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Abstract: With the rapid growth in urban construction in Malaysia, road breakage has challenged
traditional manual inspection methods. In order to quickly and accurately detect the extent of road
breakage, it is crucial to apply automated road crack detection techniques. Researchers have long
studied image-based road crack detection techniques, especially the deep learning methods that have
emerged in recent years, leading to breakthrough developments in the field. However, many issues
remain in road crack detection methods using deep learning techniques. The field lacks state-of-
the-art systematic reviews that can scientifically and effectively analyze existing works, document
research trends, summarize outstanding research results, and identify remaining shortcomings. To
conduct a systematic review of the relevant literature, a bibliometric analysis and a critical analysis
of the papers published in the field were performed. VOSviewer and CiteSpace text mining tools
were used to analyze and visualize the bibliometric analysis of some parameters derived from the
articles. The history and current status of research in the field by authors from all over the world are
elucidated and future trends are analyzed.
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1. Introduction

With Malaysia’s rapid economic development, the demand for roads and highways
is growing significantly [1]. Currently, Malaysia has 267,045.58 km of roads, of which
198,437.92 km are paved. The extensive transportation network effectively improves
connectivity between cities and lays the groundwork for the country’s development. Over
time, the deterioration in road conditions and the gradual emergence of various road
problems have presented challenges to road management, inspection, and maintenance.
Long-term use of roads has resulted in high maintenance and repair costs, leading to a
significant allocation of financial resources to road maintenance, with an estimated annual
budget for road maintenance in Malaysia exceeding MYR 4693 million [2]. With the growth
of road life, the road surface gradually began to appear cracked, broken, and have other
problems. An uneven road surface greatly improves the probability of traffic accidents, so
timely road repair and maintenance are of great significance.

Traditional road inspection methods not only require a large amount of labor and con-
sume a lot of time but also require the closure of roads [3]. These practices cause localized
road blockages and reduce vehicle traffic efficiency, but they also increase the probability
of traffic accidents and pose safety risks. To address these challenges, computer vision
and machine learning have revolutionized road crack detection techniques. Combining
high-resolution cameras with neural networks to detect road cracks by robots effectively
unifies detection standards, resulting in a significant improvement in the accuracy and
efficiency of detection [4]. This technological shift marks a new era in pavement manage-
ment, moving away from traditional labor-intensive methods to more efficient, accurate,
and cost-effective solutions [5]. The combination of machine learning and computer vision
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in pavement management is extremely important to address the challenges posed by the
rapid expansion and aging of road infrastructure. These technological advances are becom-
ing increasingly important as the demand for transportation infrastructure continues to
grow. They not only play a crucial role in maintaining the infrastructure and improving
the durability and reliability of roads but also reduce the rate of traffic accidents brought
about by the inspection process. In the long run, these technologies make an outstanding
contribution to smarter and more sustainable management of infrastructure, in line with
the global trend towards automation and data-driven decision-making in urban planning
and development [6].

Crack detection is divided into three steps: first crack image acquisition, then prepro-
cessing of the acquired image, and finally classification, detection, and segmentation of the
processed image. Researchers have applied various types of images to the field of cracks,
such as RGB (red, green, and blue) images [7], infrared ray images [8], ground-penetrating
radar images [9], etc. Image preprocessing methods include grayscale conversion [10],
binary conversion [11], k-means clustering [12], fractal dimension, thresholding [13], edge
detection [7], etc. Image processing techniques can be effective in extracting features
and reducing the negative impact on the environment. Different methods classify, detect,
and segment the cracks after extracting the features. In order to enhance crack detection,
contemporary researchers are increasingly favoring deep learning-based image recogni-
tion algorithms such as convolutional neural network (CNNs) [14], You Only Look Once
(YOLO) [9], and U-Net [15], etc. This is due to neural networks’ ability to autonomously
extract essential features from road crack images in order to detect cracks more accurately.

With advancements in image processing algorithms, vision-based crack detection
systems are becoming increasingly popular. This particular field has been the focus of a
certain number of scholarly articles. However, there is a distinct lack of relevant systematic
review papers in the field that provide bibliometric analysis and critical analysis of the
existing literature. This paper aims to demonstrate research trends and provide a succinct
overview of the field of road defect detection. The authors conducted a systematic review by
examining notable papers focusing on image-based crack detection algorithms published
between 2013 and 2023. This review aims to fill the gaps in the existing literature and
provide valuable information to new researchers in this research area. This work focuses
on research papers from 2013 to 2023 as a basis for research in this field. This study aims to
examine the evolution of this field and the current state of research.

This review paper’s main contributions are as follows.

(a) The authors conducted a bibliometric analysis of selected papers in the image-based
road detection research direction, using data mining techniques to identify research
trends, influential papers, journals, authors, and countries in the field, as well as
explore patterns of collaboration in this research area.

(b) The authors conducted a critical analysis of papers related to deep learning-based
methods for road crack image detection.

(c) The authors summarize important image processing techniques and classifier algo-
rithms for road crack detection.

2. Literature Review

As science and technology have advanced, computer vision—a technology based on
image processing—has become an increasingly important field of study for road crack
detection. This technique has made an excellent contribution to the automation of the
crack detection process. This approach has now become a key research area for researchers
and engineers. This section provides a brief overview of key elements from previous
review papers and explores the significance of contemporary works that have contributed
significantly to the research area.

Refs. [7,13] discussed the use of image processing for road crack detection, focusing on
basic techniques such as thresholding, edge detection and region growing methods. There
are some problems with manual inspection that require automated systems [7]. multiscale
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extraction and Markovian segmentation methods were introduced. Ref. [13] gave an in-
depth look at how computer vision can be used to assess the condition of civil infrastructure.
Ref. [16] presented a study showing how the advancement of mobile light detection and
ranging (LiDAR) technology has led to a shift in focus towards the collection of three-
dimensional (3D) point clouds for road information inventory. In [17], image processing and
machine learning methods for road damage detection were further explored, emphasizing
the importance of automated and semi-automated evaluation systems. Ref. [18] highlights
the achievements and challenges of applying deep learning in this area, indicating a rapidly
growing interest in such approaches due to their superior performance over traditional
methods. This period marked a significant shift in deep learning methods, in particular deep
convolutional neural networks (DCNNs) for automated road breakage detection. In [19,20],
the refinement of deep learning and the introduction of 3D imaging were explored, deep
learning methods were categorized into classification, detection and segmentation, and
3D image-based crack detection techniques were introduced. These papers discuss the
performance comparison of different deep learning models and the potential of 3D data to
improve detection accuracy. Recent advances in sensing technologies, machine learning
methods and image processing for road monitoring and analysis are discussed in [21,22].
In [21], the focus is on image segmentation and the need for advanced segmentation
strategies to enable fully automated pavement distress detection. Ref. [22] emphasizes the
need to improve the performance of intrusive sensors and algorithms to better adapt to
different road images. Table 1 summarizes the review paper on crack detection using image
processing techniques.

Table 1. Summary of previous review of crack detection using image processing techniques.

Ref Year Name of the
Journal/Conference Major Contributions Limitations

[7] 2011 International Journal
of Geophysics

Introduced multi-scale extraction and
Markovian segmentation for crack
detection in pavements. Offered a new
method and evaluation protocol for
crack detection.

Method’s dependency on the quality of
road texture and limitations of the
acquisition system highlighted.

[13] 2015 Advanced Engineering
Informatics

Comprehensive review of computer vision
applications for infrastructure condition
assessment. Synthesized state of the art in
defect detection.

Existing methods’ achievements and
limitations outlined without providing a
definitive solution to address the
challenges.

[16] 2016 International Journal of
Image and Data Fusion

Discussed the advancements in mobile
LiDAR technologies for road
information inventory.

Highlighted the need for further
exploration in mobile LiDAR technologies
and data processing techniques.

[17] 2017

Archives of
Computational

Methods in
Engineering

Comprehensive review of image
processing and machine learning
approaches for pavement
distress detection.

Costly industrialization and the need for
more powerful tools for better image
quality emphasized.

[18] 2018 Data

Reviewed applications of deep learning in
automated pavement distress detection,
comparing deep learning frameworks
and architectures.

Identified class imbalance in pavement
images as an area needing further research
within deep learning contexts.

[20] 2020 IEEE Access

Reviewed image processing, machine
learning, and 3D imaging methods for
crack detection. Compared deep learning
neural networks.

Acknowledged the emergence of 3D data
in crack detection as a new research line
but detailed exploration required.

[19] 2020 Journal Of Computing
In Civil Engineering

Reviewed and evaluated ML-based crack
detection algorithms, focusing on
pixel-level segmentation.

Pointed out the false-positive problem as a
key issue needing improvement in
ML-based crack detection models.
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Table 1. Cont.

Ref Year Name of the
Journal/Conference Major Contributions Limitations

[22] 2021 Engineering
Summarized state-of-the-art in sensing
techniques, image processing, and ML
methods for pavement monitoring.

Suggested improvement in sensors and
algorithms for better adaptability and
performance.

[21] 2022 Construction And
Building Materials

Focused on image segmentation
approaches in crack detection, reviewing
thresholding-based, edge-based, and
data-driven methods.

Highlighted the need for advancements in
algorithms to handle diverse pavement
conditions and complex textures.

Throughout this evolution, a clear shift from manual and semi-automated techniques
to sophisticated deep learning and 3D imaging methods has occurred, reflecting broader
trends in technology and data science. Together, these papers emphasize the importance of
continued innovation in algorithms, data processing techniques, and sensor technologies to
effectively address the challenges of road crack detection. Future research directions focus
on enhancing deep learning models, exploiting the potential of 3D imaging, and developing
comprehensive systems that integrate various data types and detection methods to assess
road conditions more accurately and effectively.

3. Research Methodology

The authors used a combination of methods in this work, including a bibliometric
analysis and a critical analysis of papers. The main focus of the study is on the algorithms
used for road crack detection. Figure 1 illustrates the overall technique used in this research.
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Figure 1. Overview of the research methodology.

As shown in Figure 1, the first stage is the collection of the original paper data for this
review. The second stage is a bibliometric analysis to identify key areas of research. The
third stage involves a careful evaluation of the papers, focusing on the abstract, methodol-
ogy, and results. In addition, a brief summary of the progress made in the development of
algorithms for road crack detection is provided.

In order to conduct a comprehensive literature review, the authors followed a prede-
termined set of criteria to include the most relevant scientific papers. Figure 2 shows the
process of document retrieval and data filtering, referred to as stage 1 in Figure 1. According
to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) ap-
proach, there are four separate steps in the data collection process: identification, screening,
eligibility, and inclusion [23].
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Figure 2. Overview of the literature retrieval and screening process.

Phase 1: In March 2024, the authors searched for papers on Scopus. To discuss the
development of crack detection and the latest technologies, the author restricted the search
string to a period from 2013 to 2023, using the search keywords “pavement crack detection”.
Only articles were selected as the document type to ensure that it was an original study. At
the end of the first phase, the authors identified a total of 607 papers.

Phase 2: The authors filtered eligible papers from the 607 extracted papers by title
and abstract. In order to avoid the inclusion of irrelevant papers, the authors established
rules to exclude and discard these papers if (a) the focus of a particular paper was a non-
image-based crack detection algorithm, (b) the paper dealt with the detection of non-road
cracks (such as walls, steel, etc.), (c) the paper investigated the method of detecting non-
surface road cracks. The application of these rules resulted in the exclusion of 218 papers at
this stage.

Phase 3: At this stage, the remaining 389 papers were evaluated using the full text of
the survey. Papers that were not related to the research topic of this study or that did not
make an innovative and effective contribution to the field of image-based crack detection
research were eliminated. In sum, 84 papers were excluded. This reduced the number of
papers extracted to 305.

Phase 4: Upon completion of all the above phases, 305 papers were finally included
in this review for scientific measurement analysis (at https://drive.google.com/file/d/
1WbbGcwvawm8o-3rjK1uiJMp1qaE5oJ6L/view?usp=drive_link (accessed on 3 May 2024),
and 72 papers based on deep learning were selected from the 305 papers. After excluding
papers that did not provide detailed processes for designing or implementing the proposed
ideas, 65 papers were finally selected for critical analysis.

4. Bibliometric Analysis

Bibliometric analysis is a statistical approach used to evaluate the academic merit of
papers, publishers, and authors. It also helps identify research trends in a given field by
analyzing factors such as the number of publications, their citation frequency, and patterns
of collaboration. The authors used two visualization tools, namely, VOSviewer [24] and
CiteSpace [25], to perform a bibliometric analysis of papers obtained from a screened
database. The authors explored the most influential papers, authors, publishers, and coun-
tries in the research area of image-based crack detection algorithms for roads. In addition,
the authors performed a scientific mapping analysis. The scientific mapping analysis in-
cludes co-citation analysis, co-authorship analysis, keyword occurrences, and timeline view
analysis. Co-citation analysis determines the relevance of different papers. Co-authorship
analysis can identify patterns of collaboration between countries and institutions. The

https://drive.google.com/file/d/1WbbGcwvawm8o-3rjK1uiJMp1qaE5oJ6L/view?usp=drive_link
https://drive.google.com/file/d/1WbbGcwvawm8o-3rjK1uiJMp1qaE5oJ6L/view?usp=drive_link
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number of keyword occurrences gives an idea of research trends and important terms in
the field.

4.1. Overview of the Publications
4.1.1. Annual Analysis of the Publications

The authors screened papers from the online database Scopus between 2013 and 2023,
analyzing a total of 305 papers for bibliometric analysis. Figure 3 shows the number of
papers per year. The figure shows a low publication rate from 2013 to 2015, with fewer than
five papers published per year. After 2016, the number of papers published per year began
to increase rapidly, fluctuating between 10 and 20 between 2016 and 2019. In 2020–2021, the
number of papers published increased dramatically, jumping to between 40 and 50, while
in 2022–2023, the number of papers was between 70 and 80, accounting for about 58.52% of
the total number of papers published at that time. In 2024, the publication rate also showed
an upward trend. This clearly shows that researchers are beginning to invest more effort in
this field of study, and the analysis predicts a significant increase in the number of papers
in this field to continue.
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The authors also analyzed the number of citations to the papers by year. Figure 3
shows the distribution of citations per year for papers. The figure shows a consistent
upward trend in citations over time. The figure shows that the authors have divided the
time span from 2013 to 2023 into three stages, with the first stage (2013 to 2016) showing
fewer than 80 citations per year, for a total of 1752 citations. This is only 14.34% of the total
number of citations. In the next stage (2017–2020), the number of citations showed a rapid
increase. The highest number of citations in this stage is 2734 in 2020, followed by 2021 in
2017. In this stage, the total number of citations is 7601, which represents 62.20% of the
total number of citations. In the last stage (2021–2023), there is a decrease in the number
of paper citations, with a total of 2868 citations. This stage accounted for approximately
23.47% of the total citations. This suggests that the field has experienced significant growth
in recent years, with the literature from 2017 to 2020 making a significant contribution to
the field. The authors argue that the lower number of citations to papers from 2021 to the
present does not mean that this stage of research has stagnated, as the number of citations
in the literature in this stage is still significantly higher than in the first stage and is similar
to the average number of citations per year in the second stage. The literature of the last
stage, which was published later and over a shorter period of time (only two or three years),
resulted in a relatively low number of citations.
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4.1.2. The Most Cited Publications

In this subsection, the authors identify and analyze the most influential and popular
papers out of the 305 papers. The authors set a threshold of at least 100 citations to extract
25 papers. The authors cited these 25 papers 5732 times, accounting for about 46.90% of all
paper citations. Since most of the references in the papers come from these papers, these
papers have irreplaceable status and influence in the research field of image-based road
crack detection algorithms.

Table 2 summarizes these most cited papers by reference, journal, country, year,
citation, and average citation per year. The authors sort the papers based on the number
of citations. “Deep convolutional neural networks with transfer learning for computer
vision-based data-driven pavement distress detection” is the most cited paper. This paper,
published in Construction and Building Materials in 2017, has received 652 citations. This
paper is highly influential, with an average of 108.67 citations per year. In second place
was “Automated pixel-level pavement crack detection on 3d asphalt surfaces using a deep-
learning network” with 651 citations. This paper, published in Computer-Aided Civil and
Infrastructure Engineering in 2017, had an average of 108.5 citations per year.

Table 2 provides a comprehensive analysis of these 25 papers, and Figure 4 generates
a citation and average citation based on this dataset. The longer orange rectangles in
the figure indicate more citations, while the longer blue rectangles indicate more average
citations. A detailed analysis shows that most papers have been cited in a linear fashion
over the years, but in Table 2, the citation and average citation of the papers [14,26–28] are
much higher than the others, and even though the papers [26] were published in 2020, they
received 470 citations, with an annual citation of 156.67, which clearly shows that [14,26–28]
these papers will make an excellent contribution to this research area. Papers [29–33] have
also received attention from researchers in a shorter period of time with a high average
citation. On the other hand, papers [34–38] are at the bottom of the list in terms of both
citation and average citation, and their low average citation (fewer than 30 times per year)
indicates that these papers have not received enough attention from researchers.
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Table 2. Summary of the most frequently referenced academic papers.

Reference Journal Country Year Citation Average Citation per Year

[14] Construction and Building Materials USA 2017 652 108.67

[27] Computer-Aided Civil and
Infrastructure Engineering China 2017 651 108.50

[28] IEEE Transactions on Image Processing China 2019 491 122.75

[26] IEEE Transactions on Intelligent
Transportation Systems USA 2020 470 156.67

[39] IEEE Transactions on Intelligent
Transportation Systems Portugal 2013 334 33.40

[40] IEEE Transactions on Intelligent
Transportation Systems France 2016 301 43.00

[41] Computer-Aided Civil and
Infrastructure Engineering

South
Korea 2019 299 74.75

[42] Automation in Construction Vietnam 2018 213 42.60

[43] Computer-Aided Civil and
Infrastructure Engineering Spain 2014 210 23.33

[30] Computer-Aided Civil and
Infrastructure Engineering Australia 2020 197 65.67

[44] Computer-Aided Civil and
Infrastructure Engineering USA 2019 195 48.75

[45] Journal of Computing in Civil Engineering China 2018 190 38.00

[31] IEEE Transactions on Intelligent
Transportation Systems USA 2020 181 60.33

[32] Structural Control and Health Monitoring China 2020 162 54.00

[46] Journal of Computing in Civil Engineering USA 2018 162 32.40

[47] Automation in Construction China 2020 146 48.67

[48] Construction and Building Materials Canada 2020 135 45.00

[33] Construction and Building Materials China 2121 125 62.50

[36] Eurasip Journal on Image and
Video Processing Spain 2017 117 19.50

[37] IEEE Transactions on Intelligent
Transportation Systems China 2019 117 29.25

[38] IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing China 2018 114 22.80

[34] IEEE Access Singapore 2018 112 22.40

[49] Journal of Computing in Civil Engineering USA 2020 109 36.33

[35] Image and Vision Computing China 2017 108 18.00

[29] IEEE Transactions on Intelligent
Transportation Systems USA 2021 103 51.50

4.2. Influential Journals, Authors, and Countries
4.2.1. The Most Productive Journals

In this subsection, the authors have listed the journals that have made outstand-
ing contributions to the field of image-based road crack detection algorithms. A total
of 122 different journals published the collected 305 papers. The authors extracted the
top 10 publication sources based on the number of papers published. These 10 journals
published a total of 124 (40.66%) of the 305 papers. The remaining 181 (59.34%) papers were
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published in the other 112 journals. Table 3 summarizes these most cited journals by journal
name, total publications, total citations, average citations, impact factor, 5-year impact
factor, publisher, and H-index. The authors have sorted the table according to the number
of papers. Table 3 shows that the journal IEEE Transactions on Intelligent Transportation
Systems holds the top position, with 21 papers and 1817 citations. The impact factor (IF) of
this journal is also quite high, at 21.47. The H-index of this journal is 13, which indicates that
this journal is very influential among researchers. The journal Automation in Construction
ranks second, with 19 papers and 1138 citations.

Table 3. Summary of the most productive journals.

Journal Name Total
Publications

Total
Citations

Average
Citations

Impact
Factor

5-Year
Impact
Factor

Publisher H-Index

IEEE Transactions on
Intelligent

Transportation
Systems

21 1817 21.36 21.47 62.21
Institute of

Electrical and
Electronics

13

Automation in
Construction 19 1138 24.33 32.27 49.41 Elsevier B.V. 16

International Journal
of Pavement
Engineering

16 230 7.24 13.67 14.38 Taylor and
Francis Ltd. 7

Journal of Computing
in Civil Engineering 15 1095 12.43 0.00 60.50

American
Society of Civil

Engineers
14

Construction and
Building Materials 13 1188 18.06 4.25 39.82 Elsevier Ltd. 8

IEEE Access 13 475 13.11 1.00 30.25
Institute of

Electrical and
Electronics

10

Computer-Aided Civil
and Infrastructure

Engineering
10 1673 29.58 9.75 104.29 Blackwell

Publishing Inc. 7

Applied Sciences
(Switzerland) 9 77 4.09 5.71 8.56 MDPI AG 4

Sensors 8 170 10.85 20.67 21.25 MDPI 5

Journal of
Transportation

Engineering Part B:
Pavements

7 52 2.53 4.00 4.80 ASCE 5

The top two journals on the list have very high values. The third-ranked journal,
International Journal of Pavement Engineering, has 16 total publications, but only 230 total
citations, while the other journals in the top 7 generally have more than 1000 total citations.
The sixth-ranked journal, IEEE Access, has the same problem, with 13 total publications, but
only 475 total citations. It is also interesting to note that the fourth-ranked journal, Journal of
Computing in Civil Engineering, has an impact factor of 0 for the last two years, but a 5-year
impact factor of 60.5. Other journals have fewer than 10 publications, and the number of
citations is generally very low, indicating that researchers in the field of vision-based road
crack detection have not paid much attention to these journals.

To understand trends in citations and impact, the authors were interested in journals
with the lowest number of publications but high citation rates, so the authors searched the
dataset for the existence of such journals. The authors found journals such as EURASIP
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Journal on Image and Video Processing (1 paper, 117 citations), IEEE Journal of Selected Topics
in Applied Earth Observations and Remote Sensing (1 paper, 114 citations), Image and Vision
Computing (1 paper, 108 citations), and Structural Control and Health Monitoring (2 papers,
175 citations).

To understand the historical development of the top journals in terms of paper pub-
lication and citation, the authors summarize the information in Table 4. Table 4 shows
that all journals started to publish papers on image-based road crack detection around
2020. Before that, from 2013 to 2019, the number of papers published by these journals did
not exceed 10 per year. However, there are still several journals with very high citation
counts during these years, such as IEEE Transactions on Intelligent Transportation Systems
in 2013, IEEE Transactions on Intelligent Transportation Systems in 2013, IEEE Transactions
on Intelligent Transportation Systems in 2016, Construction and Building Materials in 2017,
and Computer-Aided Civil and Infrastructure in 2017. Computer-Aided Civil and Infrastructure
Engineering in 2017 and Computer-Aided Civil and Infrastructure Engineering in 2019 had more
than 300 citations each.

Table 4. Historical development of the journals in terms of the publications and citations.

Journal Name
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

P C P C P C P C P C P C P C P C P C P C P C

IEEE
Transactions on

Intelligent
Transportation

Systems

1 334 0 0 0 0 1 301 0 0 0 0 1 117 2 651 1 103 11 302 4 9

Automation in
Construction 0 0 0 0 0 0 0 0 0 0 2 298 1 83 3 307 2 95 5 135 6 220

International
Journal of
Pavement

Engineering

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 25 9 195 6 10

Journal of
Computing in

Civil
Engineering

0 0 0 0 0 0 4 172 3 175 4 506 1 97 3 145 0 0 0 0 0 0

Construction
and Building

Materials
0 0 0 0 0 0 1 98 1 652 0 0 0 0 5 282 2 139 1 9 3 8

IEEE Access 0 0 0 0 0 0 0 0 0 0 1 112 1 63 5 211 4 87 0 0 2 2

Computer-
Aided Civil and
Infrastructure
Engineering

0 0 2 292 0 0 0 0 1 651 0 0 2 494 1 197 0 0 1 27 3 12

Applied
Sciences

(Switzerland)
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 37 4 31 3 9

Sensors 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 46 3 105 3 19

Journal of
Transportation

Engineering
Part B:

Pavements

0 0 0 0 0 0 0 0 1 18 1 10 0 0 0 0 2 12 2 5 1 7

P represents the number of papers published, while C represents the number of citations received by each paper.
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4.2.2. The Most Productive Authors

This subsection discusses the most productive authors in the research field of image-
based road crack detection algorithms. In the dataset collected by Scopus, 305 papers
involved 1046 authors. In this study, the top ten authors are selected based on the number
of publications (five authors) and citations (five authors). Table 5 shows the top ten authors
by author name, total publications, total citations, average citations, as first author, H-index,
and country.

Table 5. Summary of the most productive authors.

Author Name Total
Publications

Total
Citations

Average
Citations

As 1st
Author H-Index Country

Based on
Publications

Huyan, Ju 15 489 9.65 5 9 China

Li, Wei 13 447 8.63 4 8 China

Wang, Kelvin C.P. 9 1378 26.18 0 7 USA

Gu, Xingyu 9 348 21.63 0 7 China

Li, Gang 8 113 4.52 6 4 China

Based on
Citations

Wang, Kelvin C.P. 9 1378 26.18 0 7 USA

Chen, Cheng 7 1373 37.89 3 7 China

Zhang, Allen 6 1345 38.35 4 6 USA

Fei, Yue 5 1319 45.36 1 5 USA

Li, Joshua Q. 4 1281 53.31 0 4 USA

The first part of Table 5 lists the top 5 authors with the most published papers. Accord-
ing to the summarized table, the maximum number of papers published by a single author
is 15. “Huyan, Ju” and “Li, Wei” have published 15 and 13 papers, respectively, and hold
the top two positions by a wide margin. Interestingly, “Wang, Kelvin C.P.” has published
nine papers, none of them as first author, and has accumulated 1378 citations, significantly
more than the other four authors. This indicates that “Wang, Kelvin C.P.” has played a
significant role in the research. Although “Li, Gang” only ranked fifth in terms of number
of publications, he is the first author in six, which was the highest among all authors. In
terms of the number of published papers, the high-producing authors are mainly from
China, which means that Chinese researchers have made important contributions to the
field of image-based road crack detection.

The second part of Table 5 lists the five most cited authors. The table shows that all five
authors have exceptionally high total and average citations, with over 1200 total citations
and over 26 average citations. “Li, Joshua Q.” demonstrates the outstanding impact of this
researcher with 53.31 average citations and a total citation count of 1281, which is lower by
only 97 citations than the top-ranked “Wang, Kelvin C.P.” Four of the top five authors by
extracted citations are from the United States, highlighting the current importance of USA
researchers in the field of image-based road crack detection.

4.2.3. The Most Productive Countries

In this subsection, the authors aim to investigate the most prominent countries in
the field of research on image-based crack detection methods for roads. The analysis of
the 305 papers filtered from the Scopus dataset revealed a total of 43 countries. Figure 5
shows the distribution of these 305 papers. In this figure, larger circles indicate that more
papers have been published in that country. The authors analyzed the contribution of
each continent in terms of published papers, with Asia having the highest contribution,
publishing 63.24% of the total number of papers. North America and Europe accounted for
17.40% and 13.73% of the total number of papers, respectively, while the remaining 5.63%
came from other regions of the world.
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After showing the geographical distribution of the papers in the dataset, the authors
present the top 10 papers by number of publications in Table 6. Table 6 shows information
on country, total publications, total citations, average citations, number of cited papers
greater than or equal to 100/50/30/10, and H-index, arranged based on the number of
papers published in each country. From Table 6, China is far ahead of other countries with
a total of 203 papers, 6749 total citations, and an amazing H-index of 41. Although the
United States is not as good as China in terms of number of publications or citations, it is
in first place in terms of average citations (21.10). Both China and the United States have
more than 10 papers with more than 100 citations. With 18 papers, Canada and the United
Kingdom are tied for third place, but Canada’s total citations of 776 are significantly higher
than the United Kingdom’s 338, Canada has 6 papers with more than 50 citations, while
the United Kingdom has none.

Table 6. Summary of the most productive countries.

Country TPs TCs ACs ≥100 ≥50 ≥30 ≥10 H-Index

China 203 6749 10.12 13 22 20 58 41
United States 52 4996 21.10 15 7 7 13 29

Canada 18 776 11.72 4 2 1 7 13
United Kingdom 18 338 5.80 0 0 3 10 10

South Korea 13 707 15.97 2 1 3 3 9
France 8 505 10.98 0 2 1 1 5
Italy 8 251 9.55 0 3 3 0 7

Australia 7 393 16.82 1 1 1 3 6
Vietnam 7 402 12.81 1 1 0 3 6

India 7 55 4.83 0 0 2 1 4

TPs (total publications), TCs (total citations), ACs (average citations).

The authors also found that there are some countries in the dataset that do not appear
in the top 10, but their papers received a high number of citations, indicating that the
papers published in these countries also have a high impact. For example, in the dataset,
Portugal has only three papers with 454 citations, and Malaysia has only three papers with
221 citations. These two countries have even more total citations than some of the top
10 countries.
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4.3. Science Mapping Analysis
4.3.1. Co-Citation Analysis

The authors considered co-citation analysis to be one of the science mapping tech-
niques. Paper C simultaneously cites published papers A and B, resulting in co-citation. In
this subsection, the authors perform co-citation analysis on cited sources and cited authors
to explore journal-to-journal and author-to-author correlations. When citing two sources or
authors simultaneously, it means that they have the same field of research and interest.

First, to analyze the co-citation network of cited sources, the authors set a threshold
of at least 70 citations and finds 20 sources that meet this threshold. Table 7 lists the total
co-citation link strength of these sources. The authors sort the table based on the total link
strength of the journal. A source’s total link strength is the sum of its link strengths with
all other sources, while link strength refers to the frequency of co-citations between two
sources in a third source.

Table 7. Co-citation indices of the sources.

Source Citations Total Link Strength

Computer-Aided Civil and Infrastructure Engineering (comput-aided civ inf) 607 10694

IEEE Transactions on Intelligent Transportation Systems (ieee t intell transp) 483 9144

Proceedings CVPR IEEE (proc cvpr ieee) 443 8626

Automation in Construction (automat constr) 434 8425

Journal of Computing in Civil Engineering (j comput civil eng) 285 5571

Construction and Building Materials (constr build mater) 322 5315

Lecture Notes in Computer Science (lect notes comput sc) 236 4957

arXiv (arxiv) 225 4472

IEEE Transactions on Pattern Analysis and Machine Intelligence (ieee t pattern anal) 221 4335

IEEE International Conference on Image Processing (ieee image proc) 221 4152

IEEE Access (ieee access) 180 3714

Sensors (sensors-basel) 176 3233

IEEE Conference on Computer Vision and Pattern Recognition (ieee i conf comp vis) 126 2919

IEEE Transactions on Image Processing (ieee t image process) 115 2339

Transportation Research Record (transport res rec) 132 2180

Pattern Recognition Letters (pattern recogn lett) 109 2066

International Journal of Pavement Engineering (int j pavement eng) 109 2012

Advances in Neural Information Processing Systems (adv neur in) 73 1530

Advanced Engineering Informatics (adv eng inform) 78 1498

Measurement Science and Technology (measurement) 72 1470

To better illustrate the link model, the authors generated the scientific landscape of the
co-citation networks of the journals using the VOSviewer 1.6.20 software (Figure 6).

Figure 6 divides the journal into two clusters (red and green), with each node in
Figure 6 representing the corresponding source. The larger the node, the higher the co-
citation, and the thicker the link between two nodes, the stronger the link strength between
the two sources. The authors chose the total link strength as the weight for the co-citation
analysis. Sources with higher citations have higher link strength, and it is interesting to
note that all sources of each cluster are cited together with the sources of the clusters they
are in.
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A closer look reveals that the red cluster contains a total of 11 sources, the most
prominent of which is IEEE Transactions on Intelligent Transportation Systems with 19 links and
a total link strength of 9144. It has 134 citations for Computer-Aided Civil and Infrastructure
Engineering, 115 citations for Proceedings CVPR IEEE, and 113 citations for Automation in
Construction. This clearly shows that IEEE Transactions on Intelligent Transportation Systems
is highly relevant to these three journals in the field of vision-based road crack detection
research. Meanwhile, Proceedings CVPR IEEE has the second-highest total link strength in
the red cluster with 8626.

The green cluster is composed of nine sources. The most influential source in the
cluster is Computer-Aided Civil and Infrastructure Engineering with 19 links and a total link
strength of 10,694. The journal is related to IEEE Transactions on Intelligent Transportation
Systems with 134 citations and Automation in Construction with 134 citations. Automation in
Construction is the second-most cited source in the green cluster with a total link strength
of 8425.

After analyzing the co-citation network of the cited sources, the authors analyzed the
co-citation network of the cited authors. To filter the top 20 authors in terms of total link
strength, the citation threshold is set to at least 46 citations. Table 8 shows the total co-
citation link strength of the cited authors. The total link strength of the authors determines
the order of this table. For better understanding, we have generated the scientific landscape
of the cited authors’ co-citation network using the VOSviewer 1.6.20 software, as shown in
Figure 7.

As can be seen in Figure 7, the cited authors are grouped into a total of three clusters
(red, green, and blue). Each node represents the corresponding cited author: the larger the
node, the higher the citation, and the thicker the line between two nodes, the stronger the
link strength between the two cited authors. The total link strength is also chosen as the
weight of the co-citation analysis, and the cited author with a higher citation has a higher
link strength. The cited authors were cited together with the others cited author of the
cluster in which they are located.
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Table 8. Authors’ co-citation indices.

Cited Author Citations Total Link Strength

Zou, Qin (zou, q) 157 1118
Zhang, Allen (zhang, a) 138 888
Cha, Youngjin (cha, yj) 124 875

Shi, Yong (shi, y) 96 749
He, Kaiming (he, km) 88 659
Zhang, Lei (zhang, l) 89 641

Fan, Zhun (fan, z) 75 584
Oliveira, Henrique (oliveira, h) 87 571

Yang, Fang (yang, f) 74 567
Ronneberger, Olaf (ronneberger, o) 74 560

Long, Jonathan (long, j) 56 498
Amhaz, Rabih (amhaz, r) 65 489

Hoang, Nhat-Duc (hoang, nd) 78 438
Badrinarayanan Vijay (badrinarayanan, v) 51 426

Li, Qingquan (li, qq) 57 388
Girshick, Ross (girshick, r) 50 378

Lin, Tsung-Yi (lin, ty) 46 343
Tong, Zheng (tong, z) 60 316

Redmon, Joseph (redmon, j) 48 306
Gopalakrishnan, Kasthurirangan
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The red cluster contains 9 authors. The lead author of this cluster is “Zou, Qin” with a
total link strength of 1118. This author has the highest number of citations with 157. The
second author is “Zhang, Allen” with a total link strength of 888 and 138 citations. The
third author is “Shi, Yong” with a total link strength of 749 and 96 citations. “Zou, Qin”
and “Zhang, Allen” have 49 citations together. Allen” and “Shi, Yong” are cited together
68 times, and “Zou, Qin” and “Shi, Yong” are cited together 33 times. “This suggests a
high degree of similarity in the focus of their research topics. There is a higher correlation
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between the authors of the red clusters than between the authors of the red clusters and the
authors of the other color clusters.

The green cluster has six authors. The most cited author in this cluster is “Cha,
Youngjin” with a total link strength of 875. This author has the highest link strength with
“Zou, Qin” with a value of 41 and also has a higher link strength with “Zhang, Allen” with
a value of 37. Another influential author in this cluster is “He, Kaiming” with a total link
strength of 659.

The blue cluster has five authors. The influence of the authors in this cluster is lower
than that of the other two clusters, and the most influential author is “Fan, Zhun” with
a total link strength of 584. This indicates that while the research directions of the cited
authors in the blue cluster are pertinent to vision-based road crack detection, their collective
citations have not increased significantly over time.

4.3.2. Co-Authorship Analysis

Collaboration in research plays a pivotal role in the generation of innovative ideas
and their implementation in a more streamlined and expeditious manner. This is due
to the inherent difficulty in completing a research task by a single individual. Another
bibliometric measure employed in this work is co-authorship analysis. In this section, the
authors will conduct a co-authorship analysis using the country as the unit of analysis
to study the collaborative relationship between authors from different countries. In the
case of the co-authorship analysis of the countries, the authors set a threshold of 10 for the
minimum number of papers in each country and in Table 9 list the countries sorted by total
link strength. The authors generated the scientific landscape of the co-authorship network
of the countries using the VOSviewer 1.6.20 software, as shown in Figure 8.

Table 9. Co-authorship indices of the countries.

Country Documents Total Link Strength

China 189 43
United States 39 21

Canada 15 11
South Korea 11 8

United Kingdom 13 7
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Figure 8 categorizes countries into two distinct clusters, represented by the colors red
and green. Each node in Figure 8 represents a country. The size of a node is indicative of
the number of authors from that country who receive citations. The greater the thickness of
the connecting line between the two countries, the more substantial the connection between
them. The red cluster is comprised of a total of three countries. Among the countries in
the red cluster, China is in the leading position, with a total link strength of 43. China is
situated at the center of Figure 8 and has collaborated with the remaining four countries.
This indicates that China occupies a pivotal position in this field. China has the greatest
number of collaborations with the United States, with 21. The next most influential country
in the red cluster is the United States, with a total link strength of 21. The United States
only engages in collaborative activities with China. Canada, with a total link strength of
11, also cooperates only with China, with several collaborations of 11. In the green cluster,
there are only two countries, South Korea and the United Kingdom, that cooperate closely
with China in addition to each other.

4.3.3. Co-Occurrence and Timeline View Analysis

Keywords in a research paper serve an essential function in elucidating a paper’s
research focus. In this section, the authors conducted a co-occurrence analysis of keywords
to analyze the research trends and to identify and research hotspots in the field of image-
based road crack detection algorithms. A total of 815 keywords were obtained from
305 publications using VOSviewer 1.6.20. The authors established a threshold of 10 for the
minimum number of occurrences of a keyword. A total of 25 of the 815 keywords met the
threshold. Figure 9 presents a network visualization of the paper’s keyword co-occurrences.
And Figure 9 is summarized in Table 10.
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The circular nodes depicted in Figure 9 represent distinct keywords. The size of the
nodes indicates the frequency of occurrence of the keywords. Therefore, the larger the
node, the more frequently and importantly the keyword is used. The size of the circle
indicates the frequency of occurrence of the keyword in the paper. A smaller circle indicates
a lower frequency of occurrence. The line between two nodes represents the number of
times the two keywords appear together. The thicker the line, the more often the two
keywords appear together in a paper. Conversely, the thinner the line between two nodes,
the less often the two keywords appear together. Figure 9 illustrates that “deep learning” is
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the most frequently occurring keyword, appearing 72 times. The second most frequently
occurring keyword is “crack detection”, which appears 71 times. The third-ranked keyword
is “pavement crack detection”, which has appeared 41 times. It is noteworthy that two
keywords with a high degree of similarity, namely “convolutional neural network” and
“convolutional neural networks”, were identified during the keyword analysis process.
When combined into a single keyword, it ranks fourth with 35 occurrences. The keyword
“damage detection” was identified 33 times and ranked fifth. The node “deep learning” is
most closely associated with “crack detection”, “pavement crack detection”, and “damage
detection”, as evidenced by the thickest connecting lines between these three nodes. Deep
learning is a widely used technique in road crack detection.

Table 10. Summary of clusters obtained from keyword analysis.

Cluster Color Observed Keywords No. of Keywords

Red

computer vision, feature extraction, image
segmentation, images, object detection, pavement

crack, pavement crack detection, recognition, roads,
segmentation, semantic segmentation

11

Green
asphalt pavement, classification, convolutional
neural network, convolutional neural-networks,

crack detection, damage detection, image processing
7

Blue 3d asphalt surfaces, algorithm, deep learning,
inspection, model, pavement distress, system 7

Figure 9 illustrates that the red cluster, comprising 11 keywords, is the largest of the
three clusters. The keyword “pavement crack detection” is the largest for the nodes in
the red cluster. This keyword is observed 41 times. The other keywords with a greater
number of occurrences in this cluster are “feature extraction” and “image segmentation”,
with 21 and 17 occurrences, respectively. The keywords in the red cluster underscore the
significance of feature extraction and image segmentation techniques in the recognition
and analysis of road conditions. The primary keyword in the green cluster is “crack
detection” which occurs a total of 71 times, along with “damage detection”, “convolutional
neural network” and “image segmentation” which occur 21, 17, and 17 times, respectively.
The combination of “convolutional neural network” and “image processing” serves to
highlight the significance of employing convolutional neural network techniques in the
context of damage detection and image processing. The keyword “deep learning” is the
most prominent in the blue cluster, occurring 72 times and representing the most notable
keyword in Figure 9. The keywords in the blue cluster collectively emphasize the pivotal
role of deep learning in enhancing algorithmic efficiency, model accuracy, and overall
system performance, particularly in an environment where complex data analysis is a
significant consideration.

Following the completion of the cluster analysis, the authors proceeded to extract the
10 most frequently occurring keywords. Table 11 provides a summary of the keywords,
frequency, links, and total link strength. The table was sorted by keyword frequency. The
keywords contained within Table 11 are analyzed and the keywords “deep learning”,
“crack detection”, “pavement crack detection” and “recognition” all have links of nine,
which is associated with all other keywords in the table. This indicates that these keywords
are the core keywords in the field of image-based road crack recognition. It is noteworthy
that although the keyword “recognition” is associated with the remaining nine keywords,
the total link strength is only 32. This indicates that it does not appear to be a highly
interconnected keyword with other keywords.

In addition, the study’s authors employed the CiteSpace 6.3.R2 software to enumerate
the keywords that appeared with a frequency exceeding a specified threshold. Figure 10
presents a timeline view of the keywords. This shows the trajectory of research and de-
velopment in the field of image-based road crack recognition from 2013 to 2023. The time
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distribution can be divided into three stages. In the initial stage, spanning from 2013 to 2015,
the most pivotal keywords were “crack detection”, “image processing and recognition”,
“algorithm”, and “system”. At this stage, the researchers conducted a comprehensive
investigation into the fundamental methodologies for crack detection on roads, with a
particular emphasis on ensuring the high applicability of the developed models and meth-
ods. The second stage, spanning from 2015 to 2020, reveals a gradual increase in research
on image-based road crack detection, with prominent keywords such as “deep learning”,
“pavement crack detection”, “damage detection”, and “convolutional neural network”.
This stage has witnessed the introduction of deep learning algorithms in numerous studies,
resulting in notable advancements in the identification and classification of road cracks,
thereby markedly enhancing detection reliability. In the third stage, spanning the years
2020 to 2023, the most common keywords are “feature extraction” and “semantic segmen-
tation”. The research conducted during this phase will facilitate the development of more
sophisticated and accurate systems for monitoring and evaluating cracks in road surfaces.
Table 12 presents a list of keywords related to image-based road crack detection, organized
by three distinct periods.

Table 11. Summary of the top 10 keywords.

Keyword Frequency Links Total Link Strength

deep learning 72 9 97
crack detection 71 9 82

pavement crack detection 41 9 51
damage detection 33 8 44

convolutional neural network 23 8 42
image processing 23 7 35
feature extraction 21 8 33

recognition 21 9 32
system 21 6 25

semantic segmentation 19 7 33
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Table 12. The keywords of road crack detection-related publications occurred during three differ-
ent periods.

Periods Keywords

2013–2015 crack detection, image processing, recognition, algorithm, system,
classification, pavement crack, model, inspection

2015–2020
deep learning, pavement crack detection, damage detection, convolutional

neural network, convolutional neural-networks, image segmentation,
pavement distress, pavement distress, images

2020–2023 feature extraction, semantic segmentation, asphalt pavement, object
detection, 3d asphalt surfaces, computer vision, segmentation

5. Critical Analysis

By analyzing the previous review papers, and performing a co-occurrence and timeline
view analysis of keywords, the authors found that the image recognition algorithm based
on deep learning is receiving more and more attention from researchers. Therefore, it
was decided to conduct further research on the road crack recognition algorithm based on
deep learning technology, and a critical analysis of the related papers was conducted to
further discover the related knowledge of the method. In the previous section, 72 papers
that focused on deep learning-based road crack recognition were screened. Excluding the
papers that did not provide the detailed process of realizing the research method, 65 papers
were finally screened. The authors grouped these 65 papers based on the types of computer
vision techniques used in them. The authors then analyzed the 65 papers based on the
problem statement, methodology, and results. The following issues were raised.

Q1. What deep learning method does a paper use?
Q2. What backbone does the deep learning method use?
Q3. What deep learning framework does a paper use?
Q4. What datasets does a paper use?
Q5. What concrete surface does a paper consider?
Q6. What loss function does a paper use?
Q7. What optimizer does a paper use?
Q8. What annotation tool does a paper use?
Q9. What performance levels does a paper reach?

The answers to these questions are summarized in Tables 13–15 for papers in various
categories.

Table 13. Summary of deep learning techniques for crack classification.

Ref Method Backbone Framework Dataset Surface Loss Function Optimizer Annotation
Tool Performance

[14] DCNN VGG-16 Keras LTPP Asphalt
pavement - Adam -

Accuracy = 90%,
Precision = 90%,

Recall = 90%,
F1-score = 90%
Cohen’s Kappa
score = 74.2%

[50] CNN AlexNet PyTorch Own
collection

Asphalt
pavement - MBGD -

Accuracy for transverse
cracks = 80.6%
Accuracy for
longitudinal

cracks = 79.2%
Accuracy for alligator

cracks = 91.3%

[51] CNNs VGG-16 - GSV Asphalt
pavement Cross-Entropy Adam Manually Accuracy = 97.2%

[8] CNN EfficientNet-B4 - Own
collection

Asphalt
pavement Cross-Entropy Adam - Accuracy = 99.32%
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Table 13. Cont.

Ref Method Backbone Framework Dataset Surface Loss Function Optimizer Annotation
Tool Performance

[9] CP-YOLOX CSPDarkNet-SPP TensorFlow
2.5

Own
collection pavement - Adam LabelImg Accuracy = 87.71%

mAP = 80.64

[52] CNN - - Own
collection

Asphalt
pavement Cross-Entropy Adam LabelImg

Accuracy = 94.14%
Precision = 94.52%

Recall = 94.43%
F1-score = 94.47%

[11] CNNs AlexNet
ResNet - Own

collection
Asphalt

pavement Cross-Entropy Adam - Accuracy = 87.5%

[53] CNN VGG-16 Caffe CCIC pavement
Cross-Entropy
A Boundary

Box Regression
- - Accuracy = 98.217%

[54] FS-Net Darknet-53 Pytorch 1.6 Own
collection pavement - - -

Precision = 94.30%
Recall = 0.74%
FNR = 93.35%

[55] Faster
R-CNN ResNet PyTorch Own

collection Pavement - SGD Manually
Average

precision = 87.21%
Recall = 88.09%

[56] YOLO V5 - Python 3.8 Own
collection

Asphalt
pavement - SGD Manually mAP = 87.2%

[57] YOLOv2 - matlab Own
collection

Concrete
pavement -

SGDM
Adam

RMSProp
Labeler AP = 89%

[58] MLC - PyTorch 1.5.0 Own
collection

Asphalt
pavement Cross-Entropy - - Accuracy = 97%

F1-score = 93%

‘-’ Denotes the paper did not provide the particular information.

Table 14. Summary of deep learning techniques for crack detection.

Ref Method Backbone Framework Dataset Surface Loss Function Optimizer Annotation
Tool Performance

[42] CNN - MATLAB Own collection Asphalt
pavement - SGDM Labeler

CAR = 92.08%
TPR = 85%

TNR = 100%
FPR = 0%

FNR = 15%
Precision = 100%

Recall = 83%

[12] DCNN - - Own collection Asphalt
pavement MSE SGD MATLAB

Accuracy = 94.36%
Maximum Length

Error = 1 cm
MSE = 0.2377

[59]
Bio-inspired Co-

evolutionary
DCNN

- MATLAB CRACK500
and GAPs384

Road
surfaces - - -

Accuracy = 99.04%
Jaccard index = 98.42%
Loss error rate = 0.03

Precision = 99.25%
Recall: 99.24%

Prediction accuracy:
99.72%

[60] YOLOv3 Darknet-
53 PyTorch Own collection Asphalt

pavement
Sum-Squared

Error - LabelImg Precision = 70%
Average IoU = 50.39%

[61] CNN - TensorFlow Own collection Asphalt
pavement Cross-Entropy - LabelImg Accuracy = 96%

[33] YOLOv4
YOLOv5

Darknet-
53 PyTorch Own collection Asphalt

pavement - - LabelImg

P = 0.974
R = 0.94
F1 = 0.83

mAP = 94.39%

[62] CNN ResNet - Own collection Asphalt
pavement - - - Accuracy = 95%

[63] RetinaNet ResNet - Own collection Asphalt
pavements Focal - Manually Accuracy = 96.5%

[64] YOLOv5 - PyTorch Own collection Pavement Roboflow

Precision = 95.27%
Recall = 83.45%

F1-Score = 88.96%
mAP = 91.81%
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Table 14. Cont.

Ref Method Backbone Framework Dataset Surface Loss Function Optimizer Annotation
Tool Performance

[65] YOLOv5s - - Own collection Pavement - - CVAT F1-Score = 86.79%

[66] YOLOv5 - PyTorch RDD Asphalt
pavement

GIoU and
Cross-Entropy SGD - F1 = 67.39%

[67] CCapFPN - -

PCD19, CFD,
Crack500,

CrackTree260,
CRKWH100,
CrackLS315

and Stone331

Asphalt,
concrete, and

stone
pavement

- - -
Presition = 91.21%

Recall = 90.44%
F1-Score = 90.82%

[68] Faster R-CNN
Mask R-CNN ResNet PyTorch 1.8 CRACK500 Pavement Cross-Entropy SGD Manually -

[15] GCN - - Own collection Pavement - - -
Precision = 84%
Recall = 75.5%

F1-Score = 77.2%

[69] Segmentation
R-CNN - TensorFlow Own collection Asphalt

pavements Cross-Entropy SGD Manually IoUs = 87.6%

[70] Mask R-CNN ResNet-
101

Keras
TensorFlow Own collection Asphalt

pavements - Adam Manually Average
accuracy = 92.10%

[71] DDSNet - TensorFlow Own collection Pavement - Adam LabelImg
mAP = 89.25%

F-score = 96.18%
FPS = 16.74

[72] CrackCLF U-Net PyTorch CFD, Crack500
and Crack700 Pavement - Adam Manually

Precision = 94.51%
Recall = 93.44%

F1-Score = 94.06%

[73] SegDecNet++ U-Net PyTorch

CFD,
CRACK500,

CrackTree200,
DeepCrack,
GAPs384,

Rissbilder and
Non-crack

Concrete Cross-Entropy Adam Manually Dice score = 81%
IoU = 71%

[74] CrackNet-M - TensorFlow Own collection 3d asphalt
pavement Focal Adam Manually

Precision = 94.28%,
Recall = 93.89%,

F-measure = 94.04%

[75] SROCD - -

Shadow-Crack,
GAPs384,

Cracktree200,
Crack500, CFD

and AEL

Pavement Cross-Entropy - Labelme
AIU = 0.514
ODS = 0.783
OIS = 0.846

[76] RCD-Net - TensorFlow Crack500 Pavement Focal SGD -

Accuracy = 96.29%
Dice Coefficient =

97.33%
IoU = 96.90%

[77] PCDM-HED - - LS-3D, LCMS,
ESAR and 2D-I 3d pavement Focal - - Recall = 0.91%

F-values = 0.89%

[78] YOLOv5-CBoT - PyTorch RDD Pavement - SGD -

Precision = 64.1%
Recall = 59.3%

F1-Score = 61.6%
mAP = 63.7%

[79] YOLOv4-Tiny - - DeepCrack
Asphalt and

concrete
pavement

- Adam LabelImg mAP = 54.88%

[80] YOLO Darknet19
ResNet50 - Own collection Tiled

sidewalks - SGD
Adam - Accuracy = 94.54%

[81] WOA ResNet-18 - Own collection
Asphalt and

concrete
pavement

Cross-Entropy SGD
Adam - Accuracy = 97.16%

‘-’ Denotes the paper did not provide the particular information.
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Table 15. Summary of deep learning techniques for crack segmentation.

Ref Method Backbone Framework Dataset Surface Loss Function Optimizer Annotation
Tool Performance

[48] ConnCrack DenseNet121 - ImageNet, CFD
EdmCrack600

Asphalt
pavement cWGAN - -

Precision = 96.79%
Recall = 87.75%

F1 Score = 91.96%

[26] FPHBN - -

CRACK500,
GAPs384,

Cracktree200,
CFD Aigle-RN
and ESAR and

LCMS

Pavement - - -
AIU = 0.560
ODS = 0.604
OIS = 0.635

[32] Crack U-Net U-Net TensorFlow Own collection Pavements Pixelwise
Cross-Entropy Adam -

Loss = 0.025
Accuracy = 99.01%
Precision = 98.56%

Recall = 97.98%
F1-measure = 98.42%

[82] DNN DenseNet201 - CFD
EdmCrack1000 Pavement - - -

Precision = 91.00%
Recall = 93.22%

F1 score = 91.99%

[31] CrackNet-V VGG - PaveVision3D Asphalt
pavement Cross-Entropy SGD Manually

Precision = 84.31%
Recall = 90.12%

F1 Score = 87.12%

[83] PAN DenseNet121 TensorFlow

Crack500,
DeepCrack,
GAPS384,

MCD

Asphalt and
concrete

pavements

Cross-Entropy
Dice Adam - Dice = 0.7681,

IoU = 0.6235

[84] APLCNet ResNet - CFD
GDPH Pavement Cross-Entropy SGD -

Precision = 92.21%
Recall = 94.89%

F1-Score = 93.53%
AP = 16.5%

[85] Xception BiSeNet TensorFlow Crack500 - Cross-Entropy
Dice Nadam - F1 Score = 82.70%

IoU = 73.79%

[86] EDNet ResNet-34 Keras PaveVison3D
CFD Pavement Cross-Entropy Adam -

F1-score = 97.80%
Precision = 97.36%

Recall = 98.24%

[87]

multi-view
stereo

imaging+
U-Net

U-Net
MATLAB
2020a and
Python 3.7

Own collection Asphalt
roads

Cross-Entropy
Dice Adam -

overall
Precision = 96.32%

Recall = 95.52%
F1 score = 95.92%

[88] CNN DenseNet PyTorch AEL, Crack500
Cracktree200 Pavement Cross-Entropy SGD - ODS = 0.627

OIS = 0.669

[89] DAUNet U-Net TensorFlow

CRACK500,
GAPs384,

CrackTree200,
CFD, AEL

Pavement Focal
Dice

Adam
SGD Manually ODS = 0.812

OIS = 0.831

[90] FIFD - TensorFlow Own collection Pavement - - -
Recall = 91.0%

Precision = 89.9%
F1 score = 90.5%

[91] WSIS - - Own collection Pavement Cross-Entropy - -

Accuracy = 98%
Precision = 84%

Recall = 76%
F1-sore = 80%

[92] W-segnet VGG16 -
CFD, Crack500
CrackTree200
EdmCrack600

Pavement Dice Adam Labelme MPA = 87.52%
MioU = 75.88%

[10] CNNs VGG16 TensorFlow Own collection Concrete
structures - Adam - F1 score = 99.53%

[93] PCDNet - PyTorch Own collection 3D asphalt
surfaces Cross-Entropy Adam -

Precision = 88.5%
Recall = 90.2%

F-1 score = 89.3%

[94] DCANet-SE-
ResNet ResNet-50 PyTorch CFD

Crack500 Pavement Cross-Entropy SGD Manually
Precision = 83.72%

Recall =80.99%
F1 score = 82.33%

[95] EHRS-Net - - CFD-ex
HRSD Pavement Hybrid And

Cross-Entropy Adam - mPA = 93.35%
mIoU = 78.33%

[96] PSGCNN - TensorFlow
Crack500

DeepCrack
GAPs384

Pavement
Cross-Entropy,
Tversky and
Lovász hinge

Adam Manually
Precision = 95.20%,

Recall = 94.08%, and
IoU = 89.82%

[97] DeepLabv3+ - Pytorch
1.2.0. Own collection

Concrete and
asphalt

pavements
Cross-Entropy Adam Manually

Precision = 91.75%
Recall = 92.54%

F1 score = 92.14%
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Table 15. Cont.

Ref Method Backbone Framework Dataset Surface Loss Function Optimizer Annotation
Tool Performance

[98] ECSNet - - DeepCrack Pavement BCE With
Logits Adam -

F1 score = 84.45%
IoU = 73.08%
FPS = 73.29

[99] STA - PyTorch
CFD

Crack 500
CrackSC

Asphalt and
concrete

pavement
Dice SGD Manually

Precision = 84.08%
F1 score = 87.08%
Recall = 90.79%

[100] PSA-Net ResNet-101 PyTorch Own collection
Asphalt and

concrete
pavement

Dice Adam
SGD -

Precision = 99.55%
Recall = 94.50%

Accuracy = 98.70%
F1-score = 96.44%

[101] SegNet - PyTorch
DeepCrack

CFD
Crack500

Pavement Focal SGD -

MIoU = 87.53%
Precision = 87.67%

Recall = 85.41%
F1-score = 86.52%

‘-’ Denotes the paper did not provide the particular information.

In this section, the authors categorize the deep learning-based image recognition
algorithms in the field of road crack detection into three different categories according to
their functions, namely, classification, detection, and segmentation. Classification involves
identifying whether an image contains road cracks or the type of cracks. Detection not only
identifies the presence of cracks, but more importantly, it determines the location of the
cracks. Segmentation is more sophisticated in that it determines whether each pixel in the
image belongs to a crack or not, not just the border region.

5.1. Classification

Gopalkrishnan et al. [14]. developed the deep convolutional neural network (DCNN)
algorithm based on the VGG-16 backbone. The Federal Highway Administration (FHWA)
and Long-Term Pavement Performance (LTPP) datasets were used to train the DCNN
algorithm. It was also applied to hot mix asphalt (HMA) and Portland cement concrete
(PCC) pavement images, and the highest accuracy of up to 90% was finally achieved using
the Adam optimizer.

Li et al. [50]. proposed an unsupervised learning method for road crack classification.
The method fuses a k-means clustering algorithm with a CNN, and the backbone of
the method is AlexNet. The author created his own dataset using smartphones and
digital cameras, and compared the method with the traditional method for classification
experiments. The test results showed that the method has higher accuracy.

Maniat et al. [51]. investigated the feasibility of using Google Street View (GSV)
to assess the quality of roads. The development of a CNN was specifically aimed at
identifying road cracks in GSV. The author compared the results of the experiment with
those of a commercial visual inspection company for road quality assessment. The results
demonstrate the feasibility of intercepting GSV image datasets for road quality assessment.

Liu et al. [8]. investigated the combination of infrared imaging and deep learning
for road crack detection. The team created a dataset containing three types of images:
visible, infrared, and fusion (a combination of visible and infrared). Thirteen CNN models
were tested and evaluated on this dataset. The test results show that infrared images
have the highest accuracy and visible images have the lowest accuracy. The experiment
demonstrates that the use of infrared imaging technology in road crack detection can
significantly improve the detection accuracy.

Another paper by Liu et al. [52]. also combines infrared thermography and convolu-
tional neural networks for crack detection in asphalt roads. The paper also categorized
the images into visible, infrared, and fusion. The difference is that the experiment further
tested the effectiveness of the image for transfer learning. The results of the experiment
showed that the model trained from scratch performed best on the fusion image, while the
transfer learning model performed well on the visible image. However, the experimental
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results only performed well on less severe cracks and were less accurate on more severe
crack images.

Yang et al. [9]. developed a road crack detection method using 3D ground-penetrating
radar with deep learning techniques. The method uses two models: CP-YOLOX for
localizing anomalous waveforms and scattering vision transformer (SviT) for classifying
these waveforms into distress categories. The authors compared the self-generated method
with methods such as MobileNet and ResNet50 using their own collected dataset, and the
results indicated that this method performed the best. The authors also found that a larger
number of datasets can improve the accuracy and reliability of the method.

Hou et al. [11]. proposed a crack detection method based on images with small
samples. Hou et al. preprocess the limited sample images in two steps to solve the problem
of insufficient sample size and the complexity of image content. First, Hou et al. use the
data enhancement technique to significantly expand the dataset, increase the number of
images, and solve the data imbalance problem. Then, the original images are converted
into binary black-and-white images to effectively reduce the complexity of image features.
Next, the authors test the method in the AlexNet, SE-Net, and ResNet frameworks, and the
experiments demonstrate its effective improvement of crack classification accuracy.

Ma et al. [53]. introduced a CNN for detecting small objects such as cracks. The method
incorporates multiple feature layers to improve the detection capability. The method uses
multi-scale feature extraction and anchor boxes with different aspect ratios to improve
the speed and accuracy of crack detection. The method achieves an impressive speed of
96.6 frames per second with an accuracy of 98.217%, which is far better than the YOLOv1,
YOLOv2, and fast region-based convolutional neural network (Fast R-CNN) algorithms.

Hou et al. [54]. proposed an FS-Net-based crack detection method for roads. To better
capture crack features, the method uses flexible rectified linear units (FReLU) instead of the
traditional leaky ReLU. To improve crack detection, maximum pooling is replaced by strip
pooling. The authors perform training and testing on a self-generated dataset and compare
it to R-CNN and YOLOv3. The test results show that the method has a faster processing
speed than R-CNN and YOLOv3, but still has a high detection accuracy.

Ibragimov et al. [55]. proposed a faster region-based convolutional neural network
(Faster R-CNN) for road crack detection. The model uses a regional proposal network
(RPN) for crack detection, which is able to quickly detect targets of different sizes in a
multi-target scenario. Different types of cracks are detected on a self-constructed dataset,
and the results show that the method is able to detect and classify different cracks at a high
level, effectively reducing the dependence on manual detection.

Wang et al. [56]. conducted an investigation into the integration of the vision trans-
former (ViT) module into the YOLOv5 model to enhance the accuracy of road crack detec-
tion. The method achieved a mean average precision (mAP) of 87.2% on a self-constructed
dataset of 1944 images, and the detection process took only 11.9 ms per image. The test re-
sults demonstrate the effective application of the method in real-time road crack monitoring.

Maslan et al. [57]. used an unmanned aerial vehicle (UAV) to acquire a dataset, which
they then combined with the YOLOv2 model to detect the dimensions of cracks in an
airport runway and pinpoint their locations on the concrete surface. The YOLOv2 detector
successfully identified cracks with high average precision (AP = 0.89), demonstrating its
potential for real-world use. The system can effectively replace manual inspection, making
the safety of airport runways safer and more efficient.

Espindola et al. [58]. suggest using architectures such as VGG16, ResNet-34, and
ResNet-50 to explore multi-label classification (MLC) and convolutional neural networks
(CNNs) to find cracks in the road. Tested on a self-generated dataset, the method achieves
up to 97% accuracy and a 93% F1 score. The method effectively reduces the need for
expensive sensors while reducing the need for manual image cropping, promoting more
targeted and cost-effective classification. The method effectively eliminates the need for
expensive sensors while reducing the need for manual image cropping, promoting more
targeted and cost-effective pavement evaluation.
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5.2. Detection

Nhat-Duc et al. [42]. established and compared the performance of two intelligent
methods for automatic road crack detection, showing that the model based on the CNN
algorithm significantly outperformed the traditional edge detection approaches. The CNN
algorithm constructed a model with a classification accuracy rate (CAR) of 92.08%. The
CNN algorithm constructed a model with a CAR of 92.08%.

Tong et al. [12]. conducted a study to assess the efficacy of DCNN in the automated
identification of road crack length in batches. To extract the properties of the cracks, k-means
clustering analysis was employed to convert the original RGB images into grayscale maps.
The DCNN network was optimized using stochastic gradient descent (SGD). Following
the training and testing phases, the results demonstrated that the algorithm achieved a
recognition accuracy of 94.36%, with a maximum length error of 1 cm and a mean squared
error (MSE) of 0.2377.

Alfarraj et al. [59]. used an IoT system with a bionic deep learning approach to improve
the accuracy of road crack detection. The CRACK500 and GAPs384 datasets were employed
to train the algorithm. Eventually, the algorithm’s capabilities were confirmed, including
the per-pixel accuracy (99.04%), Jaccard index (98.42%), loss error rate (0.03), precision
(99.25%), recall (99.24%), and prediction accuracy (99.72%) metrics.

Opara et al. [60]. proposed to develop a method for road crack detection based on
YOLOv3. The method is effective in recognizing longitudinal cracks, transverse cracks,
alligator cracks, and potholes. The authors collected their own dataset for experimentation,
and the results demonstrated a precision of 70% and an average IoU of 50.39%. The results
demonstrate that the method exhibits high accuracy in the field of road crack recognition.

Han et al. [61]. proposed a CNN for the purpose of learning crack features from images
that do not require any preprocessing. They employed their own image dataset, collected
from open-source sources, for training purposes. This dataset was based on the open-source
TensorFlow framework developed by the Google Brain team. The experimental results
indicate that the method exhibits satisfactory performance.

Li et al. [33]. proposed a crack detection system based on deep learning models and
3D ground-penetrating radar (GPR). The method employs GPR to construct a dataset. The
YOLOv4 and YOLOv5 models were employed for training and detection purposes on this
dataset. Experimental results indicate that the YOLOv4 and YOLOv5 models exhibit a
notable advantage over the YOLOv3 model in the context of training on a limited sample
size dataset. The mAP of YOLOv5 is 94.39%.

Chun et al. [62]. developed a CNN framework that focuses on training image types
that are difficult to detect in order to improve the training performance of the framework.
The approach eschews the traditional method of increasing the number of training images
and recursively improves this model’s accuracy by collecting and analyzing images with
recognition errors and retraining the CNN. The experimental results indicate that the
accuracy of the model is up to 95%.

Tran et al. [63]. proposed a network model with supervised learning capabilities,
which is able to detect cracks and lane markings. The model is based on the ResNet
network and employs a feature pyramid network (FPN) for feature extraction. To train
and test the network, the authors enhanced 1000 images to 20,000 images using image
enhancement techniques. The experimental results demonstrate that the model exhibits a
high degree of accuracy, with a rate of 96.5%.

Ren et al. [64]. selected YOLOv5 as the foundation for developing road crack detec-
tion methodologies. To enhance the accuracy of YOLOv5, the researchers incorporated
additional attention modules, including SENet, ECANet, CBAM, and CoordAtt. A self-
constructed dataset is employed in comparative experiments on different crack detection
models. In all aspects of the experimental results, the accuracy of YOLOv5 with the added
attention mechanism outperforms that of YOLOv3, YOLOv4, and Faster CNN. The method
is an effective means of enhancing the accuracy of YOLOv5.
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Yang et al. [65]. proposed a novel annotation methodology, a dense and redundant
annotation method, with the objective of enhancing the efficiency of data collection and
reducing the time required for data collection in the process of road crack recognition. The
method initially labels 800 images manually and then employs the trained initial model
for training on a larger sample dataset. Following repeated correction and retraining of
the misrecognized images, the total weight achieved a satisfactory experimental result.
The method reduces the overall training time by 80%. This author tested 13 mainstream
target detection methods and found that the method can still obtain good accuracy with a
significant increase in training speed.

Xiang et al. [66]. proposed a novel approach to enhance the road crack detection
capability by combining the YOLOv5 architecture with the transformer module. The trans-
former’s capacity to capture long-range dependencies enables the effective improvement
of detection accuracy. The method was tested on an RDD dataset and compared with
eight existing state-of-the-art methods, including Faster R-CNN, EfficientDet, YOLOv4,
etc. It achieved high F1 scores, marking a significant advancement in the field of road
maintenance technology.

Yu et al. [67]. proposed the context-augmented capsule feature pyramid network
(CCapFPN), which is designed to efficiently and accurately detect road cracks under
different conditions. Capsule networks are employed to encapsulate the intrinsic features
of cracks, and a feature pyramid architecture is utilized to blend these features in order
to enhance the resolution of cracks. A comprehensive comparison of seven algorithms,
including CCapFPN and deep fully convolutional network (FCN), on eight datasets, such
as PCD19, CFD, and Crack500, demonstrated that this method outperforms existing deep
learning methods.

Xu et al. [68]. conducted a comparative analysis of the performance of Faster R-CNN,
Mask R-CNN, and YOLOv3. The CRACK500 dataset was employed as the experimental
dataset. The experimental results indicate that when the number of images exceeds 130,
Faster R-CNN and Mask R-CNN exhibit superior performance compared to YOLOv3. In
comparing the performance of Faster R-CNN and Mask R-CNN, it can be observed that
Faster R-CNN typically provides more comprehensive bounding boxes.

Feng et al. [15]. proposed a semi-supervised approach for road crack detection using a
mobile laser scanning (MLS) system. The method combines a graph convolutional network
(GCN) with a graph-widening module, which serves to enhance the image. The method
effectively reduces the amount of annotated data required, necessitating only a minimal
amount to capture the local features of cracks. The method was trained and tested on a
self-built dataset and demonstrated excellent recall and F1 score when compared with
five other methods, including U-Net and AU-Net. This semi-supervised learning method
reduces the reliance on large annotated datasets for road maintenance tasks.

Liu et al. [69]. proposed segmentation R-CNN, a model that combines pixel-wise and
region-wise methods, effectively improves road crack detection. An additional branch
for pixel-level segmentation was added using the improved Faster R-CNN framework,
which was able to improve the detection of crack features. The performance evaluation
was performed on a self-constructed dataset and compared with FCN and Mask R-CNN,
and the results show that the method significantly reduces the computational cost and
improves the accuracy of crack detection.

Tran et al. [70]. used Mask R-CNN and image processing techniques for road crack
detection, which introduced a two-step process approach. The Mask R-CNN was first
trained on a self-generated dataset, which was able to classify the cracks more accurately
with an accuracy of 92.10%. The width of the cracks was then measured to assess the
severity of the cracks. This approach significantly improves the efficiency of the road
management system.

Jiang et al. [71]. proposed a two-stage deep learning method, DDSNet, for road
crack detection. The first stage is to optimize the YOLOv4 algorithm to identify cracks
in complex environments by providing the specific locations of the cracks. In the second
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stage, the Deeplabv3+ model is used to segment the detected cracks at the pixel level.
Comparison with nine existing models, such as SegNet, Unet, PSPNet, etc., provides
significant advantages in inference speed and accuracy. Furthermore, the authors provide a
scalable solution that adapts to different training data volumes and conditions.

Li et al. [72]. proposed a closed-loop feedback (CLF) approach using generative
adversarial networks (GANs) for road crack detection, called CrackCLF. This method
is capable of more accurately identifying cracks and the background. The effectiveness
of CrackCLF was verified by testing it on three datasets: CFD, Crack500, and Crack700.
Compared with methods like U-Net, DeepCrackZou, U-HDN, this method shows excellent
performance in precision and recall.

Tabernik et al. [73]. proposed a deep learning model called SegDecNet++. The method
combines pixel segmentation and image classification and uses the classification results to
improve segmentation accuracy in the training and inference phases. The method trains on
a combination of CFD, CRACK500, CrackTree200, DeepCrack, GAPs384, Rissbilder, and
non-crack datasets, and achieves a good Dice score of 81% and an IoU of 71%. Ablation
experiments showed that the integration of classification information significantly improves
the segmentation performance.

Wang et al. [74]. proposed the CrackNet-M method to achieve 3D image-based road
crack detection. It incorporates the central branch net (CBN), crack map enhancement
(CME), and pooling feature pyramids modules to improve the crack detection capability
and detection speed of the method. The model, trained on a self-generated dataset of
2500 3D images and then tested on a test dataset of 200 images, achieves high precision
(94.28%), recall (93.89%), and F-measure (94.04%). The model can effectively detect coarse
and fine cracks, as well as complex road conditions such as shoulder collapse.

Fan et al. [75]. developed a two-step shadow removal-oriented crack detection
(SROCD) method that focuses on removing shadows before finding cracks. This makes
the method more stable under different lighting conditions and eliminates the problem of
shadows interfering with road crack detection. To better account for shadow interference,
a targeted dataset called Shadow-Crack was developed that contains different types of
shadows and cracks. After training on this data and testing on the GAPs 384, Cracktree
200, Crack500, CFD, and AEL datasets, it is compared to the FCN, residual complex filter
(RCF), holistically nested edge detection (HED), and feature pyramid and hierarchical
boosting network (FPHBN) methods. The results show that shadow removal-oriented
crack detection SROCD has excellent performance in shadow removal and crack detection.

Khan et al. [76]. present a robotic system based on the depth-based RCDNet for road
crack detection. The robotic system, which combines navigation and road crack detection,
can be used in both indoor and outdoor environments. An encoder–decoder architecture
and advanced modules such as context-embedded channel attention (CECA) and global
attention module (GAM) are used by the RCDNet to make crack detection more accurate.
Tested on the Crack500 dataset, the accuracy is 96.29%, the cube coefficient is 97.33%, and
the IoU is 96.90%. Based on the detected cracks, the system can also create a crack severity
map that indicates the areas that need road repair.

Gui et al. [77]. proposed a profile component decomposition model with holistically
nested edge detection (PCDM-HED), a framework for 3D road crack detection. It can
effectively enhance the crack edge features and improve the accuracy of crack recognition
in complex environments. Evaluated on LS-3D, LS-3D, LS-3D, LCMS, ESAR, and 2D-I
datasets, it achieves excellent results. PCDM-HED shows great promise for improving the
robustness and generalization of road crack detection systems, especially in environments
with limited marker data.

Yu et al. [78]. extended the original YOLOv5 network, called YOLOv5-CBoT. The
model borrowed the bottleneck transformer and C2f module from YOLOv8, which can
effectively improve the accuracy and efficiency of crack identification. The model effectively
improves the acquisition of global information and further enriches the gradient informa-
tion. The model is tested on the RDD2020 dataset and compared with eight other models,



Appl. Sci. 2024, 14, 4817 29 of 39

including Faster R-CNN, Cascade R-CNN, CenterNet, etc. The experimental results show
that YOLOv5-CBoT achieves competitive results with fewer parameters. This makes it a
viable solution for efficient and cost-effective road maintenance.

Du et al. [79]. proposed an efficient road crack detection method that can perform
object detection and semantic segmentation simultaneously. The method is based on
the YOLIv4 model and uses an attentional feature pyramid network (AFPN) to improve
the feature extraction capability. A denoising autoencoder (DAE) network is integrated
to improve the accuracy of crack segmentation. Tested on the DeepCrack dataset, the
performance is similar to that of seven models, including Faster R-CNN, DeepLabv3+,
U-Net, etc., while significantly reducing the computational requirements. It has great
potential for future practical applications.

Qiu et al. [80]. Qiu et al. integrated deep learning models into a UAV for road crack
detection. The authors tested the YOLOv2-tiny, Darknet-19-based YOLOv2, ResNet50-
based YOLOv2, YOLOv3, and YOLOv4-tiny models to see how well they could find cracks
quickly and accurately. The ResNet50-based YOLOv2 and YOLOv4-tiny emerged as the top
performers, with accuracies of 94.54% and 91.74% and processing speeds of 71.71 fps and
108.93 fps, respectively. The system demonstrates the ability to detect road cracks under
challenging conditions.

Alshawabkeh et al. [81]. proposed a deep learning model that combines the ResNet-18
model, the whale optimization algorithm (WOA), and the random forest (RF). The model
can effectively optimize the feature set and improve the classification performance. The
training accuracy on the self-constructed dataset reaches 97.16%. This approach not only
improves the efficiency and accuracy of road crack detection but also provides a scalable
solution that can be applied to a wider range of road maintenance applications.

5.3. Segmentation

Mei et al. [48]. proposed the use of a commercially available sports camera, GoPro, to
capture image data. They then constructed a novel method ConnCrack, which incorporates
a conditional Wasserstein generative adversarial network (cWGAN) for road crack image
detection. The method was pretrained on ImageNet and CFD datasets and compared with
methods such as U-Net and VGG19-FCN on the homegrown dataset EdmCrack600, and
the results show that ConnCrack has a significant advantage over other methods.

Yang et al. [26]. propose a new algorithm, FPHBN, to address the problem of low
contrast between cracks and surrounding images. This algorithm is inspired by the HED
framework and effectively detects road cracks. To verify the excellence of this method, the
author compared it with four other methods, such as HED, RCF, etc. on five datasets, such
as CRACK500, GAPs384, etc. Numerous experiments have shown that FPHBN outperforms
the other methods in terms of accuracy.

Huyan et al. [32]. collected road crack datasets using smartphones and digital cameras,
but noise from the pavement background and roads affected the quality of these crack
images. Conventional methods usually fail to extract accurate crack information from
pavement images. This study proposes and optimizes CrackU-Net, a crack detection
method using Adam’s algorithm. The performance of CrackU-Net is compared with
traditional methods, fully convolutional networks (FCNs), and U-Net, and the results show
that CrackU-Net outperforms the other detection methods.

Mei et al. [82]. developed the densely connected deep neural network (DNN), an
automatic road crack detection method that looks at how pixels are connected and adds a
new loss function to fix the problem with the output of the transposed convolutional layer.
The authors also compare the method to 11 other algorithms, including FPHBN, U-Net,
CrackNet-V, etc., on two datasets, CFD and EdmCrack1000, and our experiments show that
the method performs better overall.

Fei et al. [31]. proposed a DNN called CrackNet-V for pavement crack detection, which
use the backbone with VGG, and a new activation function called leaky rectified tanh is
proposed to improve the crack detection accuracy. Trained and tested on the PaveVision3D
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dataset, CrackNet-V has better overall performance compared to the CrackNet method,
especially in the detection of small cracks.

Wang et al. [83]. proposed an efficient pavement crack segmentation model based
on deep learning. The model is based on the pyramid attention network (PAN) and uses
DenseNet121 as the encoder. Cross Entropy and Dice are the loss functions. To verify
the effectiveness of the method, the author trained and tested it on Crack500, DeepCrack,
GAPS384, and MCD datasets, and the experiments proved that the loss function can
effectively improve the performance of the model.

Zhang et al. [84]. created an adaptive feature fusion (AFF) module and a segmentation
branch module for their proposed pixel-level crack detection network, APLCNet, to detect
pavement cracks. The AFF module and the segmentation branch module were created to
emphasize the location information of the cracks and to improve the detailed information
of the mask prediction. On the CFD dataset, APLCNet achieves a precision of 92.21%, a
recall of 94.89%, and an F1 score of 93.53%, demonstrating that the method outperforms
CrackForest and MFCD.

Wang et al. [85]. propose a real-time pavement crack segmentation method inspired
by Xception and BiSeNet. The model consists of two components: a spatial path and
a contextual path. The spatial path uses three convolutional layers to encode sufficient
spatial information. The Xception network, which rapidly down-samples the feature
map, provides the basis for the spatial data. The feature map serves as the model for
the contextual path network. The model is trained and tested on the Crack500 dataset,
and the experimental results show that it is comparable to four other methods, such as
FC-DenseNet103, DenseASPP, and DeepLabV3+. In comparative tests, the method achieves
superior performance in terms of frames per second (FPS).

Tang et al. [86]. proposed an encoder–decoder network (EDNet) that modifies the
ResNet-34 architecture as an encoder network, drawing inspiration from CNN-based
autoencoders. In this paper, the authors experimented using the PaveVison3D and CFD
datasets and compared this method with models such as CrackForest, Cracknet-V, and
U-Net, and the results showed that EDNet outperformed the others. The F1 scores on
PaveVison3D and CFD were 97.80% and 97.82%, respectively.

Guan et al. [87]. proposed a 3D crack segmentation model that combines the multi-
view stereo imaging technique with U-Net to achieve engaged crack and pit segmentation.
To complete the experiment, the team’s proposed approach uses a 3D pavement model to
simultaneously generate color, depth, and overlapping images. Experiments on this dataset
show that the model outperforms GCU-Net models in terms of segmentation accuracy and
inference speed.

Li et al. [88]. proposed a fully convolutional neural network based on deep supervised
networks and dense connectivity for image pixel-level detection. The deep supervision
module can effectively improve the performance of the network, the network can extract
more features, and the dense connectivity layer can effectively highlight crack features.
Finally, we fuse feature maps of different scales to realize the complementarity of different
levels. To verify the effectiveness of the different modules in the model, this author designed
ablation experiments. The final experiment demonstrates the high accuracy, speed, and
robustness of the method.

Polovnikov et al. [89]. The goal of the research was to develop a road crack detection
method with high real-time performance. Based on the U-Net network architecture, the
DAUNet detection method was developed. To validate the effectiveness of the method,
experiments and tests were conducted on five datasets, such as Crack500, GAPs384, and
CrackTree200. And it is compared with four mature methods, such as FPHBN. The ex-
perimental results show that the method has high superiority in crack detection in
complex environments.

Cao et al. [90]. proposed to eliminate the noise of the road image based on a fractional
integral-based filtering method while preserving the persistent texture information of the
road image, and to use the fractal dimension to detect the shape of the cracks. A network
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called fractional integral and fractal dimension (FIFD) is designed. Extensive experiments
are conducted based on a self-constructed dataset. The experiment compares the threshold,
edge, valley and region methods, and the experimental results show that the method
outperforms the existing methods in terms of accuracy and generality.

Zhang et al. [91]. developed a weakly supervised learning approach for road crack
detection to make road crack detection more cost-effective. The method proposes to
compute pseudo-labels using the GrabCut algorithm and proposes a dynamically balanced
binary cross-entropy loss function, which is used to solve the imbalance of positive and
negative samples. The results show that the method is able to detect road cracks with a
high detection rate despite the reduction of manual labeling.

Zhong et al. [92]. introduced a new deep learning framework for road crack detection.
This framework, called W-Segnet, has two encoder–decoder models with multi-scale feature
fusion and skip connections. The model was trained and tested on four datasets—CFD,
CRACK500, CrackTree200, and EdmCrack600—and the results showed that the model
performs very well in different scenarios and outperforms existing models such as U-Net,
SegNet, and PSPNet.

Golding et al. [10]. proposed the idea that color is not a critical feature for crack
detection in deep learning models for image-based road crack detection. To investigate
the effect of color on CNN performance, the authors processed 40,000 RGB images using
grayscale, thresholding, and edge detection image processing techniques. The experimental
results show that the performance of grayscale images is comparable to that of RGB images,
indicating that color is not a critical feature for the deep learning model. Thresholding
and edge detection show performance degradation. This study highlights that grayscale
preprocessing improves the efficiency of crack detection without losing key features.

Wen et al. [93]. proposed a novel deep learning framework called PCDNet that
aims to effectively detect pavement cracks using 3D images. PCDNet combines a CNN
with an improved pixel-level crack seed algorithm in a three-step process that divides 3D
pavement images into patches, finds cracks, and ensures that they remain connected. The
author created a dataset of 4300 images to train and test the model. Comparisons with the
improved canny and crack seed methods show that PCDNet has high precision, recall, and
F1 scores, while this method significantly reduces the time required to train the dataset.

Qu et al. [94]. proposed the DCANet-SE-ResNet method for road crack detection. The
model is based on ResNet50 and includes hierarchical feature fusion and an associated
attention mechanism. To refine the crack details, the depth separable convolution is
combined with the dilated convolution. This approach improves the performance of crack
edge representation and the overall segmentation capability. Performance is compared with
FPHBN, DeepCrack, U-Net, SegNet, and CrackSegNet on the CFD, Crack500, and DCD
datasets. The overall performance is superior to these existing methods. The algorithm has
made significant progress in its ability to distinguish cracks from spots and obstructions.

Xu et al. [95]. proposed the enhanced high-resolution semantic network (EHRS-Net)
to optimize pixel-level crack detection in pavement evaluation. To enhance image detail,
the method combines resolution maintain flow (RMF) and stacked atrous spatial pyramid
pooling (SASPP). Performance evaluations on the CFD-ex and HRSD datasets have shown
excellent results. In particular, the ability to detect microcracks is leading.

Maurya et al. [96]. proposed to use the feature fusion module in the encoder–decoder
architecture to extract detailed crack features, enabling the creation of a global context and
pyramidal scale-guided convolutional neural network, primarily for small-target detection.
Cross-entropy, Tversky, and Lovász hinge losses resolve the imbalance between cracks and
background pixels. Training and testing on four datasets, Crack500, DeepCrack, GAPs384,
and MCD, show that the method is not only highly accurate but also fast, providing an
excellent solution for road crack detection.

Liu et al. [97]. present a semi-supervised semantic word segmentation method using
cross-consistency training (CCT) for efficient road crack detection. This method relies on
unlabeled crack samples to ensure consistency between primary and secondary decoder
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predictions. These predictions examine modified versions of the same encoder output. The
method labels only 60% of the data, reducing manual labeling effort. When tested on a
self-generated dataset, it outperforms methods such as U-Net, SegNet, and Deeplabv3+.

Zhang et al. [98]. introduced an efficient crack segmentation neural network (ECSNet)
for real-time road crack detection. The network integrates small kernel convolutional layers,
parallel max-pooling, and convolutional operations, which can effectively reduce model
parameters and improve computational efficiency. Tests are performed on the DeepCrack
dataset, and performance comparisons are made with DeepLabV3, FCN, LRASPP, Enet,
Unet, and DeepCrack. The results show that DeepCrack completes training in the shortest
time and achieves the second highest accuracy. The high computational speed and leading
accuracy make this method an effective solution for practical applications requiring rapid
pavement condition assessment.

In Guo et al. [99], to make pixel-level crack detection more accurate, an UperNet with
an attention module acts as a decoder, and a transformer-based semantic segmentation
network acts as an encoder, effectively improving the crack feature acquisition capability.
After comparative tests with ANN, FCN, PSPNet, UNet and STU models on three datasets—
CFD, Crack 500, and CrackSC—the proposed model shows the highest performance in
terms of F1 score and recall. The network demonstrates superior detection of fine and
complex pavement cracks under noisy conditions.

Lin et al. [100]. proposed using the PSA-Net deep learning architecture for road crack
detection. The network effectively integrates spatial and contextual information by using a
feature pyramid and an attention mechanism. This enables accurate detection in complex
road environments. Tested on a self-constructed dataset and compared with five methods
such as HED, RCF, PCN, etc., the results show that PSA-Net is superior to existing methods.

Qu et al. [101]., based on the SegNet model, combine a densely connected architecture
with a gating attention mechanism, while adding an atrous convolutional dense connection
module (AD-block), which enables the algorithm to effectively recognize different crack
features. A gating attention unit (GAU) is introduced to improve the accuracy of crack
localization. Tested on the DeepCrack, CFD, and Crack500 datasets, the proposed method
achieves an MIoU of 87.53%, a precision of 87.67%, a recall of 85.41%, and an F1 score of
86.52% on the DeepCrack dataset. The results show that the method provides an effective
solution for road crack identification.

Table 16 shows all the publicly available datasets mentioned above, with links to
download each one.

Table 16. List of the public datasets along with access links, all accessed on 3 May 2024.

Dataset Links

AEL https://github.com/Jiawei-Yao0812/AerialLaneNet (accessed on 3 May 2024)
CCIC https://data.mendeley.com/datasets/5y9wdsg2zt/2 (accessed on 3 May 2024)
CFD https://github.com/cuilimeng/CrackForest-dataset (accessed on 3 May 2024)

CRACK500 https://github.com/fyangneil/pavement-crack-detection (accessed on 3 May 2024)
CrackLS315 https://github.com/qinnzou/DeepCrack (accessed on 3 May 2024)

CrackTree200 https://github.com/fyangneil/pavement-crack-detection (accessed on 3 May 2024)
CrackTree260 https://github.com/qinnzou/DeepCrack (accessed on 3 May 2024)
CRKWH100 https://github.com/qinnzou/DeepCrack (accessed onv)
DeepCrack https://github.com/yhlleo/DeepCrack (accessed on 3 May 2024)

EdmCrack600 https://github.com/mqp2259/EdmCrack600 (accessed on 3 May 2024)
GAPs384 https://github.com/fyangneil/pavement-crack-detection (accessed on 3 May 2024)

RDD https://github.com/sekilab/RoadDamageDetector (accessed on 3 May 2024)
ImageNet https://www.image-net.org/ (accessed on 3 May 2024)

LTPP https://infopave.fhwa.dot.gov/Data/DataSelection (accessed on 3 May 2024)
PaveVision 3D http://www.pvision3d.com/ (accessed on 3 May 2024)

Stone331 https://github.com/qinnzou/DeepCrack (accessed on 3 May 2024)

Table 17 shows the links to the codes of the 305 papers screened for bibliometric
analysis where the algorithm is publicly available.

https://github.com/Jiawei-Yao0812/AerialLaneNet
https://data.mendeley.com/datasets/5y9wdsg2zt/2
https://github.com/cuilimeng/CrackForest-dataset
https://github.com/fyangneil/pavement-crack-detection
https://github.com/qinnzou/DeepCrack
https://github.com/fyangneil/pavement-crack-detection
https://github.com/qinnzou/DeepCrack
https://github.com/qinnzou/DeepCrack
https://github.com/yhlleo/DeepCrack
https://github.com/mqp2259/EdmCrack600
https://github.com/fyangneil/pavement-crack-detection
https://github.com/sekilab/RoadDamageDetector
https://www.image-net.org/
https://infopave.fhwa.dot.gov/Data/DataSelection
http://www.pvision3d.com/
https://github.com/qinnzou/DeepCrack
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Table 17. List of algorithms with disclosed codes, all accessed on 25 May 2024.

Ref Year Title Code Link

[102] 2019 Fully convolutional networks for automatic
pavement crack segmentation

https://github.com/RyM-CIC/Crack-segmentation
(accessed on 25 May 2024)

[103] 2020
Pavement crack detection using progressive
curvilinear structure anisotropy filtering and

adaptive graph-cuts

https://github.com/DrEdwardLee/PCmPA-PCmFFA
(accessed on 25 May 2024)

[104] 2020 Token based crack detection https://github.com/Fan-Meng/CrackTokenToolbox
(accessed on 25 May 2024)

[26] 2020 Feature pyramid and hierarchical boosting
network for pavement crack detection

https://github.com/fyangneil/pavement-crack-detection
(accessed on 25 May 2024)

[89] 2021 DAUNet: deep augmented neural network for
pavement crack segmentation

https://github.com/dvalex/daunet
(accessed on 25 May 2024)

[105] 2021 Attention-based convolutional neural network
for pavement crack detection

https://github.com/wanhaifengytu/
CrackSegmentationProject/ (accessed on 25 May 2024)

[106] 2022

A novel approach for detection of pavement
crack and sealed crack using image processing

and salp swarm algorithm optimized
machine learning

https://github.com/NDHoangDTU/CV_SSA_SVM_
Crack_SealedCrack (accessed on 25 May 2024)

[65] 2022
An efficient method for detecting asphalt

pavement cracks and sealed cracks based on a
deep data-driven model

https://github.com/CHDyshli/PavementCrackDetection
(accessed on 25 May 2024)

[107] 2023 Multiscale attention networks for pavement
defect detection

https://github.com/xtu502/pavement-defects
(accessed on 25 May 2024)

[108] 2023

Computer vision-based recognition of pavement
crack patterns using light gradient boosting

machine, deep neural network, and
convolutional neural network

https://github.com/NhatDucHoang/LightGBM_
PaveCrackPatterns (accessed on 25 May 2024)

[76] 2023 Development of ai- and robotics-assisted
automated pavement-crack-evaluation system

https://github.com/Masrur02/AMSEL_robot
(accessed on 25 May 2024)

[73] 2023
Automated detection and segmentation of cracks
in concrete surfaces using joined segmentation

and classification deep neural network

https://github.com/vicoslab/segdec-net-plusplus-
conbuildmat2023 (accessed on 25 May 2024)

6. Findings and Future Research Scope
6.1. Findings of the Study

The authors conducted a bibliometric and critical analysis of papers related to image-
based road crack detection research. The bibliometric analysis identified trends in the
field, influential papers, journals, authors, countries, and keywords. The results of the
bibliometric analysis are presented below.

(a) From 2013 to 2015, the number of paper publications was very low, with fewer than
five papers per year; from 2016, the number of papers per year began to increase
rapidly, fluctuating between 10 and 20 from 2016 to 2019; after 2020, the number
of papers published increased dramatically, with the number of papers jumping to
between 40 and 50 per year; and after 2022, the number of paper publications per
year reached between 70 and 80 papers per year. The number of papers published
from 2020 to 2023 represents about 58.52% of the total number of papers published at
that time.

(b) Refs. [14,26–28] are the most influential papers in the field of image-based road
crack detection.

(c) IEEE Transactions on Intelligent Transportation Systems, Computer-Aided Civil and Infras-
tructure Engineering, Automation in Construction, Construction and Building Materials,
and Journal of Computing in Civil Engineering are the most cited journals in the field.

(d) Huyan Ju, Li Wei, Wang Kelvin C.P., Gu Xingyu, Li Gang, Chen Cheng, Zhang Allen,
Fei Yue, Li Joshua Q. are influential authors in this field of research.

https://github.com/RyM-CIC/Crack-segmentation
https://github.com/DrEdwardLee/PCmPA-PCmFFA
https://github.com/Fan-Meng/CrackTokenToolbox
https://github.com/fyangneil/pavement-crack-detection
https://github.com/dvalex/daunet
https://github.com/wanhaifengytu/CrackSegmentationProject/
https://github.com/wanhaifengytu/CrackSegmentationProject/
https://github.com/NDHoangDTU/CV_SSA_SVM_Crack_SealedCrack
https://github.com/NDHoangDTU/CV_SSA_SVM_Crack_SealedCrack
https://github.com/CHDyshli/PavementCrackDetection
https://github.com/xtu502/pavement-defects
https://github.com/NhatDucHoang/LightGBM_PaveCrackPatterns
https://github.com/NhatDucHoang/LightGBM_PaveCrackPatterns
https://github.com/Masrur02/AMSEL_robot
https://github.com/vicoslab/segdec-net-plusplus-conbuildmat2023
https://github.com/vicoslab/segdec-net-plusplus-conbuildmat2023


Appl. Sci. 2024, 14, 4817 34 of 39

(e) Countries with greater influence include China, the United States, Canada and the
United Kingdom.

(f) The important keywords are deep learning, crack detection, pavement crack detection,
damage detection, convolutional neural network, image processing, feature extraction,
recognition, system, and semantic segmentation.

In the critical analysis section, the authors categorized the papers into different cate-
gories based on the techniques they used and provided an overview of the papers. The
results of the critical analysis are listed below.

(a) The deep learning techniques used for crack detection are divided into three categories:
classification, detection, and segmentation. Among these, there are relatively few
research on the classification technique.

(b) CNN, YOLO, and U-Net are the most commonly used deep learning methods for
performing classification, detection and segmentation tasks, respectively.

(c) ResNet is the most commonly used backbone of deep learning methods.
(d) Most methods perform deep learning tasks on the Tensorflow and PyTorch frame-

works.
(e) LabelImg is the most widely used annotation tool.
(f) Most researchers use SGD and Adam optimizers to optimize deep learning models.
(g) Using specialized architectures like FPN, FCN, etc., using attention machines like

SENet, CoordAtt, and GAU, using a combination of multiple imaging modalities (IR,
VIS, 3D), and preprocessing can improve the accuracy of crack detection.

(h) Integrating attention modules (e.g., SENet, CBAM) or feature pyramid networks, can
also improve the performance of deep learning methods for road crack detection.

(i) Using architectures such as DenseNet, ResNet, and MobileNet and reduced model
size can speed up computation without compromising detection accuracy.

6.2. Future Research Direction

The previous section lists the results of the current study. In addition to the findings,
the author identified a range of directions for future researchers by analyzing the screened
deep learning-based papers.

(a) Improve the efficiency of data annotation: Create unsupervised learning techniques
that reduce the need for manual annotation. Generate diverse datasets that include
unusual pavement features, such as hairline cracks and scratches, to improve the
reliability of detection systems.

(b) Optimized model structures: To improve the performance of the architectures, incor-
porate purpose-specific functional modules and multi-scale features to achieve higher
levels of accuracy. while simultaneously considering the demands of lightweight and
mobile deployment.

(c) Enhanced feature extraction: Improve shadow removal and segmentation accuracy.
And increase detection speed, explore attention mechanisms, and explore different
model compression approaches.

(d) Quantification and indexing: Use crack quantification techniques to measure crack
length, width, and depth, which can help generate numerical pavement condition
indices such as the Pavement Condition Index (PCI).

(e) Multi-sensor fusion: Integrate multiple vision sensors for more efficient area coverage.
(f) Better automation: To make detection models more automated, combine classification

and segmentation modules to make the most of additional data on edge features and
break severity.

7. Discussion and Conclusions

This paper presents a comprehensive review of state-of-the-art image-based road
crack detection techniques through bibliometric analysis and critical analysis. The biblio-
metric analysis shows the rapid development of the field, with significant contributions
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from influential authors, journals, and countries. Deep learning techniques such as CNN,
YOLO, and U-Net have made great strides in tasks such as segmentation, classification,
and attention. Attention mechanisms, feature pyramid networks, and specialized imaging
modalities have also been shown to be very important in improving detection accuracy.
Future research should focus on improving the efficiency of data annotation, optimizing
model architectures, and integrating multi-sensor fusion. This review can help researchers
identify emerging trends, research gaps, and benchmark datasets to start their work. Fur-
ther exploration of deep learning-based segmentation methods and practical deployment
strategies can significantly improve the accuracy and efficiency of crack detection, pro-
viding important insights for academia and industry to develop reliable automated road
maintenance solutions.
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