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Complete genome sequence of potential plant growth-
promoting Bacillus altitudinis strain AIMST-CREST03 isolated 
from paddy field bulk soil
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ABSTRACT We present the complete genome of a potential plant growth-promoting 
bacteria Bacillus altitudinis AIMST-CREST03 isolated from a high-yielding paddy plot. The 
genome is 3,669,202 bp in size with a GC content of 41%. Annotation predicted 3,327 
coding sequences, including several genes required for plant growth promotion.
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B acillus is one of the most extensively studied plant growth-promoting (PGP) bacteria 
contributing significantly to the development of bio-formulations for field applica­

tions particularly in crops like paddy plants (1, 2). Here, we report the complete genome 
of a potential PGP Bacillus altitudinis strain AIMST-CREST03 (3–6) isolated from a paddy 
bulk soil sample from a high-yielding paddy plot at Kampung Gajah, Perak, Malaysia 
(4.1841° N, 100.9389° E) on 1 July 2022. Thirty gram of submerged bulk soil was collected 
at a depth of 0–20 cm.

The strain was initially isolated on a nutrient agar plate after subjecting 2.5 g of bulk 
soil to serial dilution in sterile water, ranging from 10−1 to 10−8 (7, 8). To achieve pure 
colonies, the strain required re-streaking only once. A single colony was then cultivated 
in 5 mL of fresh Luria-Bertani Broth at 37°C overnight prior to genomic DNA extraction 
using the GeneJET Genomic DNA Purification Kit (ThermoFisher) following the manufac­
turer’s instructions.

The DNA library (non-fragmented and non-size-selected) was prepared with the 
SQK-NBD114.24 native barcoding kit (Oxford Nanopore Technologies, UK) following 
the manufacturer’s instructions. The sample was subjected to native barcode ligation 
followed by adapter ligation using the NEBNext Quick Ligation Module (NEB, USA) 
as per the manufacturer’s instruction. The prepared library was then sequenced with 
Oxford Nanopore Technology’s MinION platform, with R10.4.1 flow cell. A recurrent 
neural network-based basecaller, Guppy v6.5.7 (high-accuracy model), was used (9). 
A total of 229,124 raw reads with an N50 value of 7,699 were generated. The raw 
reads were trimmed with Porechop v0.2.4 (10) and subjected to de novo assembly 
with Flye v2.9.2 (11). The resulting contig was polished with Medaka v1.8.1 (https://
github.com/nanoporetech/medaka). The publicly available linked resource (CP145438) 
was annotated with PGAP v6.6 (12). Default parameters were used for all the analyses 
unless otherwise stated.

In line with Flye’s output, the bacterial genome assembly visualization on Band­
age v0.9.0 (13) also indicated that it was a circular chromosome. A single contig of 
3,669,202 bp with GC content of 41% and mean coverage of 400× was achieved. PGAP 
predicted that the genome encodes 3,824 genes including 3,327 coding sequences, 23 
rRNA genes (5S, 16S, and 23S), 81 tRNAs, 5 non-coding RNAs, and 388 pseudogenes. A 
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relatively high number of pseudogenes was predicted due to frameshifts (354 of 388), 
suggesting that some basecalling errors may remain in the final genome, and this is a 
known limitation of Oxford Nanopore Technology (ONT)-only assemblies (14). A blast 
search against the NCBI Nucleotide database identified B. altitudinis NC3 DNA as the top 
hit and average nucleotide identity analysis on EzBioCLoud (updated on 23 August 2023) 
(15) indicated 98.59% sequence similarity between the genomes.

PGAP annotation predicted several genes necessary for auxin biosynthesis including 
Indole-3-glycerol phosphate, anthranilate phosphoribosyltransferase, phosphoribosylan­
thranilate isomerase, and tryptophan synthase (16, 17). Genes coding for siderophore 
biosynthesis and transport were also identified. Siderophore production can promote 
plant growth by enhancing iron availability and providing phytosanitary protection (18). 
Aside from that, genes coding for biosynthesis of volatile organic compounds (buta­
nediol and acetoin) known to promote growth by regulating ethylene, and cytokinin 
homeostasis were also predicted (19).
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