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A B S T R A C T

Aquaculture plays a pivotal role in global food production, grappling with distinct hurdles in water quality, 
feeding operation, and disease control. Efficient management of these core aquaculture operations has been 
acknowledged as a fundamental measure, yet remains unattainable through traditional methodologies. The 
advent of the Internet of Things (IoT) has opened up transformative avenues for real-time aquaculture opera-
tions. IoT solutions have emerged as a potent toolset, facilitating prompt monitoring, data collection, analysis, 
and control within aquatic environments. Notwithstanding its remarkable advantages, the technology is not 
devoid of limitations and areas requiring advancement. This paper examines the diverse applications of IoT in 
aquaculture, encompassing water quality monitoring, feeding strategies, and intelligent health inspection. 
Aquaculture challenges like sensor corrosion, data fusion limits, environmental impacts on transmission, and 
more have been thoroughly discussed. It also highlights IoT’s potential in aquaculture, focusing on sensor ad-
vancements, artificial intelligent (AI) integration, and increased productivity. Presenting the IoT-aquaculture 
trajectory, this paper highlights IoT’s potential in aquaculture while stressing the need to balance benefits 
with challenges.

1. Introduction

Aquaculture, the cultivation of aquatic organisms like fish and 
crustaceans, is vital for global food security and a key protein source 
(Boyd et al., 2022). As the global population grows, sustainable 
expansion in aquaculture is urgently needed. The FAO (2022) report 
analyzes global aquaculture trends, highlighting its dynamic growth 
(Fig. 1). Global aquaculture production rose from under 8 million tonnes 
in 1980 to over 105 million tonnes in 2018, led by seaweeds, carp, bi-
valves, tilapia, and catfish. Asia, especially China, dominates, contrib-
uting over 80 % of production volume and leading in species diversity. 
Since 1980, China has been the top aquaculture producer, significantly 
boosting global output. FAO projects the Americas will see a 29 % in-
crease in aquaculture by 2020, with Africa’s production expected to 

exceed 2.8 million tonnes by 2030, driven by Egypt.
Asian countries are expected to maintain their dominance in the 

aquaculture sector, comprising over 88 % of global production by 2030. 
Based on the recent trends in aquaculture, American and European ad-
vancements in modern aquaculture technology consolidate sustain-
ability and operational efficiency (Boyd et al., 2022, 2020; Little et al., 
2018; Kumar et al., 2018). This includes improvements in feed, genetics, 
and farming practices, as well as farming systems like Recirculating 
Aquaculture Systems (RAS) (Rastegari et al., 2023).

Implementing technological tools helps alleviate identified chal-
lenges and enhances the sustainability and competitiveness of aqua-
culture practices. Commonly employed technologies, as per FAO (2020), 
include high-resolution satellite images, automatic identification sys-
tems (AIS), in-situ cameras and sensors. Genetic and deoxyribonucleic 
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acid (DNA) profiling, block-chain, Internet of Things (IoT), big data 
analytics, AI, and machine learning are also trending. IC technologies 
like IoT-AI are particularly utilized for monitoring, controlling, cor-
recting, and predicting critical parameters throughout the fish produc-
tion chain. IoT tools are also deployed for water and feed administration 
in aquaculture. The IoT technology allows adjusting dosages based on 
behavioural patterns, thereby minimizing costs and waste production. 
These tools also aid in identifying fish pathologies affecting phenotype. 
IoT enables tracking of every stage of aquaculture, monitoring water 
parameters or other variables. Sensors within the cage or RAS systems 
generate alerts if parameters deviate from desirable ranges.

This expansion in production are driven by the growing demand for 
seafood while adhering to the principles of resource conservation 
(Naylor et al., 2021; Freitas et al., 2020). IoT-based technology has 
emerged as a transformative force, poised to reshape numerous opera-
tions in aquaculture industries. IoT in aquaculture leverages intelligent 
sensors, sophisticated data analytics, automation, and robust connec-
tivity solutions. By ingeniously incorporating IoT technology into 
aquaculture devices, real-time data collection and actuation become 
possible. Resulting in precise task execution with remarkable efficiency 
(Hang et al., 2020). This transition mitigates the labour-intensive and 
feed-waste nature of traditional aquaculture. It also prevents potential 
undesirable consequences, such as the introduction of pathogenic or-
ganisms like bacteria, viruses and pollution (Bentzon-Tilia et al., 2016; 
Sanches-Fernandes et al., 2022). Particularly, in more advanced places 
like America and Europe, the impact of IoT-AI-based technology has 
significantly transformed aquaculture practices (Wang et al., 2021a). 
This approach ensures the safety and robust growth of aquatic life. Re-
searchers have used IoT for real-time monitoring of aquaculture water 
quality, optimizing feeding, and tracking fish health (Mahamuni and 
Goud, 2023). These applications have overcome traditional challenges 
like irregular water assessments, high labor demands, data inaccuracies, 
and poor data representation (Prapti et al., 2021).

The modern IoT technology has recorded a significant advancement 
in aquaculture, it is essential to acknowledge its limitations. Foremost 
among these constraints are the significant initial costs and the sus-
ceptibility of sensors to corrosion (Ni, 2020). Tziortzioti et al. (2019)
have highlighted that implementing IoT infrastructure, comprising 
sensors, data analytics platforms, and connectivity solutions, often re-
quires a substantial upfront investment. This financial burden often acts 
as a barrier, particularly for smaller aquaculture operations in devel-
oping regions. Furthermore, Reddy et al. (2021) reported that sensors 
deployed in aquatic environments face harsh conditions, including 
exposure to saltwater, leading to corrosion and long-term malfunction.

Consequently, this escalation in running costs in conjunction with 
the diminution in the sensor detection further undermines the reliability 
of the collected data (Murray et al., 2014). Ishita (2019) reported that 
remote aquaculture locations often face IoT connectivity issues, leading 
to data gaps and disruptions. Also, Fu et al. (2022) reviewed the 
important role of employing deep learning technology in water quality 
management in real-time. The study suggested employing deep learning 
technology in addressing water demand forecasting, leakage detection, 
and sewer defect assessment. This suggests a lack of practical adoption 
reported in real-world management scenarios. Maintaining detailed re-
cords of IoT advancements and gaps will provide a strong foundation for 
future research and solutions.

Several IoT-related reviews exist, like Jan et al. (2021), which covers 
WSN technology in leak detection but overlooks aquaculture aspects 
such as water quality monitoring and feeding optimization. Similarly, 
Manoj et al. (2022) focus on environmental monitoring with an 
emphasis on water quality but concentrate on traditional WSN tech-
nology, overlooking recent IoT developments. In another context, 
Ahmed et al. (2020) focus on water quality monitoring, including WSN, 
but do not cover broader aquaculture practices like health and disease 
inspection. Geetha and Gouthami (2016) specialize in real-time smart 
water quality monitoring using IoT techniques, while Banna et al. 

Fig. 1. Trajectory of Global Aquaculture Production over Time [FAO, 2022].
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(2014) survey sensor technologies for water monitoring but have limited 
coverage of other aquaculture dimensions. Thus, most existing reviews 
focus on specific aquaculture aspects, leaving a gap for a comprehensive 
synthesis.

This paper reviews IoT advancements in aquaculture, offering a 
comprehensive analysis of its applications across various operations. it 
explore advanced IoT technology in conjunction with sensors, machine 
learning and deep learning within the realm of aquaculture operations. 
The paper’s structure unfolds as follows: Section 1.0 entails the intro-
duction that gives a concise background of this review paper. Section 2.0 
offers an encompassing overview of IoT technology and its functionality. 
Moving on to Section 3.0, we critically review key applications. This 
includes water quality monitoring, feeding optimization, health man-
agement, delving into hyperparameter tuning techniques and optimi-
zation strategies employed by previous researchers. This section 
critically discusses the IoT platform, operational challenges, and future 
perspectives in aquaculture. Finally, Section 4 encapsulates the paper 
with a conclusion.

2. Overview of IOT

IoT-technology involves an interconnected network of devices and 
systems through the Internet, facilitating the collection, exchange, and 
sharing of data (Čolaković and Hadžialić, 2018). Its goal is to enhance 
efficiency by enabling seamless communication between physical and 

digital realms (Ali et al., 2019). IoT in aquaculture management im-
proves carrying capacity by integrating operational algorithms, actua-
tors, smart indicators, and decision-making (Weitzman and Filgueira, 
2020). The network of devices enables communication, data analysis, 
and decision-making without direct human intervention (Atlam et al., 
2018; Ghosh et al., 2018). This setup enables seamless data collection, 
efficient transmission, multitasking, and system control with minimal 
manual intervention (Shammar and Zahary, 2020).

Basically, the overview of IoT application encompasses six major 
aspects, namely devices and sensors (1); connectivity (2); data pro-
cessing (3); cloud servers and data storage (4); application and actuation 
(5); and task execution (6), as depicted in Fig. 2 (Shammar and Zahary, 
2020; Chamara et al., 2022). Each aquaculture operation, like water 
quality monitoring, requires distinct devices and sensors for data cap-
ture (Bórquez López et al., 2020).

Many IoT sensor devices are available for aquaculture, but careful 
selection is essential for compatibility with microcontrollers and con-
nectivity components (Ni, 2020). As reported by Miller et al. (2023), 
most IoT sensors and devices have unique specifications ensuring 
compatibility, data collection, and transmission. Strategically placed 
sensors assess water parameters and control environmental conditions, 
diseases, and feeding behavior (Kumar et al., 2019). Gateway devices 
are crucial for connectivity, acting as bidirectional data transceivers that 
enable communication between sensor nodes and the IoT system (Atalla 
et al., 2023). Fig. 2 highlights the essential role of gateway devices (such 

Fig. 2. Overview of IoT Applications in Aquaculture.
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as Zigbee) in ensuring reliable connectivity and data transmission within 
the IoT layout (Kumar et al., 2019; Atalla et al., 2023).

According to Kabanov and Kramar (2022), IoT devices employ a 
variety of gateway communication technologies for internet-device 
connectivity. Commonly utilized connectivity devices include wireless 
fidelity (Wi-Fi), cellular networks, Bluetooth, Zigbee, and LoRa Wireless 
Access Network (LoRaWAN) devices. However, the selection of the 
appropriate connectivity mechanism depends on factors such as range, 
power consumption, and data transfer speed. Subsequently, the trans-
mitted data requires efficient processing. IoT has the capacity to 
generate and manage vast volumes of data from diverse sources (Kumar 
et al., 2019). Data is processed and analyzed using analytics, machine 
learning, and AI to provide insights for real-time decision-making and 
automation (Mahdavinejad et al., 2018). This underscores the signifi-
cance of aligning data processing methodologies with the preset objec-
tives of smart aquaculture. Thus, researchers have consistently 
integrated various architectural configurations with cloud-based or edge 
servers to enhance data processing capabilities (Hamdan et al., 2020).

Modern IoT devices like the HQ30D pH Sensor and DS18B20 Tem-
perature Sensor have computational capabilities, but some systems 
delegate tasks to local servers (Sethi and Sarangi, 2017). These features 
ensure local edge computation by the devices even in the absence of 
internet connectivity (offline). Furthermore, Mtowe and Kim (2023)
reported that edge computing significantly reduces latency, ensuring 
critical real-time response. However, for enhanced flexibility and a 
robust system, IoT layouts commonly leverage cloud platforms to store, 
process, and manage data, (Fig. 2). Interestingly, cloud services offer 
scalability, storage, and computational power required to manage the 
substantial data volume generated by these devices (Pons et al., 2023).

The results of cloud computations determine the subsequent actions 
and device actuation or operation, as illustrated in Fig. 2. To facilitate 
convenience and seamless interactions, researchers have employed 
several user interfaces enabling easy data assessment, monitoring, 
control, and device actuation (e.g., pumps, and aerators). Popular IoT 
user interfaces include Virtuino (Zaidi Farouk et al., 2023), Blynk (Taha 
et al., 2022), Adafruit (Anwar and Li, 2020), and Thingspeak (Taha 
et al., 2022). These devices, sensors, and IoT platforms are linked 
through a unique application programming interface (API) key. The API 
key fosters diverse interoperability, enabling synergistic collaboration 
among various IoT devices and platforms. The interoperability of IoT 
devices, coupled with internet connectivity and user-friendly interfaces 
(UI), ensures real-time monitoring, control, and task execution (such as 
"feeding," “WQP”, "aeration," "inspection" as depicted in Fig. 2), (Zaidi 
Farouk et al., 2023).

3. Methodology

3.1. Applications of IoT in aquaculture

IoT technology in aquaculture relies on sensors, actuators, internet 
platforms, data analysis techniques, and data storage (Ighalo et al., 
2021; Gubbi et al., 2013). IoT technology enables remote monitoring 
and control, enhancing interoperability for managing water quality, 
optimizing feeding, and monitoring fish health. This technology boosts 
aquaculture productivity, sustainability, and profitability by providing 
real-time data and enabling remote monitoring and control This remark 
is per the researchers’ reports (Mahamuni and Goud, 2023; Pons et al., 
2023; Almetwally et al., 2020), which have undergone rigorous critical 
review in the subsequent sections that follow.

3.1.1. Water quality management
As per Manoj et al.’s findings (Manoj et al., 2022), the quality of 

water holds a pivotal role in aquaculture, directly influencing the 
well-being and growth of aquatic organisms. Table 1 presents the key 
water quality parameters alongside their recommended threshold 
ranges. Adhering to the recommended threshold limits is crucial for 

ensuring sustainable cultivation and maximizing productivity (Boyd 
et al., 2022). However, aquaculture activities, especially feeding and 
egestion, often degrade water quality (Maulini et al., 2021). Timely 
measures are thus necessary to maintain these parameters within the 
recommended threshold for sustainable fish production (Bentzon-Tilia 
et al., 2016). Even slight deviations from the water quality limits can 
have dire consequences. For instance, exceeding the threshold limits for 
Ammonia can result in fish mortality, while low nitrite levels can cause 
"Brown-Blood Disease. Nitrate concentrations up to 100 mg/L, however, 
are deemed safe (Goddek,). Deviation in pH can significantly impact 
aquaculture, affecting reproduction and overall health of aquatic or-
ganisms (Yep and Zheng, 2019). Temperature fluctuations can influence 
nitrification processes and contribute to the prevalence of fish diseases 
(Goddek,). Maintaining dissolved oxygen levels above 4–5 mg/L is 
critical for successful fish cultivation. Electrical conductivity (EC) in 
nutrient solutions aids in optimizing nutrient utilization (Stone and 
Thomforde,; Fern and Esteban, 2006) but variations in the concentration 
impact water quality thus the fish morphology (Rocha et al., 2022).

Hence, real-time monitoring of these crucial parameters is indis-
pensable (Akhter et al., 2021a). IoT water quality and environmental 
sensors are crucial for continuously monitoring and optimizing essential 
parameters This approach uses IoT, sensors, and data analytics for 
real-time, remote monitoring of critical water quality factors like tem-
perature, dissolved oxygen, pH, and ammonia. Strategically positioned 
within aquaculture systems, these IoT-enabled sensors continually 
collect and transmit data to centralized servers or cloud platforms. 
Subsequent analysis of this data helps in identifying trends, anomalies, 
and potential issues. IoT-based real-time monitoring addresses imme-
diate concerns and enables predictive maintenance and precise adjust-
ments for effective aquaculture management (Akhter et al., 2021a).

Table 2 provides a comprehensive overview of literature related to 
aquaculture water quality monitoring using IoT systems. One note-
worthy example is the IoT-based prototype developed by Encinas et al. 
(2017). An Arduino board, a hub of sensors, a cloud database, internet 

Table 1 
Literature Information on Water Quality Parameter (WQP) Sensors and 
Their Threshold Limits.

References Water 
Parameter

Threshold 
range

Sensor Module

(Goddek,) Dissolve 
Oxygen (DO)

Greater than 4 
mgL− 1

DFROBOT-SEN0237; Atlas 
DO probe

(Stone and 
Thomforde,)

EC 30–5000 uS/cm DFROBOT-SKU: DFR0300- 
H

(Goddek,) Temperature 17–34 ◦C DFROBOT-DS18B20 mon
(Yep and 

Zheng, 
2019)

pH 6.5–8.0 DFROBOT-SKU: SEN0169; 
B&C Electronics–SZ 1093 
model; OMEGA 
PHE− 45 P pH sensor; 
Orion 3 Star pH meter

(Rocha et al., 
2022)

Salinity 0–2 ppt CaCO3 DFROBOT-SKU: DFR0300- 
H

(Rocha et al., 
2022)

Turbidity Less than 1000 
mgL− 1

DFROBOT-Analog TDS 
sensor

(Goddek,) Nitrates 50–100 ppm WINSEN-MQ− 137
(Rocha et al., 

2022)
Nitrites 0.25–1 mgL− 1 Apure-NO2− 201 sensor

(Stone and 
Thomforde, 
)

Humidity 60–80 % DFROBOT-SKU: DFR0300- 
H

(Stone and 
Thomforde,)

Water level 0.02 kgL− 1 Omron K8AK-LS1; HC- 
SR04 ultrasonic sensor; 
BC546 NPN transistor 
circuit

(Fern and 
Esteban, 
2006)

Light intensity 600–900 PPFD BH1750

(Goddek,) CO2 340–1300 ppm MG− 811 Sensor
(Goddek,) Air 

Temperature
18–30 ◦C DHT11
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Table 2 
Summary of Literature on IoT-Based Technology for Monitoring Water Quality in Aquaculture.

Parameter(s) and 
sensors models

Threshold limit Major 
Components

Connectivity Data Processing 
& Database

Significant 
outcome

Deduced remark Reference

pH; T; DO NR Sensors; 
microcontroller; 
internet 
connectivity

UATR; Zigbee 
(10–250kbps); X- 
bee transmitter 
(2.4 GHz);

Arduino UNO; 
MySQL;

low cost, low 
power 
consumption, 
scalable

Need for a 
comprehensive 
evaluation & 
validation

(Encinas 
et al., 2017)

DO (D− 6800, 
0–20 mg/L), pH 
(DFORBOT-pH, 
0–14), T (LM35, 
55◦C to 150◦C) WL 
(HC-SR04 Ultra 
sonic, 2–400 cm), 
NH3 (TIA− 2100, 
0.0125–0.02), and 
WO (MQ4-sensor), 
Aerator; water 
pump; pH- 
Controller

DO<4–10 ppm oC); pH=

7.0–7.2
Sensors, actuators, 
microcontroller, 
internet

Wi-Fi Modem; 
GSM Modem

Arduino as a 
processor, web 
server and data 
storage device 
(NS)

Readings outside 
the threshold limit 
result in the 
activation of the 
relay to maintain 
the commended 
limits

Detailed validation 
results have been 
reported

(Abinaya 
et al., 2019)

DO, NH3, pH, T, 
Salinity, Nitrate and 
Carbonates

DO= 4–10 ppm; 
NH3=0–0.1 ppm; pH=

7.5–8.5; Salinity= 0–2 
ppt; alkalinity=
20–40 ppm

Solar power, 
microcontroller, 
sensors

inbuilt Wi-Fi 
module, Python 
program for 
collecting sensor 
data

Rasbery pi3 
module, MySQL

The Aqua farmer 
mobile App 
developed

Less 24 h reading 
reported. 
The report does 
not include system 
validation

(Raju and 
Varma, 
2017)

DO, NH3, pH 
(SEN0161, 0–14), T 
(DFR0198, − 10◦C 
to +85◦C), EC 
(DS18B20),

T = 20–30 oC; pH=

6.5–9; conductivity =
60–2000 uS/cm; colour=
G-B

Sensors, Raspberry 
pi, Arduino UNO, 
cloud

Inbuilt Wi-Fi; 
internet

php; MySQL 
database

Fish Culture 
Monitoring (FCM); 
python program 
for extracts the 
RGB value.

Blurred imaging 
and unstable 
Internet 
undermine 
performance

(Saha et al., 
2018)

DO, salinity 
Temperature, 
Valves, pump

DO>4 mg/L; 
salinity<33ppt; temp 
17–30 oC

ANN, Arduino; 
sensors

Internet, CDMA 
Module 
(InRouter210C)

Remote 
monitoring 
platform; 
MyEclipse 3.2, 
MySQL 5.1, 
Apache Tomcat 
5.5.

average pH of 
7.943; forecasting 
ANNs model 
developed, 95.2 % 
accuracy, suitable 
for long distance

The analysis is 
based on the WQP

(Zhu et al., 
2010)

Temp, DO, pH, TSS, 
EC

hydraulic loading rate 
(HLR) of 600 mm/day

Arduino and 
wireless mesh 
sensors

Internet 
connectivity

Arduino; local 
database

WQP monitoring 
and RAS 
established

Large footprint as 
it involves 4–5 
series of connected 
ponds, requires 
manual 
computation

(Zhang 
et al., 2011)

PH, DO, EC and 
Temperature

pH=6–8.5; DO=20 mg/l; 
EC=200 µs/cm; T=34 oC

Wireless Mesh 
Sensor Node; 
Waspmote;

Wireless Mesh 
Sensor network, 
Zigbee; GPRS; 
WiFi

Waspmote 
embedded 
systems platform; 
local database or 
remote web serve

wireless mesh 
sensor network 
IoT system 
designed & 
implemented

A lab-scale and the 
multiple gate 
requirement could 
be a drawback

(Odey, 
2013)

T; pH, DO, EC, and 
salinity

pH=6.5–8.5; 
DO=20 mg/l; EC=150 
µs/cm; T=30 oC

Sensors, ESP 
Module as a 
microcontroller, 
ThingSpeak cloud

ESP 32 Wi-Fi 
module; 
Wi-Fi network; 
Wi-Fi access point 
(AP)

ESP32; 
ThingSpeak IoT 
platform; Thing- 
View APP

 Suitable for fresh 
water aquaculture. 
The scope of 
brackish 
aquaculture is not 
considered

(Lin et al., 
2021)

T, pH, DO  Sensors, PICNIC 
2.0 
Microcontroller, 
cloud

Arduino ATMega ZeeBee LabVIEW  (Simbeye 
et al., 2014)

T, pH, DO, ORP, 
salinity

multiple sensor nodes 
and sensor/server node 
hybrid

Sensors, rasp- 
microcontroller, 
cloud

Raspberry Pi ThingSpeak, 
WiFi/CDMA

  (Saparudin 
et al., 2019)

T, pH, DO, ORP  Sensors, 
Embedded 
MCU, cloud

RoLa/WiFi Embedded MCU/ 
ThingSpeak

  (Danh et al., 
2020)

T; EC; salinity; 
pressure; DO

temperature sensors (for 
different depths), a 
conductivity and salinity 
sensor, a pressure sensor 
and a dissolved oxygen 
(DO) sensor

A3 buoy is a 3 m 
rope; n internal 
data logger and 
lithium batteries

 HOBO software 
(‘convert R to S)

buoy system is 
useful even in a 
high algal 
concentration

The exposed 
sensor can become 
corroded

(Schmidt 
et al., 2018)

Temperature (◦C) 
Turbidity (NTU) pH

integrating sensors with 
wireless sensor networks 
(WSNs)

 Deep Learning 
and Traditional 
Learning Mode

data fusion (DF) 
deep 
reinforcement 
learning (DRL) 
and Deep 
Learning

accuracy 
percentage 
(92.15–95.75, %)

Requires dataset (Gao et al., 
2019; Kaur 
et al., 2023; 
Flores et al., 
2023)

NR=not reported; UATR= Universal Attenuated Total Reflectance; MySQL=Structured Query Language
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connectivity, a mobile application, and a desktop application were 
employed. The system utilizes sensors; the pH probe, analogue tem-
perature probe sensor, and digital DO sensor, to transmit data via Zigbee 
protocol. Processed data is subsequently stored in a MySQL cloud 
database. this prototype demonstrates the potential for real-time 
monitoring, but further evaluation is required. Another notable contri-
bution comes from Abinaya et al. (2019). The authors designed an IoT 
system capable of monitoring and controlling an array of water pa-
rameters (including DO, pH, water level, ammonia, and water odour). 
This system uses a modem Global System for Mobile (GSM) modem for 
data transmission and sending alerts to relevant personnel. It also in-
cludes a buzzer system that activates when detected data exceeds pre-
determined thresholds, initiating appropriate regulatory actions. In a 
study reported by Raju and Varma (2017), a solar-powered IoT system 
for water monitoring was developed. The system’s architecture uniquely 
includes a power module along with standard components like internet 
connectivity, cloud storage, sensors, and a microcontroller. A Raspberry 
Pi-3 with built-in Wi-Fi serves as the central data processing unit. It 
receives signals from various sensors and devices, processing them, and 
transmitting the data to the cloud.

Similarly, Saha et al., 2018 employed a Raspberry Pi-3 as the central 
data processing unit in an IoT-based aquaculture water quality moni-
toring system. In this setup, the Arduino board (ATmega328P) directly 
acquires data from the sensors before transmitting it to the central unit. 
Notably, this system monitors the colour profile of aquaculture water in 
addition to other parameters, including temperature, pH, and EC. The 
system employs preset-threshold limits and a Python-program, facili-
tating the exchange of captured. The script analysis data through the 
Android Media Transfer Protocol (MTP), thereby providing insights into 
water quality and recommended actions. Zhu et al., 2010 showcased an 
online system for monitoring water quality under intensive culturing 
conditions. This system included sensors for pH, temperature, DO, and 
EC. They also developed a DO forecast model with half-hour predictions 
using an artificial-neural-network (ANN) and the 
stochastic-gradient-descent (SGDM) algorithm. Zhang et al., 2011
employed an Orion 5-Star Portable multi-sensors (pH, ORP, DO and EC) 
device to monitor the water quality of a land-based fish farming system. 
The system was enhanced by integrating with a constructed wetland for 
effective recirculating aquaculture (RAS). They implemented a smart 
wireless Aqua-Mesh sensor, equipped with temperature, pH, DO, and EC 
sensors, to enhance aquaculture monitoring. Odey, 2013 developed the 
Aqua-Mesh system for aquaculture, incorporating wireless sensors for 
temperature, pH, DO, and EC monitoring. The Waspmote platform dy-
namic wireless mesh sensor network allows continuous monitoring of 
aquaculture parameters and triggering alerts when thresholds are sur-
passed (Hang et al., 2020). Multiple gates (WiFI and General Packet 
Radio Service, GPRS) were used to facilitate good connectivity and SMS 
alerts to the farmer or operator. Simbeye et al., 2014 employed a distinct 
LabVIEW to develop a smart water quality monitoring and control sys-
tem. The LabVIEW net-gate operates synergistically with the WiFi sensor 
to read temperature, pH, DO, and EC levels.

In addition, the system could auto-control pH levels by actuating the 
water pumps when out of the threshold limit (Rastegari et al., 2023). 
Collectively, the multiple net-gates improve connectivity but it can 
significantly increase the overall infrastructure cost. Schmidt et al., 
2018 presented a cost-effective, unmanned water quality monitoring 
buoy system designed for coastal aquaculture. The system used pressure, 
temperature, and DO sensors to collect data, which was stored in an 
internal data logger. The logged data were manually offloaded and 
displayed using SOHO software. Saparudin et al., 2019 developed a 
wireless IoT water quality monitoring system for a high stocked fish 
pond. In this study, only the water temperature was the primary moni-
toring parameter. A similar study has been reported by a number of 
researchers and the summary of the findings is presented in Table 2
(Danh et al., 2020; Huan et al., 2020; Sanya et al., 2022). The authors 
established an IoT-based system for monitoring aquaculture water, 

though the parameters considered in each of the studies vary (Table 2).
Besides the WiFi IoT-based system, Sung et al., 2023 employed a 

Wireless Sensor Network (WSN) for real-time data collection and anal-
ysis has been reported. Simbeye et al., 2014 implemented a WSN-based 
monitoring and control. The system alerts the farmers via GSM when 
irregularities in critical parameters (such as temperature, dissolved ox-
ygen, pH, and water levels). Similarly, Max et al., 2007 developed Smart 
Coast, a WSN system with user-friendly sensors and low-power 
communication for real-time internet data access. The IoT system uses 
a microcontroller to process data from multiple sensors, applying 
encrypted limits to perform tasks or control actuators (Sethi and Sarangi, 
2017). Restricting data use to actuator triggers and not fully exploiting 
its potential limits its value (Ahmid and Kazar, 2023). Given the dy-
namic nature of aquaculture activities, the use of preset IoT-multi sen-
sors may not suffice for predictive purposes (Zhang and Gui, 2023). This 
underscores the necessity for integrating IoT with AI computational 
systems to establish a more robust water quality monitoring approach 
(Rahu et al., 2023).

The rise of IoT-driven AI computational systems, especially those 
with GPU-embedded processors, has become essential for modern 
computer-integrated intelligence applications.

This led to deep learning methods, using artificial neural networks 
for dynamic water quality analysis (Hou et al., 2023). When optimized, 
these methods have proven highly valuable for various tasks, particu-
larly aquaculture water quality monitoring (Gao et al., 2019). More so, 
the technology excels in feature extraction and end-to-end decision--
making. This enables anticipating water quality changes and imple-
menting proactive measures to protect inhabitants (Chen et al., 2020). 
For instance, Miao et al., 2010, successfully combined neural networks 
and genetic algorithms to develop a model for water DO level projection. 
An IoT-based aquaculture system used deep neural networks and 
Long-term and Short-term Memory (LSTM) algorithms to model pa-
rameters like water temperature, pH, and salinity (Kaur et al., 2023). 
Both studies implemented the models in a microcontroller for compre-
hensive system control. Mehra et al., 2018 utilized an artificial neural 
network incorporating multiple environmental factors for monitoring, 
controlling and predicting WQPs. In this study, both Arduino Uno and 
Raspberry PI were used to allow Machine-Machine interaction and 
effective control of the key parameters (such as Temperature). Cody 
et al. [2020] employed an integrated convolutional neural network 
(CNN) with an auto-encoder technique to enhance monitoring opera-
tions along the water supply-lines. Besides, Gao et al., 2019 reported an 
IoT-AI smart fish farming water monitoring system and it uses a pre-
dictive method for automated WQ management. The local outlier factor 
(LOF) algorithm, a density-based outlier detection technique, was used 
for point data segmentation. An LOF > 1 indicates an outlier, while 
values close to 1 suggest normal points. Overall, the IoT-AI WQP sys-
tem’s predictions and inferences are based on the fixed initial dataset 
used for training (Flores et al., 2023). However, considering the dynamic 
nature of the aquatic lives, the prediction may not be completely reliable 
or accurate (Jan et al., 2022).

In recap, the IoT application for monitoring aquaculture water 
quality involves four main steps: (1) Hardware selection, (2) Layout and 
Connectivity planning, (3) Software development, and (4) Application 
deployment, (Fig. 3) (Zulkifli et al., 2022). Key water quality parameters 
monitored include temperature, NH3, pH, DO, EC, and salinity due to 
their impact on aquatic life and management Then, identify the suitable 
and compatible sensors and devices to monitor and control these pa-
rameters. The next step is designing the circuit layout and selecting 
connectivity systems like Zigbee, Wi-Fi, ESP8266, and mobile data 
(GPRS/3 G, 4 G, 5 G). As WSN technology advances, incorporating 5 G 
technology and integrating multiple sensors with AI is expected to lead 
to notable improvements in IoT applications. This advancement reduces 
latency in detecting, processing, and transmitting water quality data by 
leveraging AI and 5 G technology.

o ensure smooth integration, software must include instruction codes 
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for processing, storage, and controlling systems like cloud databases, 
Arduino boards, Raspberry Pi, and ESP32 boards. These devices operate 
based on the encrypted instructions and threshold limits set for each 
water quality parameter in the software. Lastly, the literature highlights 
the importance of the IoT user interface (UI) for visualization and 
operability. Commonly used open-access apps for developing water 
quality monitoring and control include ThingSpeak, Blynk, and MySQL.

3.1.2. Feeding optimization
In the realm of aquaculture, the key determinant of efficiency and 

expenses lies in the optimal provision of feed (Chiu et al., 2022). 
Therefore, understanding the ideal moment to cease feeding is crucial 
for optimizing efficiency. To date, most aqua farmers rely on manual 
feeding, a process known for its time-consuming and labour-intensive 
(Wu et al., 2022). Recently, the focus has shifted to IoT-based feeding 
management that adapts to behavior and growth changes, driven by its 
economic value (Mahamuni and Goud, 2023; Silalahi et al., 2023). 
Fernández Sánchez et al. (2023) conducted an economic assessment for 
implementing IoT technology in aquaculture. The study focused on 
automating feeding operations for the production of European sea-bass 
in the Mediterranean Sea. An economic algorithms-IoT-based approach 
was implemented to accommodate a typical farm with different pro-
duction volumes. This study shows that IoT-based automated feeders are 
a sound economic choice for sea bass farms of any size. This strategy 
encompasses diverse techniques along with monitoring and responsive 
apparatus, enabling the automated assessment of the dietary re-
quirements of fish (Munguti et al., 2020). Thus, the advances in IoT 
based feeder are discussed under the following sub-captions;

3.1.2.1. Feeding system based on timing. This system relies on electronic 
programmable timers or digital timers to dispense feed according to 
predefined user-set timings and schedules. This technique requires some 
manual input, like adjusting the feeding schedule to meet food re-
quirements (Dada et al., 2018). Digital timers and programmable timing 
represent the primary methods commonly utilized in developing 

semi-automatic fish-feeding systems. Ogunlela and Adebayo (2014)
proposed an automated fish feeder using a digital timer with monostable 
and stable modes for precise timing and delay control. The monostable 
mode uses a capacitor network and external resistor to regulate time 
intervals, while the astable mode generates a single pulse within 
1–10 seconds. Osueke et al. (2018) designed a 24-hour fish feeder using 
a digital timer as the central control for regulating operation duration. 
The 60-minute experiment using 4 mm local and foreign feeder pellets 
distributed 85.5 kg of feed to the aquarium, with less than 3 % feed loss. 
This indicates an efficiency of approximately 86.9 % in preserving and 
managing feed under controlled conditions.

Noor et al. (2012) introduced an innovative fish feeder based on a 
PIC microcontroller, optimizing pellet distribution efficiency. Their 
system allows manual adjustment of the feeding cycle and motor speed, 
making it adaptable to different pond sizes and pellet distribution needs 
s. In a related study, Abdallah and Elmessery (2014) proposed an 
advanced automatic fish feeder system specifically tailored for intensive 
mirror carp production. Their system has two control mechanisms. One 
uses the AT89c51 controller for scheduled feed dosage, while the other 
adjusts dosage based on real-time water temperature, fish weight, and 
oxygen consumption. More recently, Niswar et al. (2017) developed an 
automated feeding system targeting soft shell crabs, integrating a pre-
cision microcontroller unit. Their innovative approach involves 
dispensing 5 % of the crab’s body weight during each feeding cycle, 
effectively minimizing food wastage. Although this demonstrates 
promising results, the existing feeding systems predominantly rely on 
fixed schedules, which may lead to inefficiencies. Ignoring fluctuations 
in fish appetite due to growth, age, size, and environmental changes can 
lead to overfeeding. This can cause water pollution, stunted fish growth, 
and reduced productivity (Volkoff and Rønnestad, 2020; Craig et al., 
2017). Therefore, an alternative to the timed-based feeders is critical.

3.1.2.2. IoT Auto-feeder based on multiple sensors technology (IoT-MST).
Numerous researchers have harnessed the potential of multi-sensor 
systems in the development of IoT-based automatic fish feeders. This 

Fig. 3. Flow of IoT Implementation for Managing Water Quality in Aquaculture.
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technological leap has transformed the way we manage and optimize the 
process of feeding fish. In this document, we delve into the pivotal role 
played by multi-sensor systems in the creation of automated fish feeders. 
We draw upon pertinent literature to underscore their significance and 
the diverse range of applications they offer. Table 3 presents a critical 
overview of the existing literature on IoT-based multi-sensor fish 
feeders. For instance, Riansyah et al. (2020) achieved success in crafting 
an IoT smart feeder. They employed an array of sensors to detect feed 
levels, while an Arduino Uno processed the received signals to dispense 
feed. The study developed a user-friendly app using Blynk. The pro-
grammable Wem-D1R1 module ensured timely feeding by maintaining 
schedules. A similar study by Hardyanto et al. (2018) utilized an 
ATMega controller to process sensor data. Meanwhile, Michael Angello 
Handoko Putra used a servo motor for the feed metering system, 
diverging from the usual stepper or DC motors. However, it’s notable 
that these studies primarily relied on time-based feeding schedules, with 
the dispensing rate not being a central focus.

Luo et al. (2015) introduced a comprehensive multi-sensor fusion 
algorithm consisting of four critical components: estimation, classifica-
tion, inference, and artificial intelligence techniques. This versatile 
approach enhances automation and decision-making, especially in 
determining the right amount of feed to dispense. Rubio et al. (2004)
developed a modified version of a multi-sensor feeder tailored for 
feeding sea bass. String sensors were employed under varying empirical 
conditions, enabling feed dispensing through a bit and pull trigger 
mechanism. This design accommodated both trained and non-trained 
fish populations. Notable advantages included quicker experiment 
completion, the ability to feed at night, and immunity to accidental 
activations caused by external factors. Additionally, the system proved 
to be cost-effective and facilitated rapid component replacement. 
However, this system suited trained fish better, as non-trained fish 
needed a longer adaptation period and sensors corroded over time 
(Coppola et al., 2023). As an improvement to the feeder, Parra et al., 
2018 introduced a long-term fish-feeding monitoring system based on 
sensor data from individual fish triggers. Their results showed a 100 % 
success rate in trigger registrations, ensuring high accuracy, minimal 
feed wastage, and reduced sensor corrosion. The system’s adaptability 
allowed researchers to fine-tune trigger-activating individuals, opti-
mizing feeding practices. This approach prioritized the welfare of indi-
vidual fish over assessing collective growth rates, emphasizing the 
importance of growth uniformity.

Similarly, Millot et al., 2008 explored the impact of individual fish 
behaviour on growth rates using the concept of a demand-feeding sys-
tem. Interestingly, the study found no significant difference in final body 
weights between higher- and lower-triggering fish samples, challenging 
conventional assumptions. Garcia et al., 2011 researched a fish feeding 
sensor system that uses multiple sensor measurements for informed 
decision-making. Expanding upon this, Zhang et al., 2013 introduced a 
multi-metric learning algorithm that integrates various sensors with 
shared or distinct classifications to enhance performance. Both studies 
demonstrated substantial improvements in accuracy when compared to 
manual feeding record-keeping.

The integration of multi-sensor systems has revolutionized IoT-based 
automatic fish feeders, significantly enhancing the efficiency and pre-
cision of feeding practices. However, the susceptibility of the sensors to 
corrosion underscores its critical role thereby relegating the overall 
system reliability (Malla et al., 2023).

3.1.2.3. IoT feeder based on sensors and acoustic technology (IoT-SAT).
Prior research has shown that acoustic signal strength within certain 
frequency ranges correlates with the intensity of fish feeding activity 
(Lin et al., 2023). Implying that acoustic intensity has a direct linear 
correlation with the fish’s feeding requirements and hunger levels (Yuan 
et al., 2023). Compared to light and electromagnetic waves, acoustic 
waves experience minimal signal loss in water, enabling them to cover 

significant distances (Ubina et al., 2021a). This makes the acoustic 
system one of the most effective methods for detecting and identifying 
small objects beneath the water’s surface (Horne, 2000). In previous 
studies, the fusion of IoT-based passive acoustics with machine learning 
techniques has been applied for smart fish feeding (Li et al., 2022), 
species identification (Li et al., 2020; Zeng et al., 2023) and counting 
(Puig-Pons et al., 2019). Utilizing high-speed cameras, technology based 
on feeding acoustics feedback has been developed, as well (Saberioon 
et al., 2017). This technology enables the simultaneous monitoring of 
the feeding acoustics and movements of various aquatic organisms. 
Furthermore, the distinctive signals produced during feeding within 
specific frequency bands can be harnessed to estimate the amount of 
feed consumed (Zeng et al., 2023). Hence, the acoustic signals emitted 
during fish feeding offer a crucial foundation for evaluating the intensity 
of their feeding behaviour.

For instance, Tahir et al., 2020 developed a simple feed dispenser 
based on the IoT acoustic reflection technology. The HC-SR04 sensor 
features an ultrasonic transmitter and receiver module, which emit and 
receive sound waves at specific frequencies. In another study reported 
by Llorens et al., 2017, an acoustic underwater feeder was developed to 
dispense pellets for fish. The feeder was equipped with an ultrasonic 
echo system for detection of the uneaten feed. This system provides a 
piece of useful feedback information for adjusting and optimizing 
feeding rates and schedules. Similarly, Yuan et al., 2023 and Terayama 
et al., 2019 employed IoT acoustic-based sonar feeding systems, while 
Chang et al., 2022 reported a modified acoustic AIoT feeding system. 
The main challenge with this system was depth limitation, which 
affected wave transmission and undermined reliability and performance 
efficiency. In addition, the associated low monochrome and the blurred 
imaging influence the accuracy of the data processing (Hu et al., 2021a). 
Due to these limitations, researchers suggest that an acoustic feeding 
system may not be suitable for large or commercial-scale applications 
(Terayama et al., 2019; Saleh et al., 2022a). Hassan et al., 2019 aimed to 
improve efficacy by using a high-frequency acoustic sensor system, 
which is less susceptible to disturbances, to monitor feeding behavior. 
This study uniquely used a multiple acoustic sonar system to extend 
signal range and reduce losses.

In addition, Acker and Burczynski, 2002 observed fish feeding and 
the identification of pellets by employing a powerful digital sonar 
scanning (DSS) system. The DSS-acoustic signal exhibited a strong 
signal-to-noise ratio, enabling them to detect pellets up to 25-meters 
away from the unoccupied pen. However, adding an acoustic system 
increases costs and, despite success in feed monitoring, it faced chal-
lenges in accurately detecting pellets (Li et al., 2017). Particularly, when 
small fish were in proximity to the pellets, causing the system to struggle 
in recognizing the pellets.

Besides, researchers have attempted to combine a camera with an 
acoustic system to improve feeding efficacy (Yang et al., 2021a). 
Fundamentally, the images yield valuable insights into fish feeding 
behaviour and growth, enabling the scheduling of feeding operations. 
Reports show that split beam sonar imaging methods provide detailed 
insights into fish feeding behavior and maintain accurate tracking and 
positioning records (Yang et al., 2021a). Also, dual-frequency identifi-
cation sonar, akin to optical images, holds promise for fish-feeding 
behaviour detection (Connolly et al., 2022). Additionally, 
multi-frequency digital scanning sonar imaging has been applied to 
gather information about fish behaviour during feeding (Huy et al., 
2023). Parra et al., 2018 developed an integrated IoT-acoustic system 
incorporated with a camera to monitor and control the eating behaviour 
of fish. In France, Artero et al., 2021 employed a similar concept to 
optimize the feeding operation of fishery production. Both studies used 
Arduino, acoustic motion detection sensors, cameras, and internet 
connectivity for image capture, analysis, and logical feed dispensing 
decisions. Furthermore, Garcia et al., 2011 and Wang et al., 2020
employed IoT sensor-based feeders in marine fishing farms. The major 
components of the system include an underwater camera, 
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Table 3 
Summary of IoT-Based Feeding Systems in Aquaculture.

Technology Major components Operating principles Connectivity Data process Database Main result Deduced 
Remark

Reference

IoT+ MST Sensors (pH, TDS), 
Arduino Uno R3; 
Wemos D1R1 
(feeding controller); 
ESP8266 module, 
feed dispenser 
(servo)

The programmable 
Wem-D1R1 module 
keeps the feeding 
schedule dispensed 
twice per day

Wi-Fi, ESP8266 
Wi-Fi connection; 
Blynk App to 
provide UI

Arduino UNO R3 A 
dedicated 
data 
storage 
system

The system 
allows 
monitoring of 
pH, TDS and 
feeding

Requires 
adjustment from 
time to time to 
give the 
required feed

(Riansyah 
et al., 2020)

IoT+ MST Sensors (WL, light, 
humidity), relays, 
Arduino ATMega 
328, feed dispenser, 
ESP8266 module

sensors send data to 
the microcontroller, 
which directs the 
feeder. ESP8266 
module sends the 
WQP online to the U

Internet, Wi-Fi, 
ESP8266, UI app 
(also serves as the 
switch)

Arduino ATMega NM web-based 
interface; a 
prototype

A Suitable 
database is not 
considered

(Hardyanto 
et al., 2018)

IoT+AI Underwater ESP32- 
EYE; Microprocessor 
(pi), feed dispenser

Video capturing of the 
feeding and un- 
feeding condition

Spatial network +
3D convolutional 
motion network +
LSTM recurrent 
classification 
network

Cloud data 
processing

NM Over 80 % 
prediction 
accuracy

The result is 
promising, but a 
longer study 
duration will 
confirm 
consistency in 
the prediction 
accuracy

(Måløy 
et al., 2019)

IoT+ MST RTC DS3231 module, 
sensors, Arduino 
UNO, and feed 
dispenser (servo)

The RTC module syncs 
time for the Arduino 
to handle feeding 
thrice daily.

Internet is not 
required to operate

Arduino Uno Database 
not 
included

Feeding 
scheduling

No data logging, 
necessitating 
frequent feeding 
adjustments.

(Handoko 
Putra et al., 
2023)

IoT+ SAT Sensors (pH 6.5–7.5, 
ultrasonic-HC-SR04), 
servo motor, Arduino 
board

The feeder uses 3-level 
sound waves for 
scheduled feeding, 
converting them to 
distance.

Wi-Fi for data 
transmission; 
Blynk app

Arduino UNO 
with integrated 
ultrasonic emitter 
and receiver 
module

NM prototype 
feeder 
ultrasonic

The inference of 
the sound wave 
influence result

(Tahir 
et al., 2020)

IoT+ SAT Arduino board, 
sensors and motor 
driver, relay, 
Ultrasonic Level 
Sensor; Buzzer Alarm 
System; Servo Motor 
Driver;

Arduino gauges feed 
level with the 
ultrasonic sensor and 
controls the servo for 
dispensing

Wi-Fi; friendly UI Arduino ATMega 
+ Algorithms 
Proportional- 
Integral (PI) loop

NM A prototype It has a UI but 
lacks a database.

(Karningsih 
et al., 2021)

IoT+SIT Hopper, feed 
dispenser, 
accelerometer, 
gyroscope, 
magnetometer

Utilizes ANN models 
for behavioural 
analysis. Key 
parameters: 
acceleration, angular 
velocity, and DFT for 
decision-making.

Wi-Fi, Autoregressive 
Moving Average 
(ARMA) model

Personal 
computer 
(PC)

developed 
model using 
FD+CD gave 
100 % 
accuracy

angular velocity 
accuracy swan 
around 35.60 %.

(Adegboye 
et al., 2020)

IoT+MST Solar power system, 
relays, sensors 
(Proximity;),

Solar power system 
with LM2596 
regulates servo-based 
dispensing.

Wi-Fi + LoRa 
TTGO SX1276

ESP32 
Microcontroller

Web 
cayenne 
platform +
PC

Developed a 
LoRa-based 
smart feeder 
with nearly 
100 % 
dispensing 
efficiency.

Associated 
battery 
overheating

Silalahi 
et al., 
(2023)

Microcontroller, 
sensors, servo motor 
(dispenser);

Microcontroller 
directs servo for 
encrypted feed 
scheduling.

wireless 
communication +
Bluetooth (HC− 05 
module)

Arduino UNO, 
mobile app

PC An IoT 
prototype 
feeder 
developed

Short data 
recording 
system

(Tejaswini 
et al., 2022)

IoT+ SAT Storage and Dispatch 
Module; Wi-Fi 
Module; Graphical 
User Interface; 
Arduino Uno 
magnetometer, an 
accelerometer, GPS 
module, MPU− 6050 
Gyro metre, RTC 
chips, SD card screen 
displays, relay, RTC 
module; stepper 
motor

Automated fish feeder 
dispenses food via 
stepper motors. GUI 
module enables user 
control. Ultrasonic 
sensor monitors and 
triggers automatic 
food transfer when 
levels are low.

Wi-Fi router +
Internet

Microcontroller 
NodeMCU +
mobile 
application

Web 
server+ PC

The feeder 
system 
efficiently 
dispenses feed 
with minimal 
human 
intervention

 (Malla 
et al., 2023)

IoT+ SAT microcontroller 
board; NodeMCU 
ESP8266; ultrasonic 
sensor; 
2x servo motors

Ultrasonic sensor 
detects food levels and 
waterproof sensor 
identifies fish.

R4.0 system 
connected online 
and mobile apps

ThingSpeak 
platform by using 
Blynk to collect 
data collections 
from all sensors

 developed a 
prototype of a 
dynamic fish 
feeder based 

 Kassim 
et al., 
(2021)

(continued on next page)
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microcontroller, behaviours detecting sensors, an internet connector 
and a mechanical feed dispenser. Besides the successful application 
dispensing of the feed, this setting allows visualization in real-time. 
However, sensor corrosion over time distorted data capture and 
affected the entire feeding operation.

The literature indicates that hungry fish rise to the surface and then 
descend as their appetite decreases (Nienhaus,). This shows that fish 
behaviour and positions at a particular time correlate with their hunger 
levels. Analyzing fish location and density can provide key data for 
developing a remote app to control feeding devices. In addition, the 
sonar-imaging technique is well-suited for estimating fish biomass at the 
deep underwater compared to optical imaging (Pargi et al., 2022). Sonar 
imaging systems can be costly, especially for small-scale fish farmers. 
Reducing costs is essential to meet the demands of the growing 
population.

3.1.2.4. IoT feeder based on sensors and Intelligent Technology (IoT-SIT).
Skøien and Alfredsen, 2015 introduced an intelligent fish-feeding system 
to optimize aquaculture production profitability. The system adjusts 
feed quantities based on fish behavior in densely populated tanks. It 
monitors feed consumption by detecting residual feed on the water 
surface using correlation filtering and computer vision. Meanwhile, 
Livanos et al., 2018 developed a Fuzzy Logic Controller (FLC) system for 
managing sea bream larval feeding. Similarly, Soto-Zarazúa et al., 2010
utilized a fuzzy logic control algorithm based on fish age, dissolved 
oxygen, temperature, and body weight to regulate tilapia feeding. These 
approaches yielded comparable growth rates and significantly reduced 
feed consumption and water pollution compared to timed-based feeders. 
Rana et al., 2017 used a similar fuzzy logic- MATLAB-based control 
system for freshwater aquariums, integrating temperature, dissolved 
oxygen, and conductivity measurements. However, incorporating 
additional factors such as dissolved ammonia, waste feed, and carbon 
dioxide could enhance accuracy. Considering real-time techniques for 
assessing actual feeding behaviour could be pivotal in developing an 
efficient aquaculture feeding regime.

Recently, the combined use of IoT devices, AI, and computer vision 
hybrid systems in feeding operations has gained significant attention 
(Hu et al., 2022; Mustapha et al., 2021). This shift is due to the 
cost-effectiveness compared to traditional multi-sensor and acoustic 
feeders and the non-invasive nature of biomass data capture (Pribadi 
et al., 2020). Furthermore, advancements in image preprocessing and 
enhancement algorithms have made computer vision technology a 
viable solution in this context (Li et al., 2020; Zhou et al., 2018a). One 
noteworthy development in this field is the integrated feeding system 
devised by Fuentes and Tongson, 2021, which seamlessly combines 
IoT-AI technologies. This system employs an Arduino board for data 
processing, correlation filters, and a vector machine-algorithm to clas-
sify fish-feeding behaviour efficiently. This approach not only reduces 
the time delay in detecting feeding activities, also ensures real-time data 
processing, transmission, and dispensing.

Hu et al., 2021a introduced a straightforward yet effective adaptive 
threshold segmentation technique for identifying uneaten fish feed in 

underwater images. Leveraging internet-based computer vision tech-
nology, this method accurately measures the temporal and spatial dis-
tribution of food particles within fish cages. It also calculates food 
particle volume and transmits data via an internet connection while 
preventing fish interference through enclosure mechanisms. This 
method boasts fast detection, precise quantification, and a minimal 
detection error rate of just 1.3 %. Another notable innovation is pre-
sented by Zhou et al., 2018a. The study implemented an internet-based 
Adaptive Network-based Fuzzy Inference System (ANFIS) to automate 
fish feeding operations. This approach achieved a remarkable feeding 
decision accuracy rate of 98 %. Thus, amounting to a substantial 
improvement in the feed conversion ratio (FCR) compared to conven-
tional feeding methods. However, the recent hybrid IoT deep learning 
technology surpassed traditional sensors IoT systems in terms of accu-
racy and feeding optimization (F. Directions, 2023). This technology has 
found widespread application in tasks such as analysing fish behaviour 
and optimizing feeding schedules. Example, Hu et al., 2022 introduced a 
method for quantifying salmon feeding activity based on IoT-generated 
frame intensities correlated with fish movement. This system yielded a 
computer-based visual feeding activity index (CVFAI) highly correlated 
with the manual observation feeding activity index (MOFAI).

Furthermore, the evolution of Convolutional Neural Networks (CNN) 
has been remarkable. For instance, LeNet5, one of the more succinct 7- 
layer CNN models, has exhibited an impressive accuracy rate (>90 %) 
(Zeng et al., 2023). Current research in the application of CNN primarily 
revolves around enhancing features and models. Such as the report of 
Wang et al., 2021b, it explored spatiotemporal models, while others 
used a fusion of optical features and convolution techniques for feeding 
behavior analysis. Ubina et al., 2021b introduced an intelligent system 
for evaluating fish feeding intensity in aquaculture. The system utilizes 
CNN with a 95 % accuracy rate. In Norway, Måløy et al., 2019 employed 
a spatiotemporal recurrent network to develop a smart system for un-
derwater feeding of salmon fish. A Dual-Stream Recurrent Network 
(DSRN) was used to study salmon swimming behaviour. It combines 
spatial and motion-temporal data using three different networks: a 
spatial network, a 3D-convolutional motion network, and an LSTM 
recurrent classification network. The model prediction of Feeding and 
Non-Feeding behaviour has 80 % accuracy. Adegboye et al., 2020
assessed feeding behavior using Noda and Gleiss’s dataset. They ach-
ieved 100 % accuracy with a Fourier descriptor threshold of 0.5, 
demonstrating precise fish feeding capabilities. Furthermore, there are 
models capable of handling both feeding activity classification and feed 
pellet counting tasks (Albrektsen et al., 2022) through the utilization of 
improved networks like Efficientnet-B2 (Zhou et al., 2018b), graph 
convolution networks (Huang et al., 2022), and lightweight 3D 
ResNet-GloRe (Feng et al., 2022), along with multi-task networks. Be-
sides, Muñoz-Benavent et al., 2018 demonstrated that biomass data may 
be a basis for estimating feeding dispensing quantity. In this study, a 
non-invasive automatic feeder which works stereoscopic vision system 
and a deformable model for estimating the fish length were used. The 
required amount of the feed is dispensed based on the magnitude of the 
biomass data. Fig. 4 depicts the insight into the state of the art on 

Table 3 (continued )

Technology Major components Operating principles Connectivity Data process Database Main result Deduced 
Remark

Reference

on fish 
existence

IoT+ SAT Arduino UNO, 
ultrasonic sensor, 
Stepper motor Nema 
17, Node MCU, 
Stepper motor-MAS 
95 R 0028 M, 
L298 Motor Driver 
Module

Smart Feeder 
Monitoring automates 
fish feeding with user- 
set schedules and 
manual options.

Wifi; ESP8266; 
Internet

Arduino UNO; Firebase A smart feeder 
with 20.9 % 
efficiency

Require 
optimization to 
improve the 
efficiency

Abdullah 
et al., 
(2019)
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IoT-based feeding systems for fish culturing. This figure shows that 
integrating IoT, AI, computer vision, and deep learning is revolution-
izing fish-feeding operations. It provides cost-effective, non-invasive, 
and highly accurate solutions for monitoring and optimizing feeding 
activities. These advancements hold great promise for improving 
aquaculture practices.

One main limitation of deep learning technology (such as CNN) in 
fish feeding systems and biomass estimation is its heavy reliance on 
extensive labeled data for training (Yang et al., 2021b; Saleh et al., 
2022b). Deep learning models require large and diverse datasets to learn 
and generalize effectively (Sarker, 2021). In the case of fish behaviour 
recognition and biomass estimation, acquiring such comprehensive 
labeled datasets can be challenging and time-consuming. Additionally, 
annotating data for complex behaviours and precise biomass estimation 
can be labour-intensive and costly (Abinaya et al., 2022). This limitation 
can hinder the practical application and scalability of deep 
learning-based approaches in the fish farming industry.

3.1.3. Fish health monitoring
Traditional disease detection requires farmers to constantly monitor 

fish stocks to identify outbreaks and prevent disease spread, potentially 
avoiding significant losses (Subasinghe et al., 2023). In traditional 
health management approaches for aquatic ecosystems, several strate-
gies are typically employed. These strategies encompass water replace-
ment, aeration to enhance dissolved oxygen levels, isolation of infected 
species, and the administration of manual medications (Bohara et al., 
2023; Rigos et al., 2023). It’s worth noting that the method of manual 
medication application can vary depending on the specific administra-
tion procedure. For example, when applying manual vaccination 
through the mouth, direct contact is required (Mutoloki et al., 2015). 
However, this direct contact can lead to increased stress in the fish and 
potentially result in mortality. Besides the challenge of manual medi-
cation application, another significant limitation of traditional health 
management lies in the prompt diagnosis of diseases. This untimeliness 
limitation hampers the ability to swiftly identify and address health is-
sues in aquatic environments (Opiyo et al., 2018).

Conversely, IoT-based disease detection systems provide farmers 

with timely notifications. This eliminate the need for continuous manual 
surveillance of the fish farm (Agossou et al., 2021). Thus, improves 
farmers’ work-life balance and allows integration with automated 
treatment systems. It streamlines comprehensive disease management 
on the fish farm. Effective fish husbandry plays a pivotal role in ensuring 
the success of aquaculture enterprises. A successful aquaculture opera-
tion depends on maintaining healthy fish stocks with minimal mortality 
and a favorable food-conversion ratio (FCR). It also requires addressing 
eutrophication issues and optimizing productivity (Philis et al., 2019). 
Research shows that compromised fish health often indicates disease, 
leading to higher mortality rates and shorter lifespans among fish pop-
ulations. While experienced fish keepers can sometimes visually identify 
diseases, this method lacks absolute accuracy (Huq et al., 2012).

It is crucial to emphasize that early detection of ill-health in fish 
serves a dual purpose. Firstly, it minimizes further harm to afflicted fish. 
Secondly, it also prevents the potential transmission of diseases to 
healthy individuals (Darapaneni et al., 2022). It is well-documented that 
many instances of fish diseases stem from fluctuations in water param-
eters, including DO, salinity, ammonia levels, pH, and temperature. 
Such variations may arise from improper feeding practices (under or 
overfeeding). The absence of aquatic plants, inappropriate species 
combinations, and incorrect stocking densities are other possible factors. 
Therefore, continuously monitoring and controlling water parameters 
within the recommended threshold limit in real-time is critical (Fazio, 
2019). This proactive approach is essential for averting or mitigating the 
severity of diseases that can afflict fish populations.

3.1.3.1. Factors impacting fish health. Opiyo et al., 2018 studied factors 
affecting fish health, identifying pathogens like bacteria, fungi, and vi-
ruses, as well as unfavorable environmental conditions such as poor 
water quality. The study indicated that bacterial infections in fish 
typically result from parasitic infestations, physical injuries, or abra-
sions. However, they can also emerge due to prolonged exposure to 
suboptimal WQP and improper feeding practices. These infections 
manifest as symptoms such as ulcerations or sores. Fungal infections, on 
the other hand, often appear as white cottony growths on the external 
surfaces of fish. However, they can also affect internal tissues. Causes of 

Fig. 4. Schematic Diagram of IoT-Based Technology for Aquaculture Feeding Operations.
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fungal infections encompass poor water quality, contaminated food, and 
open wounds, among other factors (Ziarati et al., 2022). Viruses are 
microscopic pathogens that infiltrate fish cells and replicate within 
them. Visual diagnosis of these potential pathogens is often inaccurate 
due to human limitation such as misdiagnosis, thus compromising 
overall fish health (Hernández-Cabanyero and Amaro, 2020).

In 2019, over 50 % of fish production loss was recorded in Malaysia 
due to diseases and associated improper practices (Dewi et al., 2022). 
Thus, an annual loss of revenues that year reached up to 6 billion US 
dollars. Similarly, in Chile, infectious salmon anaemia alone costs 2 
billion US dollars and causes 20000 workers to lose their jobs (Assefa 
and Abunna, 2018a). China is one of the leading countries in aquacul-
ture production but between the years 2010–2020, a 15 % a loss was 
recorded due to diseases (Hu et al., 2021b; Li et al., 2011). Therefore, the 
imperative for a dependable, more precise and timely fish health 
monitoring system becomes undeniable. Such a system is crucial to 
ensure the well-being and productivity of fish populations (Grandgirard 
et al., 2002).

3.1.3.2. Intervention of IoT-Based Fish Health Monitoring System. The 
adoption of IoT-based and AI systems for comprehensive health man-
agement in aquaculture has not been widely explored. This is evident 
from the limited number of reported studies.literature indicated that IoT 
devices can effectively support continuous monitoring of fish health, 
enabling early disease detection and reducing mortality (Mahamuni and 
Goud, 2023; Xiao et al., 2020). For instance, Clawson et al., 2022 re-
ported that using IoT devices for real-time mapping of aquatic life is an 
efficient approach for rapid early diagnosis of infections. Fish diseases 
often manifest as skin colour changes and unusual movement patterns. 
These making it challenging for traditional fish management to provide 
real-time notifications (Cermakova et al., 2023). This stresses the need 
for IoT and deep learning systems for automated fish detection and 
health monitoring, involving real-time video streaming or aquatic 
ecosystem imaging (Liu et al., 2023). The integrated IoT-advanced Deep 
Learning techniques, (such as CNNs) system extracts the image features 
through a segmentation and classification process (Taha et al., 2022). 
Achieving this demands models capable of extensive preprocessing, 
post-processing, and optimization.

Example, Ranaweera et al., 2022 introduced AquaScanner, a multi-
faceted system that combines image processing and IoT technology for 
fish disease detection and prevention. This innovative IoT-based system 
incorporates CNN which assists in detecting fish diseases and then 
provides essential information and medication recommendations. Be-
sides, the system continuously monitors and regulates the feed 
dispenser. It also tracks key water quality parameters, such as ammonia 
levels, to ensure a safe environment for various fish species. An Aqua-
Scanner mobile app allows remote control and real-time monitoring 
capabilities for both fish health and water quality. Khai et al., 2022
developed a CNN model that successfully detected two fish diseases, 
white spot and red spot, with 94.44 % accuracy. A multi-step procedure 
for classifying tuna fish was developed by integrating image processing 
with Mask R-CNN and ResNet50V2. This approach achieved a classifi-
cation accuracy of 70 % (Lekunberri et al., 2022). Lu et al., 2020
developed an innovative IoT-driven fish disease detection system using 
image analysis. This system harnesses machine learning methods to 
process captured images for disease identification. The image processing 
algorithms executed preliminary noise through preprocessing and seg-
mentation techniques. The Support Vector Machine (SVM) algorithm, 
combined with kernel functions, was used to classify and characterize 
various fish illnesses effectively In 2021, Ubina et al., 2021c introduced 
an advanced IoT-AI system designed for monitoring fish well-being and 
various aquaculture activities, including feeding and water quality. This 
innovative system is constituted of IoT sensors, devices, AI algorithms, 
and cloud computing technology. the embedded sensors and actuators 
within sorting machines are designed to gather and transmit data 

regarding key health indicators of the fish. These indicators encompass 
metrics like swimming speed, movement patterns, and feeding behav-
iour. The collected data is seamlessly transferred to the cloud through 
wireless communication networks, enabling real-time and remote 
monitoring. This data is then analyzed to provide concise insights into 
the fish’s overall health, mortality rates, and potential disease occur-
rences. More so, Agossou et al., 2021 used image processing and ma-
chine learning to accurately identify salmon diseases, boosting disease 
prevention and food security. A review paper highlighted that inte-
grating PLC (Programmable Logic Controller) and ICT can address 
power failures and streamline fish farm monitoring and management 
(Basnet and Bang, 2018). This technology enhances disease detection 
which works based on water quality parameters, and overall aquacul-
ture management.

Furthermore, Darapaneni et al., 2022 employ an underwater ESP32 
camera equipped with illumination to capture images at predetermined 
intervals. The captured images are then processed and classified through 
the Azure Cognitive Cloud platform. This procedure enables real-time 
health predictions for aquatic life and identifies appropriate treat-
ments when readings exceed thresholds. Furthermore, Patel et al., 2022
reported that an underwater camera can captures images at regular in-
tervals, encrypting the data. These images are then processed and clas-
sified using Azure Cognitive Cloud to provide real-time health 
information and recommend treatment measures.

Based on the available literature, Fig. 5 highlights various methods 
researchers have used to diagnose fish health in real-time with IoT-based 
technology. In this figure, health diagnosis can be achieved through 
algorithmic analysis of input data or pre-processed WQ and EC data. 
Additionally, deep learning models like CNN, LSTM, AANet, or machine 
learning algorithms such as logistic regression and K-Mean can be 
employed. Regardless of the technique chosen, they all require initial 
input data or signals. The data can be captured through sensors, cam-
eras, or direct actuation via potentiometers or a combination of these 
methods (Darapaneni et al., 2022). In the case of the integrated WQP +
EC diagnosis, microcontrollers are used for pre-analysis before the 
algorithmic processes (Hou et al., 2023). The processed results then 
form the basis for the next step which depends on the specific tasks of the 
system. The specific task may include WQP monitoring and control, data 
processing and intelligent control. The later tasks often require algo-
rithms for efficient segmentation, classification, and decision-making, as 
reported earlier. The output of the algorithms entails recommended 
actions or tasks to be taken in order to arrest the detected health-related 
issue (Li et al., 2022). Thus, establishing the basis for actuating or rec-
ommending operations such as aeration, water recycling, vaccination, or 
quarantine of infected fish (Bentzon-Tilia et al., 2016; Mahamuni and 
Goud, 2023; Assefa and Abunna, 2018b).

The operational pattern of the integrated IoT deep learning tech-
nique is similar to the WQP+EC method. However, the key difference 
lies in the algorithms and input data used (Mukonza and Chiang, 2023). 
Deep learning systems, (such as F-CNN, R-CNN, ANN, and LSTM), use 
camera detection to capture images of fish and monitor their movements 
periodically. These algorithms then compute biomass and classify health 
information based on the dataset (Muñoz-Benavent et al., 2022). The 
IoT-Machine Learning approach relies on models or algorithms trained 
with datasets. It often incorporates motion detection data and images for 
analysis (Mahdavinejad et al., 2018). All of this data is synergistically 
analysed to predict health-related information and measures. Fig. 5
shows that the predicted health status of the fish can be accessed 
through user interaction platforms. These platforms are developed using 
apps such as Virtuino, Blynk, and ThingSpeak (Papanikolaou et al., 
2022).

3.2. User Interaction Platform

Fig. 6 presents a detailed schematic representation of the IoT-based 
user interaction platform for aquaculture management. Establishing a 
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user-friendly interaction platform is as crucial as the aquaculture IoT 
system itself. This platform facilitates seamless data and signal ex-
changes among interconnected devices and sensors. It enables 

comprehensive real-time management of aquaculture activities, 
including water quality, feeding, disease detection, and environmental 
monitoring (Sanya et al., 2022; Lin et al., 2021). Key components of this 

Fig. 5. Schematic Diagram of IoT-Based Technology for Health and Disease Monitoring.

Fig. 6. Schematic Diagram of the Remote Platform.
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system are sensors, actuators, and data processing and analytics. It also 
includes communication and connectivity, control and automation, and 
a remote user interface with decision support tools Data capturing, 
processing, actuators, and user application components communicate 
securely using encrypted REST API keys (Lin et al., 2021). A REST API 
defines protocols for how sensors, devices, and applications connect and 
interact with each other (Adu-Manu et al., 2017).

The remote user interface allows farmers to monitor real-time data, 
gain insights, and make informed decisions. This optimizes resource 
allocation and ensures the sustainability of aquaculture operations 
(Ranaweera et al., 2022). The most commonly used interface apps 
include iOS (Drenoyanis et al., 2019; Nie et al., 2020), Blynk (Kassim 
et al., 2021; Shahiran and Salimin, 2021; D.K. V et al., 2023), Thing-
Speak (Mahamuni and Goud, 2023; Lin et al., 2021), and Cayenne IoT 
Project Builder (Silalahi et al., 2023). These platforms can serve as a 
foundation for developing mobile applications tailored to IoT-based 
aquaculture water quality monitoring and control systems.

This approach enhances overall efficiency, productivity, and sus-
tainability. It promotes responsible management of aquatic resources 
and supports the growth of the aquaculture industry. In addition, the 
Integration of 4 G and 5 G technologies improves connectivity capacity, 
making IoT applications more viable (Wang et al., 2021a; Pons et al., 
2023; Taha et al., 2022). The convergence of AI-IoT and 5 G underscores 
the importance of early warnings and remote monitoring through 
autonomous wireless sensing systems (Pons et al., 2023).

3.2.1. Remote monitoring interface
In aquaculture, parameter-monitoring systems use IoT and micro-

controllers. The collected data is transmitted to web-based platforms for 
real-time visualization on graphical user interfaces (GUI) (Simbeye 
et al., 2014; Malla et al., 2023). Taha et al., 2022 recently reported on 
the development of an iOS app. This app enables continuous real-time 
monitoring of aquatic conditions using sensor and microcontroller 
data. This GUI significantly consolidates the shift toward a more reliable 
interacting platform that ensures real-time information accessibility. 
The iOS allows both web interfaces and mobile applications. Addition-
ally, a remote monitoring system was developed combining IoT and 
CNN for greenhouse environments. This system provides real-time 
anomaly alerts through an Android mobile application using an A6 
GSM module (Castañeda-Miranda and Castaño-Meneses, 2020). 
Continuous monitoring of these parameters aims to create a healthier 
environment for fish and plants. It also significantly reduces water 
consumption compared to traditional farming methods.

3.2.2. Remote Control Interface
Remote control pertains to the capability of sending signals to op-

erators, allowing them to interact with and alter environmental pa-
rameters. This potential spans beyond mere monitoring, extending to 
control systems and actuator management. Alselek et al., 2022 inte-
grated an Intelligent Voice Control System (IVCS) with a signal alerting 
system and IoT technology to monitor and regulate aqua parameters. 
This implies that remote monitoring and control use various commu-
nication technologies (e.g., WSN, Zigbee) and microcontrollers (e.g., 
Arduino, Raspberry Pi). These components facilitate data processing and 
communication among connected devices. These systems use various 
protocols and platforms for real-time operations. They enable farmers to 
manage actuators and receive alerts when measurements fall outside 
specified ranges (Nie et al., 2020; Mohanty and Pindoo, 2023). These 
systems utilize a range of technologies, from traditional methods to 
advanced techniques like CNN for complex predictions (Wai et al., 
2022). A cloud data storage system facilitated the collection, storage, 
and analysis of information. This setup enabled trend analysis and 
automated decision-making for efficient aquaponic management.

3.3. Critical deductions

3.3.1. Deduced Drawbacks: IoT in aquaculture
the adoption of the IoT in aquaculture holds immense promise, it is 

not devoid challenges and drawbacks. The analysis of existing literature 
revealed certain limitations, with key aspects that require further 
exploration. Therefore, more research is needed to provide operators 
and practitioners with a comprehensive understanding of IoT’s diverse 
impacts on aquaculture practices. As aquaculture operations scales-up, 
reliance on more efficient and less physical human involvement be-
comes imperative (Vo et al., 2021).

Table 4 presents the summary of the limitations deduced from the 
existing literature. Developing aquaculture monitoring and control 
systems that exhibit a high degree of adaptability is crucial. The complex 
interactions between parameters, such as how water temperature 
changes affect DO and pH, often make prediction and understanding 
challenging. Consequently, a flexible control system is required to 
monitor and regulate a wide range of actuators and sensors. Integrating 
robust control systems such as Supervisory Control and Data Acquisition 
(SCADA) along with Programmable Logic Controls (PLC) with IoT 
technologies improve decision-making. This combination fosters ad-
vancements in the industry by enhancing monitoring and control ca-
pabilities (Drenoyanis et al., 2019; Nie et al., 2020). PLC systems 
demonstrate considerable flexibility when dealing with varied combi-
nations of actuators (e.g., water recycling pumps, air aerators etc.) and 
sensors. The machine-learning-based algorithms are already widely used 
for real-time information processing, they are bound by certain opera-
tional limitations.

Many approaches are predominantly trained in a supervised manner 
based on static data (Graham et al., 2022; Conrady et al., 2022). This 
implies that the model must have been exposed to representative data 
from all growth stages accessible within the culturing system (Ubina 
et al., 2021a; Conrady et al., 2022). Implementing more dynamic ap-
proaches would allow for more effective adaptation to the organisms’ 
development. This includes exploring reinforcement learning, active 
learning, and edge computing. These approaches aim to integrate al-
gorithm retraining directly on microcontrollers This highlights that IoT, 
AI, computer vision, and deep learning in aquaculture need extensive 
labeled and annotated data. This is essential for effective implementa-
tion and analysis (Ubina et al., 2021a; Chang et al., 2022; Conrady et al., 
2022). To tackle these, strategies like data augmentation, 
semi-supervised learning, and automated annotation tools can be 
implemented (Zhou et al., 2019). Additionally, collaborative 
data-sharing initiatives and crowd-sourcing can help in acquiring 
comprehensive labeled datasets for accurate fish biomass estimation. 
Using transfer learning and improving data preprocessing can mitigate 
the need for large datasets, enhancing the effectiveness of deep learning 
models. Addressing these challenges will help the aquaculture sector 
fully leverage these technologies, optimizing fish feeding and biomass 
estimation for more sustainable practices (Rastegari et al., 2023).

3.3.2. Deduced Limitations and Future Perspective
The literature highlights that while IoT technology has advanced in 

aquaculture, further research and development are still crucial. The 
rapid evolution of IoT, Machine Learning, and AI integration makes 
ongoing review essential to enhance system operability. This is essential 
for critically assessing the merits, drawbacks, limitations, and areas 
needing further improvement in this dynamic landscape. Therefore, 
fostering collaboration among researchers, industry specialists, and 
technology innovators becomes vital for propelling the field forward. 
Resilient data fusion techniques and refined monitoring systems, 
including clearer image capture, are crucial for the aquaculture sector. 
Developing advanced technologies for optimal feed application, water 
monitoring, and disease detection is also essential for progress Fig. 7
encapsulates the future outlook and advances of IoT technology in 
aquaculture, and is elucidated as follows:
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i. Promote Aquaculture Ecosystem Monitoring (AEM): This 
necessitates the development of IoT-driven systems that seam-
lessly integrate corrosion-resistant sensor networks, real-time 
data analytics, and AI-driven decision-making algorithms 
(Reddy et al., 2021). These systems should monitor various 

parameters, including water quality, environmental conditions, 
fish feeding behavior, and disease detection. This ensures a 
comprehensive approach to aquaculture management (Fig. 7). 
Utilizing highly sensitive and durable sensors, along with IoT 
measuring meters, is crucial for accurate data collection in 

Table 4 
Identified Limitations in IoT Aquaculture and Recommended Solutions.

SN Operation Limitation Deduced Suggestions References

1 WQ; Feeding; 
Health

Complex parameter interactions hinder 
prediction accuracy (Drenoyanis et al., 2019) 
and comprehension.

Develop adaptive control systems that can monitor and regulate a 
diverse range of actuators and sensors in aquaculture. Implement 
SCADA and PLC systems along with IoT technologies for enhanced 
decision-making.

(Drenoyanis et al., 2019; Nie 
et al., 2020; Guo et al., 2022)

2 WQ; Feeding; 
Health

Machine learning algorithms are often trained 
in a supervised manner using static data. E.g., 
existing images

Explore dynamic approaches for machine learning algorithms to 
adapt to the organisms’ development stage using integrated 
reinforcement learning and edge computing.

(Ubina et al., 2021a; Graham 
et al., 2022)

3 WQ; Feeding Systems lack adaptability to organism growth 
stages.

Implement adaptive monitoring systems that can adjust and 
recalibrate in response to the changing requirements of the system.

(Silalahi et al., 2023; Tejaswini 
et al., 2022; Yeoh et al., 2010)

4 Feeding; 
health

Inadequate real-time adaptation of algorithms 
on microcontrollers limits the responsiveness of 
the system.

Introduce edge computing capabilities to facilitate real-time 
adaptation of algorithms on microcontrollers. Utilize edge 
computing resources for on-site data processing and decision- 
making to enhance the system’s responsiveness.

(Ghosh et al., 2018; O’Donncha 
and Grant, 2020)

5 Feeding Most commonly used feeders work based on a 
fixed schedule, which may not dispense 
adequate feed required

Implement an IoT-based auto-feeder with multi-sensor technology 
and SCADA for real-time monitoring, in conjunction with predictive 
algorithms for anticipating changes in fish appetites using data 
captured by the dynamic sensor

(Riansyah et al., 2020; 
Karimanzira and 
Rauschenbach, 2019)

6 WQ; Feeding; 
Health

Sensor reliability is compromised by 
susceptibility to corrosion.

Enhance sensor durability with corrosion-resistant materials and 
regular maintenance.

(Reddy et al., 2021; Maraveas 
and Bartzanas, 2021; Luan 
et al., 2020)

7 WQ; Feeding Need for an advanced time-based feeding 
system and also improve limits precision of the 
existing AI feeder

A multifaceted data analysis system is encouraged. These involve 
employing advanced sensor technologies with self-diagnostic 
capabilities, and deployment of demand-based systems using multi- 
sensor fusion for precise feed dispensing. Integrate machine learning 
for adaptive feeding based on fish behaviour. Analyze real-time data 
to adjust feeding quantities and schedules.

(Føre et al., 2011; Gavrilescu 
et al., 2015)

8 WQ; Feeding; 
Health

Depth limitations affecting wave transmission 
and system reliability.

- Utilize high-frequency acoustic sensor systems to improve 
performance and transmission range. - Implement multiple acoustic 
sonar systems to complement signal transmission over longer 
distances.

(Hamdan et al., 2020; de Lima 
et al., 2020)

9 Feeding; 
health

Low monochrome and blurred imaging affect 
data processing accuracy.

- Integrate camera systems with acoustic technologies to enhance 
feeding efficacy and data processing. - Explore advanced imaging- 
sonar techniques like split-beam sonar imaging and dual-frequency 
identification sonar for improved feeding behaviour detection.

(Terayama et al., 2019; Baseca 
et al., 2019)

10 Feeding; 
health

Increased costs associated with integrating 
additional acoustic systems.

- Optimize costs by developing cost-effective and efficient acoustic 
systems suitable for commercial-scale applications. - Incorporate 
intelligent technology to enhance the operability of IoT systems for 
aquaculture management.

(Sung et al., 2023; Akhter et al., 
2021b)

11 WQ; Feeding; 
Health

Corrosion of sensors leads to distorted data 
capture and feeding operation.

Implement robust corrosion-resistant materials for sensor longevity 
and data accuracy. - Develop regular maintenance protocols for 
sensor cleaning and upkeep to ensure reliable data capture

(Reddy et al., 2021)

12 Feeding; 
Health

Reliance on extensive labeled data for deep 
learning models.

- Develop strategies for efficient and cost-effective acquisition of 
diverse labeled datasets for training deep learning models. - 
Implement data augmentation techniques to expand the labeled 
dataset

(Ubina et al., 2021a; 
Jimeno-Sáez et al., 2020)

13 Feeding; 
Health

costly data annotation for complex fish 
behaviours.

- Explore semi-supervised and active learning methods to reduce the 
labour intensity of data annotation. - Develop automated annotation 
tools for precise and efficient labeling of complex behaviours.

(Jan et al., 2021; Hassan et al., 
2016)

14 WQ; Feeding; 
Health

Challenging acquisition of comprehensive 
labeled datasets for fish biomass estimation.

- Establish collaborative data-sharing platforms among aquaculture 
research institutions to build comprehensive datasets. - Utilize 
crowd-sourcing and data-sharing initiatives to create diverse and 
extensive datasets for accurate biomass estimation

(Wu et al., 2022)

15 Feeding; 
Health

Heavy reliance on large and diverse datasets for 
effective generalization in deep learning 
models.

- Employ transfer learning techniques to leverage pre-trained 
models and optimize the utilization of available data. - Enhance data 
preprocessing methods to ensure efficient data utilization in training 
deep learning models.

(Anwar and Li, 2020)

16 Health Limited health-related dataset and focus on IoT- 
based and AI systems for comprehensive health 
management in aquaculture.

Emphasize collaborative data sharing and crowd-sourcing for 
acquiring labeled datasets.

(Taha et al., 2022; Nasir and 
Mumtazah, 2020)

17 Feeding; 
Health

Requirement for extensive preprocessing, post- 
processing, and optimization in integrated IoT- 
advanced Deep Learning.

− Implement strategies such as data augmentation and semi- 
supervised learning to address the challenges related to labeled 
data and its annotation.

− Utilize transfer learning techniques and refine data preprocessing 
methods to enhance the generalization in deep learning models.

− Develop user interfaces using platforms like Virtuino, Blynk, and 
ThingSpeak to facilitate easy access to the predicted fish health 
status and recommendations.

(Yoerger et al., 2021)
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diverse aquatic environments. This is essential for establishing a 
robust Aquaculture Environmental Monitoring (AEM) system 
(Reddy et al., 2021; Maraveas and Bartzanas, 2021; Luan et al., 
2020). Efficient use of data collection devices requires integrating 
data processing techniques. This ensures reliable and timely in-
formation for effective decision-making in aquaculture manage-
ment (Nie et al., 2020; Guo et al., 2022). This underscores the 
necessity of exploring compatible advanced data analytics, pre-
dictive models, and automation in aquaculture processes. It is 
essential to accentuate the integration of AI-driven algorithms to 
regulate water quality parameters, and optimize feeding sched-
ules as well (Drenoyanis et al., 2019; Nie et al., 2020; Guo et al., 
2022).

ii. Enhancing Feeding Efficiency and Waste Management 
(FEWM): The literature review highlights significant advance-
ments in feeding operations. However, further exploration of 
advanced strategies, such as precision and smart feeding tech-
nologies, is essential to minimize feed wastage. Investigating real- 
time monitoring systems and automated feeders is crucial. This 
may require robust algorithms to accurately identify appetite 
patterns (Fig. 7). Moreover, considering the continuous egestion 
activities of fish directly into the surrounding water, efficient and 
intelligent wastewater management is imperative. This approach 
enhances fish welfare and boosts overall productivity. Re-
searchers agree that excessive food wastage in aquaculture leads 
to pollution and disease among aquatic organisms (Terayama 
et al., 2019; Baseca et al., 2019). To address this challenge, 
advanced strategies and technologies are essential. Emphasizing 
information fusion techniques can effectively tackle feed wastage 
issues (Fig. 7) (Ghosh et al., 2018; Riansyah et al., 2020; 
O’Donncha and Grant, 2020; Karimanzira and Rauschenbach, 
2019).

iii. Health Management and Disease Detection (HMDD): Despite 
the critical role of the IoT, the health aspect of aquaculture 
management remains relatively underexplored. There is a press-
ing need to stimulate further research on the smart detection of 
fish diseases and health status. Advancing the development of 
integrated IoT-based systems for fish health management and 
disease detection is imperative. This recommendation involves 
using computer vision, image processing, and machine learning 
algorithms to detect subtle changes in fish behavior, feeding 
patterns, and physical characteristics (Taha et al., 2022; Nasir 
and Mumtazah, 2020; Yoerger et al., 2021) (Fig. 7). This 
approach facilitates early disease detection and timely interven-
tion measures, thereby reducing mortality rates, enhancing 
growth rates, and bolstering overall productivity.

4. Conclusion

This paper present a comprehensive overview of IoT technology in 
fish cultivation, highlighting its benefits and limitations. Our analysis 
from 2000 to 2023 shows a need for an integrated IoT system in aqua-
culture. This system should offer comprehensive data and a holistic 
approach, rather than focusing on isolated operational insights A 
fundamental IoT setup involves securing compatible devices such as 
sensors and actuators and designing circuits. It also includes selecting 
appropriate gateways, encrypting instructions, coding models and al-
gorithms, and creating a user-friendly interface. Our initial cross-study 
analysis of aquaculture water quality (WQ) monitoring shows that IoT 
has effectively tackled the challenge of timely WQ management and 
control. Currently, IoT-based WQ monitoring heavily relies on sensors 
for primary data capture, followed by subsequent processing based on a 
predefined architecture. Data processing can be accomplished through 
edge computing using microcontrollers or computers, while cloud 

Fig. 7. Integrated IoT System for Enhanced and Intelligent Aquaculture.
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computation is recommended for remote purposes. In terms of feeding, 
various methods have been explored, including timed feeding schedules, 
integration of multiple sensors, and hybrid IoT-sensor-AI.

However, timed feeding falls short of accommodating the dynamic 
changes in fish biomass and the required amount of feed. the suscepti-
bility of multiple sensors to corrosion often hinders the accurate esti-
mation of the feeding schedule and quantity. This justifies the 
implementation of the hybrid IoT-sensors-AI feeder, which incorporates 
intelligent algorithms or models (e.g., CNN, LSTM, AANet, ANN). The 
algorithms analyzes the dynamic feeding requirements and dispensation 
timing.The main limitation is the reliance on an initial training dataset 
for decision-making. This may be unreliable due to the dynamic nature 
of fish cultivation. For health management, researchers use hybrid IoT- 
sensor-AI systems for disease detection and prediction. These systems 
rely on real-time environmental conditions captured by multiple sen-
sors. Health diagnosis based on integrated sensors and deep learning 
predictive models (such as R-CNN and AANet) has shown promise, 
particularly through the analysis of fish colour and movement speed. 
Overall, IoT-based technology has had a positive impact on aquaculture 
by facilitating real-time management. Improvements are needed in 
enhancing sensor resistance to corrosion and integrating data fusion for 
better decision-making. Additionally, expanding IoT-based ichthyology 
to cover a broader range of fish diseases is essential. An integrated IoT- 
based sensor resistant to corrosion, combined with AI algorithms for 
processing complex data, could effectively address these challenges and 
advance aquaculture.
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