UNIVERSITI PUTRA MALAYSIA

EFFECTS OF PHYTIC ACID EXTRACTED FROM RICE BRAN ON AZOXYMETHANE-INDUCED COLON CARCINOGENESIS IN RATS

NORAZALINA SAAD

FPV 2008 13
EFFECTS OF PHYTIC ACID EXTRACTED FROM RICE BRAN ON AZOXYMETHANE-INDUCED COLON CARCINOGENESIS IN RATS

By

NORAZALINA SAAD

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Sciences

August 2008
Specially dedicated to

My mum and sister

For their invaluable love, understanding, encouragement and patience.
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

EFFECTS OF PHYTIC ACID EXTRACTED FROM RICE BRAN ON AZOXYMETHANE – INDUCED COLON CARCINOGENESIS IN RATS

By

NORAZALINA SAAD

April 2008

Chairman : Norhaizan Mohd Esa, PhD
Faculty : Medicine and Health Sciences

This research is carried out to study the potential of phytic acid extracted from rice bran in the suppression of colon carcinogenesis in rats. In the optimization of phytic acid extraction, results showed 5% H₂SO₄ in pH 0.6 and 30 minutes of extraction time gave the highest amount of phytic acid. In animal study, 72 male Sprague-Dawley rats were divided into 6 groups with 12 rats in each group; Group 1: AOM alone, Group 2: AOM + 0.2% (w/v) Commercial Phytic Acid (CPA), Group 3: AOM + 0.5% (w/v) Commercial Phytic Acid (CPA), Group 4: AOM + 0.2% (w/v) Extract Phytic Acid (EPA), Group 5: AOM + 0.5% (w/v) Extract Phytic Acid (EPA). Rats received two subcutaneous injections of azoxymethane (AOM) in saline at (15mg/kg bodyweight) over a 2-weeks period to induce colon cancer. The treatments were given in two different concentrations of phytic acid; 0.2% (w/v) and 0.5% (w/v) during post initiation of carcinogenesis phase via drinking water.
The colons of the animals were analyzed for detection and quantification of aberrant crypt foci (ACF) after 8 weeks of treatment. The finding showed treatment with 0.2% (w/v) EPA gave the greatest reduction in the formation of ACF. In addition, phytic acid significantly suppressed the number of ACF in the distal, middle and proximal colon as compared to AOM alone (p<0.05). For the histological classification of ACF, treatment with 0.5% (w/v) CPA had the highest percentage (71%) of non-dysplastic ACF followed by treatment with 0.2% (w/v) EPA (61%). After 20 weeks of treatment, colons of the rats were excised and analyzed for tumor incidence. Results showed that administration of phytic acid reduced the incidence and multiplicity of total tumors and adenocarcinomas even though there were no significant differences between groups.

For the immunohistochemical analyses, proliferating cell using Ki-67 and modulating of β-catenin and COX-2 expression were assessed as those have been shown to play a role in tumor progression. In Ki-67, there was a statistically significance difference in lowering the proliferating index between treatment groups as compared to AOM alone (p<0.05). For β-catenin and COX-2 expression, there was a significant difference between groups as (p=0.000) and (p=0.030). In the correlation test, the results showed that there was a significant positive correlation (p=0.010) between proliferation of Ki67 and COX-2 expression. A positive linear relationship was found between total Ki67 and β-catenin but these relationships were not statistically significant. Total β-catenin had a significant positive linear relationship with total COX-2 (p = 0.044).
As a conclusion, this study found the potential value of phytic acid extracted from rice bran in reducing colon cancer risk in rats. Besides identification of cancer reduction strategies based on dietary modification including looking at natural sources that may have anticancer properties, an alternative compound from local sources has been developed. Therefore, rice bran that is normally discarded as by-product of rice production will increase in value due to phytic acid potential as a nutraceutical compound in the prevention of colon cancer progression.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

KESAN ASID FITIK YANG DIEKSTRAK DARIPADA DEDAK BERAS TERHADAP TIKUS YANG TERARUH KANSER KOLON MENGGUNAKAN AZOKSIMETANA

Oleh

Norazalina Saad

April 2008

Pengerusi : Norhaizan Mohd Esa, PhD
Fakulti : Perubatan dan Sains Kesihatan

Kajian ini dijalankan dengan tujuan untuk mengkaji potensi asid fitik yang diekstrak daripada dedak beras dalam mengurangkan kejadian kanser kolon pada tikus. Dalam mendapatkan tahap pengekstrakan asid fitik, keputusan menunjukkan 5% H₂SO₄ dengan pH 0.6 dan masa pengekstrakan selama 30 minit telah memberikan jumlah amaun asid fitik yang tinggi. Dalam kajian haiwan eksperimen, 72 ekor tikus spesis Sprague-Dawley dibahagikan kepada 6 kumpulan dengan setiap kumpulan mempunyai 12 ekor; Kumpulan 1: Azoksimetana (AOM) sahaja, Kumpulan 2: AOM + 0.2% (w/v) Komersial Asid Fitik (CPA), Kumpulan 3: AOM + 0.5% (w/v) Komersial Asid Fitik (CPA), Kumpulan 4: AOM + 0.2% (w/v) Ekstrak Asid Fitik (EPA), Kumpulan 5: AOM + 0.5% (w/v) Ekstrak Asid Fitik (EPA), Kumpulan 6: Normal. Tikus telah menerima
dua suntikan AOM secara intraperitoneum dalam larutan garam yang steril pada kepekatan (15mg/kg berat badan) selama 2 minggu untuk mengaruh kolon kanser. Rawatan asid fitik diberi dalam dua kepekatan yang berbeza; 0.2% (w/v) dan 0.5% (w/v) selepas fase permulaan karsinogenesis melalui air minuman.

Kolon daripada haiwan eksperimen dianalisa untuk mengesakan dan mengira focus kript aberan (ACF) selepas rawatan selama 8 minggu. Keputusan menunjukkan bahawa rawatan dengan 0.2% (w/v) EPA memberikan kadar penurunan yang paling tinggi dalam pembentukan ACF. Selain itu, asid fitik secara signifikan merendahkan jumlah ACF pada kolon di bahagian distal, pertengahan dan proksimal dibandingkan dengan kumpulan AOM sahaja. Untuk pengelasan histologikal ACF, rawatan dengan 0.5% (w/v) CPA mempunyai peratus tertinggi (71%) ACF tisu yang tidak mengalami displasia diikuti oleh rawatan dengan menggunakan 0.2% (w/v) EPA (61%). Selepas rawatan selama 20 minggu, kolon tikus dikeluarkan dan dianalisa untuk melihat pembentukan tumor. Keputusan menunjukkan bahawa pemberian asid fitik boleh mengurangkan kejadian dan penggandaan jumlah tumor dan adenokarsinoma walaupun tidak terdapat perbezaan yang signifikan di antara kumpulan.

Untuk analisis menggunakan kaedah immunohistokimia, penentuan proliferasi sel Ki-67 dan modulasi ekspresi β-catenin dan COX-2 digunakan untuk menunjukkan peranan dalam perkembangan tumor. Dalam Ki-67, terdapat perbezaan yang signifikan dalam merendahkan indeks proliferasi antara
kumpulan rawatan apabila dibandingkan dengan AOM sahaja (p<0.05). Dalam ekspresi β-catenin dan COX-2, terdapat perbezaan yang signifikan antara kumpulan (p=0.000) dan (p=0.030). Dalam ujian korelasi, keputusan menunjukkan terdapat korelasi positif yang signifikan (p=0.010) antara perkembangan proliferasi Ki67 dan ekspresi COX-2. Didapat hubungan yang linear positif antara keseluruhan ekspresi Ki67 dan β-catenin, namun perkaitan adalah tidak signifikan. Keseluruhan β-catenin mempunyai hubungan linear positif yang signifikan dengan jumlah expresi COX-2 (p=0.044).

Sebagai kesimpulan, kajian ini menunjukkan nilai potensi asid fitik yang diekstrak daripada dedak beras dalam mengurangkan risiko kanser kolon pada tikus. Selain penentuan strategi untuk mengurangkan kanser berdasarkan modifikasi diet dengan memberi perhatian kepada sumber semula jadi yang mempunyai sifat anti kanser, sebatian alternatif daripada sumber tempatan dapat dihasilkan. Dengan itu, dedak beras yang biasanya dibuang sebagai hasil sampingan dalam penghasilan beras akan dapat ditingkatkan nilaiannya dengan adanya asid fitik yang berpotensi sebagai agen nutraseutikal dalam pencegahan perkembangan kolon kanser.
ACKNOWLEDGEMENTS

In the name of Allah, the most benevolent and most merciful. I would like to take this opportunity to thank all those who gave great support to me while doing this thesis. First and foremost, I would like to extend my deepest gratitude to my supervisor, Dr. Norhaizan Mohd Esa, for her generous guidance, advice and endless support that contributed significantly towards the completion of this project. Her careful reviews and constructive criticism have been crucially important for this thesis.

My sincere gratitude is also accorded to my co-supervisors, Assoc. Prof. Dr. Hairuszah Ithnin and Prof. Dr. Maznah Ismail for their constructive advice, priceless comment and invaluable advice throughout the entire course of this research.

I gratefully acknowledge staff, laboratory assistants at Department Nutrition and Dietetics especially Mrs. Siti Muskinah, Mrs. Maznah and Mr. Simon for their help and cooperation. I would also like to acknowledge all the staff of Hispathological Laboratory, especially Mrs. Juita, Miss Zamzurina and Mrs. Normah for their assistance and kindly allowing me to access their laboratory facilities.
Special thanks are expressed to Dr. Ahmad Bustamam for allowing me to use Laboratory of Cancer Research MAKNA-UPM, Institute of Biosciences for immunohistochemical work.

I am indebted to my friends, especially Mr Muhammad Taib, Mrs. Shana, Ms. Azura, Ms. Sareena, Ms Nurzillah, Mrs. Nurhafzan Anis, Mrs. Kamilah, Mrs. Azizah, Ms. Tahirah, Mr. Nazmi, and Mr. Yip Wai Kien for their collaboration and continuous support and perseverance.

Finally, yet importantly I would like to express my heartiest appreciation to all my family members for their understanding and support throughout my studies.

Above all, I thank God for His mercy and blessing on me.
I certify that an Examination Committee has met on 27 August 2008 to conduct the final examination of Norazalina Saad on her Master of Science thesis entitled “Effects of Phytic Acid Extracted from Rice Bran on Azoxymethane-Induced Colon Carcinogenesis in Rats” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the student be awarded the Master of Science.

Members of the Examination Committee were as follows:

Fauziah Othman, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Asmah Rahmat, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Sabariah Abdul Rahman, MBBS, M. Path
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Azian Abdul Latiff, PhD
Associate Professor
Faculty of Medicine
Universiti Kebangsaan Malaysia
Malaysia
(External Examiner)

HASANAH MOHD. GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 27 November 2008
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Norhaizan Mohd Esa, PhD
Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Hairuszah Ithnin, MD, M. Path
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Maznah Ismail, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

HASANAF MOHD. GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 19 December 2008
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously and is not concurrently submitted for any other degree at Universiti Putra Malaysia or at any other institution.

NORAZALINA SAAD

Date: 28.10.2008
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>viii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>x</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xx</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION
1.1 Research Background 1
1.2 Importance of Study 4
1.3 Objectives 7
1.3.1 General Objective 7
1.3.2 Specific Objectives 7
1.4 Null Hypotheses 8

2 LITERATURE REVIEW
2.1 Introduction to phytic acid 9
2.1.1 Potential positive roles of phytic acid 12
2.2 Rice bran 16
2.2.1 Health benefits of rice bran 21
2.3 Carcinogenesis 22
2.3.1 Cancer 24
2.3.2 Chemical carcinogens 28
2.4 Colon Carcinogenesis 30
2.4.1 Anatomy and physiology of colon 30
2.4.2 Cell proliferation 31
2.4.3 Aberrant crypt 32
2.4.4 Adenomatous polyps 35
2.4.5 Colorectal carcinoma 37
2.4.6 Genetic alteration define in growth colorectal adenoma/carcinoma 39
2.5 Anti-cancer effects of phytic acid 46
2.5.1 Phytic acid as a therapeutic and preventive agent for cancer 51
2.5.2 Mechanism of cancer suppression 54
2.6 Analysis of phytic acid in foods 56
3 MATERIALS AND METHODS

3.1 Materials

3.1.1 Rice Bran 59
3.1.2 Chemicals and reagents 59
3.1.3 Instruments and Equipments 61

3.2 Methods

3.2.1 Stabilization of Rice Bran 62
3.2.2 Lipid Extraction 62
3.2.3 Optimization of phytic acid extraction from rice bran 63
3.2.4 Spectrophotometrical determination of phytic acid 63
3.2.5 Neutralisation of phytic acid 64
3.2.6 Anion-Exchange purification 65
3.2.7 HPLC method for phytic acid analysis 66

3.3 In vivo study

3.3.1 Animals 66
3.3.2 Ethical approval 67
3.3.3 Carcinogen treatment 67
3.3.4 Experimental design 67
3.3.5 Termination of experiment 68
3.3.6 Histological analysis 70
3.3.7 Immunohistochemistry 75

3.4 Statistical Evaluation 79

4 RESULTS

4.1 Optimization of phytic acid extraction from rice bran 80
4.2 Spectrophotometrical determination of phytic acid 81
4.3 Separation of phytic acid using HPLC 83
4.4 In vivo bioassay 83
4.4.1 Body Weights and Water Consumption 84
4.4.2 Effect of phytic acid on the incidence of Aberrant Crypt Foci (ACF) in rat colon induced by AOM 92
4.4.3 Histological Classification of ACF 100
4.4.4 Tumor Assessment 119
4.4.5 Immunohistochemical Staining of Ki-67, β-catenin and COX-2 in colonic tissue 109

5 DISCUSSION

5.1 Optimization of phytic acid extraction from rice bran 118
5.2 Spectrophotometrical determination of phytic acid 122
5.3 Neutralization of phytic acid extract 123
5.4 Anion-exchange purification 124
5.5 Separation of phytic acid using HPLC 128
5.6 In vivo study 128
5.6.1 Effect of phytic acid on the incidence of Aberrant 128
Crypt Foci (ACF) in rat colon induced by AOM

5.6.2 Histological Classification of ACF 132
5.6.3 Tumor Assessment 132
5.6.4 Immunohistochemical Staining of Ki-67, ß-catenin 138
and COX-2 in colonic tissue

5 CONCLUSION AND RECOMMENDATION 148

6 REFERENCES 151
APPENDICES 180
BODATA OF STUDENT 183
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Phytic acid content (g/100g) of various cereals, root and fruit vegetables</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>Selected Agricultural Production (‘100 tones)</td>
<td>15</td>
</tr>
<tr>
<td>2.3</td>
<td>Nutrient Composition of Stabilised Full Fat Rice Bran</td>
<td>18</td>
</tr>
<tr>
<td>2.4</td>
<td>Comparison of rice bran to other cereal brans</td>
<td>19</td>
</tr>
<tr>
<td>2.5</td>
<td>Characteristic of aberrant crypt</td>
<td>33</td>
</tr>
<tr>
<td>2.6</td>
<td>Variables affecting the utility of the ACF system</td>
<td>33</td>
</tr>
<tr>
<td>2.7</td>
<td>Antitumor effect of inositol hexaphosphate (IP6) in vitro</td>
<td>47</td>
</tr>
<tr>
<td>2.8</td>
<td>Antitumor effect of IP6 and inositol in vivo</td>
<td>51</td>
</tr>
<tr>
<td>3.1</td>
<td>Tissue dehydration in a tissue processor machine</td>
<td>72</td>
</tr>
<tr>
<td>3.2</td>
<td>Staining with Haematoxylin and Eosin (H&E)</td>
<td>73</td>
</tr>
<tr>
<td>3.3</td>
<td>Histological criteria of ACF classification</td>
<td>74</td>
</tr>
<tr>
<td>3.4</td>
<td>Semi-quantitative scoring system for evaluation of immunohistochemical staining</td>
<td>80</td>
</tr>
<tr>
<td>4.1</td>
<td>Comparison of phytic acid amount in three different extracting solvents by optimization of different condition of extraction</td>
<td>81</td>
</tr>
<tr>
<td>4.2</td>
<td>The changes of water consumption throughout the experiment</td>
<td>100</td>
</tr>
<tr>
<td>4.3</td>
<td>The effect of phytic acid on the incidence of ACF in rat colon induced by azoxymethane (AOM)</td>
<td>103</td>
</tr>
<tr>
<td>4.4</td>
<td>Regional distribution of colonic ACF in rats treated with AOM and fed with phytic acid</td>
<td>107</td>
</tr>
<tr>
<td>4.5</td>
<td>Histological classification of ACF</td>
<td>114</td>
</tr>
<tr>
<td>4.6</td>
<td>Tumor Assessment</td>
<td>120</td>
</tr>
</tbody>
</table>
4.7 Mean score for the expression of Ki-67, β-catenin and COX-2 in coloic tissue 127
4.8 Comparison between groups of treatment in Ki-67 scores 129
4.9 Comparison between groups of treatment in β-catenin scores 131
4.10 Comparison between groups of treatment in COX-2 scores 133
4.11 Correlation among the total scores of Ki-67, β-catenin and COX-2 134
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Structure of phytic acid (myo-inositol hexaphosphate or IP6)</td>
</tr>
<tr>
<td>2.2</td>
<td>Rice kernel structure</td>
</tr>
<tr>
<td>2.3</td>
<td>Multistage process of cancer</td>
</tr>
<tr>
<td>2.4</td>
<td>The division of cancer cell and two healthy white blood cells</td>
</tr>
<tr>
<td>2.5</td>
<td>Series of mutations whereby each mutation alters the behavior of the cell</td>
</tr>
<tr>
<td>2.6</td>
<td>Possible pathway of activation and inactivation of DMH</td>
</tr>
<tr>
<td>2.7</td>
<td>Anatomy and view of layers of the colon</td>
</tr>
<tr>
<td>2.8</td>
<td>Detail histology of colon</td>
</tr>
<tr>
<td>2.9</td>
<td>Histological features of two ACF</td>
</tr>
<tr>
<td>2.10</td>
<td>Microscopic appearance of a pedunculated tubulovillous adenoma, polystratification of cells and moderate dysplasia are evident and villous adenoma</td>
</tr>
<tr>
<td>2.11</td>
<td>Correlation between histological progression and molecular changes in colorectal cancer</td>
</tr>
<tr>
<td>2.12</td>
<td>Overview of the Wnt pathway</td>
</tr>
<tr>
<td>2.13</td>
<td>Summary of eicosanoids</td>
</tr>
<tr>
<td>2.14</td>
<td>Summary of the prostanoid synthesis</td>
</tr>
<tr>
<td>3.1</td>
<td>Experimental design of in vivo study</td>
</tr>
<tr>
<td>3.2</td>
<td>Photomicrography of normal crypt and ACF</td>
</tr>
<tr>
<td>4.1</td>
<td>Calibration curve of phytic acid</td>
</tr>
<tr>
<td>4.2</td>
<td>Separation of phytic acid using HPLC</td>
</tr>
<tr>
<td>4.3</td>
<td>Changes in body weight of experimental rats</td>
</tr>
</tbody>
</table>
4.4 Final liver, kidney and heart weight after 8 weeks treatment with phytic acid

4.5 Final liver, kidney and heart weight after 20 weeks treatment with phytic acid

4.6 Effect of phytic acid on azoxymethane-induced colonic aberrant crypt foci (ACF) in Sprague-Dawley rats

4.7 Histological examination using H&E staining of aberrant crypt foci of different sizes with surrounding normal tissue

4.8 Regional distribution of colonic ACF in rats treated with AOM and fed with phytic acid

4.9 Morphological evaluations of ACF in different groups of rats were assessed for the presence and degree of dydplasia using H&E staining

4.10 Histopathology of colonic lesions developed in rat group treated with AOM

4.11 Immunohistochemical staining of Ki-67, β-catenin and COX-2 in a few groups of rats
LIST OF ABBREVIATIONS

AEC Anion-exchange chromatography
ACF Aberrant crypt foci
AM Azomethane
ANOVA Analysis of variance
AOAC Association of Official Analytical Chemist
AOM Azoxymethane
APC Adenomatous polyposis coli
APES 3-aminopropyltrimethoxysilane
BERNAS Padi Beras Nasional Berhad
BSA Bovine Serum Albumin
°C Degree celsius
Ca^{2+} Calcium
COX Cycloxygenase
COX-2 Cyclooxygenase-2
CPA Commercial phytic acid
DAB 3,3'-diaminobenzidine
DAG Diacylglycerol
DMH Dimethylhydrazine
DNA Deoxyribonucleic acid
DPX di-n-butylphthalate-polystyrene-xylene
EDTA Ethylenediaminetetraacetic acid
EGF Epidermal growth factor
EPA Extract phytic acid
FAP Familial adenomatous polyposis coli
FFA Free fatty acids
Fe\(^{2+}\) Ferrous ion
Fe\(^{3+}\) Ferric ion
g Gram
g/ml Gram/milliliter
GSK3\(\beta\) Glycogen synthase kinase
H\(^+\) Hydrogen ion
H & E Hematoxylin and eosin
H\(_2\)O Water
H\(_2\)SO\(_4\) Sulphuric acid
HCl Hydrochloric acid
HNPCC Hereditary non-polyposis colorectal cancer
HPLC High Performance Liquid Chromatography
hrs Hours
IP3 Inositol triphosphate
IP4 Inositol tetraphosphate
IP5 Inositol pentaphosphate
IP6 Inositol hexakisphosphate
InSP\(_3\) Inositol 1,4,5-trisphosphate
IL1 Interleukin-1
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL2</td>
<td>Interleukin-2</td>
<td></td>
</tr>
<tr>
<td>K⁺</td>
<td>Kalium</td>
<td></td>
</tr>
<tr>
<td>Kcal</td>
<td>Kilocalorie</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>Molar</td>
<td></td>
</tr>
<tr>
<td>MAM</td>
<td>Methylazoxymethanol</td>
<td></td>
</tr>
<tr>
<td>MD</td>
<td>Methyl diazonium</td>
<td></td>
</tr>
<tr>
<td>Mg²⁺</td>
<td>Magnesium ion</td>
<td></td>
</tr>
<tr>
<td>MHz</td>
<td>Megahertz</td>
<td></td>
</tr>
<tr>
<td>μg</td>
<td>Microgram</td>
<td></td>
</tr>
<tr>
<td>mg</td>
<td>Miligram</td>
<td></td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
<td></td>
</tr>
<tr>
<td>mM</td>
<td>Milimolar</td>
<td></td>
</tr>
<tr>
<td>mm²</td>
<td>Millimeter square</td>
<td></td>
</tr>
<tr>
<td>NaCl</td>
<td>Natrium chloride</td>
<td></td>
</tr>
<tr>
<td>NaOH</td>
<td>Natrium hydroxide</td>
<td></td>
</tr>
<tr>
<td>NSAIDs</td>
<td>Nonsteroidal anti-inflammatory drugs</td>
<td></td>
</tr>
<tr>
<td>OH⁻</td>
<td>Hydroxide ion</td>
<td></td>
</tr>
<tr>
<td>O₂</td>
<td>Oxygen</td>
<td></td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate-buffered saline</td>
<td></td>
</tr>
<tr>
<td>PDGF</td>
<td>Platelet-derived growth factor</td>
<td></td>
</tr>
<tr>
<td>PCNA</td>
<td>Proliferating Cell Nuclear Antigen</td>
<td></td>
</tr>
<tr>
<td>PGI₂</td>
<td>Prostacyclin</td>
<td></td>
</tr>
<tr>
<td>PGE₂</td>
<td>Prostaglandin E2</td>
<td></td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>PGD2</td>
<td>Prostaglandin D2</td>
<td></td>
</tr>
<tr>
<td>PGH2</td>
<td>Prostaglandin H2</td>
<td></td>
</tr>
<tr>
<td>PGs</td>
<td>Prostaglandins</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>Per hydrogen</td>
<td></td>
</tr>
<tr>
<td>RD</td>
<td>Rhabdomyosarcoma</td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
<td></td>
</tr>
<tr>
<td>SPSS</td>
<td>Statistical Package for the Social Science</td>
<td></td>
</tr>
<tr>
<td>TBS</td>
<td>Tris Base Saline</td>
<td></td>
</tr>
<tr>
<td>TBST</td>
<td>Tris-buffered saline with Tween-20</td>
<td></td>
</tr>
<tr>
<td>TCA</td>
<td>Trichloroacetic acid</td>
<td></td>
</tr>
<tr>
<td>Tcf</td>
<td>T cell factor</td>
<td></td>
</tr>
<tr>
<td>TNF</td>
<td>Tumor necrosis factor</td>
<td></td>
</tr>
<tr>
<td>TxA2</td>
<td>Thromboxane</td>
<td></td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
<td></td>
</tr>
<tr>
<td>UVB</td>
<td>Ultraviolet light B</td>
<td></td>
</tr>
<tr>
<td>v/v</td>
<td>Volume/volume</td>
<td></td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
<td></td>
</tr>
<tr>
<td>w/v</td>
<td>Weight/volume</td>
<td></td>
</tr>
</tbody>
</table>