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Combination model for freshness prediction of pork using  
VIS/NIR hyperspectral imaging with chemometrics

Minwoo Choi1, Hye-Jin Kim1, Azfar Ismail1,2, Hyun-Jun Kim1, Heesang Hong1,  
Ghiseok Kim3,4, and Cheorun Jo1,5,*

Objective: This study aimed to develop an enhanced model for predicting pork freshness 
by integrating hyperspectral imaging (HSI) and chemometric analysis
Methods: A total of 30 Longissimus thoracis samples from three sows were stored under 
vacuum conditions at 4°C±2°C for 27 days to acquire data. The freshness prediction 
model for pork loin employed partial least squares regression (PLSR) with Monte Carlo 
data augmentation. Total bacterial count (TBC) and volatile basic nitrogen (VBN), which 
exhibited increases correlating with metabolite changes during storage, were designated 
as freshness indicators. Metabolic contents of the sample were quantified using nuclear 
magnetic resonance.
Results: A total of 64 metabolites were identified, with 34 and 35 showing high correlations 
with TBC and VBN, respectively. Lysine and malate for TBC (R2 = 0.886) and methionine 
and niacinamide for VBN (R2 = 0.909) were identified as the main metabolites in each 
indicator by Model 1. Model 2 predicted main metabolites using HSI spectral data. Model 
3, which predicted freshness indicators with HSI spectral data, demonstrated high prediction 
coefficients; TBC R2

p = 0.7220 and VBN R2
p = 0.8392. Furthermore, the combination model 

(Model 4), utilizing HSI spectral data and predicted metabolites from Model 2 to predict 
freshness indicators, improved the prediction coefficients compared to Model 3; TBC R2

p 
= 0.7583 and VBN R2

p = 0.8441. 
Conclusion: Combining HSI spectral data with metabolites correlated to the meat freshness 
may elucidate why certain HSI spectra indicate meat freshness and prove to be more effective 
in predicting the freshness state of pork loin compared to using only HSI spectral data.
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INTRODUCTION

Pork is known to be susceptible to the loss of freshness and finally spoilage primarily due 
to its high protein content, vitamins, minerals, and other nutrients [1]. In the United States, 
the losses attributed to pork spoilage amount to USD 1 billion annually [2]. Since the 
sources of pork freshness deterioration are diverse, including meat oxidation, endogenous 
enzymes from the meat, and exogenous enzymes from microorganisms, preventing spoilage 
during storage becomes a considerable challenge [3,4]. Therefore, monitoring the freshness 
of pork during distribution is of paramount importance.
 There are various traditional methods to measure meat freshness, such as total bacterial 
count (TBC), volatile basic nitrogen (VBN), pH, thiobarbituric acid reactive substances 
(TBARS), biogenic amine, meat color, drip loss, etc. [5,6]. Among them, we focused on 
TBC, VBN, pH, and meat color. Firstly, TBC represents the number of microorganisms, 
and a higher TBC indicates a poorer state of fresh meat [7]. The level of total VBN also 
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increases due to the decomposition of muscle proteins into 
amino acids by enzymes secreted by microorganisms [8]. 
Then, pH changes are related to bacterial growth during 
spoilage, involving bacteria such as Pseudomonas spp. and 
Brochothrix thermosphacta [9]. Lastly, because the color of 
meat significantly influences consumers’ decisions when pur-
chasing meat, discoloration in meat could be considered 
spoilage and used as an indicator of meat freshness [10]. 
Even though these methods have been widely employed to 
measure meat freshness, there is a growing demand for non-
destructive, rapid, and accurate analytical methods due to 
their destructive and time-consuming nature [11]. 
 Hyperspectral imaging (HSI) is an analytical technology 
that combines conventional computer imaging with spectral 
analysis methods for the simultaneous acquisition of spec-
tral and spatial information in rapid and non-destructive 
ways [12]. Through HSI analysis, hyperspectral data con-
taining three-dimensional information, known as a hypercube, 
is obtained. This hypercube encompasses both spectral in-
formation (1D) and spatial information (2D) [13]. Numerous 
studies have created models predicting meat freshness using 
HSI. Zhuang et al [14] established a partial least squares re-
gression (PLSR) model to predict the freshness and quality 
traits of frozen pork using Vis/NIR HSI. Park et al [15] at-
tempted to predict the TBARS value of beef using the line-
scan HSI system. However, the explanation between meat 
freshness and HSI spectral data has not been fully elucidated.
 Metabolites are compounds that play a role in regulating 
numerous biochemical pathways and are sometimes utilized 
as indicators of biological conditions [16]. It has been re-
ported that metabolites in meat undergo changes during 
storage, impacting meat quality factors such as tenderness, 
taste, and aroma [11,17,18]. Dave and Ghaly [18] stated that 
microbial metabolites, including aldehydes, alcohols, ketones, 
esters, amines, organic acids, and sulfur compounds, accu-
mulate during the storage process and contribute to meat 
spoilage. Therefore, understanding the metabolic changes 
during storage could shed light on the spoilage pattern in 
pork meat. Some research has utilized HSI to predict metab-
olites in the meat domain [19,20]. Consequently, analyzing 
metabolites correlated with the freshness of meat could possibly 
explain how HSI spectral data suggests meat freshness.
 Therefore, this study aimed to develop a highly predictive 
model for pork freshness prediction using HSI and chemo-
metrics analyses. To achieve this objective, the relationship 
between freshness and metabolites was analyzed, and a novel 
combination model for the freshness of pork meat was es-
tablished with metabolites via HSI. This approach followed 
the method employed by Zuo et al [21], who developed a 
protein content prediction model using HSI-predicted fat 
content and HSI data as input variables.

MATERIALS AND METHODS

Sample preparation
Loin portions (Longissimus thoracis) from both sides of 
three sows were purchased from three different butcher 
shops. Each sow had been raised on a different farm and 
slaughtered two days before obtaining the loin portions. 
Physicochemical, chemometric analysis, and HSI spectral 
data collection of each side of the loin are shown in the 
supplementary material (Supplementary Figure S1). After 
removing the excess fat from the loin, it was cut to approxi-
mately 11-cm thickness and vacuum-packaged (HFV-600L; 
Hankook Fujee Machinery Co., Ltd., Hwaseong, Korea) 
using a polyethylene/nylon bag (with an oxygen permeability 
of 22.5 mL/m2/24 h atm at 60% relative humidity (RH)/25°C 
and a water vapor permeability of 4.7 g/m2/24 h at 100% 
RH/25°C). A total of 30 loin cuts (5 days× 3 animals×2 
sides) were stored at 4°C±2°C for 1, 4, 13, 20, and 27 days 
and were used for analysis.

Microbial and physicochemical characteristics of the 
meat
Total bacterial count: TBC was conducted following the pro-
cedure outlined by Ismail et al [22]. Ten grams of samples 
were transferred to a sterile bag containing 90 mL of 0.85% 
NaCl solution. After mixing using a BagMixer 400P (Inter-
science Ind., St. Nom, France), serial dilutions were performed 
to obtain countable concentrations. Subsequently, 100 μL 
aliquots of appropriate dilutions were inoculated on plate 
count agar (Difco Laboratories, Detroit, MI, USA), incubat-
ed at 37°C for 48 h, and then colonies were counted. Finally, 
the results were expressed as log CFU/g.
 Volatile basic nitrogen: The method for measuring the 
VBN content of pork loin followed that outlined by Ismail et 
al [22]. Three grams of sample were homogenized with 27 
mL of distilled water using a homogenizer (Ultra-Turrax 
T25; Ika-Werke, Staufen, Germany) at 9,500 rpm for 30 s. 
The homogenates were then centrifuged (Union 32R; Hanil, 
Incheon, Korea) at 2,265×g for 10 min and filtered using filter 
paper (Whatman No. 1; Whatman plc, Maidstone, UK). 
Subsequently, 1 mL of each sample, 50% K2CO3, and 0.01 N 
H3BO3, along with 100 μL of the indicator (0.066% methyl 
red in ethanol: 0.066% bromocresol green in ethanol, 1:1, w/v) 
were poured into the Conway (Sibata Ltd., Sitama, Japan). 
Finally, the Conway was sealed and incubated (DS-130L; 
Daewon Sci Co., Bucheon, Korea) at 37°C for 1 to 2 h. After 
incubation, color changes were observed and recorded by 
adding 0.01 N HCl to the center of the Conway, and VBN 
was calculated using the formula below:

 VBN (mg/100 g of sample) = [0.14×(V1–V0)×10×100]/S
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where V1 represents the amount of 0.01 N HCl added to the 
treatment, V0 represent that added to the control. S denotes 
the sample weight, and lastly, 0.14 indicates the quantity of 
volatile basic nitrogen per 1 mL of 0.01 N HCl solution.
 pH: The pH measurement method followed the proce-
dure outlined by Lee et al [23]. Three grams of each sample 
were homogenized with 27 mL of distilled water utilizing an 
Ultra-Turrax T25 homogenizer (Ika-Werke, Germany) at 
9,600 rpm for 30 s. Subsequently, the homogenates were 
centrifuged (Continent 512R; Hanil, Korea) at 2,265×g for 
10 min and then filtered (Whatman No. 4; Whatman plc, 
UK). The pH of the samples was measured by pH meter 
(Seven2Go; Metter-Toledo International Inc., Schwerzen-
bach, Switzerland) with the pH probe (InLab Expert Go-ISM; 
Metter-Toledo International Inc., Switzerland). After cali-
brating the pH meter using three buffer solutions (pH 4.0, 
7.0, and 9.21) at room temperature, the pH of each filtrate 
was measured twice, and the average value was used as a 
representative replicate.
 Meat color: The assessment of meat color was conducted 
using a colorimeter (CM-5; Konica Minolta Sensing Inc., 
Osaka, Japan) following Kim et al [24]. The observer degree 
was set at 10, with illuminants being D65 and C. Prior to 
measurement, the sample underwent a 30 min exposure to 
air to bloom, and the colorimeter was calibrated using a 
standard white plate. Meat color was measured using a 30 
mm diameter plate. The results were expressed in terms of 
Commission Internationale d'Eclairage (CIE) L*, a*, and b*, 
representing lightness, redness, and yellowness, respectively. 
Each sample was measured five times, and the mean value 
was used as a singular replicate.

Nuclear magnetic resonance 
The nuclear magnetic resonance (NMR) experimental method 
for analyzing the metabolites followed that outlined by Lee 
et al [25]. First, one gram of pork loin was prepared, and 4 
mL of 0.6 M perchloric acid was added. The mixture was 
homogenized at 16,000 rpm for 1 min using a T25 Ultra 
homogenizer (Ika-Werke, Germany). The homogenate was 
then centrifuged at 3,000×g for 20 min at 4°C using a Conti-
nent 512R centrifuge (Hanil Co., Ltd., Korea). After transferring 
the obtained supernatant to a new tube, the pH was adjusted 
to 7 with a pH meter (SevenGo; Mettler-Toledo, Schwer-
zenbach, Switzerland) using KOH, and centrifugation was 
performed again at 3,000×g for 20 min at 4°C. Afterward, 
the solution was filtered through Whatman No.1 filter paper 
(Whatman plc, UK). Subsequently, the filtrate was freeze-
dried using a freezer dryer 18 (Labco Corp., Kansas City, 
MO, USA). The lyophilized sample was reconstituted using 
1 mM 3-(trimethylsilyl) propionic acid-2,2,3,3-d4 (internal 
standard, TSP) in D2O (pH 7.4, 20 mM phosphate buff-
ered), vortexed and stored in a water bath at 37°C for 10 

min. After samples were centrifuged at 17,800×g for 20 
min (HM-150IV; Hanil Co., Ltd., Korea), samples were 
loaded into 5 mL NMR tubes, and metabolites were ana-
lyzed by an NMR spectrometer.
 The NMR data were collected at 298 K using a Bruker 850 
MHz NMR spectrometer (Bruker Biospin GmbH, Baden-
Wuttemberg, Germany). The standard zg30 pulse sequence 
was employed for the analysis of 1D 1H NMR in Topspin 
4.2.0 (Bruker, Germany). Pulse sequences were obtained using 
64 K data points, a sweep width of 17,007.803 Hz, and 128 
scans and the acquisition time was 4.20 s. TSP resonance 
served as the reference for the chemical shifts (δ) in both 
qualification and quantification processes. Baseline correc-
tions were performed manually. For peak identification, 2D 
NMR spectra such as correlation spectroscopy (COSY) and 
heteronuclear single quantum coherence (HSQC) were col-
lected for metabolite qualification. COSY was conducted 
with 2 K data points in the t2 domain and 128 increments in 
the t1 domain with 16 scans, and the spectral width was 11 
ppm. HSQC was executed with 2 K data points in the t2 do-
main and 256 increments in the t1 domain with 16 scans, 
and 223 ppm for the F1 and 11 ppm for the F2 axis, respec-
tively. A coupling constant of 145 Hz determined the delay 
duration for short-range correlations. Additionally, peaks in 
the measured 2D spectra were identified based on the Human 
Metabolome Database (HMDB; hmdb.ca). Peaks identified 
by 2D HSQC NMR were then quantified using 1H NMR 
spectroscopy. The quantified dataset from the 1H NMR 
spectrum of each metabolite was processed using Chenomx 
NMR suite 10.0 (Chenomx, Inc., Edmonton, AB, Canada). 
A 1 mM TSP served as the internal standard for metabolite 
quantification. The quantification of samples was conducted 
with five replicates, and the unit of the metabolite concentra-
tion was expressed as mg/dL.

Data processing and statistical analysis of quality and 
metabolites data
The meat quality traits (TBC, VBN, pH, L*, a*, and b*) and 
metabolites were analyzed in 6 replicates for each storage 
day, and the sample which showed the highest noise in the 
NMR analysis at each storage day was considered an outlier 
and excluded from the dataset (n = 25, 5 storage days×5 rep-
lication). The results were analyzed via a one-way analysis of 
variance with the generalized linear model using SAS 9.4 
(SAS Institute Inc., Cary, NC, USA). The storage day was set 
as the only fixed effect. Tukey’s multiple tests were used to 
determine significant differences between sample groups at 
p<0.05. 
 Multivariate and correlation analyses were conducted using 
MetaboAnalyst 5.0. A hierarchical clustering heatmap was 
employed to identify changes in metabolite content and meat 
qualities over storage days. Additionally, principal compo-
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nent analysis (PCA) and partial least squares-discriminant 
analysis (PLS-DA) were performed to determine which me-
tabolites contribute to the separation of samples based on 
the storage duration. Through the PLS-DA results, variable 
importance in projection (VIP) scores for each metabolite 
was obtained. VIP scores serve as indicators revealing which 
metabolites significantly contribute to the separation of 
samples. Additionally, the Pattern Hunter feature in Metabo-
Analyst was utilized to generate bar graphs comparing the 
correlation between the metabolites and quality characteris-
tics using the Pearson correlation coefficient. Finally, the 
implications of the observed high correlation were explored. 

Hyperspectral imaging system and data acquisition
Hyperspectral imaging analysis was conducted utilizing a 
push-broom scanner featuring an HSI-200 sensor (Korea 
Spectral Products, Seoul, Korea). To ensure the complete 
elimination of external light during image acquisition, an 
image acquisition system was installed in a dark condition. 
The HSI system was equipped with an imaging spectrometer 
with a resolution of 640 spectral×512 spatial, generated us-
ing an InGaAs imaging sensor covering the spectral range 
from the visible to short-wave near-infrared regions. Tungsten 
halogen lamps were employed to provide sample illumina-
tion for uniform lighting during the imaging process. Each 
image pixel comprised 640 wavelengths, spanning the spec-
trum from 278 to 1,724 nm. The pork loin was cut into one 
replication at 3×3×1 cm (width×length×height) sizes and a 
total of 100 samples (5 storage days×5 replication×4 obser-
vations) were analyzed. A Teflon whiteboard (99.99% 
reflectivity) was used to acquire the white reference, while 
the dark reference was obtained by covering the camera 
(0% reflectance). This step aimed to eliminate the dark 
current effect and minimize the impact of uneven illumi-
nation, resulting in a normalized range from 0 to 1. The 
normalized reflectance data were calculated using the fol-
lowing equation [26]. 

 Reflectance = (S–D)/(W–D) 

S represents the intensity of the sample, D denotes the intensity 
of the dark reference, and W signifies the intensity corre-
sponding to the white reference. After constructing the 
reflectance data, wavelengths identified as outliers were con-
sidered noise and subsequently removed. Therefore, the final 
spectral range was from 400 to 1,600 nm.

Modeling 
The entire modeling process is succinctly outlined in Sup-
plementary Figure S2. For modeling, all the meat quality 
data were matched with the HSI spectral data from the same 
sample. The modeling proceeded in four steps, including 

PLSR modeling using MATLAB (R2022b; The Mathworks 
Inc., Natick, MA, USA) and linear regression modeling using 
the SPSS program (version 26; IBM, Armonk, NY, USA). 
The PLSR method can maximize the correlation between 
the principal components extracted from the input and out-
put by combining PCA, multiple linear regression, and 
canonical correlation. This method is known to effectively 
solve the multiplicity correlation problem of variables [14]. 
An imbalanced and small dataset is known to make the 
training process challenging in modeling [27]. To address 
this issue, the Monte Carlo method was utilized to augment 
the dataset (n = 10,000; [13]) from 100 data (5 storage days 
×5 replication × 4 observations).
Model 1 (Metabolites to meat quality): Predicting meat quality 
of pork loin using metabolites
 PLSR models were established to predict TBC, VBN, pH, 
L*, a*, and b* values using metabolites. The coefficient of de-
termination (R2) and root mean squared error (RMSE) of 
each model were collected to evaluate the performance of 
the developed models. Initially, the augmented dataset (n = 
10,000) was divided into calibration and prediction sets in a 
7:3 ratio for model creation and validation [13]. Subsequently, 
PLSR models for each quality parameter were obtained using 
MATLAB with the PLS-Toolbox (R9.2.1; Eigenvector Inc., 
Wenatchee, WA, USA) [28]. The optimized latent variables 
(LVs) were selected using the Venetian blinds cross-valida-
tion method, employing 10 splits with 1 sample per split, 
based on the lowest root mean square error of cross-valida-
tion (RMSECV) values. The prediction set’s R2 value for each 
model was then compared, and the top-quality indicators 
with the highest R2 values were selected as freshness indica-
tors. Metabolites showing a high association with the freshness 
indicators were identified (VIP scores>1.0).
Equation: Linear regression of meat freshness indicators using 
identified metabolites
 To calculate freshness indicators (Y) with the identified 
metabolites (X) based on VIP scores (>1.0), linear regres-
sion models were established using the SPSS program. The 
stepwise method was used to input identified metabolites, 
and models were chosen considering the variance inflation 
factor (VIF) and condition index (CI) not exceeding 10 
and 15, respectively [29]. When creating these equations, 
the unaugmented dataset (n = 25) was used. Ultimately, 
linear relationship equations for selected metabolites and 
freshness indicators were established. 
Model 2 (HSI to metabolite): Predicting metabolites of pork 
loin using HSI spectral data
 For making PLSR models of the selected metabolites which 
compose the linear equation of the freshness indicators using 
HSI spectral data, the augmented dataset (n = 10,000) was 
divided into calibration and prediction sets in a 7:3 ratio. 
Subsequently, to optimize model performance, different pre-
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processing methods for the HSI data were applied to the 
PLSR model, including standard normal variate (SNV), nor-
malization, and multiplicative scatter correction (MSC). 
Preprocessing should be applied to reduce the noise that 
occurs in HSI spectral data during the measurement process 
[22]. All three methods were expected to reduce noise arising 
from spectral data. SNV is a statistical method employed 
to eliminate slope variation in spectra and mitigate its scatter 
effects [30]. Normalization is used to correct spectral noise 
resulting from variations in the optical path of sight [31]. 
Lastly, the MSC method can alleviate noise by correcting 
the light scattering from the different particle sizes of the 
sample [30]. Afterward, the best model for each metabolite 
was selected based on the highest R2 value. 
Model 3 (HSI to freshness): Predicting meat freshness indica-
tors of pork loin using HSI spectral data
 The augmented dataset was utilized and divided into 
calibration and prediction sets (n = 10,000; 7:3 ratio). Sub-
sequently, HSI data were subjected to different preprocessing 
methods, including SNV, normalization, and MSC. Finally, 
PLSR models for each freshness indicator of pork loin were 
developed using preprocessed HSI spectral data. The models 
with the highest R2 value were then selected as the best 
models for each freshness indicator.
Model 4 (Combination model): Predicting meat freshness indi-
cators with both HSI spectral data and selected metabolites 
 To enhance model performance for predicting meat 
freshness indicators, the combined method was used [21]. 
The combined X variables comprised the predicted metabo-

lites (n = 3,000) resulting from Model 2 and the prediction 
dataset of HSI spectral data (n = 3,000) from Model 2 and 3. 
Additionally, Y variables were defined as the prediction da-
taset of freshness indicators from Model 3 (n = 3,000). This 
combined dataset was again divided into calibration and 
prediction sets with a 7:3 ratio (2,100:900), applying various 
preprocessing methods to obtain optimized models. Ulti-
mately, the performance improvement of the combination 
model (Model 4) compared to Model 3 was then confirmed.

RESULTS AND DISCUSSION

The change in meat quality of pork loin during vacuum 
storage
The results of the microbiological and physicochemical char-
acteristics of the pork loin are presented in Figure 1. Both 
the TBC and VBN exhibited a significant increase during 
storage (p<0.05). As mentioned earlier, TBC represents the 
microbial count in meat, and its value increases during storage 
due to the abundant nutrients in the meat [1]. VBN increases 
during storage because enzymes secreted by microorganisms 
break down muscle proteins into amino acids, leading to an 
increase in volatile basic nitrogen [7]. TBC and VBN are 
widely used indicators for determining the freshness or spoil-
age of meat. Meat is considered fresh if the TBC is below 7.0 
log CFU/g and the VBN is below 15 mg/100 g [32,33]. Ac-
cordingly, pork meat stored before day 20 was considered 
safe for consumption. The pH showed a decreasing trend up 
to 20 days of storage; however, there were no significant dif-

Figure 1. Physicochemical and microbial properties change of pork loin during storage. The letters at the top of the bar chart represent values in-
dicating significant difference between the values in the different storage days (p<0.05). (A) Total bacterial count (TBC), (B) volatile basic nitrogen 
(VBN), (C) pH, (D) CIE L*, (E) CIE a*, and (F) CIE b*.
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ferences. The L* value showed no significant difference with 
storage days, while the a* value exhibited a significant increase 
on day 27 compared to day 1 (p<0.05). This was consistent 
with other studies that stored pork loin after vacuum pack-
aging [34,35]. Lastly, the b* value did not show a significant 
difference with storage days.

The change in metabolites of pork loin during vacuum 
storage
The NMR analysis of pork loin revealed a total of 64 metab-
olites (Supplementary Table S1). According to the heatmap 
results, compared to day 1, 36 metabolites showed a signifi-
cant increase on day 27, 4 metabolites showed a significant 
decrease, and 24 metabolites showed no significant trend 
(Figure 2A). The PCA results indicated that PC1 and PC2 
accounted for 51% and 11.3% of the variability, respectively. 
In this case, the samples were categorized into three groups 
based on the metabolites (Group 1: day 1; Group 2: days 4 
and 13; Group3: days 20 and 27) (Figure 2B). With the in-
crease in storage days, the PC1 values increased. Moreover, 
the content of metabolites such as creatine and histidine in-
creased with storage days, shifting to the right from the 
center of the biplot (Figure 2C). Conversely, the composition 
of metabolites, including valine, isoleucine, and glycine de-
creased with storage days, moving to the left from the center 
(Figure 2C). The results of PLS-DA also revealed three groups, 
similar to the PCA results. It exhibited a pattern moving to 
the right with storage duration as the basis, particularly along 
component 1 (explaining 51% of the variance) (Figure 2D). 
The trends of these metabolites during spoilage were akin to 
those in the study by Yu et al [36]. Lastly, based on the VIP 
score results for each metabolite, it was evident that methionine, 
phenylalanine, leucine, and aspartate significantly influ-
enced the differentiation of samples according to storage 
days (Figure 2E).

Prediction of pork loin qualities using metabolites
Pearson correlation coefficients between the 64 metabolites 
and meat quality traits (TBC, VBN, pH, and meat color) 
were conducted to understand which meat qualities show 
high correlations with metabolites changes in meat during 
storage (Figure 3). TBC (0.7983<r<0.9107) and VBN (0.7942 
<r<0.9242) showed higher correlations coefficients with me-
tabolites than other meat qualities (0.4444<r<0.8450).
 Subsequently, the performance of PLSR models for TBC, 
VBN, pH, and meat color using the metabolites was com-
pared to determine which meat qualities could effectively be 
predicted by metabolites (Table 1). The results showed that 
the R2 values for TBC and VBN were 0.8136 and 0.9364, re-
spectively, which were higher than those for other meat 
qualities. This indicates that metabolites could effectively 
predict TBC and VBN. Therefore, TBC and VBN were con-

sidered as the freshness indicators of pork meat during storage, 
which showed a high relation with metabolites and could be 
predictable by metabolites. This result aligns with the find-
ings in another study, which mentioned TBC and VBN as 
crucial components in the freshness indices [7]. Moreover, 
to assess which metabolites had an impact on the prediction 
of TBC and VBN, VIP scores were analyzed (Figure 4). The 
results revealed that there were 34 and 35 metabolites for 
TBC and VBN, respectively, with VIP scores greater than 1 
(Table 2), and these metabolites mostly showed a high cor-
relation with TBC and VBN in Figure 3.

Linear regression for predicting pork loin qualities 
using metabolites
Table 3 presents the equations obtained through linear re-
gression in SPSS using the identified metabolites for TBC 
and VBN (Table 2). The profit models for TBC and VBN 
were selected according to the previous criteria (VIF<10, 
CI<15) [29]. As a result, according to the stepwise method, a 
model with lysine and malate could predict a TBC value 
with an R2 of 0.886. Similarly, a model utilizing methionine 
and histidine was produced for predicting VBN with an R2 
of 0.909. The equations for TBC and VBN were as below:

 TBC = 2.316+0.120×(Lysine)+0.288×(Malate)

 VBN = 9.727+0.614×(Methionine)–0.923×(Niacinamide)

 In the equation for TBC, the coefficient for malate was 
approximately 2.4 times higher than that for lysine. In the 
case of VBN, niacinamide had a coefficient about 1.5 times 
higher than methionine. This suggests that in both formulas, 
malate and niacinamide have a significant impact on the 
quality indicators compared to other metabolites.
 Lysine and methionine are known to be involved in glu-
tathione metabolism, potentially safeguarding cellular 
components against reactive substances generated during 
stress-induced oxidation [25]. Both metabolites showed an 
increase during the storage period (Supplementary Table 
S1); thus, this phenomenon could be interpreted as prevent-
ing the impact of microbial byproducts on meat during 
storage. Moreover, the increasing trend in storage days accord-
ing to the primary metabolites aligns with the findings of a 
previous study [37]. Malate is known as an intermediate in 
the tricarboxylic acid (TCA) cycle, which is a crucial part 
of the energy metabolism process that occurs in the mito-
chondria [38]. Furthermore, it has been documented that 
malate can be generated through microbial fermentation, 
including organisms such as Escherichia coli, Rhizopus oryzae, 
and others [39]. Finally, niacinamide is a type of vitamin B3 
that helps prevent diseases such as pellagra and dermatitis. 
This can be converted to NADH and NADPH, which play 
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important roles in many biochemical reactions [40]. In our 
experimental results, niacinamide showed a decreasing 
trend according to storage days. According to Muroya et al 

[41], niacinamide showed a gradual increase in the Longissi-
mus thoracis (LT) muscle of Japanese Brown cattle depending 
on the 14 days of storage, while NAD+ exhibited a decreas-

Figure 2. Change of metabolites of refrigerated pork during storage. (A) Hierarchical clustering Heatmap, (B) core plot by principal component 
analysis (PCA), (C) Biplot by PCA, (D) score plot by partial least squares-discriminant analysis (PLS-DA), and (E) variable importance in projection 
(VIP) scores by PLS-DA.
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Figure 3. A bar graph showing the correlation coefficients of the top 24 metabolites with quality traits of refrigerated pork. (A) Total bacterial 
count (TBC), (B) volatile basic nitrogen (VBN), (C) pH, (D) L*, (E) a*, and (F) b*.

Table 1. The performance of Model 1

Trait LVs RMSEC RMSECV RMSEP R2
C R2

CV R2
P

TBC 2 0.6605 0.6617 0.6604 0.8117 0.8109 0.8136
VBN 2 1.0048 1.0066 1.0219 0.9372 0.9370 0.9364
pH 2 0.2215 0.2220 0.2281 0.3140 0.3109 0.3007
L* 2 4.4389 4.4517 4.4019 0.2703 0.2661 0.2892
a* 2 0.7440 0.7455 0.7365 0.3137 0.3109 0.3224
b* 2 1.9186 1.9239 1.9405 0.2709 0.2669 0.2640

LVs, latent variables; RMSE, root mean square error; R2, coefficient of determination; C, calibration; CV, cross-validation; P, prediction; TBC, total bacterial 
count; VBN, volatile basic nitrogen.

Table 2. The selected metabolites highly correlated with total bacterial count (TBC) and volatile basic nitrogen (VBN)

Quality Metabolites (VIP score >1.0) Total number

TBC Acetaminophen, acetate, agmatine, alanine, arginine, asparagine, aspartate, cadaverine, fucose, 
glutamate, glutamine, glutathione, glycine, guanosine, histamine, homoserine, hypoxanthine, inosine 
monophosphate, inosine, isoleucine, leucine, lysine, malate, methionine, phenylalanine, proline, propyl-
ene glycol, putrescine, serine, threonine, tyramine, tyrosine, urea, valine

34

VBN Acetaminophen, acetate, agmatine, alanine, arginine, asparagine, aspartate, cadaverine, citrate, 
fucose, glutamate, glutamine, glutathione, glycine, guanosine, homoserine, hypoxanthine, inosine 
monophosphate, inosine, isoleucine, leucine, lysine, malate, methionine, niacinamide, phenylalanine, 
proline, propylene glycol, putrescine, serine, threonine, tyramine, tyrosine, uridine, valine

35

VIP, variable importance in projection.
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Figure 4. Variable importance in projection (VIP) scores plot metabolites with total bacterial count (TBC) and volatile basic nitrogen (VBN). (A) VIP 
scores for TBC, and (B) VIP scores for VBN. The data were pre-processed by auto-scaling.

Table 3. The linear regression results of total bacterial count (TBC) and volatile basic nitrogen (VBN) with metabolites

Y R2 Metabolites Coefficient VIF CI

TBC 0.886 (constant) 2.316 1.000
Lysine 0.120 3.417 5.150
Malate 0.288 3.417 12.140

VBN 0.909 (constant) 9.727 1.000
Methionine 0.614 1.972 2.739
Niacinamide –0.923 1.972 10.793

R2, coefficient of determination; VIF, variance inflation factor; CI, condition index.

ing trend. NAD+ is typically utilized in energy metabolism 
under conditions with oxygen, such as the TCA cycle, and 

its consumption results in the conversion to niacinamide 
[42,43]. However, in our study, niacinamide tended to de-



www.animbiosci.org  151

Choi et al (2025) Anim Biosci 38:142-156

crease, possibly due to limited oxygen entry caused by 
vacuum packaging, preventing the proper breakdown of 
NAD+.

Prediction of selected metabolites and freshness index 
with HSI spectral data 
Figure 5 represents the HSI spectral data showing the aver-
age reflectance values for samples at different wavelengths. 
To optimize the model, PLSR modeling was conducted for 
the four selected metabolites (lysine, malate, methionine, 
and niacinamide) with different preprocessing methods 
such as SNV, normalization, and MSC (Table 4). The model-
ing results indicated that for lysine and malate, the prediction 
coefficient of determination (R2

P) was best when using raw 
HSI spectral data and normalized HSI spectral data, with 
values of 0.8108 and 0.6862, respectively. Next, for methio-
nine and niacinamide, the model performance was highest 
when using the SNV preprocessing method for HSI spectral 
data, with values of 0.8130 and 0.7327, respectively. SNV is 
known to remove the noise effects arising from the size of 
solid particles, surface scattering, and variations in the light 
range on the diffuse reflectance spectrum [44]. As meat ex-
hibits a highly uneven surface compared to other food types, 
the SNV method could effectively reduce these variations 
and enhance the model's coefficient.
 Furthermore, for each metabolite, the wavelengths with 
high VIP scores (>1.0) were identified (Figure 6). Lysine and 
malate, associated with TBC, consistently exhibited high 

VIP scores (>1.0) at various wavelengths, including 400 to 
585 nm in the visible light range and 947, 1,214, and 1,441 to 
1,599 nm in the NIR range (Figure 6A and 6B). Methionine 
and niacinamide, which represent the value of VBN, also 
exhibited high VIP scores (>1.0) at 1,271 to 1,599 nm in the 
NIR range (Figure 6C and 6D). The optimal model for TBC 
(R2

p = 0.7220) and VBN (R2
p = 0.8392) was attained by prepro-

cessing the HSI spectral data with SNV (Table 4). Identifying 
the wavelengths with VIP scores greater than 1 revealed 
that for TBC, these wavelengths were 721 nm in the visible 
light range and 947 nm, as well as 1,047 to 1,599 nm in the 
NIR range (Figure 6E). For VBN, these wavelengths were 
not present in the visible light range and were observed at 
947 nm, as well as 1,180 to 1,599 nm in the NIR range (Fig-
ure 6F). Finally, when examining the common wavelengths 
with a VIP score greater than 1 for freshness indicators and 
metabolites, TBC with lysine and malate was observed at 
947, 1,214, and 1,441 to 1,599 nm, while VBN with methi-
onine and niacinamide appeared around 1,271 to 1,599 nm.
 Wavelengths near 721 and 947 nm are recognized to 
correspond to the water absorption bands related to O-H 
stretching and bending overtones [45]. Additionally, wave-
lengths within the range of 1,100 to 1,214 nm are associated 
with the second overtone of C-H stretching vibration in the 
radicals C-H, C-H2, and C-H3 of triglycerides [46]. Fur-
thermore, wavelengths ranging from 1,396 to 1,599 nm are 
acknowledged as the first overtone of the O-H and N-H 
stretching modes of water-bonded groups [6]. However, in 

Figure 5. The reflectance of meat samples in different wavelengths. The range of the wavelength is from 400 to 1,600 nm. The total number of 
wavelengths is 537.



152  www.animbiosci.org

Choi et al (2025) Anim Biosci 38:142-156

Table 4. The performance of Model 2 and Model 3 in different preprocessing methods

Objective Preprocessing LVs RMSEC RMSECV RMSEP R2
C R2

CV R2
P

Model 2
Lysine RAW 3 2.9318 3.0166 3.0595 0.8252 0.8150 0.8108

SNV 3 2.9993 3.1353 3.1540 0.8171 0.8001 0.7991
Normalize 3 3.0904 3.1766 3.2034 0.8058 0.7948 0.7927
MSC (Mean) 2 3.1978 3.2417 3.2549 0.7921 0.7864 0.7859

Malate RAW 2 1.2749 1.2914 1.2796 0.6723 0.6638 0.6663
SNV 2 1.3394 1.3572 1.3105 0.6383 0.6287 0.6498
Normalize 3 1.2306 1.2717 1.2410 0.6947 0.6741 0.6862
MSC (Mean) 2 1.4413 1.4626 1.4223 0.5812 0.5687 0.5876

Methionine RAW 3 2.4621 2.5435 2.5448 0.7258 0.7074 0.7124
SNV 2 2.0348 2.0586 2.0525 0.8127 0.8083 0.8130
Normalize 3 2.3462 2.4203 2.4273 0.7510 0.7350 0.7384
MSC (Mean) 2 2.5864 2.6226 2.6275 0.6974 0.6889 0.6936

Niacinamide RAW 3 0.9125 0.9450 0.9456 0.5737 0.5433 0.5595
SNV 2 0.7338 0.7422 0.7368 0.7243 0.7180 0.7327
Normalize 4 0.7482 0.8001 0.7928 0.7135 0.6729 0.6904
MSC (Mean) 2 0.9711 0.9852 0.9833 0.5172 0.5032 0.5241

Model 3
TBC RAW 3 0.8031 0.8282 0.8060 0.7144 0.6963 0.7094

SNV 2 0.8060 0.8160 0.7882 0.7123 0.7051 0.7220
Normalize 3 0.8028 0.8269 0.8011 0.7146 0.6972 0.7129
MSC (Mean) 2 0.8744 0.8866 0.8618 0.6614 0.6519 0.6677

VBN RAW 3 2.1464 2.2194 2.1713 0.7151 0.6955 0.7125
SNV 2 1.6276 1.6478 1.6239 0.8362 0.8321 0.8392
Normalize 3 2.0244 2.0935 2.0509 0.7466 0.7290 0.7436
MSC (Mean) 2 2.1979 2.2304 2.1939 0.7013 0.6924 0.7067

LVs, latent variables; RMSE, root mean square error; R2, coefficient of determination; C, calibration; CV, cross-validation; P, prediction; SNV, standard normal 
variate; MSC, multiplicative scatter correction; TBC, total bacterial count; VBN, volatile basic nitrogen.

another study that proposed the absorption spectra of pro-
tein and amino acids to be under 300 nm, expanding the 
HSI spectral range to shorter wavelengths might have yielded 
more improved results [47].

Making combination models to improve model 
performance for predicting TBC and VBN values
To improve the performance of the TBC and VBN prediction 
models using HSI and metabolites, a combination of HSI 
spectral data and selected metabolites data (lysine, malate, 
methionine, and niacinamide) were employed. The models 
were reconstructed using HSI data and selected metabolites 
(lysine and malate for TBC, methionine, and niacinamide 
for VBN) as X variables. The metabolites dataset consisted 
of the predicted metabolites obtained through Model 2, and 
the HSI spectral data was the prediction set used for making 
both Model 2 and 3 (n = 3,000). The results of this combina-
tion model with various preprocessing methods are shown 
in Supplementary Table S2. Among them, the best model for 
each freshness indicator was obtained with SNV preprocess-
ing. The predictive performance of the combination model 
(R2

p) for TBC increased by 0.0363, and for VBN, it increased 
by 0.0049 compared to the original freshness models (Figure 

7).
 These results may come from the microbial metabolism 
in meat during storage, as the selected freshness indicators 
in this study (TBC and VBN) have a highly significant rela-
tionship with microorganisms. As the meat spoils, TBC in 
the meat increases, leading to the generation of VBN com-
pounds such as dimethylamine, and ammonia. A previous 
study indicated that peaks in HSI spectral data around 930 
and 1,121 nm were related to Enterobacteriaceae, while 
peaks around 1,138 to 1,200, 1,450, and approximately 1,525 
nm were related to Pseudomonas spp., both known to im-
pact meat spoilage [48]. An increase in microorganisms 
could result in elevated oxidative stress on pork loin [49]. 
Among the selected metabolites, lysine and methionine are 
related to glutathione metabolism, which could contribute 
to the oxidation resistance of pork loin. Malate and niacina-
mide are associated with the TCA cycle and energy metabolism 
of microorganisms. Therefore, the interconnected relation-
ship between HSI spectral data, TBC, VBN, and four selected 
metabolites might work effectively in creating a performa-
tive combined modeling system. However, we have only 
suggested the possibility that specific microorganisms may 
have influenced certain peaks in the spectral data and con-
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sequently the spoilage of the meat. To confidently establish a 
direct relationship among metabolites, freshness indicators, 
and microorganisms, both qualitative and quantitative anal-
yses of the types of microorganisms present in pork loin are 
necessary.

CONCLUSION

TBC and VBN exhibited a high correlation with changes 
in metabolites and were identified as freshness indicators 
through PLSR modeling. Lysine and malate for TBC, and 
methionine and niacinamide for VBN were well explained 
as each freshness indicator. These were selected using lin-
ear regression models with a stepwise method. Ultimately, 
the predictive performance (R2

p) of the combination model 
established with selected metabolites and HSI data as X 
variables increased by 0.0363 for TBC and 0.0049 for VBN 
compared to model 3 which contained only HSI data in X 
variables. Therefore, the conclusion is drawn that combining 

HSI spectral data with correlated metabolite data improves 
the prediction of pork freshness compared to using HSI 
spectral data alone, as a non-destructive method. While 
further research under various conditions of pork loin is 
necessary for practical application in the meat industry, 
demonstrating the potential use of specific metabolites in 
developing HSI spectral models for meat spoilage is worth-
while.
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