

UNIVERSITI PUTRA MALAYSIA

SYNTHESIS AND CHARACTERIZATION OF NANOCOMPOSITE: 2-4-DICHLOROPHENOXY ACETATE-ZINC-ALUMINIUM HYDROTALCITELIKE LAYERS

JUNAINAH BINTI MOHD AMIN

FSAS 2003 44

SYNTHESIS AND CHARACTERIZATION OF NANOCOMPOSITE: 2-4-DICHLOROPHENOXYACETATE—ZINC-ALUMINIUM-HYDROTALCITE-LIKE LAYERS

By

.

JUNAINAH BINTI MOHD AMIN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia in Fulfilment of the Requirements for the Degree of Master of Science

September 2003

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Master of Science

SYNTHESIS AND CHARACTERIZATION OF NANOCOMPOSITE: 2-4-DICHLOROPHENOXYACETATE—ZINC-ALUMINIUM-HYDROTALCITE-LIKE LAYERS

By

JUNAINAH BINTI MOHD AMIN

September 2003

Chairman: Professor Mohd Zobir bin Hussein, Ph.D.

Faculty: Science and Environmental Study

A direct intercalation of 2,4-dichlorophenoxyacetate (2,4-D) into Zn-Al-layered double hydroxide (ZAL) was carried out by spontaneous self-assembly technique to produce Zn-Al-2,4-D nanocomposite (ZAD). The aging process was done by conventional and microwave-assisted methods. For both methods, the results showed that the intercalation process resulted in the expansion of the interlayer spacing from 10.7 Å in ZAL to around 19.0 - 24.6 Å in ZAD. Sharp and intense peaks for 003 and 006 reflections indicate wellordered layered structure which exhibit some common features of layered materials, e.g. narrow, symmetrical and strong peaks at low 2θ values and weaker, less symmetric peaks at higher 2θ values. Further characterization of the resulting materials including organicinorganic content, surface area and porosity, thermal analysis and morphology, were also carried out.

Both ZAL and ZAD have the capacity to neutralize aqueous solutions at different initial pH values. Deintercalation of 2,4-D from the interlayer of ZAD was achieved with sodium carbonate, buffer phosphate, sodium dihydrogen phosphate and sodium acetate solutions. In general, the release percentage of 2,4-D increased with time. Thermal decomposition on ZAL and ZAD was carried out by calcination of the resulting materials for 5 hours at different temperatures. Thermal decomposition of ZAL resulted in the formation ZnO phase. The LDH phase was no longer detected at temperature 300 °C. The surface area was found to increase as the temperature increased. This feature indicated that the layered clay-like structure was destroyed due to the formation of new a phase (ZnO phase). For ZADs, the layered structure was retained to at least 400 °C. However, at 450 °C, the layered structure completely collapsed due to the removal of the structural water and CO_2 from the interlayer together with the decomposition of the organic moiety of ZAD. The ZnO phase which was already observed in unheated ZAD became more prominent at 225 °C. The intensity of the peaks increased as the temperature was increased thereafter. The ZnAl₂O₄ spinel phase was also observed at 750 °C and became more prominent at 1000 °C. The surface area was found to decrease around 150 °C, constant at around 225 - 400 °C and increase at around 450 - 1000 °C. ZAD supplemented in the liquid culture media contributed to the multiplication of cultured cells.

PENYEDIAAN DAN PENCIRIAN NANOKOMPOSIT: LAPISAN SEAKAN HIDROTALSIT BAGI 2-4-DIKLOROFENOKSIASETAT—ZINK-ALUMINIUM

Oleh

JUNAINAH BINTI MOHD AMIN

September 2003

Pengerusi: Profesor Mohd Zobir bin Hussein, Ph.D.

Fakulti: Sains dan Pengajian Alam Sekitar

Penyisipan terus 2,4-diklorofenoksiasetat ke dalam Zn-Al-hidroksida berlapis ganda (ZAL) telah dilakukan dengan kaedah pembentukan sendiri untuk membentuk nanokomposit Zn-Al-2,4-D (ZAD). Proses penuaan dilakukan dengan cara konvensional dan bantuan gelombang mikro. Melalui kedua-dua cara ini, nanokomposit yang terbentuk mengalami p engembangan j arak a ntara r uang u ntuk h idroksida b erlapis g anda t ersebut daripada 10.7 Å kepada 19.0-24.6 Å. Puncak yang tajam dan bersimetri pada puncak 003 dan 006 dalam corak pembelauan sinar-X menunjukkan bahawa nanokomposit yang tiperolehi mempunyai struktur lapisan nano yang lebih tersusun, puncak yang tajam dan bersimetri pada nilai 20 yang tinggi. Pencirian yang lain seperti kandungan organik-tak organik, luas permukaan dan keliangan, analisis terma dan morfologi permukaan juga telah dilakukan. Kedua-dua ZAL dan ZAD menunjukkan kuasa peneutralan dan penimbalan yang baik terhadap larutan akues pada pH awal yang berbeza. Deinterkalasi

anion 2,4-D daripada ruang antara lapisan ZAD telah dilakukan dalam larutan akues natrium karbonat, penimbal fosfat, natrium dihidrogen fosfat dan natrium asetat. Pada umumnya, peratus pembebasan 2,4-D bertambah dengan masa. Penguraian terma juga telah dikaji dengan memanaskan ZAL dan ZAD selam 5 jam pada suhu-suhu tertentu dan pencirian juga telah dilakukan. Penguraian terma ke atas ZAL membawa kepada pembentukan fasa ZnO. Fasa LDH tidak lagi kelihatan pada suhu 300 °C. Luas permukaannya didapati bertambah dengan kenaikan suhu. Ini menunjukkan bahawa struktur seakan tanah liat berlapis telah runtuh kerana wujudnya fasa baru (fasa ZnO). Bagi ZAD pula, struktur berlapis kelihatan hanya pada suhu sekurang-kurangnya 400 °C. Walaubagaimanapun, pada suhu 450 °C, struktur berlapis runtuh dengan sempurna disebabkan oleh kehilangan air, karbon dioksida serta penguraian sebahagian komponen organik ZAD. Fasa ZnO yang sudah sedia ada pada ZAD yang tidak dipanaskan menjadi lebih jelas pada suhu 225 °C. Keamatan puncaknya bertambah dengan kenaikan suhu pemanasan. Fasa spinal ZnAl₂O₄ juga telah dapat dilihat dengan lebih jelas pada suhu 750 °C dan 1000 °C. Luas permukaannya pula berkurang pada suhu sekitar 150 °C, tetap pada 225 – 400 °C dan b ertambah p ada suhu s ekitar 450 – 1000 °C. ZAD yang digunakan dalam media kultura menunjukkan ia membantu multiplikasinya.

ACKNOWLEDGEMENTS

Alhamdulillah is the first phrase that comes out of my lips when I am typing this thesis, all praises should go to ALLAH for giving me strength and patience to the completion of this thesis.

First of all, I would like to take this opportunity to express myd eepest thanks to my project supervisor, Professor Dr. Mohd Zobir bin Hussein who accepted me as his student. His invaluable guidance and constructive advice very meaningful for me to complete this project.

My thanks also goes to Dr. Ahmad Tarmizi bin Hashim, Associate Professor Dr. Zulkarnain bin Zainal and Dr Asmah binti Hj. Yahaya, who guided me through all the aspects of this work.

I would also like to extend my thanks to all laboratory assistants in Chemistry Department who had in one-way or another assisted me by giving a helping hand when needed. My all lab mates for their kindness, helpful suggestions, extremely supportive and always with apparent good cheer. Puan Zaitun Rasul, Jihan, Ida and all their colleagues for their invaluable help in running of the experiments at Malaysian Palm Oil Board (MPOB).

.

Last but not least, I would like to acknowledge the financial support of this research by the Ministry of Science, Technology and Environment through National Science Scholarship (NSF) and IRPA grant 09-02-04-00325-EA001. I certify that an Examination Committee met on 19 September 2003 to conduct the final examination of Junainah Binti Mohd Amin on her Master of Science thesis entitled "Synthesis and Characterization of Nanocomposite: 2-4-Dichlorophenoxyacetate—Zinc-Aluminium-Hydrotalcite-Like Layers" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidates be awarded the relevant degree. Members of the Examination Committee are as follows:

HALIM BIN ABDULLAH, Ph.D.

Professor Faculty of Science and Environmental Studies Universiti Putra Malaysia (Chairman)

MOHD ZOBIR BIN HUSSEIN, Ph.D.

Professor Faculty of Science and Environmental Studies Universiti Putra Malaysia (Member)

ZULKARNAIN BIN ZAINAL, Ph.D.

Associate Professor Faculty of Science and Environmental Studies Universiti Putra Malaysia (Member)

ASMAH BINTI HJ. YAHAYA, Ph.D.

Faculty of Science and Environmental Studies Universiti Putra Malaysia (Member)

AHMAD TARMIZI BIN HASHIM, Ph.D.

Malaysian Palm Oil Board (Member)

GULAM RUSUL RAHMAT ALI, Ph.D. Professor/Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 9 JAN 2004

This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the supervisory committee are as follows:

MOHD ZOBIR BIN HUSSEIN, Ph.D.

Professor Faculty of Science and Environmental Studies Universiti Putra Malaysia (Chairman)

ZULKARNAIN BIN ZAINAL, Ph.D.

Associate Professor Faculty of Science and Environmental Studies Universiti Putra Malaysia (Member)

ASMAH BINTI HJ. YAHAYA, Ph.D. Faculty of Science and Environmental Studies Universiti Putra Malaysia (Member)

AHMAD TARMIZI BIN HASHIM, Ph.D.

Malaysian Palm Oil Board (Member)

AINI IDERIS, Ph.D. Professor/Dean School of Graduate Studies Universiti Putra Malaysia

Date: 30 JAN 2004

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

river

JUNAINAH BINTI MOHD AMIN

Date: 8 JAN 2004

TABLE OF CONTENTS

ABSTRACT	ii
ABSTRAK	iv
ACKNOWLEDGEMENTS	vi
APPROVAL SHEETS	viii
DECLARATION	х
LIST OF TABLES	xv
LIST OF FIGURES	xvii
LIST OF ABBREVIATIONS	xxiii

CHAPTER

I

INTRODUCTION	
Nanocomposite	1
Nanoscale Regime	1
Composite	2
Nanoporous Materials	3
Hydrotalcite	4
Structure of LDH	6
Application of LDH	8
Intercalation process	10
Methods of Preparation	12
Thermal Stability	13
Microwave Irradiation	15
Applications of Microwave Irradiation	16
Controlled-release	17
Diffusion	19
Surface Area Analysis	20
Hysteresis Loop	22
Plant Growth Regulator	23
Auxins	25
2,4-dichlorophenoxyacetic acid	26
Plant Tissue Culture	28
Tissue Culture of Palm Oil	29
Liquid Cultures	30
Buffer Effect	30
Previous Work on Intercalation	32
Objectives of the Study	36

Page

	Fourier Transform Infrared Kinetic Study	82 83
IV	MICROWAVE-ASSISTED SYNTHESIS OF ZA	L AND ZAD
	Powder X-ray Diffraction	94
	Fourier Transform Infrared	97
	Organic-Inorganic Composition	101
	Surface Properties	102
	Thermal Analysis	108
	Surface Morphology	111
V	THERMAL DECOMPOSITION OF ZAL AND 2	LAD
	Thermal Decomposition of ZAL	
	Powder X-ray Diffraction	115
	Fourier Transform Infrared	115
	Surface Properties	118
	Surface Morphology	122
	Thermal Decomposition of ZAD	
	Powder X-ray Diffraction	125
	Fourier Transform Infrared	128
	Organic Composition	130
	Surface Properties	
	Adsorption-Desorption Isotherm	131
	Pore Size Distribution	132
	Surface Morphology	138
VI	PLANT TISSUE CULTURE	
	Release of 2,4-D into Liquid Cultures	144
	Commercial 2,4-D	144
	ZAD-Dissolved	145
	ZAD-Non-Dissolved	146
	Controlled-release of 2,4-D in MS Medium	147
	Future Study	147
	CONCLUSIONS	160
REFER	ENCES	163

APPENDICES	5	
A	Size relationships of chemistry, nanoparticles and solid-state physics.	171
В	Regions of the electromagnetic spectrum.	172
С	Composition of Murashige and Skoog medium.	173
D	Paper published in Proceeding of the Regional Conference For Young Chemist 2001	174
E	Paper published in Journal of Nanoscience and Nanotechnology	180
F	Paper published in Proceeding of The Annual Workshop National Science Fellowship (NSF) January 2002.	184
G	Fitting of accumulation release of 2,4-D in sodium carbonate (a), buffer phosphate (b), sodium dihydrogen phosphate (c) and sodium acetate solution (d) with second order kinetics.	191

VITA

194

•

LIST OF TABLE

Table		Page
1.1	Physical and chemical properties of 2,4-dichlorophenoxyacetic- acid:	26
1.2	Previous works on the intercalation of organic moieties into Mg-Al- LDH.	32
1.3	Previous works on the intercalation of organic moieties into Zn-Al-LDH	34
1.4	Previous works on the intercalation of organic moieties into Cu-Cr, Cu-Al and Li-Al-LDH	35
3.1a	Basal spacing of ZAL and ZADs synthesized at pH 7.	50
3.1b	Basal spacing of ZAL and ZADs synthesized at pH 10.	50
3.2	Organic and Inorganic composition of ZAL and ZAD	56
3.3	Surface properties of ZAL and ZAD.	61
3.4	TGA/DTG results for ZAL and ZAD	62
3.5	The values of K , $t_{1/2}$ and r^2 for release solutions obtained from Equation [3-3] and [3-4].	89
4.1	Basal spacing for ZALs and ZADs prepared by using microwave-assisted and conventional – oil bath methods.	97
4.2	The organic and inorganic composition of ZAL and ZADs prepar using microwave-assisted and conventional-oil bath methods.	red 102
4.3	Surface property of ZADMICs and ZADOBs.	103
4.4	TGA/DTG results for ZALMIC60, ZALOB60, ZADMIC60 and ZADOB60.	111
5.1	Summary of the properties of ZAL calcined at various	

.

LIST OF FIGURES

Figure		Page
1.1	Schematic cross-section of a porous solid.	4
1.2	Structure of hydrotalcite	7
1.3	Schematic picture of the possible applications of hydrotalcite-like compounds	9
1.4	Schematic illustration of a pillared material	11
1.5	Types of adsorption isotherms	21
1.6	De Boer's five types of hysteresis loop	24
1.7	Structure of 2,4-dichlorophenoxyacetic acid	27
1.8	Tissue culture of palm oil	29
3.1a	PXRD patterns for 2,4-D, ZAL and ZADs synthesized with the use of various concentrations of 2,4-D at pH 7.	51
3.1b	PXRD patterns for 2,4-D, ZAL and ZADs synthesized with the use of various concentrations of 2,4-D at pH 10.	52
3.1c	Comparison of a PXRD pattern of ZAD and ZAL synthesized under optimum conditions.	53
3.2	FTIR spectra of 2,4-D (a), ZAL (b) and ZAD (c).	55
3.3a	Adsorption-desorption isotherms of ZAL and ZAD	59
3.3b	Pore size distribution of ZAL and ZAD.	60
3.4a	TGA () and DTG () plot of ZAL	63
3.4b	TGA () and DTG () plot of ZAD	63
3.5a	Scanning Electron Micrograph of ZAL at 2,000x	64

3.5b	Scanning Electron Micrograph of ZAL at 2,000x	65
3.5c	Scanning Electron Micrograph of ZAD at 2,000x	65
3.5d	Scanning Electron Micrograph of ZAD at 5,000x	66
3.6a	pH profiles of the release media at various initial pH values for ZAL	68
3.6b	pH profiles of the release media, at various initial pH values for ZAD.	69
3.7a	percentage of release of 2,4-D from ZAD in sodium carbonate solution (a), buffer phosphate solution (b), sodium dihidrogen phosphate solution (c) and sodium acetate solution (d).	71
3.7b	percentage of release of 2,4-D from physical mixture of ZAL and 2,4-D in sodium carbonate solution (a), buffer phosphate solution (b), sodium dihidrogen phosphate solution (c) and sodium acetate solution (d)	72
3.8a	PXRD patterns of deintercalation products of ZAD after rel process in sodium carbonate solution.	ease 78
3.8b	PXRD patterns of deintercalation products of ZAD after release process in buffer phosphate solution.	79
3.8c	PXRD patterns of deintercalation products of ZAD after release process in sodium dihydrogen phosphate solution.	80
3.8d	PXRD patterns of deintercalation products of ZAD after release process in sodium acetate solution.	81
3.9a	FTIR spectra of sample recovered from sodium carbonate aqueous solution at various contact times.	84
3.9b	FTIR spectra of sample recovered from buffer phosphate aqueous solution at various contact times.	85
3.9c	FTIR spectra of sample recovered from sodium dihydrogen phosphate aqueous solution at various contact times.	86

3.9d 3.10a-d	FTIR spectra of sample recovered from sodium acetate aqueous solution at various contact times. Fitting of release of 2,4-D in sodium carbonate (a), buffer phosphate (b), sodium dihydrogen phosphate (c) and sodiur acetate solution (d).	87 n 89
3.11a-d	Fitting of release of 2,4-D in sodium carbonate (a), buffer phosphate (b), sodium dihydrogen phosphate (c) and sodium acetate solution (d) with Baker and Lonsdale Model.	91
4.1a	PXRD patterns for ZAL60MIC (a), ZADMIC15 (b), ZADMIC30 (c), ZADMIC45 (d) and ZADMIC60 (e).	95
4.1b	PXRD patterns for ZALOB60 (a), ZADOB15 (b), ZADOB30 (c), ZADOB45 (d) and ZADOB60 (e).	96
4.2a	FTIR spectra for 2,4-D (a), ZALMIC60 (b), ZADMIC15 (c), ZADMIC30 (d), ZADMIC45 (e) and ZADMIC60 (f).	99
4.2b	FTIR spectra for 2,4-D (a), ZALOB60 (b), ZADOB15 (c), ZADOB30 (d), ZADOB45 (e) and ZADOB60 (f).	100
4.3a	Adsorption-desorption isotherms of ZADMIC15 (a), ZADMIC30 (b), ZADMIC45 (c) and ZADMIC60 (d).	104
4.3b	Adsorption-desorption isotherms of ZADOB15 (a), ZADOB30 (b), ZADOB45 (c) and ZADOB60 (d).	105
4.4a	Pore size distribution of ZADMIC15 (a), ZADMIC30 (b), ZADMIC45 (c) and ZADMIC60 (d).	106
4.4b	Pore size distribution of ZADOB15 (a), ZADOB30 (b), ZADOB45 (c) and ZADOB60 (d).	107
4.5a-d	TGA () and DTG () plot of ZALMIC60 (a), ZALOB60 (b), ZADMIC60 (c) and ZADOB60 (d).	109
4.6a	Scanning Electron Micrograph of ZALMIC60 at 5,000x.	112
4.6b	Scanning Electron Micrograph of ZALOB60 at 5,000x	112

4.6c	Scanning Electron Micrograph of ZADMIC60 at 5,000x	113
4.6d	Scanning Electron Micrograph of ZADOB60 at 5,000x	113
4.6e	Scanning Electron Micrograph of ZADMIC45 at 5,000x	114
4.6f	Scanning Electron Micrograph of ZADOB60 at 5,000x	114
5.11	PXRD patterns for (a) as prepared ZAL, and its calcined products, (b) 150, (c) 300 and (d) 400 °C.	116
5.12	FTIR spectrum for (a) as prepared ZAL, and its calcined products, (b) 150, (c) 300 and (d) 400 °C.	117
5.13	Adsorption-desorption isotherms of ZAL calcined at (a) 150, (b) 300 and (c) 400 $^{\circ}$ C.	119
5.1.4	Pore size distribution of ZAL calcined at (a) 150, (b) 300 and (c) 400 °C.	120
5.1.5	Plot of BET surface are versus temperature of ZAL	121
5.1.6	Scanning Electron Micrograph of (a) as-prepared ZAL and its calcined products, (b) 150, (c) 300 and (d) 400 °C.	124
5.2.1	PXRD patterns for (a) as prepared ZAD, and its calcined products, (b) 150, (c) 225, (d) 250, (e) 350, (f) 400, (g) 450, (h) 750 and (i) 1000 °C.	126
5.2.2	Plot of basal spacing of ZAD versus temperature of calcinations.	127
5.2.3	FTIR spectrum for (a) as prepared ZAD, and its calcined products, (b) 150, (c) 225, (d) 250, (e) 350, (f) 400, (g) 450 (h) 750 and (i) 1000 °C.), 129
5.2.4	Plot of (a) carbon, (b) hydrogen and (c) nitrogen content in ZAD versus temperature of calcinations.	130
5.2.5	Adsorption-desorption isotherms for ZAD calcined at (a) 150, (b) 225, (c) 250, (d) 350, (e) 400, (f), 450, (g) 750 (b) and (h) 1000 °C.	135

6.10 Controlled-release of 2,4-D into MS Media

159

.

6.10 Controlled-release of 2,4-D into MS Media

•

159

24

6

LIST OF ABBREVIATIONS

Å	Angstrom
ASAP	Accelerated Surface Area and Porosity
BDDT	Brunaeur, Demming, Demming and Teller
BET	Brenaeur, Emmett and Teller
BJH	Barret, Johner and Halenda
CHNS	Carbon, Hydrogen, Nitrogen and Sulfur analysis
CRF	Controlled release formulation
HT	Hydrotalcite
ICP-AES	Inductive Couple Plasma-Atomic Emission Spectroscopy
LDH	Layered double Hydroxide
MS	Murashige and Skoog Medium
NAA	Naphtaleneacetic acid
PVC	Polyvinylchloride
PXRD	Powder X-Ray Diffraction
R	Ratio of Zn^{2+} to Al^{3+}
R _f	Ratio of Zn^{2+} to Al^{3+} formed
R _i	Ratio of Zn^{2+} to Al^{3+} initial
SEM	Scanning Electron Microscopy
STP	Standard Temperature and Pressure
TGA-DTG	Thermogravimetry Analysis – Derivative Themorgravimetry Analysis
Х	Fraction of Al^{3+} in brucite-like layer, $x = Al/(Al+Mg)$

- ZAD $Zn^{2+}-Al^{3+}-2,4$ -dichlorophenoxyacetate
- ZALMIC60 ZAL microwave 60
- ZADMIC15 ZAD microwave 15
- ZADMIC30 ZAD microwave 30
- ZADMIC45 ZAD microwave 45
- ZADMIC60 ZAD microwave 60
- ZALOB60 ZAL oil bath 60
- ZADOB15 ZAD oil bath 15
- ZADOB30 ZAD oil bath 30
- ZADOB45 ZAD oil bath 45
- ZADOB60 ZAD oil bath 60
- 1 ppm C MS liquid medium with 1ppm 2,4-D commercial
- 5 ppm C MS liquid medium with 5ppm 2,4-D commercial
- 10 ppm C MS liquid medium with 10ppm 2,4-D commercial
- 1 ppm C + MS liquid medium with 1 ppm 2,4-D commercial + 0.1 ppm NAA
- 0.1 ppm NAA
- 1 ppm Z MS liquid medium with 1 ppm 2,4-D ZAD
- 5 ppm Z MS liquid medium with 5ppm 2,4-D ZAD
- 10 ppm Z MS liquid medium with 10ppm 2,4-D ZAD
- 1 ppm Z + MS liquid medium with 1ppm 2,4-D ZAD + 0.1 ppm NAA

0.1 ppm NAA

1 ppm ZND	MS liquid medium with 1ppm 2,4-D ZAD non-dissolved
5 ppm ZND	MS liquid medium with 5ppm 2,4-D ZAD non-dissolved
10 ppm ZND	MS liquid medium with 10ppm 2,4-D ZAD non-dissolved
1 ppm ZND +	MS liquid medium with 1ppm 2,4-D ZAD non- dissolved
0.1 ppm NAA	+ 0.1 ppm NAA
2,4-D	2,4-dichlorophenoxyacetate
θ	X-ray diffraction angle