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A B S T R A C T   

The dual use of wind and solar energy holds great promise for low-cost and high-performance green infra-
structure. However, for such hybrid systems to operate successfully, comprehensive and simultaneous dimen-
sional planning is required, a goal that single-perspective assessment approaches fail to attain. This paper 
proposes a novel SpatioTemporal Decision-Making (STDM) model based on Geospatial Artificial Intelligence 
(GeoAI) for the optimal allocation of onshore wind-solar hybrid plants, with application on a national scale in 
Iraq. To this end, a wide range of 21 evaluative and restrictive spatial criteria were covered. The temporal 
synergy factor between renewable resources was considered for the first time in this type of study. Unique global 
weightings for decision factors were derived using Random Forest (RF) and SHapley Additive exPlanations 
(SHAP) algorithms supported by sample inventories of wind and solar plants worldwide. Finally, weighted linear 
combination (WLC) and fuzzy overlay techniques were harnessed in a GIS environment for spatiotemporal 
suitability mapping of energy systems. According to the RF-SHAP model, the techno-economic criteria demon-
strated substantial contributions to the placement of wind and solar systems compared with the socio- 
environmental criteria. The spatiotemporal suitability map identified three promising opportunities for Iraq at 
South Dhi-Qar, East Wasit, and West Diyala, with total areas of 780, 2166, and 649 km2, respectively. We 
anticipate that our findings will encourage government agencies, decision-makers, and stakeholders to increase 
funding for clean energy transition initiatives.   

1. Introduction 

Renewable energy (RE) has become a significant source of electricity 
in recent years to meet the growing energy demand and contribute to the 
achievement of sustainable development goals (Rediske et al., 2020). In 
particular, wind and solar energy systems are the most mature and 
popular green energy sources being explored globally because of their 
cleanliness degree, availability, capacity factor, and construction cost 
compared with other clean energy sources (Adedeji et al., 2020). The 
challenges of providing huge lands for such investments, on the one 

hand, and the temporal and spatial fluctuations of wind and solar re-
sources, on the other hand, prompted planners to shift toward the hy-
bridization of RE systems (Saraswat et al., 2021). Such hybridization 
compensates for one system’s weakness with another system’s strength. 
Aside from the reliability of power supply, another advantage of wind- 
solar hybrid systems is lower development costs, including expenses 
for purchasing/renting land, the number of storage modules, operation 
and maintenance, and manpower (Hasan and Genç, 2022; Rezaei et al., 
2020). According to some reports, deploying solar panels next to wind 
turbines reduces these costs by approximately 20 % (Rezaei et al., 2018). 
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Wind-solar hybrid systems achieve higher efficiencies than those pow-
ered by a single power source (Amer et al., 2013). However, given that 
they are quite complex due to having multiple generation systems, 
exploring suitable sites that meet standard operating conditions for both 
types of energy (wind and solar) poses new challenges for researchers 
and decision makers. 

The site suitability assessment for wind-solar systems seeks to iden-
tify potential development locations that meet technical, economic, 
environmental, social, and other relevant requirements. Traditionally, 
spatial assessment approaches have relied on a set of criteria classified 
into factors and constraints (Achbab et al., 2020; Ali et al., 2020). Fac-
tors determine the suitability of candidates, while constraints serve to 
identify proper zones in which the factors compete (Effat and El-Zeiny, 
2022). In this circumstance, various multi-criteria decision-making 
(MCDM) methods, including analytic hierarchy process (AHP) and 
TOPSIS, are applied to weigh criteria and/or rank available alternatives 
(Rediske et al., 2020; Saraswat et al., 2021). Moreover, MCDM and 
geographic information system (GIS) are often combined because of the 
latter’s unique advantages in editing, analyzing, and visualizing large 
geospatial databases, which enabled the implementation of spatial 
suitability investigations at the regional level instead of having limited 
alternatives (Asadi et al., 2023). 

In the extensive literature, GIS-MCDM solutions have consistently 
played a pivotal role in the assessment of spatial suitability for RE sys-
tems. In Turkey, for instance, several publications highlight the sub-
stantial integration of GIS in spatial decision-making for deploying 
alternative energy equipment (Akarsu and Serdar Genç, 2022; Genç 
et al., 2021; Karipoğlu et al., 2022, 2021). Specifically, (Genc and Kar-
ipoglu, 2021) executed a GIS-MCDM-based methodology to investigate a 
broad spectrum of potential and environmental factors pertinent to the 
placement of hybrid wind-solar farms within the Kayseri Province of 
Turkey. In India, a GIS-AHP approach was adopted to perform a large- 
scale suitability assessment for siting solar and wind farms (Saraswat 
et al., 2021). AHP was employed to formulate the criteria’s weights and 
the weighted linear combination (WLC) technique to aggregate the 
criterion layers into a GIS environment. In a similar study, an ordinal 
priority approach was applied alongside GIS to determine the land 
suitability to host wind and solar investments in Egypt (Elkadeem et al., 
2022). The authors concluded that GIS-based solutions can be scaled to a 
larger country or continent if sufficient geospatial data for the decision 
criteria are available. Meanwhile, a study conducted on the island of 
Mauritius attempted to develop a conceptual approach using fuzzy logic 
to assess the spatial suitability of dual power plants (wind-solar) by 
applying topographic, climatological, and social elements (Dhunny 
et al., 2019). The research emphasized that the fuzzy technique out-
performed linear models in terms of accuracy. The various MCDM 

strategies used in the context of sustainable energy were discussed in 
(Şahin, 2021; Shao et al., 2020). While the GIS-MCDM approaches have 
many advantages, they suffer from some drawbacks. For example, input 
factors are considered constant. Nevertheless, most of these factors are 
of a dynamic nature over time, such as wind speed and solar radiation 
(Sachit et al., 2022a). Furthermore, criteria are often weighted subjec-
tively or objectively. Subjective weighting is criticized for bias, whereas 
objective weighting is not generalizable (Zardari et al., 2014). 

Recently, rapid advances in artificial intelligence (AI) have improved 
MCDM models. New weighting methods based on AI models and feature 
selection algorithms have been introduced (Hanoon et al., 2022). For 
instance, chi-square and Fisher algorithms were applied to assign 
weights to criteria contributing to landslide susceptibility mapping 
(Sahin et al., 2015). The study suggests that weightings based on intel-
ligent approaches should be considered when dealing with a large 
number of competing factors. Al-Ruzouq et al. (Al-Ruzouq et al., 2021) 
employed three supervised AI techniques to determine factor weights in 
a spatial decision-making model of waste-to-energy systems. The au-
thors successfully implemented the proposed approach in the case of 
Sharjah, UAE. In another article focused on the same study area, hybrid 
weightings based on both AI and AHP were proposed to select the 
optimal sites for dam construction (Al-ruzouq et al., 2019). The study 
concluded that AI techniques can improve how factors are weighted in 
MCDM. In the field of industrial maintenance, AI algorithms (i.e., 
Bayesian networks and attribute relevance analysis) were employed 
alongside AHP to provide weights for a decision-making model (Lima 
et al., 2019). Although AI-based weights have been applied in various 
fields, their application in RE studies is still limited. In addition, the lack 
of sufficient training samples poses some limitations to the application 
of such approaches in developing countries that are just beginning to 
develop RE facilities. 

In light of the aforementioned challenges, this study introduces a 
novel Geospatial AI (GeoAI)-based assessment model that considers the 
spatial and temporal aspects of decision-making criteria. The advantage 
of the proposed SpatioTemporal Decision-Making (STDM) model is not 
only a better understanding of the technically, economically, and envi-
ronmentally feasible sites for deploying wind-solar hybrid systems but 
also that the sites contain temporal complementarity patterns between 
wind and solar resources to ensure stable power output around the 
clock. Furthermore, our model employs real-world experiences (in situ 
wind and solar plants worldwide) to develop global weights that are 
reliable, generalizable, and free of subjective judgments. Consequently, 
the need to rely on local training samples will decrease, making the 
STDM model potentially applicable in various regions. The novelty of 
this work lies in two key contributions. Firstly, it introduces new global 
weights that effectively trade-off between spatial assessment criteria for 

Fig. 1. Geographical location of Iraq.  
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wind-solar hybrid farms. For this purpose, a combination of Random 
Forest (RF) and SHapley Additive exPlanations (SHAP) algorithms was 
applied to train and interpret a geospatial data-based prediction model 
for onshore wind and solar plants worldwide. Unlike pair-wise com-
parisons, which rely on experts’ subjective judgments, the proposed 
approach benefits from real-world experiences in capturing the impor-
tance of features and selecting optimal development sites. Secondly, the 
work integrates temporal and spatial characteristics of renewable re-
sources in siting dual-energy systems. Accordingly, the temporal 
complementarity index (TCI) between wind and solar energy is 
considered in a fuzzy structure along with spatial suitability indices for 
both types of energy. To our knowledge, TCI has not yet been incorpo-
rated into the multiobjective decision rules of RE systems; therefore, we 
provide a fresh research perspective that aided our comprehension of 
the temporal and spatial considerations pertinent to the potential of 
wind-solar hybrid power. 

The specific objectives and contributions of our work are as follows: 

To investigate an exhaustive set of 21 spatial criteria (13 factors and 
8 constraints) to ensure accurate results in allocating potential sites 
for wind-solar development. 

To develop robust, spatially transferable global weights for decision 
criteria by capturing their importance across global real-world ex-
periences (global-to-local knowledge transfer). 
To embed the dynamic nature of core renewable criteria in solving 
site problems exemplified by the TCI between wind and solar energy 
(the spatiotemporal solution). 
To bridge the knowledge gap and encourage investment in utility- 
scale wind and solar energy projects by providing 1 km spatiotem-
porally explicit maps for the first time in the Iraqi context. 

2. Context of Iraq 

Iraq, a Middle East country, is located in southwest Asia within the 
longitudes (38◦ 45′–48◦ 40′) East and latitudes (29◦ 05′–37◦ 20′) North, 
as presented in Fig. 1. Iraq possesses promising potential for renewable 
resources due to its privileged location within the global sunbelt. 
However, the country still depends heavily on fossil fuels for energy 
production, hardly meeting the growing demand. Fortunately, Iraq’s 
energy policy has recently begun to shift toward relying on clean energy 
sources, launching major investments in this sector. Therefore, investi-
gating the spatiotemporal suitability of RE systems would support this 
commendable trend by highlighting promising areas for future 
installations. 

Fig. 2. Methodology flowchart of the STDM model for siting wind-solar power plants.  
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3. Methodology 

The primary focus of this study is to introduce a GeoAI-based STDM 
model for hybrid wind-solar plants and apply it to the case of Iraq. The 
methodology implemented to achieve the goal includes a set of steps. 
Firstly, geospatial datasets were allocated, prepared, and normalized to 
account for the spatial, temporal, and exclusion criteria under consid-
eration. Secondly, RF and SHAP-assisted intelligent modeling was 
implemented to derive global weights for the spatial criteria. Thirdly, 
the WLC approach was conducted in a GIS context augmented by AI 
weights to map the spatial suitability of wind and solar systems. Lastly, 
the fuzzy linear membership function and the Fuzzy-AND operator were 
employed to fuzzify and overlay multiple suitability evidences into a 
meaningful spatiotemporal suitability index. Sensitivity analysis was 
subsequently performed under three different weighting scenarios to 
verify the model’s performance. Fig. 2 displays a flowchart of the 
applied methodology, which is discussed in detail in the following 
subsections. 

3.1. Data acquisition and preparation 

3.1.1. Thematic layers of spatial criteria 
This study adopted 13 criteria for evaluating the spatial suitability of 

wind and solar systems based on a literature review and expert opinions 
(Doorga et al., 2022; Elkadeem et al., 2022; Sachit et al., 2022b). 
Accordingly, technical factors such as air temperature (AT), solar radi-
ation (SR), and cloud index (CI) were deemed essential for the spatial 
suitability mapping of solar systems. While in the case of spatial 
modeling of wind farms, wind speed (WS) and wind density (WD) were 
considered. Elevation (E), slope (S), landcover (LC), proximity to grid 
(PG), proximity to road (PR), proximity to city (PC), population density 
(PD), and natural disasters (ND) were the other criteria used to assess 
both types of power sources. These indicators covered various economic, 
environmental, and social aspects. For a detailed discussion regarding 
these criteria, consult the literature (Saraswat et al., 2021; Xu et al., 
2020). 

For investigation purposes at the country level (Iraq), a high- 
resolution, up-to-date, and reliable geospatial dataset was collected. 
The primary reliance was on local government resources to gather data 
for the assigned criteria. In the case of insufficient local data, global 
open-source databases supported by field verification were considered 
for comprehensive spatial coverage. The sources and characteristics of 
the geospatial data considered are explained in Appendix, Table A1. 

The collected data were subjected to a set of necessary functions in a 
GIS environment to prepare thematic layers of the spatial criteria. 
Firstly, the available raster data were clipped in accordance with the 
borders of Iraq. Secondly, Euclidean distance analysis was applied to 
create raster layers for the PC, PR, and PG factors using relevant vector 
data. Thirdly, the Feature-to-Raster tool was implemented to create a 
thematic layer for the PD criterion by employing the vector data of city 
boundaries along with population statistics. Fourthly, the prepared 
raster layers were resampled to standardize the spatial resolution at 1 
km. Lastly, all the resampled layers were normalized by reclassifying 
each of them into five categories through the natural breaks (Jenks) 
technique. The rating scores of the classes ranged from 1 to 5 points 
according to their spatial relevance for the targeted RE system, as 
illustrated in Table 1. Points 1, 2, 3, 4, and 5 denote very low, low, 
moderate, high, and very high, respectively. Meanwhile, a score of 0 was 
assigned to the restricted categories. Essentially, the higher the category 
of a particular cell, the higher its suitability. The thematic maps of 
spatial criteria over Iraq are presented in Fig. 3. 

3.1.2. TCI 
Energy complementarity is the ability of two or more energy sources 

to work synergistically in complementing and improving electricity 
generation (Yan et al., 2020). TCIs determine the feasibility of using 

Table 1 
Range and rank of the reclassified criterion classes.  

Criterion Unit Class range Pixels Count Rank 

WS m/s > 5.00 
5.00 – 5.75 
5.75 – 6.50 
6.50 – 7.25 
7.25 – 8.00 
8.00 – 9.34 

65,467 
35,783 
178,714 
96,911 
37,364 
6058 

0 
1 
2 
3 
4 
5 

WD kg/m3 0.84 – 1.00 
1.00 – 1.06 
1.06 – 1.11 
1.11 – 1.14 
1.14 – 1.17 

2815 
9391 
49,804 
137,232 
221,539 

1 
2 
3 
4 
5 

SR kWh/m2/year 1394 – 1800 
1800 – 1900 
1900 – 2000 
2000 – 2100 
2100 – 2169 

3781 
41,837 
189,321 
147,595 
39,608 

1 
2 
3 
4 
5 

AT Celsius 0.07 – 15.95 
15.95 – 20.48 
20.48 – 22.87 
22.87 – 25.18 
25.18 – 27.30 

10,711 
56,426 
103,940 
140,011 
110,816 

1 
4 
5 
3 
2 

CI (Value × 0.01) % 657.89 – 2166.58 
2166.58 – 2542.58 
2542.58 – 3095.51 
3095.51 – 4157.14 
4157.14 – 7319.90 

118,528 
158,701 
118,347 
22,724 
3606 

5 
4 
3 
2 
1 

E m > 0 
0 – 100 
100 – 500 
500 – 1000 
1000 – 1500 
1500 – 3523 

785 
130,553 
214,824 
62,020 
8984 
4812 

0 
5 
4 
3 
2 
1 

S degree 0 – 0.94 
0.94 – 3.23 
3.23 – 6.80 
6.80 – 11.10 
11.10 – 15.00 
> 15 

371,913 
27,914 
9741 
6742 
4031 
1637 

5 
4 
3 
2 
1 
0 

PC km 0 – 20 
20 – 40 
40 – 60 
60 – 80 
80 – 100 
> 100 

113,418 
131,800 
76,971 
50,401 
22,815 
26,847 

5 
4 
3 
2 
1 
0 

PR km 0 – 20 
20 – 40 
40 – 60 
60 – 80 
80 – 100 
> 100 

259,128 
95,463 
40,761 
13,928 
7183 
5789 

5 
4 
3 
2 
1 
0 

PG km 0 – 20 
20 – 40 
40 – 60 
60 – 80 
80 – 100 
> 100 

175,001 
79,069 
44,631 
31,790 
25,989 
65,772 

5 
4 
3 
2 
1 
0 

LC class Water, Trees, Built Areas 
Flooded Vegetation 
Crops 
Scrub/Shrub 
Grass 
Bare Ground 

21,223 
2575 
75,778 
279,237 
111 
43,322 

0 
1 
2 
3 
4 
5 

ND level Level 0 
Level 1 
Level 2 
Level 3 
Level 4 
Level 5 

377,734 
12,569 
19,215 
10,568 
1802 
364 

5 
4 
3 
2 
1 
0 

PD People per km2 0.25 – 69.88 
69.88 – 235.79 
235.79 – 903.88 
903.88 – 3201.26 
3201.26 – 7746.08 

317,111 
74,290 
27,023 
2594 
480 

1 
2 
3 
4 
5  

M.S. Sachit et al.                                                                                                                                                                                                                                



The Egyptian Journal of Remote Sensing and Space Sciences 27 (2024) 120–136

124

Fig. 3. Thematic maps of spatial criteria over Iraq: (a) WS, (b) WD, (c) SR, (d) AT, (e) CI, (f) E, (g) S, (h) PC, (i) PR, (j) PG, (k) LC, (l) ND, and (m) PD.  
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wind and solar energy resources together in a specific region and time 
and help identify potential sites for the installation of hybrid generation 
systems (Gallardo et al., 2020). The monthly synergistic patterns be-
tween wind and solar resources (i.e., WS and SR) across the entire Iraqi 
territory were recently investigated by (Sachit et al., 2022a). The results 

of this investigation were adopted in the TCI formulation for the current 
study. The assumption behind the considered TCI was that a place where 
the WS behavior is opposite to the SR behavior across time series is 
highly suitable for hosting hybrid wind-solar plants. The TCI map, which 
shows the number of months in a year that exhibit complementary 

Fig. 4. TCI between wind and solar energy resources over Iraq.  

Fig. 5. (a) Spatial distribution of the exclusion criteria under consideration and (b) raster layers of EZI.  
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behavior between solar and wind energy, is displayed in Fig. 4. 

3.1.3. Exclusion zone index (EZI) 
Several locations are considered unsuitable for installing power 

equipment, often due to environmental and security restrictions rather 
than a lack of evaluation indicators. This study addressed eight exclu-
sion criteria based on previous studies and the availability of relevant 
data. The criteria covered airports, archeological sites, bird flyways, bird 
habitats, forests, political borders, protected areas, and waterbodies, as 
presented in Fig. 5a. Data for exclusion factors were compiled from local 

official sources, as listed in Appendix, Table A2. 
To prepare an EZI map, a set of restrictive thresholds was imposed 

using the Buffer tool in ArcGIS software. Setback distances of 0.5 and 
0.75 km were used around the water bodies and the protected areas, 
respectively. A threshold of 3 km was applied surrounding the airports. 
A 5 km-wide corridor was assigned for the migratory bird flyways. 
Moreover, an exclusion distance of 1 km was used around the rest. 
Finally, rasterization was implemented via the Feature-to-Raster tool to 
convert the vector format of the created thresholds into a raster layer 
with a discrete data type, as shown in Fig. 5b. 

Fig. 6. Locations of wind and solar energy facilities around the globe.  

Fig. 7. Workflow and tools incorporated into the ArcGIS ModelBuilder.  
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3.2. AI modeling 

AI-based modeling allows systems to learn and enhance performance 
from experiments without using explicit instructions. Essentially, AI 
algorithms are given the ability to make predictions by capturing the 
behavior of features in real-world environments. The contribution of 
each feature to the formulation of predictive outcomes can then be 
reliably measured. In this paper, the RF algorithm was considered 
because of its high performance in spatial suitability mapping of solar 
and wind energy systems (Sachit et al., 2022b; Shahab and Singh, 2019). 

3.2.1. RF algorithm 
The RF algorithm is an advanced decision tree model that operates 

by fusing a number of decision trees into a single structure known as a 
forest (Al-ruzouq et al., 2019). Given the lack of RE experiences in 
developing countries, including Iraq, this study considered wind and 
solar energy facilities around the world as training samples for the RF 
algorithm. Accordingly, the locations of 31,571 onshore wind farms and 
24,048 solar photovoltaic (PV) farms worldwide were gathered using an 
open-access spatial database on Figshare titled “global wind solar 2020″ 
(Dunnett et al., 2020), as shown in Fig. 6. For each training sample, the 
values of independent variables (the spatial criteria under consideration 
for this study) were obtained from the global thematic maps prepared by 
(Sachit et al., 2022b). 

The necessary preprocessing of the global geospatial dataset, 
involving cleaning, balancing, normalizing on a fuzzy scale of 0–1, and 
data splitting into a 70 % training set and a 30 % test set, was success-
fully executed. The RF algorithm was modeled using the Python pro-
gramming language with the scikit-learn package (http://scikit-learn. 
org), in which the model’s hyperparameters were carefully fine-tuned 
to achieve the highest accuracy. Combined with the scikit-learn de-
faults (Pedregosa et al., 2011), the RF model performed best when 
trained on 100 trees with a maximum depth of 5. 

3.2.2. SHAP algorithm 
SHAP, developed by Shapley (Shapley, 1953), is one of the most 

popular explainable AI algorithms. It estimates the direction and 
magnitude of each feature contributing to the AI models’ development, 
helping humans better understand the models’ output (Dikshit and 
Pradhan, 2021). Such merits have recently been harnessed to measure 
the participation and impact of attributes in formulating AI models’ 
outcomes (Dikshit and Pradhan, 2021; Matin and Pradhan, 2021). In 
accordance with Equation (1), the Shapley values were calculated by 
averaging the marginal contribution for all possible parameter combi-
nations (Matin and Pradhan, 2021). 

∅i =
∑

S⊆N{i}

|S|!(n − |S| − 1 )!
n!

[v(SU{i}) − v(S) ], (1)  

where ∅i denotes the contribution of criterion i, N is the set of all 
criteria, n refers to the number of criteria in N, S is any subset of N that 
does not include criterion i, and v (N) is the base value indicating the 
expected output for each criterion in N. This research applied Tree 
SHAP, a variant of SHAP developed for tree-based AI models, to inter-
pret the RF model mentioned earlier. This explanation estimates the 
global weights of the spatial criteria under consideration for both wind 
and solar power systems. 

3.3. GIS modeling 

This study involved the application of a set of weighted and fuzzy 
overlays along with supporting tools in an ArcGIS ModelBuilder envi-
ronment, as illustrated in Fig. 7. 

3.3.1. Weighted overlay 
The weighted overlay is a technique for analyzing suitability in a GIS 

environment that relies on WLC. This method is frequently used to solve 
issues involving site selection, resource evaluation, and land-use suit-
ability analysis (Abdulhasan et al., 2019). In WLC, the discrete and 
continuous attributes that contribute to the solution are aggregated 
(Tercan et al., 2021). Therefore, normalizing the criteria into a common 
scale is a necessary step toward a successful overlay. Thereafter, the 
standardized criterion layers multiplied by their assigned weights are 
combined on the basis of Equation (2) (Romano et al., 2015). 

Si =
∑n

j=1
wjxij, (2)  

where Si refers to the suitability index for cell i, wj means the weightage 
of criterion j, xij is the normalized score of cell i for criterion j, and n 
denotes the total number of factors. 

In this study, the reclassified factors under consideration along with 
their AI-based weightings were incorporated into the weighted overlay 
tool within ArcGIS ModelBuilder. The procedure was applied twice. In 
the first phase, 10 criteria related to site suitability assessment for 
onshore wind stations, namely, WS, WD, S, E, LC, PR, PG, PC, ND, and 
PD, were overlaid. Meanwhile, 11 criteria, namely, RR, AT, CI, S, E, LC, 
PR, PG, PC, ND, and PD, were allocated in the second stage to search for 
optimal places to deploy solar PV cells. These overlays generated 1 km 
resolution raster maps of wind spatial suitability (WSS) and solar spatial 
suitability (SSS) indices across Iraq. In each map, the degree of suit-
ability was also categorized into five classes using the equal interval 
classification method: very low (0.0–0.2), low (0.2–0.4), moderate 
(0.4–0.6), high (0.6–0.8), and very high (0.8–1.0). 

3.3.2. Fuzzy overlay 
The fuzzy overlay is a robust GIS-based spatial analysis in which the 

possibility of a phenomenon belonging to multiple input sets is inves-
tigated in a multilayer overlay analysis (Baidya et al., 2014). The fuzzy 
overlay was implemented in this study to fuse diverse suitability indices, 
including WSS, SSS, TCI, and EZI, into a unique index of wind-solar 
spatiotemporal suitability (WSSTS). Accordingly, the crisp input layers 
were fuzzified to a fuzzy scale of 0–1 using the fuzzy linear membership 
function described in Equation (3). The Fuzzy-AND operator was then 
executed to combine the fuzzy layers on the basis of minimum values. 
Finally, the defuzzification of suitability outputs was performed in 
accordance with easily interpretable suitability categories. 

f (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, x < a
x − a
b − a

, a < x < b

1, x > b

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(3)  

where a and b are the minimum and maximum suitability thresholds, 
respectively. 

3.4. Sensitivity analysis 

Sensitivity analysis is increasingly recognized as an effective and 
widely applied method for addressing uncertainty and verifying the 
reliability of developed spatial suitability models (Rediske et al., 2020). 
Typically, it involves manipulating criterion weights or removing spe-
cific factors, resulting in new outputs that could be compared with the 
original suitability findings. In this study, sensitivity analysis was con-
ducted considering of three different scenarios, as shown below:  

1. Equal weighting scenario: The same weights are assigned to all 
criteria under consideration.  

2. High weighting scenario: Zero weight is allocated to the most 
important criteria.  

3. Low weighting scenario: Zero weight is allocated to the least 
important criteria. 
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In scenarios (2) and (3), all remaining parameter weights were 
proportionally adjusted to ensure a cumulative weight of 100. The new 
weights were then individually input into the weighted overlay tool to 
produce new spatial suitability maps comparable to the original ones. 
Finally, a pixel-over-pixel comparison was applied to compute the per-
centage change in the classification results. 

4. Results and discussions 

4.1. Criterion weights 

The AI techniques applied in this study (i.e., RF and SHAP) act as 
promising alternatives to traditional weighting methods. The RF model 
demonstrated high performance in classifying the geospatial dataset of 
wind and solar plants with an area under the receiver operating char-
acteristic curve (AUC) of 0.96 and 0.95, respectively. The SHAP model’s 
interpretations of measuring relative weights of each spatial criterion 
within the RF modeling are presented in Fig. 8. Among the spatial 
criteria of wind energy, WS achieved the highest weight with 37 %, 
followed by PC with 15 %. Meanwhile, PC and AT ranked first and 
second in the weighting of solar energy criteria, with 18 % and 15 %, 
respectively. In contrast, environmental factors received the lowest 
priority in both energy systems. These results highlight the significant 
influence of technical and economic criteria on spatial decision making 
for wind and solar facilities. 

4.1.1. Weights’ transferability 
In general, developing an AI model using local data may constrain its 

generalizability to regions with distinct geographic and climatic char-
acteristics. The distinctive advantage of our proposed method lies in its 
reliance on comprehensive global data. Nevertheless, in the interest of 
bolstering confidence in its performance, we conducted a spatial trans-
ferability analysis to ascertain the capacity of these model weights to 
yield dependable predictions across various geographic regions world-
wide. For this purpose, the test set of wind and solar power plants 
worldwide was used as a basis for verification. In other words, we 
employed the reported weights from the training set (70 %) to calculate 
the spatial suitability scores for the test set (30 %). Fig. 9 displays the 
validation results, which are categorized into five suitability levels. The 
findings demonstrate that approximately 80 % of the test set was clas-
sified as having “high” and “very high” spatial suitability to host RE 
plants, which is consistent with reality. Furthermore, 11 % of the sam-
ples under verification were considered to have “Moderate” suitability, 
whereas the combined percentage of “Low” and “Very Low” suitability 
classes was 9 %. The aforementioned results highlight the high potential 
of our weights in predicting site suitability for wind and solar plants 
globally, granting them the advantage of spatial generalization. 

4.2. Single-power system suitability 

For the spatiotemporal assessment of wind-solar hybrid energy 

Fig. 8. AI-based weights for the spatial criteria under consideration for (a) wind energy and (b) solar energy.  

Fig. 9. Percentages of spatial suitability categories for the global test set of wind and solar farms.  
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Fig. 10. Spatial suitability index for (a) wind (WSS) and (b) solar (SSS) over Iraq.  
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farms, site suitability indices for individual wind and solar systems were 
first formulated, as shown in Fig. 10. The results reported in Fig. 10a 
indicate that the lands with high and very high suitability for hosting 
wind farms are distributed in the central and southeastern regions of 
Iraq, with an area of 44,005 and 56,638 km2, respectively. Meanwhile, 
the moderate suitability category covered 25.3 % (~111,096 km2) of the 
WSS map, whereas the western and southwestern regions were classified 
as “low” and “very low,” respectively. In the SSS index, the very-high- 
suitability class dominated 35.1 % of the studied area, followed by the 
high-suitability class with 32.3 %, as shown in Fig. 10b. These high 
percentages clearly indicate the promising potential for the exploitation 
of solar energy in Iraq. About 90,569, 5,151, and 594 km2 were 

Table 2 
Land class statistics for the WSS and SSS indices.  

Suitability Class WSS Index SSS Index  

Area (km2) % Area (km2) % 

(1) Very Low 29,702  6.8 594  0.1 
(2) Low 93,181  21.3 5,151  1.2 
(3) Moderate 111,096  25.3 90,569  20.7 
(4) High 44,005  10.0 141,374  32.3 
(5) Very High 56,638  12.9 154,017  35.1 
Unclassified 103,695  23.7 46,612  10.6 
Total 438,317  100.0 438,317  100.0  

Fig. 11. Graphical comparison of the results of the WSS and SSS indices.  

Fig. 12. Spatiotemporal suitability index for wind-solar hybrid systems over Iraq (WSSTS).  
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designated as “moderate,” “low,” and “very low,” respectively. Pixels 
that did not exceed the considered restriction thresholds of the spatial 
criteria were not classified within any of the five suitability classes, 
constituting 23.7 % and 10.6 % of the WSS and SSS indices, respectively. 
Unclassified (unsuitable) areas are mainly found in the northern and 
northeastern regions of the country, characterized by steep ground 
slopes and low wind potential (>5 m/s). The WSS and SSS maps’ find-
ings and those of earlier local studies are in agreement (Khazael and Al- 
Bakri, 2021; Mohammed et al., 2020; Rasham and Mahdi, 2018). Table 2 
presents the quantitative analysis of the suitability classes, while Fig. 11 
compares the results of SSS with those of WSS. 

4.3. Dual-power system suitability 

The executed fuzzy overlay of the WSS, SSS, TCI, and EZI directories 
highlighted spatiotemporal opportunities for wind-solar hybrid systems, 
as shown in Fig. 12. The results demonstrated that the sedimentary plain 
region (central and southern Iraq) has a promising potential for devel-
oping wind-solar farms, in which the “high” and “very high” classes 
accounted for 11 % (~48,068 km2) and 0.8 % (~3632 km2) of the 

country’s territory, respectively. The “moderate” suitability category 
dominated the majority of the studied land, covering about 47.4 % 
(~207,893 km2). Meanwhile, both “low” and “very low” spatiotemporal 
suitability scores covered 12.4 % of the overall area, whereas 28.4 % of 
the WSSTS pixels were left unclassified because of the limitations of the 
evaluation and exclusion criteria. 

In comparison with the findings on the WSS and SSS indices, a sig-
nificant decrease in red pixels (very high suitability) was observed on 
the WSSTS map. The potential reason for the scarcity of suitable op-
portunities is the spatial variability of the results across the combined 
indices. While central and southeastern Iraq have promising prospects 
on the WSS and SSS indices, these areas revealed low values on the TCI 
scale. Moreover, regions with high temporal suitability scores on the TCI 
were accompanied by an absence of infrastructure, as in western Iraq, or 
low wind speed and steep terrain, as in the north. As a result, few lands 
in the convergence zones were recorded as having “very high” spatio-
temporal suitability for wind-solar farms. 

4.3.1. Spatiotemporal hotspots 
The WSSTS map highlighted three hotspots with spatiotemporal 

Fig. 13. Hotspots with very high spatiotemporal suitability for hosting wind-solar hybrid plants.  
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suitability for wind-solar hybrid systems, namely, South Dhi-Qar, East 
Wasit, and West Diyala, as presented in Fig. 13. The reason was that 
these sites exhibit a bountiful harvest of essential renewable resources 
along with synergistic periods of more than 6 months a year. The three 
hotspots are also situated in proximity to the infrastructure lines, 
enhancing the suitability of these sites for deploying wind turbines and 
solar panels side by side. Moreover, the proper land cover type and the 
gentle land slopes in these areas provide a suitable environment to 
accommodate construction. The areas of South Dhi-Qar, East Wasit, and 

West Diyala are ~780, ~2,166, and ~649 km2, respectively. 

4.4. Model validation 

4.4.1. Sensitivity maps 
Fig. 14 presents the sensitivity scenario maps considered and their 

pixel-over-pixel comparisons with the original suitability map for the 
WSS and SSS indices. The results showed that when the equal weighting 
scenario was applied, 51 % of the wind map’s pixels switched suitability 

Fig. 14. Sensitivity analysis maps according to (a) scenario-1 of SSS, (b) scenario-2 of SSS, (c) scenario-3 of SSS, (d) scenario-1 of WSS, (e) scenario-2 of WSS, and (f) 
scenario-3 of WSS. 
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classes, whereas only 28 % of the solar map’s pixels were sensitized to 
changing weights. The “high” and “very high” suitability categories 
expanded notably in both the wind and solar suitability indices 
compared with other classes that receded. In the high weighting sce-
nario, the sensitive pixels in the wind map increased by 64 %, and the 
“very high” class started to cluster around city centers. These results are 
consistent with the modifications made to the criterion preferences for 
this scenario, where the weight of WS was eliminated and the weight of 
PC was increased. Similarly, the solar map exhibited significant changes 
in suitability degrees. Withholding the importance of PC, many remote 
areas over Iraq showed “high” and “very high” levels of suitability for 
hosting solar farms. In the low weighting scenario, the sensitivity maps 
yielded low change rates of 11 % and 6 % for wind and solar, respec-
tively. Similar spatial distribution patterns were observed for the suit-
ability classes compared with the original suitability maps (AI-based 
weighting). The low sensitivity in this case can be attributed to the 
unimportant weights of the canceled criteria. The aforementioned re-
sults evidently indicate that the presented spatial suitability model is 
sensitive to any weight manipulation, with each addressed criterion 
influencing the evaluation of the study area. 

4.4.2. Field verification 
Recently, Iraq has established two solar plants, Block 9 (2.5 MW) and 

Dohuk (2 MW), and launched investment contracts for five large-scale 
solar farms in various places throughout the country: Musol Ain 
Tamor, Ramadi-1, Ramadi-2, Amara, and Al-Shrifa. For field verifica-
tion, the locations of these stations were compared with the SSS index, as 
illustrated in Fig. 15. The comparison revealed that the existing and 
planned PV solar installations have “high” and “very high” suitability 
scores on the GIS maps, indicating that these are indeed suitable sites for 
development. As Iraq has not yet initiated investments in wind power, 
there is no real-world experience available for direct comparison with 
the WSS index. However, in discussions with experts, most indicated 
that the WSS map is clear, logical, and consistent with previous research 
findings. 

To validate the WSSTS index, field reconnaissance was conducted in 

the hotspots: South Dhi-Qar, East Wasit, and West Diyala. These places 
were explored through field studies, including a survey of local resi-
dents’ attitudes to ensure acceptance of such projects or to help design a 
modern structure that blends into the landscape. Fig. 16 presents the 
landscapes observed at representative points within these regions. In the 
South Dhi-Qar region, several favorable characteristics for developing 
wind-solar hybrid systems were noted. The land there is barren with few 
farms and settlements (Fig. 16a), which makes the establishment of RE 
plants less destructive to the environment and landscape. The highway 
leading to Iraqi ports runs through the region, facilitating the shipment 
of wind and solar equipment. Moreover, the South Dhi-Qar hotspot is 
located between Basra and Nasiriyah—the third and fourth most 
populated cities, respectively. Thus, a substantial number of people will 
have access to reliable electricity and stable employment if such projects 
are built here. 

The second hot zone (East Wasit) extends from Sheikh Saad, south-
east of Wasit governorate, to Badra, northeast of the province. The Tigris 
River separates the northern and southern halves of the region. On the 
basis of the site visits and the review of satellite images, fertile soils and 
crop fields were identified in the southern part, as illustrated in Fig. 16b. 
In comparison, gravelly soil and grassy landscapes were the dominant 
patterns in the areas north of the Tigris. Through discussions with local 
people in the southern part, many farmers expressed their displeasure 
with RE equipment being spread across their fields. In contrast, residents 
of the northern part expressed favorable attitudes regarding the devel-
opment of their communities with sustainable energy investments. As 
for the West Diyala hotspot, our observations documented a mix of crop 
fields and shrub landscapes (Fig. 16c). This region is the smallest in size 
compared with other hotspots. Nonetheless, its proximity to Baghdad, 
Iraq’s capital city, presents excellent possibilities for planning clean 
energy projects that can meet the needs of an important portion of the 
city. The aforementioned verification confirms the validity of our results 
for practical applications. 

Fig. 15. SSS index validation with existing and planned solar energy projects.  
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5. Conclusions 

Introducing a GeoAI-based STDM model for hybrid wind-solar fa-
cilities and applying it to the context of Iraq were the primary objectives 
of this study. The AI modeling highlighted the importance of technical 
and economic considerations in mapping the spatial suitability of RE 
systems. WS and PC were the most significant criteria, weighing 37 % 
and 18 %, respectively. The WSS and SSS indices led us to conclude that 
Iraq’s middle and southeastern regions have promising spatial oppor-
tunities for investment in both wind and solar energy, with a total area 
of 46,101 km2. Meanwhile, the WSSTS evidence established that only 
3632 km2 of land distributed across southern Dhi-Qar, eastern Wasit, 
and western Diyala had a “very high” spatiotemporal suitability for 
deploying wind-solar hybrid equipment. Furthermore, the sensitivity 
analysis and field verifications confirmed the high performance of our 
model, affirming the validity of the reported results for real-world 
practices. 

The current study’s contribution lies in providing a robust and effi-
cient platform for selecting ideal installation sites that satisfy the tem-
poral and spatial characteristics of RE farms. As the cost of investing in 
RE continues to drop, the current results could potentially encourage 
decision-makers and stakeholders to initiate new investments in the 
green energy sector to meet the rising electricity demand and mitigate 
global warming. This work is the first spatiotemporal suitability 
assessment of wind-solar hybrid systems throughout the entirety of Iraq. 

Therefore, this study will be helpful for local authorities in the energy 
planning process and land management prioritization. However, the 
Iraqi government is required to create an appealing investment envi-
ronment for RE projects, especially in the hotspots highlighted in this 
study. The hindrances posed by bureaucracy and regulatory obstacles to 
wind and solar facility development in Iraq can be overcome through the 
formulation of a comprehensive national strategy for alternative energy. 
This strategy should outline clear objectives, priorities, and timelines, 
streamline procedures and regulations, offer financial and tax incentives 
to investors, and leverage expertise by fostering collaboration with in-
ternational RE organizations. 

To support sustainable development efforts in developing countries 
such as Iraq, more intensive investigation utilizing detailed geospatial 
data is urgently required to improve the exploration of ideal sites for RE 
installations. To further our research, the proposed approach is recom-
mended to be applied at the micro level in certain districts of the 
country. A limitation of this study is that the proposed STDM model has 
only been applied to onshore wind and solar PV systems. As another 
potential avenue for future research, the presented approach could be 
adapted to address offshore wind and concentrated solar power in-
stallations in Iraq and Globally. 
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Appendix 

Table A1. Sources of the Iraqi dataset used in preparing the thematic layers of evaluation criteria  

Evaluation Criterion Data Provider Format Access Link Access Date 

WS Iraqi wind atlas from GEOSUN Raster https://www.breasc.com/en/ 20 September 2022 
WD Global Wind Atlas 3.1, aided by IMS Raster https://globalwindatlas.info/ 15 December 2022 
SR Global Solar Atlas v2.6, aided by IMS Raster https://globalsolaratlas.info/map 16 December 2022 
AT Global Solar Atlas v2.6, aided by IMS Raster https://globalsolaratlas.info/map 16 December 2022 
CI EarthEnv project aided by IMS Raster https://www.earthenv.org/cloud 2 January 2022 
E SRTM Raster https://earthexplorer.usgs.gov/ 14 June 2022 
S Derived from DEM of SRTM Raster https://earthexplorer.usgs.gov/ 14 June 2022 
PC Iraqi General Authority of Survey CSV https://mowr.gov.iq/en/general-survey-authority/ 17 July 2022 
PR Iraqi General Authority of Survey Vector https://mowr.gov.iq/en/general-survey-authority/ 17 July 2022 
PG Iraq Energy Institute Vector https://iraqenergy.org/ 28 July 2022 
LC Esri Raster https://livingatlas.arcgis.com/landcover/ 18 January 2022 
ND UNISDR Raster https://preview.grid.unep.ch/ 14 February 2022 
PD Iraqi Central Statistical CSV https://cosit.gov.iq/en/ 6 August 2022   

Table A2. Sources of the Iraqi dataset used to identify the exclusion areas  

Exclusion 
Criterion 

Data Provider Format Access Link Access Date 

Airport Iraqi General Authority of Survey CSV https://mowr.gov.iq/en/general-survey-authority/ 17 July 2022 
Archaeological Sites Iraqi directorate of antiquities Vector http://mocul.gov.iq/index.php 24 July 2022 
Bird Flyway The globe of bird migration Vector http://globeofbirdmigration.com/ 3 August 2022 
Bird Habitats CIUCN Report, Iraqi ministry of environment CSV http://moen.gov.iq/ 7 August 2022 
Forests Iraqi ministry of environment Raster http://moen.gov.iq/ 12 August 2022 
Political Borders Iraqi General Authority of Survey Vector https://mowr.gov.iq/en/general-survey-authority/ 17 July 2022 
Protected Areas The World Database on Protected Areas (WDPA) Vector https://www.protectedplanet.net/en/thematic-areas/wdpa?tab=WDPA 6 July 2022 
Waterbodies Iraqi General Authority of Survey Vector https://mowr.gov.iq/en/general-survey-authority/ 17 July 2022  
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