 [118]. Interestingly, AlkB, found in Acinetobacter oleivorans DR1, was able to utilize
long-chain alkanes C12 to C36, but not short-chain alkanes C6 to C10. AlkB1 was responsi-
ble for long-chain alkanes C24 to C26, whereas AlkB2 was responsible for medium-chain
alkanes C12 to C16 [119]. The recombinant strain Rhodococcus erythtopolis AP-expressing
AlkB gene cluster was experimentally confirmed to degrade C12 to C24 [120]. The study
comprehensively reported that the alkB gene cluster includes an alkB gene encoded for
alkane hydroxylase, two rubredoxins (A and B), and rubredoxin reductase. The proteins
rubredoxin and rubredoxin reductase are required to shuttle electrons to AlkB, which the
enzyme uses for alkane hydroxylation [120]. Five proteins were expressed by Thalassoli-
itus oleivorans hosting the terminal oxidation of C14, which were characterized as alkane
1-monooxygenase, oxidoreductase ferredoxin, ferredoxin reductase, alcohol dehydroge-
nase, and aldehyde hydrogenase. The ferredoxin reductase oxidized NAD(P)H to NAD(P)+,
generating electrons that were transferred to ferredoxin, which shuttled the electrons to
alkane monooxygenase. Alkane monooxygenase introduces oxygen into alkanes at the
terminal site, converting them into primary alcohol. The alcohol is further oxidized to
aldehyde and fatty acids by alcohol dehydrogenase and aldehyde dehydrogenase. The
pathway was then possibly switched to subterminal oxidation when grown on the longer-
chain C28, evidenced by the significant upregulation of Baeyer–Villiger monooxygenase
and esterase, responsible for catalyzing ketones and ester metabolism [121]. Long-chain
thermophilic alkane monooxygenase was discovered when a genome and proteome anal-
ysis of Geobacillus thermodenitrificans strain NG80-2, isolated from a deep-subsurface oil
reservoir [122], revealed a plasmid-encoded thermophilic enzyme designated as LadA.
LadA was determined to be involved in the terminal oxidation of long-chain alkanes able
to convert C15 to C36 to primary alcohol. The research highlighted many attributes of
LadA: it was a thermophile, able to act on long-chain alkanes, a single-component with no
coenzyme requirement, soluble (extracellular), and easily expressed and purified in E. coli,
making it a great biocatalyst for industrial applications [86].
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5. Biocatalytic Degradation of Petroleum Hydrocarbons—Opportunity for Application
and Gaps in Know-How

The petroleum industry is looking into energetically efficient processes with minimum
environmental impact. A novel and nonconventional technique like enzyme catalysis
for hydrocarbon management has been explored. With properties such as high trans-
formation efficiency and high specificity, enzymes can be utilized not only for cleaning
up oil-contaminated water and soil but also for the treatment of viscous heavy oil for
transportability, as well as for refining petroleum [102].

The direct application of microbial metabolites such as enzyme extracts or recombinant
enzymes, in contrast to whole organisms, is advantageous for the petroleum industry. This
is attributed to better process control in terms of enzyme concentration, faster reactions,
the ability to remediate complex and persistent compounds, and specificities that enable
enzymes to perform at wide range of temperature, pH and salinity levels [123,124]. En-
zymes are also biodegradable proteins, so there is no environmental persistence problem.
Furthermore, recombinant DNA technology has been introduced to improve the stability
and activity of enzymes at a larger scale and lower cost [125]. The conversion or transfor-
mation of inert nonpolar hydrocarbons is a challenging biochemical reaction for a single
enzyme but is tolerable for multi-enzyme systems [126]. Research has recently reported the
usage of an enzyme consortium consisting of oxygen-dependent oxygenase, which is able
to catalyze the cleavage of the C-H bond in long-chain wax in hydrocarbons into carbon
of a shorter chain, resulting in improved flowability [127]. The concept is illustrated in
Figure 5.
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paraffin wax degradation.

Table 4 summarizes the research findings from a reaction system consisting of enzyme
consortiums extracted from microbes and their targeted hydrocarbon substrate. It was
evidenced from these studies that intracellular and extracellular enzymes are capable of
degrading up to 99% of the hydrocarbon.

However, similar conditions were applied in most of the studies: a long treatment time,
i.e., more than 24 h; the petroleum substrates used are mostly of short- and medium-chain
alkanes, less than C30; and essentially, the partial degradation of wax or asphaltene leads to
a reduction in the viscosity of heavy petroleum [128]. However, the analyses mainly discuss
the degradation products. Elaborations on the changes in physical or flow properties of
the reacted petroleum, i.e., viscosity, morphology, waxiness, are very limited. On contrary,
the application of the enzymatic degradation of wax in production lines needs to occur in
hydrocarbon-rich environments (non-aqueous system) in a short treatment time, because
the petroleum-production process is a continuous operation. In addition, waxy crude
oils are composed of a high percentage of chain alkanes more than C30. Therefore, these
limitations needed to be studied in detail.
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Table 4. Enzymatic degradation of hydrocarbon.

Hydrocarbon-Degrading Enzyme Substrate Treatment Condition Hydrocarbon Removal
Treatment Efficiency Reference

Intracellular crude enzyme
consortium from Providencia
rettgeri L1 supplemented with
formate dehydrogenase

Petroleum residual oil

10 mL reaction system
containing crude
enzymes and residual
oil at 30 ◦C for 8 h

23.8% oil degraded at
1 h; 56.7% at 5 h; 49.5%
at 8 h

[129]

Enzyme consortium of alkane
hydroxylase and lipase from
Alcanivorax borkumensis SK2

Soil contaminated with
diesel fuel

5000 L enzyme solution
injected into 4 injection
wells at 14 lpm for
12 weeks

36–99% degradation of
C10-C50 [130]

Protease, catalase, lipase, and
amylase from peel wastes of sweet
orange Citrus sinensis Osbeck and
watermelon Citrullus lanatus

Used motor
oil-contaminated soils

Enzyme solutions
added to the
contaminated soils for
6 weeks

62–74% TOC removal
by orange peel
enzymes; 39–45% TOC
removal by watermelon
peel enzymes

[131]

Intracellular enzymes from
Acinetobacter calcoaceticus 21 and
formate dehydrogenase CbFDH
from Candida boidinii

Oil-contaminated
sludge

2 g oily sludge with
10% oil by weight
reacted with enzyme 21
and CbFDH at 30 ◦C at
150 rpm

35.6% oil degraded in
12 h using enzyme
21/CbFDH with the
protein ratio of 1:4

[132]

Ligninolytic enzyme Laccase and
Manganese Peroxidase
microencapsulated in bilayer
cross-linked Ca-alginate beads

Polluted sediment

Incubated in the dark
at 25–27 ◦C with
vertical mixing at
50 rpm for 70 days

27–28% total petroleum
hydrocarbon degraded [133]

Intracellular and extracellular
enzymes from Aspergillus sp.
RFC-1

Oilfield crude oil

Extracellular and
intracellular enzymes
inoculated into
20 mg/L crude oil,
cultivated at 30 ◦C at
120 rpm for 7 days

Degradation
efficiencies of crude oil
by extracellular
enzymes were higher
(7–25%) than by
intracellular enzymes
(5–24%)

[134]

Alkane hydroxylase, lipase and
esterase from Alcanivorax
borkumensis crude enzyme
preparation

Hexadecane, motor oil,
contaminated soil

50 mL Milli-Q water,
10 mg/mL crude
enzymes and
petroleum sources,
incubated at 30 ◦C for
7 days at 100 rpm

Removal of hexadecane
(73.75% to 59.74%);
motor oil (74% to 83%);
contaminated soil
(88.52%)

[37]

Fungal enzymes Aspergillus
fumigatus (PJ1, PJ2, PJ3 and PJ5),
Aspergillus flavus (PJ4), and
Aspergillus terreus (PJ6)

Oil-contaminated soil

2 g crude oil and 30 mL
of crude enzyme
solution in 100 mL
glass bottles sealed
with rubber stoppers,
incubated statically at
40 ◦C for 4 days, with
regular shaking every
4 h under oxygen
deprived conditions

3.70–15.68% removal of
alkane, 23.33–40.56% of
aromatics, 13.33–35.56%
of resins, and
24.69–34.57% of
asphaltenes. Oil
viscosity reduced by
40.5–59.0%. Total oil
removal efficiency of
83.40% to 87.78%

[135]

Dioxygenase immobilized onto
single-walled carbon nanotube
from Arthrobacter chlorophenolicus
A6

Aromatic hydrocarbon
intermediates catechol,
4-chlorocatechol and
3-methylcatechol)

Free and immobilized
enzymes added to
substrate solution and
H2O2 as oxygen source
at molar ratio 1:2, then
mixed at 25 ◦C for
1 min. The precipitate
was separated by
centrifugation.

Relative activity of
immobilized enzyme is
the highest at pH 7.5,
temperature 40 ◦C, and
0.6 M salt; and retained
40% of activity after
7 cyles of reusability

[103]
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Table 4. Cont.

Hydrocarbon-Degrading Enzyme Substrate Treatment Condition Hydrocarbon Removal
Treatment Efficiency Reference

Versatile peroxidase (VP) from
white-rot fungus Bjerkandera adusta

Antracene in silicone
oil

Two-phase partitioning
bioreactor with 250 mL
reaction medium
containing 10% silicone
oil saturated with
anthracene at 30 ◦C

61.88% oxidation of
anthracene after 38 h [123]

Intracellular and extracellular
enzymes from Pseudomonas sp.,
Bacillus sp., Ochrobactrum sp

Dehydrated crude oil

Extracellular enzyme
inoculated into
20 mg/L of crude oil,
cultivated at 30 ◦C g at
120 rpm for 18 days

6–15% oil degradation
in extracellular enzyme;
4–15% in intracellular
enzyme

[136]

6. Challenges of Applying Enzymatic Degradation to Petroleum Industry

One of the obstacles that hinders the enzymes from replacing chemicals for industrial
applications is the high cost of production and purification. There are a few factors con-
tributing to this. Firstly, enzymes undergo denaturation during production and storage.
The unfolding of the enzyme tertiary structure to a disordered polypeptide causes the
residues to be unaligned, therefore hindering the interactions in its functional groups.
Secondly, the presence of other chemicals in the petroleum-production system causes
an irreversible loss of activity [137]. During oil and gas operations, enzymes are prone
to denaturation and loss of activity because of three factors: temperature and pressure
stability at the hydrocarbon production facilities, e.g., reservoirs, production flowlines
and transportation pipelines; high salt stability due to the carry-over of seawater; and
stability in non-aqueous media, i.e., a hydrocarbon-rich environment. Research has also
highlighted that biocatalysts should be kinetically efficient and have little dependency
on enzyme cofactors to be cost-competitive [138]. However, with the advancement of
proteomics and molecular biology, enzyme production can be optimized to resist and
withstand petroleum-production’s operating conditions.

Apart from the cost competitiveness between enzymes and chemicals for wax treat-
ment, the physicochemical characteristics of hydrocarbons are also a challenge. Hydrocar-
bon wax is nonpolar, while asphaltene and resin are polar constituents that contain both
normal and polycyclic aromatic hydrocarbons [139]. A polyaromatic hydrocarbon is chemi-
cally stable due to resonance energy and the high number of aromatic rings [75]. Therefore,
petroleum hydrocarbons with high asphaltene and resin content may be associated with
slower biodegradation. Petroleum hydrocarbons are chemically inert, and high energy
barriers must be overcome to initiate the activation and cleavage of carbon–hydrogen bonds.
The hydrophobic property of the petroleum is the main obstacle for the enzymatic attack
of the carbon backbone [140]. In addition, petroleum hydrocarbons contain crystalline,
semi-crystalline and amorphous regions. Only the amorphous and semi-crystalline regions
are more susceptible to enzymatic degradability, as illustrated in Figure 6.

For enzymatic degradation to be successful, one must identify the most suitable en-
zyme for that application. For example, extracellular enzymes with high substrate affinities
can produce high-product turnover, and the ability to maintain stable activity under the op-
erational conditions of the intended application is preferable [141]. However, the enzymatic
performance depends on the physical conditions of the sites, such as temperature, pH,
and salinity, and the enzyme properties, such as catalytic sites and enzyme activity [124].
The enzymes are exposed to the harsh conditions of high temperature, pressure, and fluid
turbulence. The movement of petroleum from a reservoir to the surface is a continuous
process. The temperature of a freshly produced hydrocarbon can be as high as 60 to 70 ◦C,
while the pH is typically 7 to 9 [1]. Apart from temperature and pH factor, the catalytic
activity of the selected enzymes must not be inhibited by metals. Salts, or dissolved metal
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ions present in seawater, are produced together with the petroleum from the reservoir
containing Na+, Mg2+ and Ca2+ as the major constituents, and the composition is varied
for different reservoirs [142]. Under an aerobic environment, the C-H bond activation
can be catalyzed by the oxygen-dependent oxygenase, which is ubiquitous in the case of
petroleum-polluted sites [103]. The dissolved oxygen from the produced water, which is
entrained with petroleum during production, is available for the oxygenase during wax
degradation [143,144].
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7. Current Approaches and Future Outlook of Applying Enzymatic Degradation for Wax
Management in Petroleum Operations

Enzyme stability and efficiency are the main challenges for industrial application;
therefore, powerful tools of molecular biochemistry should be used for improvement. En-
zymes isolated from extremophilic microorganisms that are resistant to pH, high salinity,
and organic solvents; thermostable; and thrive in a reduced oxygen environment [145]
are the most beneficial for the petroleum industry. Extremophilic enzymes derived from
Halobacterium sp., Haloferax sp., Haloarcula sp. and Pyrococcus sp. have been reported to
have salt-adapted ability, while Rhodoccus sp. and Pseudomonas sp. are reported to host
organic-solvent active enzymes [146]. Enzymes adapted to high-salt environments, known
as halophilic enzymes, can retain their functional conformation in the presence of high
ionic strength, and they possess stable, multilayered hydration shells that help to pre-
serve their biological functions [146]. The new discovery of thermostable enzymes from
microorganisms living in extremely high temperatures of ~100–200 ◦C, such as deep reser-
voirs, is pertinent. Enzymes from the genus Bacillus sp. are commonly reported as being
thermophilic [89,147]. Other than Bacillus sp., thermophilic enzymes can also be derived
from Thermomicrobium sp. and Thermooleophilum sp., and dominantly from Geobacillus sp.,
and are typically active at 57 to 80 ◦C [148]. This is an important physicochemical prop-
erty for enzyme application as petroleum facilities, from production to refining, typically
operate at high temperatures and salinity. In addition, the enzyme catalytic treatment
of petroleum performed at high temperatures is beneficial for high-viscosity substrates.
At high temperatures, the viscosity of the petroleum is reduced, leading to an increase
in diffusion coefficients; therefore, the bioavailability of the enzymes is improved [148].
Enzymes should be able to operate in non-aqueous system due to the hydrophobicity of
petroleum, thereby limiting the mass transfer and interaction between the enzymes and the
hydrophobic substrates. This probably can be solved using reaction mixtures containing
organic solvents to increase the substrate accessibility, but the high enzyme activity must
be maintained, as supported by [149]. In addition, the enzyme–wax interaction can be
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facilitated by specific structural features of the enzyme, such as hydrophobic pockets or
active sites that can accommodate nonpolar molecules [150]. In some cases, enzymes can
be immobilized on hydrophobic supports to enhance the interaction with hydrophobic
substrates [151]. On top of that, there is also research that provides a positive indication of
using enzymes from the genus Pseudomanas sp. for the biodegradation of plastic polymers
such as polyethylene, polyethylene glycol and polyethylene terephthalate [152]. Further-
more, 95% of polyethylene terephthalate was found to be degraded in a heterogenous
enzymatic reaction [153]. In the case of wax treatment in a production line, a similar ap-
proach can be adopted due to the resemblance in characteristics between plastic polymers
and waxy crude oil, such as hydrophobicity, high molecular weight, and lack of favorable
functional groups. To find an adequate solution for petroleum hydrocarbons, the enzyme
complexes’ behavior, metabolites, and degradation pathways must be explored [154].

The industrial application of biocatalysts is often restricted by the short-term opera-
tional stability and difficulty in the recovery of enzymes. However, these limitations are
overcome by immobilization, although there is no specific remedy protocol because each
enzyme has different properties. The primary objective of enzyme immobilization is to
increase the economics of the biocatalytic process. The immobilization of enzymes is a
highly valuable technique that was introduced to overcome the limitation of free enzymes.
The immobilization technique has evolved to a simple, fast, and efficient process [155].
Covalent binding, physical adsorption, or enzyme entrapment through immobilization
lead to high number of enzymes being in contact with the high surface area of support,
subsequently discouraging the dissociation of protein into subunits or the formation of
inactive intermolecular aggregates [156]. Immobilization supports like silica encapsulation
protect microorganisms from lysis and harsh environments of high salinity and organic
load, in addition to concentrating their amount, thus accelerating the degradation pro-
cess [124]. The potential applications of immobilized enzymes are broadened because of
their high versatility such as high enzyme/substrate ratio, increased functional efficiency
of the enzyme, minimized reaction time, and minimized contamination in products [157].
Immobilized enzymes have an enhanced tolerance to variations in environmental factors,
such as temperature, pH, organic solvents, and long storage [158]. Immobilized enzymes
are easy to control, whereby the reaction can be stopped by physical removal rather than
by heat inactivation when using soluble or free enzymes [159].

The stability of immobilized enzymes concerning temperature and pH is widely re-
ported in the literature to translate the benefit of the immobilization technique for soluble
or free enzymes [160]. For example, Mazlan (2017) immobilized laccase on polymer mi-
crospheres. They found that the optimum temperature for laccase is extended from 40 ◦C
(in free form) to 50 ◦C (in immobilized form), while the optimum pH is shifted from 4 (in
free form) to 5 (in immobilized form). The reasons is that the covalent bond formation,
through the amino groups of the immobilized enzyme, causes the molecule to have a higher
activation energy for the better reorganization and conformation of substrate binding. Also,
the multipoint attachments of the enzyme support increased enzyme stabilization; thus,
an extended optimum temperature and pH were observed [161]. The immobilization of
horseradish peroxidase on iron oxide magnetic nanoparticles using physical bonding also
produced a similar optimum temperature and pH shifting [162,163]. Oxidoreductases are
not stable under various conditions, whereby pressure, temperature and pH may cause a
dissociation of the enzyme subunit. Basri (2022) immobilized Mycobacterium phlei carboxylic
acid reductase (MpCAR) onto polymeric support Seplite LX120 via an adsorption technique
to achieve 3 weeks of storage stability at an ambient temperature. The optimum reaction
temperature and pH of the MpCAR were shifted from 42 ◦C and 7.5 (in free enzyme) to
60 ◦C and 9 (in immobilized form) [164]. An immobilized aldehyde dehydrogenase from
Anoxybacillus geothermalis D9 exhibited an improvement in temperature stability from 30
to 90 ◦C in contrast to its free form [104]. Immobilized carboxylesterase from A. geother-
malis yielded a broad thermal stability and pH tolerance, with an optimal temperature
of 80 ◦C and an optimal pH of 7 (Johan et al., 2023 [165]). Bolivar (2012) elaborated that
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under soluble or free conditions, enzyme subunits dissociate under an acidic condition,
whilst tertiary and quaternary structures are distorted under an alkaline condition [166].
Through enzyme immobilization, the conformational freedom of the enzyme is narrowed
due to the multipoint covalent attachment of the enzyme that causes a reduction in the
intermolecular reaction; thus, the pH stability is enhanced [167]. pH affects the ionization
of functional groups within enzymes, and when immobilized, the enzyme has a better
orientation of active sites and thus a higher affinity towards substrates, as reflected in
the higher activity [163]. The rigidity in conformation also enables enzymes to withstand
higher temperatures for a longer time [168–170]. Zhou (2001) cross-linked ß-galactosidase
to graphite surfaces and studied the good shifting of optimum temperature and pH. They
provide a more straightforward explanation centered around diffusional effects, in which
the immobilized enzyme is easily contacted by substrates with the increase in temperature
and pH [171].

However, the success rate of enzyme immobilization to produce high catalytic activity
and the stability of enzymes depends on immobilization time, procedure, surface coverage,
surface curves, active sites orientation, mass transfer and chemical bonding [158]. A
study has pointed out that the porosity and particle size of the immobilized support
could influence the mass transfer kinetics between the reactant (the hydrocarbon) and the
enzymes. A maximum efficacy of the reactant diffusivity may exist, related to the particle
size of the immobilized enzymes, and need to be determined experimentally [62].

Enzymes are always associated with high costs; therefore, efforts should be made to
recover and reuse them instead of continuously putting them in production lines, which is
a more suitable practice for chemicals. Enzyme immobilization provides an opportunity
for separation and reuse because immobilized enzymes are stationary throughout the
application process instead of mobile with the reactant. The recovery of enzymes makes
the application cost-attractive because of the reduction in production costs, labor costs and
space requirements [172]. Where the productivity over time and volume of hydrocarbons
to be treated is high, fluidized bed reactors are preferred (Figure 7). Immobilized enzyme
particles can be sustained in suspension by the flowing stream of hydrocarbons [173].
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8. Conclusions

This paper reviews the potential of exploiting enzymes to tackle the wax deposition
problem in petroleum-production lines. Enzymes’ catalytic activity can be enhanced in
the laboratory to suit specific applications. Research evidence on the microbial degra-
dation of petroleum-contaminated sites successfully highlighted AlkB homologs, alkane
hydroxylases, alkane monooxygenases, lipase, laccase and esterase as highly capable
hydrocarbon-degrading enzymes. Based on this precursor, this review narrowed down
the research and focused on papers related to the microbial degradation of specific alkane
compounds and crude oil. A similar group of enzymes was identified and was reported to
be able to remove 12–96% of hydrocarbons in the alkane compound in 3–42 days. Based on
these studies, it was evidenced that hydrocarbon-degrading enzymes are a good alternative
for wax deposition treatment in transportation lines. This paper then discussed the possible
challenges for the enzymes when applied in wax deposition. The costly production of
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enzymes is the main factor, attributed to enzyme denaturation and the presence of unex-
pected chemicals that reduce catalytic activity. The enzymes’ dependency on cofactors may
also reduce their cost-competitiveness in comparison to chemical treatment. Secondly, the
hydrophobicity of petroleum hinders enzymatic degradation. Petroleum hydrocarbons
are chemically inert, and high energy barriers must be overcome to initiate the activation
and cleavage of the carbon–hydrogen bond. Thirdly, enzymes are subjected to the harsh
conditions of high temperature, pressure, and fluid turbulence in production lines; there-
fore, enzyme performance may be deteriorated. However, the challenges can be overcome
by the combination of technological advancement and application strategies. The current
approaches and prospects for enzyme application in the petroleum industry were discussed
next. Recombinant enzymes with thermophilic and halotolerant properties have been dis-
covered in petroleum degradation, although research is scarce. Hence, efforts should be
made to enrich this discovery. The direct application of enzyme extracts, in contrast to
whole organisms, is advantageous for the petroleum industry in terms of better process
control, faster reactions, and the ability to perform in wide range of temperature, pH and
salinity. Additionally, using a consortium of enzymes is favorable since the transformation
of inert nonpolar hydrocarbons is a challenging biochemical reaction for a single enzyme
but is tolerable for multi-enzyme systems. With the usage of powerful tools of molecular
biochemistry, enzyme stability and efficiency can also be improved. Enzymes isolated from
extremophilic microorganisms that are resistant to pH and organic solvents, thermostable,
and thrive in a reduced-oxygen environment are the most beneficial for the petroleum
industry. The advances in the enzyme immobilization technique have significantly im-
proved enzymes’ susceptibility to the harsh conditions of the transportation pipeline. This
technique also allows for the recovery and reuse of enzymes, making the enzyme cost-
competitive with other wax treatment strategies. This paper intended to contribute to
sustainability by discussing the potential of the enzymatic degradation approach being
expanded to the petroleum-production process.
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