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ABSTRACT Peatland poses a severe environmental threat due to its potential for massive carbon emission
during fires. Conventional Ground Water Level (GWL) monitoring in peatlands is labor-intensive and lacks
real-time data, hindering effective management. To address this, this paper proposed an IoT system with
neural network-based GWL prediction for real-time monitoring. By using atmospheric parameters, the
neural network predicts GWL, allowing extra time for the responsible party to take the appropriate action to
reduce the fire risk in peatland. The proposed neural network demonstrates promising results, with a Root
Mean Square Error (RMSE) between 3.554 and 4.920, ensuring 99% accuracy within 14.760 mm range
of the actual GWL. This finding underscores the novel approach of integrating IoT and neural networks for
peatland GWL prediction, offering a significant advancement in real-timemonitoring and fire risk mitigation
strategies. The novelty lies in its capability to predict real-time GWL even in areas lacking the resources for
conventional monitoring, using simple meteorological parameters.

INDEX TERMS Peatland, IoT system, machine learning, neural network, ASEAN, transboundary haze.

I. INTRODUCTION
Peatland are the wetlands whose soils are the accumulation
of entirely or partially decayed organic matters. Due to the
waterlogged condition in peatlands, the near-continuous soil
saturation leads to anaerobic conditions, which subsequently
causes slow decomposition [1]. As the production of organic
matter surpasses its decomposition, peat accumulation will
gradually increase. Therefore, a huge amount of carbon is
locked up in peat [2]. Covering approximately 23.6 mil-
lion hectares, the peatlands in ASEAN represent around
56 percent of global tropical peatlands. As such, the ASEAN
peatlands store an estimated 68 billion tons of carbon, which
is 14 percent of the global carbon stored in peatland.

Over the past few decades, human interventions, such
as logging, deforestation, agricultural drainage, fire-fallow
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cultivation, and consequently increasing wildfires have
turned the carbon-rich peatlands into potential gigantic car-
bon emitters. The estimated carbon emission is at about
2 billion tons, which represents 5 percent of global fossil fuel
emissions. Since the severe fire incidents in 1997/1998, the
threat of forest fire in ASEAN peatlands has gained huge
interest. The study shows that the large-scale fire in Indonesia
has released a massive amount of carbon into the atmosphere,
which consequently caused a serious trans-boundary haze
to its neighbouring countries, i.e., Malaysia, Singapore, and
Thailand [3]. The severe haze pollution has affected millions
of people’s health, economic losses, disruption of transport
and strained the diplomatic relations between the affected
ASEAN countries. Besides the huge carbon releases, the situ-
ation also caused the widespread loss of unique and valuable
peatland biodiversity and ecosystems.

Across the globe, the threat of forest fire is on the rise and
responsible for burning over 370 million hectares of forest
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annually on an average basis [4]. To help the affected regions
prepare an earlier mitigation plan and advanced warning
system for fire management, the Southeast Asia Fire Danger
Rating System (FDRS) Project was developed according to
the Canadian Forest Fire Danger Rating System. This system
can aid in predicting fire behaviour and is taken as a refer-
ence for policymakers in developing actions to protect life,
property, and the environment. The FDRS is managed by the
Malaysian Meteorological Department (METMalaysia) for
Southeast Asia.

In Malaysia, the FDRS parameters are predicted according
to the interpolated data collected from a pool of national
weather stations, which does not necessarily represent the
actual local climate in the forest. Furthermore, the FDRS
parameters acquired focus mainly on the atmospheric con-
ditions and do not include the ground data, such as GWL
or water table, soil temperature and soil moisture. These
ground data are very crucial for peatland forest fire plan-
ning, and management [5]. Currently, at least 50 percent of
the peatland forest are drained with different intensity [6].
Therefore, peatland distribution and management have sig-
nificantly influenced the insular Southeast Asian fire regions.
In this aspect, the most integral approach is water table
management. By maintaining a high GWL during the dry
season, significant risks can be minimized. The maintaining
of GWL can be achieved through drainage ditches blocking
in peatland forests and installing and operating water control
structures.

However, the lack of workforce to collect in-situ samples
for analysis and monitoring purposes can be detrimental to
peatland forest management, especially during the epidemic.
Ideally, real-time, accurate, and readily accessible meteoro-
logical data collection is paramount for this study. To cater
to this requirement, the Internet of Things (IoT) technology
is the perfect candidate for the peatland management system.
LoRA is a low-power wide-area network protocol developed
based on spread spectrummodulation techniques for IoT. Our
previous work has demonstrated the feasibility of LoRA for
mangrove [7] and peatland [8] monitoring with proper tuning
of transmission parameters.

With the incorporation of IoT systems, a more intelligent
system can be implemented into the peatland forest fire
management system. One of the most promising advanced
methods in the current technological environment is the neu-
ral network. Neural network is a type of artificial intelligence
that allows self-learning from collected data and then applies
the learned knowledge without human intervention [9]. In our
case, the inclusion of a neural network is a very logical
and advantageous move because the data collected by the
sensors through the IoT system can be learned and improve
forest management. This paper has the following main
contributions:

• LoRa-based IoT network is deployed in the Raja Musa
Forest Reserve (RMFR), Kuala Selangor, Malaysia for
peatland forest fire management.

• Accurate hourly data has been collected by the deployed
IoT system.

• Performance of different machine and deep learning
methods (Linear Regression, Long Short Term Memory
(LSTM) and Deep Neural Network (DNN)) are modeled
and compared for the water table prediction and timely
fire threat warning system.

This project is part of an international initiative where
sensory data from peatland sites of three ASEAN countries
(Malaysia, Brunei, and Indonesia) are acquired and con-
nected to a central cloud hosted by NICT Japan. This type
of IoT-based peatland system could support the integrated
management plan for North Selangor Peat Swamp Forest
from 2014 to 2023 [10].
Groundwater prediction is pivotal for assessing the risk and

management of peatland wildfires, which pose significant
environmental and socioeconomic threats. While conven-
tional approaches to groundwater prediction often rely on
historical data for model training, our study introduces a
novel method that does not require such data. Unlike previous
methodologies, which rely on historical groundwater level
data [8], our approach utilizes other relevant parameters to
directly predict groundwater levels. This innovative method-
ology not only enhances the accessibility of groundwater
prediction models but also broadens their applicability to
regions lacking the resources for conventional groundwater
monitoring. By eliminating the dependency on historical data,
our study offers a groundbreaking solution to the challenges
associated with limited groundwater monitoring capabili-
ties in peatland areas. Additionally, our study contributes to
the advancement of wildfire risk assessment by providing
insights into the performance of various machine learning
algorithms specifically tailored for predicting groundwater
levels in peatland environments. This unique combination
of methodological innovation and localized analysis distin-
guishes our study as a significant contribution to the field
of wildfire risk management, offering promising prospects
for improved prediction accuracy in regions vulnerable to
peatland wildfires.

II. RELATED WORK
Due to the imminent fire threat on the peatland, especially
during the drought seasons, fire detection is a major issue in
ASEAN countries. Peatland forest fire not only damages the
environment and destroy the diversity of the forest, but it also
releases a tremendous amount of carbon into the atmosphere.
Therefore, it is critical to achieve early detection or alert
system to avoid the devastating consequences of peatland
forest fires. Wireless sensor network has gained a lot of
popularity due to its technology maturity and flexibility in
various applications, such as localization [11], [12], smart
transportation and tracking [13], healthcare [14], [15], and
industrial automation [16], [17].

Hydrological forecasting, particularly the prediction of
groundwater levels, plays a pivotal role in water resource
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management, especially in regions characterized by unique
environmental conditions such as tropical peatlands. Recent
studies have showcased the efficacy of machine learning
algorithms in enhancing the accuracy and reliability of
groundwater level predictions. For instance, Hikouei et al.
[18] utilized machine learning algorithms to predict ground-
water levels in Indonesian tropical peatlands, demonstrat-
ing the feasibility of employing advanced computational
techniques in complex hydrological systems. Furthermore,
Burgan [19] conducted a comparative analysis of various arti-
ficial neural network (ANN) algorithms and Multiple Linear
Regression for daily stream-flow prediction in the Kocasu
River, Turkey. Their findings underscored the superiority of
ANN models in capturing the nonlinear relationships inher-
ent in hydrological processes, thereby improving forecasting
accuracy. Additionally, Lendzioch et al. [20] demonstrated
the utility of UAV monitoring and machine learning in map-
ping groundwater levels and soil moisture in a montane peat
bog. By leveraging remote sensing technology and advanced
data analytics, they provided valuable insights into the spa-
tiotemporal dynamics of groundwater resources, facilitating
informed decision-making in water management practices.

To achieve timely and reliable detection, wireless sensor
network has been implemented into the forest management
system. In [21], the author has proposed a novel approach
for fire detection in mines by using a network of sensors
called WMSS. On the other hand, Chiwewe et al. [22] sug-
gested a Zigbee-basedWSN for fire detection in remote forest
areas. In this project, temperature sensors are used to mea-
sure the atmospheric temperature to examine fire intensity in
the forest. For improvement of accuracy, the author in [23]
incorporated both multi-sensors and cameras in the WSN to
avoid false alarms. More recently, Okafor and Delaney [24]
proposed a system that enables the cost-efficient collection,
curation, and processing of data in peatland areas through
IoT-based autonomous sensing. Cui [25] proposed the use
of smart sensors and convolution neural network (CNN) to
monitor the forest and predict abnormality. Overall, it is well-
documented that the IoT system is a viable technology for
ecological sensing in remote areas such as peatland forests.

For peatland management in ASEAN peatland forests, IoT
systems have been developed by Li et al. [8] and Essa et al.
[26] for Malaysia and Indonesia, respectively. Li et al. [8]
have developed ground sensors using IoT technology to
improve the water table management at the peatland of
Malaysia. Measuring instruments such as piezometers are
stationed on-site for real-time sensing to clearly understand
the water table while encouraging effective water table man-
agement. On the other hand, Essa et al. [26] used LoRa
network to collect environmental parameters, such as soil and
water temperature, soil moisture, water table and atmospheric
humidity. The data collected will be displayed on a dashboard
and accessible by respective agencies. Similar to Essa et al.
[26], Li et al. [27], [28] and Liew et al. [29] also deployed an
IoT system in peatland in Malaysia to monitor both ground
data and atmospheric data.

FIGURE 1. IoT-based peatland forest monitoring system.

These successful implementations of IoT systems for peat-
land management in ASEAN regions have demonstrated IoT
technology’s feasibility and compatibility in this context.
Nevertheless, the full potential of IoT system for peatland
management has not been achieved. None of the literature
has detailed how the information collected by IoT systems
can help refine peatland management. Over the last decades,
the development of artificial intelligence, especially neural
network has been staggering, with its application extended
into different applications due to its unparallel learning and
prediction capability. Early detection and warning system are
essential for peatland management to mitigate and avoid the
damage caused by forest fires. Therefore, artificial intelli-
gence can play a massive role in peatland management.

This paper proposed an IoT system for peatland forest
management in Malaysia. The IoT system deployed ground
sensors and weather station to measure in-situ ground level
and atmospheric parameters. Furthermore, the data collected
will be fed into a neural network model to process the
knowledge learnt to produce a prediction model for peat-
land management. This prediction model allows for early
detection of water table using previous day water table infor-
mation. Therefore, the risk of peatland fire can be reduced
substantially.

III. METHODOLOGY
This section mainly introduces the deployment of IoT sys-
tems and the setting of machine learning for predicting the
groundwater level of peatlands.

A. IoT-BASED PEATLAND MANAGEMENT SYSTEM
Figure. 1 shows the setup of the IoT system deployed at Raja
Musa Forest Reserve (RMFR), Kuala Selangor, Malaysia for
peatland forest management and monitoring system. This
forest is selected as the study site for its forest fire incidents
history, such as the fire during 98-El-Nino in 1998, and forest
fires in 2000, 2005, and 2017 [5].

In this IoT system, two ground sensors are deployed to
measure soil temperature, moisture, and water table. The
two ground sensors are linked to a gateway via LoRa access
technology. Apart from the data from ground sensors, the
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FIGURE 2. LoRa gateway installed on top of the observation tower.

weather station is used to measure the atmospheric param-
eters. Similarly, the data collected by the weather station will
be transmitted to the gateway. Figure 2. shows the LoRa gate-
way installed on top of the observation tower. Therefore, the
LoRa gateway is an in-situ data aggregation point at the forest
site. Then, the peatland data at the gateway is sent to the cloud
using 4G cellular infrastructure. The cloud server is hosted
by NICT Japan for dashboard implementation and remains
accessible to the local community and forest management
stakeholders.

The transmission range of LoRa depends on the propaga-
tion condition [30]. In this case, the LoRa signal is heavily
distorted by the peatland foliage (approx. 2-10 meters in
height and of various densities). Therefore, the gateway is
installed on top of the observation tower with approximately
25 meters of height above the ground level, as illustrated
in Figure 1. All the equipment at the observation tower is
solar powered, while the ground sensors are battery-powered.
To ensure the health of the ground sensors, the battery status
and its communication parameters such as received signal
strength indicator (RSSI) and signal to noise ratio (SNR) are
sent to the gateway along with the collected data for ease of
device monitoring.

Figure 3. shows the layout plan of the IoT-based peatland
monitoring and management system deployed at RMFR. The
observation tower has a latitude and longitude of (3.46595◦,
101.441388◦). The first ground sensor node (SN1) is located
around 174m to thewest of the observation tower. The second
ground sensor node (SN2) is located around 262 m to the
southwest of the observation tower. Geographically, SN2 is
200 m to the south of SN1 to represent the readings at a
lower gradient. To the north of SN1, there is a man-made
water canal parallel to the access road. In comparison, SN2 is
located deeper into the peatland.

The GWL or water table is measured using a piezometer
of the ground sensor node. Prior to installing the piezometer,
the borehole is prepared for the fixing of UPVC pipe. The
UPVC pipe is terminated down to the mineral soil later with
approximately 5.26 m depth as illustrated in Figure 4. The
deep penetration into the ground ensures that the measured
water level is the actual water table within the peat layer.

FIGURE 3. Layout plan of IoT-based peatland monitoring system.

FIGURE 4. Piezometer for ground water level.

To protect the boreholes from wild animals, the perimeter is
guarded with a 1-meter height fence. The weather station is
installed at the observation tower to provide local atmospheric
data, including the parameters required to derive FDRS (i.e.,
air temperature and humidity, wind speed, and precipitation).
A closed-circuit television camera (CCTV) is installed at the
observation tower to protect the area and the equipment.

In assembling the components of the system, a meticu-
lous approach was undertaken to ensure optimal functionality
and cost-effectiveness. The piezometer, a critical element in
the setup, was carefully integrated into the system. Due to
budget constraints, specific components were procured rather
than complete systems, enabling tailoring the setup to the
requirements. This approach allowed achieving the desired
performance while adhering to budgetary limitations. The
assembly process involved meticulous attention to detail and
rigorous testing to ensure the reliability and accuracy of the
system.
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The sensors utilized in this study play a pivotal role
in monitoring peatland groundwater levels. These sensors,
readily available commercially, encompass a range of param-
eters crucial for comprehensive data collection, including air
humidity, temperature, wind speed, precipitation, and UV
radiation. The data gathered by these sensors are transmit-
ted via LoRa antennas positioned on sensor nodes to LoRa
gateway. Subsequently, utilizing 4G connectivity, the data
are relayed to servers for storage and analysis, facilitating
accessibility and usability for academic research endeavors.
This integrated sensor network offers a robust framework for
real-time monitoring and analysis, contributing to advance-
ments in peatland management and environmental research.

B. MACHINE LEARNING FOR GWL PREDICTION
In certain regions where direct measurement of ground-
water levels is impractical or unattainable due to various
constraints, alternative approaches leveraging easily measur-
able parameters offer a promising solution for groundwater
prediction. Parameters such as atmospheric temperature,
humidity, wind speed, and precipitation serve as viable substi-
tutes and can be readily obtained even in resource-constrained
areas.

The selection of these parameters was a result of exten-
sive consultations and discussions with multiple experts
from the Malaysian Meteorological Department and Fire and
Rescue Department. Their collective insights and expertise
guided the decision-making process, ensuring that the chosen
parameters were not only accessible but also highly relevant
for accurate groundwater level prediction. This collabora-
tive effort underscored the importance of interdisciplinary
cooperation in developing practical solutions tailored to spe-
cific regional challenges. By adopting this approach, our
study aims to empower regions lacking the means for tradi-
tional groundwater monitoring with a reliable and accessible
method for predicting groundwater levels.

This section describes the work on modelling and predict-
ing the GWL at peatland based on five atmospheric-based
Fire Danger Rating System (FDRS) input parameters: air
temperature, humidity, rain and wind speed. These parame-
ters are chosen because they provide backward compatibility
with existing sensory infrastructure since most weather sta-
tions are equipped with the relevant sensors. In addition,
we compare the prediction results with an additional param-
eter of UV Radiation.

It is of paramount importance to highlight that the GWL
cannot be predicted directly from the listed input parameters
since its value at an instance of time, t is also a function at the
previous instance of time t - 1. Thus, in this paper, we pre-
dicted its relative value 1water levelij (i.e., the difference of
water levels for two consecutive instances) in order to arrive
at the intended objectives:

1water levelij = water leveli − water levelj (1)

Figure 5. describes the overall system framework. The
hourly time interval was chosen in this study as it provides for

FIGURE 5. Neural network based prediction framework.

TABLE 1. Input and output data in an hour.

a richer dataset yet without being too sensitive to noises. All
the parameters were preprocessed and represented based on
their mean values except for the rainfall information, which is
based on the total accumulated precipitation listed in Table 1.
As a critical parameter for the prediction framework, the

accumulated precipitation or rainfall collected by the sys-
tem is illustrated in Figure 6. The data was collected from
mid-January until the end of March, during the northeast
monsoon. Northeast monsoon brings much heavy rain to
peninsular Malaysia [31]. Therefore, the weather station
recorded multiple instances of hourly precipitation exceeding
2 mm per hour. The mean hourly precipitation of peninsular
Malaysia is around 0.276mmper hour, according toMalaysia
Meteorological Department [32].
Figure 6 depicts hourly precipitation data for January,

February, and March, presented in three separate subplots.
Each subplot illustrates the precipitation levels recorded over
the respective months, with the vertical axis representing
precipitation measured in millimeters and the horizontal axis
denoting time. The time axis is divided into daily increments,
with timestamps provided to indicate each day throughout
the months under consideration. By visualizing the temporal
distribution of precipitation, the figure facilitates an under-
standing of the variability and trends in rainfall patterns over
the three-month period. This information is vital for assessing
the impact of precipitation on groundwater levels and, conse-
quently, for enhancing the accuracy of predictive models used
in peatland fire management.

Table 2 describes the statistical summary of the data used
in the study. Due to the extreme value characteristic showed
by accumulated precipitation, a Gumbel distribution for the
hourly precipitation was plotted in Figure 7. As noticed from
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TABLE 2. Statistical summary of the data.

FIGURE 6. Hourly precipitation recorded.

the graph, the distribution of the hourly accumulated precip-
itation is heavily focused around 0 to 3 mm. As a result, the
mean and variance of the left-skewed Gumbel distribution

FIGURE 7. Gumbel distribution of hourly precipitation.

FIGURE 8. Histogram of hourly precipitation.

(minimum) are 1.032 and 3.299, respectively. The mean and
variance of the right-skewed Gumbel distribution (maximum
distribution) are 0.010 and 0.168, respectively.

Figure 8 shows the histogram of the hourly accumu-
lated precipitation with its density. In the context of the
histogram illustrating the hourly accumulated precipitation
data, the density indicates the probability of observing a cer-
tain amount of precipitation within each interval. Therefore,
it accurately reflects the distribution of precipitation levels
across the dataset. The observation further fortified the status
of accumulated precipitation as extreme value distribution,
where approximately 59 percent of the data points recorded
0-2 mm of hourly precipitation. Therefore, a generalization
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FIGURE 9. Boxplot of data used.

or normalization process is required prior to feeding the data
to the neural network.

Table 2 describes the statistical summary of the data used in
the study. Since the data ranges is not uniform and that some
values are too small across all the parameters, data was then
normalized based on the z-score values as such:

1z− score =
x − µ

δ
(2)

Z-score normalization, also known as standardization, is a
statistical method commonly used to transform numerical
data by scaling and centering it around a mean of 0 and
a standard deviation of 1. When the normalized values are
negative, it indicates that the original feature values are below
the mean, whereas values greater than 1 or less than −1
suggest that the feature’s values are relatively large or small
compared to the mean, respectively. The absence of units in
the normalized results is because they represent the extent of
deviation of data points from the mean of the feature, rather
than specific physical quantities. This normalization tech-
nique allows for fair comparisons between different features
by removing the scale and location effects inherent in the
original data. In summary, Z-score normalization provides a
standardized framework for assessing the relative magnitude
of feature values within a dataset, facilitating comparisons
and interpretations across variables.

The data used are plotted in the form of box-plot in
Figure 9. after z-score normalization. In addition, the scatter
plots for input and output parameters were plotted, and their
r Pearson Correlations were investigated and discussed in
the later section. This leads to the machine learning model’s
design and development, which performs regression on the
data.

C. LINEAR REGRESSION
The first machine learning model considered in this work is
the machine learning model using Linear Regression. It is a

simple supervised machine learning algorithm that predicts
the output or dependent variable for a given set of input
or independent variables through effectively modelling their
linear relationship. It is used in this work for its ease of
implementation and efficiency to train [33].
The dependent and independent variables used in this study

are depicted in Table 1. Machine learning does not perform
well with inputs with different scales, as observed from
Table 2. Therefore, a transformation of feature scaling using
a standard scaler is performed prior to the training process.

In the context of this study, the utilization of linear regres-
sion as a predictive model warrants elucidation. Despite its
inherent limitations in capturing the non-linear dynamics
of hydrological processes [34], linear regression serves a
vital role in the methodological framework of this research.
The decision to incorporate linear regression alongside other
machine learning algorithms stems from its interpretability,
simplicity, and comparative utility. Linear regression offers
a transparent and comprehensible approach to modeling
groundwater level fluctuations [35], enabling straightforward
interpretation of coefficients and their respective impacts on
the predicted outcome. This attribute is particularly advanta-
geous in scenarios where stakeholders, such as policymakers
and local communities, seek intuitive insights into the fac-
tors influencing groundwater dynamics. Additionally, linear
regression facilitates a parsimonious representation of the
underlying data-generating process [36], requiring fewer
assumptions and parameters compared to its non-linear coun-
terparts. This parsimony is conducive to efficient model
training and inference, particularly in resource-constrained
settings where computational resources may be limited.

While acknowledging the inherent limitations of linear
regression in capturing the intricacies of groundwater dynam-
ics, its inclusion in the modeling framework underscores a
pragmatic approach to predictive modeling. By striking a
balance between interpretability and predictive performance,
linear regression complements the repertoire of machine
learning methodologies employed in this study, thereby
enriching the analytical toolkit available for groundwater
level forecasting. It is important to note that LR’s role in the
research methodology is not intended to provide definitive
predictions but rather to serve as a reference point for eval-
uating the efficacy of more complex modeling approaches.
Through this nuanced approach, the research endeavors
to contribute meaningfully to the discourse on predictive
modeling in hydrology, fostering a more comprehensive
understanding of the strengths and limitations of different
methodologies in addressing real-world challenges.

D. LONG SHORT TERM MEMORY
The IoT system collects the data hourly, so it is a sequence
of discrete-time data. Long Short Term Memory (LSTM)
is well-suited for predicting time series data. It is a type
of recurrent neural network (RNN) capable of recognizing
patterns in the sequence of data.
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In this study, the LSTM model has 5 neurons, 1 hidden
layer and 1 output for predicted relative water level. MSE
loss function and Adam stochastic gradient optimizer are
used with a learning rate of 0.01. The look back, number of
previous time steps used as input is 1. Hence, the dataset is
created with X being the features at a given time (t), and Y is
the relative water level at the subsequent time (t + 1).
The utilization of hourly data in this study is predicated

upon the nuanced dynamics of groundwater behavior in
peatland ecosystems, where rapid changes in environmental
conditions can have profound implications for groundwater
levels. Hourly data acquisition facilitates a granular exam-
ination of temporal variations in key parameters, offering
unparalleled insights into the intricate interplay between
hydrological processes and environmental factors. Moreover,
the high-temporal-resolution dataset enables the detection
of subtle fluctuations and transient phenomena that may be
imperceptible at coarser temporal scales. By capturing the
transient responses of groundwater systems to short-term
meteorological events, hourly data provides a comprehen-
sive understanding of groundwater dynamics, essential for
accurate prediction and effective management of peatland
ecosystems. Furthermore, the use of hourly data aligns with
the evolving demands of hydrological research, emphasiz-
ing the need for high-temporal-resolution datasets to capture
the complex interactions shaping hydrological processes.
Consequently, the adoption of hourly data represents a
methodological advancement in groundwater research, offer-
ing unprecedented opportunities to refine predictive models
and enhance our understanding of peatland hydrology.

E. NEURAL NETWORK ARCHITECTURE
In this study, the number of hidden neutrons at each layer is
kept fixed based on the number of input parameters. In other
words, when we use all 4 FRDS input parameters (i.e., air
temperature, humidity, rain and wind speed), the number of
hidden neurons remain at 4. Whereas when we add another
input parameter, UV Radiation, the number of hidden neu-
rons remains 5.

This study uses a fully connected dense layer throughout
the whole network. The dense layer is chosen mainly because
the stacking of dense non-linear layers can create a higher
order of polynomials. Thus, the dense layer can allow for
modelling more complex mathematical model. The number
of hidden layers is varied from 1 to 3 hidden layers and the
performance is compared for all three setups. The network
comprises only linear activation functions that are easy to
train and effective for regression problems. The activation
function used in the neural network is Rectified Linear Unit
(ReLU). The adaptive moment estimation Adam algorithm
is applied as the optimization technique to update the neural
network weights throughout the whole network based on the
mean square error as its performance parameter. Similar to
the LSTM, a learning rate of 0.01 and MSE loss function is
employed. Figure 10 illustrates the neural network topology
for 5 inputs and 3 hidden layers used in this study.

FIGURE 10. Example of a 5 inputs and 3 layers neural network topology.

TABLE 3. Distribution of data set.

The neural network architecture utilized in this study
plays a crucial role in modeling the complex relationships
between input parameters and groundwater levels in peat-
land environments. The number of hidden neurons in each
layer is tailored to accommodate the varying number of
input parameters, ensuring adaptability and efficiency in
the model’s representation. By employing fully connected
dense layers, we leverage the capacity of neural networks
to capture intricate patterns and nonlinearities in the data,
thereby enhancing the model’s predictive capabilities. The
utilization of Rectified Linear Unit (ReLU) activation func-
tions and the Adam optimization algorithm further optimizes
the network’s performance, facilitating robust training and
convergence. Additionally, the exploration of different con-
figurations, ranging from one to three hidden layers, allows
for a comprehensive evaluation of model performance. The
depicted neural network topology exemplifies the intricate
architecture employed in this study, showcasing its capac-
ity to handle multiple inputs and hidden layers effectively.
Overall, the tailored neural network architecture serves as
a powerful tool for accurate groundwater level prediction
in peatland environments, contributing to advancements in
environmental monitoring and management.

F. EXPERIMENTAL SETUPS
In this study, a total of 1780 hourly samples collected across
72 days were used as shown in Table 3. In order to provide for
more objective observation, the samples were randomly shuf-
fled before they were divided into two sets, namely training
and validation sets based on the 4:1 ratio. The training data set
was used to build the machine learning model, LSTM model
and neural network-based regressionmodel. The training data
set is further divided into 4 folds for the neural network. Here,
the model accuracy is reported in its Root Mean Square Error
(RMSE) to measure the difference between predicted and
actual values. Finally, the model is tested on the remaining
validation data set to arrive at an objective observation on
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its accuracy. Since the nature of neural network produces
different performance due to random weights management,
in this study, the simulations are repeated for ten runs for each
setup, and the mean RMSE are reported.

G. LIMITATIONS AND CHALLENGES
In this study, several challenges and limitations were encoun-
tered, necessitating comprehensive recognition and resolu-
tion. Firstly, in peatland forest areas, the deployment of IoT
systems faces difficulties in vehicular access due to the com-
plex terrain and limited transportation routes. This hampers
the installation and maintenance of equipment, posing logis-
tical challenges. Secondly, sensor nodes are susceptible to
damage by wildlife, such as monkeys, potentially leading
to data collection instability and unreliability. Additionally,
the current research exhibits localized characteristics and
lacks universal validation. To further generalize the research
findings, it is imperative to deploy more IoT systems in
diverse regions for comprehensive analysis. However, this
necessitates additional project funding to address the high
costs associated with equipment procurement, deployment,
and maintenance. Therefore, it is crucial to recognize these
challenges and limitations and take appropriate measures to
ensure the sustainability and success of the research endeavor.

IV. RESULTS AND DISCUSSION
Understanding the correlation between groundwater level,
temperature, humidity, rainfall, wind speed, and solar radia-
tion is crucial for accurate prediction of peatland wildfires.
Groundwater level serves as a key indicator of peat mois-
ture content, directly influencing fire susceptibility. Higher
groundwater levels indicate a saturated peat substrate, reduc-
ing the risk of ignition and spread. Conversely, lower
groundwater levels result in drier peat, increasing fire sus-
ceptibility. Temperature and humidity affect the rate of peat
moisture loss, with higher temperatures and lower humid-
ity levels accelerating evaporation and desiccation of peat.
Rainfall replenishes soil moisture, mitigating fire risk by
increasing groundwater levels and peat moisture content.
Wind speed influences fire spread by facilitating oxygen
supply and promoting rapid fire propagation. Solar radi-
ation contributes to peat drying by evaporating surface
moisture. Understanding the interplay between these param-
eters provides valuable insights into peatland fire dynamics,
enabling more effective wildfire prediction and management
strategies.

Prior to modelling, a statistical study is performed between
the normalized input and output data as illustrated by all
the scatter plots in Figure 11 (a)-(e). Pearson correlation
coefficients of the data are tabulated in Table 4. Scatter plot
shows the relationship between two variables effectively and
allows quick identification of dominant variable(s) prior to
the machine learning process.

Ideally, two variables that are highly correlated should be
represented by an almost linear diagonal line in scatter plots
and produce Pearson correlation coefficient r close to ±1.

TABLE 4. Pearson correlation coefficients, R.

TABLE 5. Test score RMSE of different ML model.

The scatter plots for mean humidity, temperature, wind speed
and UV radiation do not meet this criterion, which is reflected
by their low Pearson correlation coefficient, r values. On the
other hand, the scatter plot for accumulated precipitation is
almost linear with regards to the relative GWL except for
a small subset of data of extreme cases (i.e.,outliers) where
accumulated precipitation is too high. This observation is also
supported by higher Pearson correlation coefficient r values
above 0.7. In this paper, we do not remove the outliers for the
study since they are highly correlated (i.e., when the accumu-
lated precipitation is high, similarly the relative GWL is also
high). Moreover, a further Pearson correlation study between
relative GWL of both sensor nodes shows that they are highly
correlated (i.e., with a Pearson correlation coefficient r of
0.8). Their line plots almost overlap, as depicted in Figure 12.
However, accumulated precipitation is insufficient to

model the relative water level to a level of acceptable accu-
racy, which remains the motivation of this research. Thus,
this paper combines all the input parameters using a machine
learning approach to predict the relative water level to
improve its accuracy.

The RSMEs of each model in the prediction of relative
GWL for sensor node 2 are tabulated in Table 5. RMSE for
prediction on sensor node 2 is selected due to the higher
correlation with the input parameters. It is observed that the
neural network model has the best performance, followed
by linear regression and LSTM. This advantage is because
the neural network can account for the nonlinearities while
linear regression cannot. On the other hand, the performance
of LTSM suffers from the limit of dataset available, which
can be seen from its training curve in Figure 13 (b).
Learning or training curves of the models are shown in

Figure 13. Figure 13 (a) is the learning curve of the devel-
oped linear regression model. It is observed that the training
curve and validation curve slowly converge as the training set
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FIGURE 11. Scatter plots of normalised NN inputs vs relative GWL.

size increases. When the two curves converge, adding more
training instances will not improve the model performance.
Besides, the training MSE plateaus around the value of 35.
The verdict is that the developed model suffers from high
bias and low variance issues. So, a more complex model is
needed to improve the performance, which is supported by
the observation from the RMSE comparison where the neural
network model can offer improved performance. For the
neural network-based model, the training performance can be
evaluated using training curves, as depicted in Figure 13 (b)
and Figure 13 (c) for LSTM and neural network, respectively.
As the epochs increase, the training loss decreases, and the

neural network model has better performance than LSTM.
In terms of the LSTM training curve, the training loss
decreases with the epochs, but more data is required to
explore the model’s potential.

To further analyse the performance of the developed neural
network, systematic experimentation is conducted to evaluate
the effect of the different number of hidden layers. As a result,
the neural network produces the following results as depicted
in Table 6 and Table 7 for Sensor Node 1 and Sensor Node 2,
respectively, which are tuned under the different number
of hidden layers and input parameters. Fire Danger Rating
System (FDRS) input parameters here are mainly air mean
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FIGURE 12. Relative ground water level for sensor node 1 and sensor
node 2.

TABLE 6. Neural network prediction RMSE for sensor node 1.

TABLE 7. Neural network prediction RMSE for sensor node 2.

temperature, humidity, wind speed, and hourly accumulated
precipitation.

Another conclusion we can draw from both tables is
that the neural network model predicts better with an addi-
tional input UV radiation parameter. The prediction RMSE
results are relatively accurate and promising, ranging between
3.554 and 3.866. However, for both Sensor Node 1 and 2,
only one neural network hidden layer is sufficient for good
performance. This could be attributed to the over-fitting Neu-
ral Network problem where the network over-fits the training
set and decreases the ability to generalize to the new data.
Therefore, increasing the number of hidden layers does not
increase the accuracy in this case.

In general, the prediction results demonstrate that the
model for Sensor Node 2 is more accurate with generally
lower RMSE across all settings. This is coherent with the
higher Pearson correlation coefficient r for relative GWL

FIGURE 13. Learning or training curve of ML models.

of Sensor Node 2 with most input parameters compared to
Sensor Node 1 (i.e., based on Table 4 ). In terms of location
wise, Sensor Node 2 is planted in the middle of the peat
swamp, whereas Sensor Node 1 is located nearer to the canal.
Thus, the groundwater near Sensor Node 1 is drawn out faster
into the canal, affecting its level more than Sensor Node 2.
Figure 14 shows the canal next to the Sensor node 1.
The importance of hourly water level simulation in peat-

land management and fire prevention cannot be overstated.
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FIGURE 14. Water canal near to sensor node 1.

Furthermore, it is essential to emphasize that the dynamics of
groundwater flow play a crucial role in shaping the geolog-
ical conditions and fire occurrences in peatland areas [37],
[38]. Peatlands play a crucial role in ecosystem dynamics,
influencing vegetation growth, greenhouse gas emissions,
biodiversity, and fire risk. Therefore, high temporal and spa-
tial resolution simulation and monitoring of water levels
in peatlands are essential. Hourly water level simulation
not only helps us better understand the dynamic changes
in hydrological processes in peatlands but also provides
important insights for ecological conservation and fire risk
assessment.

Furthermore, while we utilized a three-month data span
for model construction and evaluation, it does not imply
neglecting the significance of long-term data. On the contrary,
we recognize the importance of long-term data for a compre-
hensive assessment of model performance. However, in this
study, our primary focus was on validating the feasibility
of IoT technology in peatland water level simulation and
exploring its potential value in practical applications. Hence,
we opted for a shorter time span for initial evaluation to
validate the effectiveness and feasibility of our approach.
Despite the shorter time span, our research results still pro-
vide valuable references and foundations for further studies.

In conclusion, hourly water level simulation provides a
new approach for understanding andmonitoring hydrological
processes in peatlands, offering robust support for peatland
management and conservation efforts. We believe that with
the continuous development and refinement of IoT technol-
ogy, hourly water level simulation will play an increasingly
important role in peatland ecosystem management and fire
prevention in the future.

V. CONCLUSION
This study developed an IoT-based Peatland management
system to effectively manage fire threats in ASEAN peat-
lands. Real-time data collection by the IoT system allows
instantaneous monitoring of peatland conditions. Analysis
revealed a strong correlation between accumulated precip-
itation and ground sensor data, highlighting its suitability

as input for neural network model training. The developed
neural network effectively predicts groundwater levels, cru-
cial for peatland fire management, as water management has
proven to be an effective method for controlling fire threats.
Importantly, our prediction results demonstrate high accu-
racy, with an RMSE ranging from 3.554 to 4.920 depending
on the number of hidden layers.

The findings of this study provide valuable insights that
can aid in the effective management and prediction of
groundwater levels in peatland areas. By utilizing IoT-based
monitoring systems and machine learning algorithms, accu-
rate predictions of groundwater levels can be made, offering
a proactive approach to mitigating the risk of peatland fires.
These findings underscore the potential of integratingmodern
technology with hydrological knowledge to address environ-
mental challenges and enhance disaster preparedness efforts.

For future works, the neural network will be trained with
more collected data spanning over both dry and wet seasons
to improve its prediction ability and accuracy. Furthermore,
more analysis on the data collected by the weather station
will be conducted to compare against the atmospheric data
provided by the METMalaysia for better understanding on
the peatland weather. Lastly, potential functionalities for
integration with the IoT system for automated water table
management will be investigated.
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