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Abstract 

The graph consisting of s paths joining two vertices is called an s-bridge graph. In this paper, 
we discuss the chromaticity of some families of s-bridge graphs, especially 4-bridge graphs, and 
some graphs related to s-bridge graphs. 

1. The chromaticity of 4-bridge graphs 

The graphs considered here are finite, undirected, simple and loopless. For a graph 

G, let V(G) denote the vertex set of G and E(G) the edge set of G. Let P(G; A), or simply 

P(G) if there is no likelihood of confusion, denote the chromatic polynomial of G. In 

this paper, y=1- 1 and x= -y. Two graphs G and H are said to be chromatically 

equivalent if P(G) = P(H). A graph G is said to be chromatically unique if P(G) = P(H) 
implies H is isomorphic to G. Let 93 = {Go, . . . , GP} and x = (Ki,, . . . , Kip >. Then all 

graphs obtained from Go, . . . , G, by overlapping in Ki, , . . . , Kip in different positions 

and different orders form a class of graphs. We denote it by ($9, x}. If the chromatic 

equivalence of H to (9, -X> implies HE{??, X}, then (9,37} is said to be a complete 

class of chromatically equivalent graphs. For details and other symbols and defini- 

tions, readers can see [6]. 

A 2-connected graph G is called a generalized polygon tree if it can be decomposed 

into cycle class Y = { Ci,, . . . , Cir} and there exist an overlapping process: H1 = Ci,, Hj is 

obtained from Hj_1 and Ci, by overlapping in path Pi, where in each step of 

overlapping, the vertices on Pii, except end vertices, are with degree 2. 

In [6], it was proved that a 2-connected graph is a generalized polygon tree if and 

only if it has no subgraphs homeomorphic to K4. Obviously a generalized polygon 
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tree is a planar graph. For a 2-connected planar graph G, we define r(G) as the number 

of interior regions of G: r(G)= 1 E(G)1 - ( V(G) I+ 1. For a generalized polygon tree, we 

define intercourse number of G, a(G), as the number of nonadjacent vertex pairs, 

where there are at least three internally disjoint paths joining them. It was also proved 

in [6] that if G is a generalized polygon tree and P(H)=P(G), then H is also 

a generalized polygon tree and r(H) = r(G), o(H) = O(G). 

A graph consisting of s paths joining two vertices is called an s-bridge graph, which 

is denoted by F(kI, . . . . k,), where kI, . . . . k, are the lengths of s paths. Clearly an 

s-bridge graph is a generalized polygon tree. 

It was proved by Chao and Whitehead [l] that the cycle C, is chromatically 

unique. Later, Loerinc [3] proved that the generalized O-graph Qobc is chromatically 

unique. That is to say, 2-bridge graphs and 3-bridge graphs are all chromatically 

unique. In this paper, we consider the chromaticity of s-bridge graphs and some 

graphs related to s-bridge graphs. First we give the sufficient and necessary conditions 

for a 4-bridge graph to be chromatically unique. 

Now let G be a 4-bridge graph F (a, b,c, d), the lengths of the 4 paths joining 

two vertices u and v be a, b, c and d, where a> b >c >d and 1 V(G)1 = n. Then 

IE(G)I=a+b+c+d=n+2. 

Theorem 1. A 4-bridge graph G is not chromatically unique ifund only ifG sutisjies one 
of the following conditions: 

(1) d=l, 

(2) d=2 and u=b+l=c+2. 

Proof. If d = 1, G is a polygon tree obtained from C,+ r, Cb+r and Cc+r by overlap- 

ping on an edge. Let Q = {C, + r , Cbflr Cc+l >, Xx= {K,,K,}. As shown in C61,{9,X} 
is a complete class of chromatically equivalent graphs and it is easy to see that 

l{S,X31>1 (seeFig. l.)H ence G is not chromatically unique and all graphs which are 

chromatically equivalent to G belong to (9,Xx). 

In the following, we always assume that d > 1. Then G is a generalized polygon 

tree, the interior region number r(G)=3 and the intercourse number a(G)= 1. 

First, using the formula P(G)=P(G+uv)+P(G.uv), we compute the chromatic 

Fig. 1. 
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polynomial of G. 

P(G)= ’ 
x3(x - 1)3 

P(C,+l)P(C*+l)P(C,+l)P(Cd+l) 

1 
-3 P(C,)P(C,)P(C,)P(C,) 

(x- 1) 

=‘,“,:” [(l +x+x2)-(x+ l)(x”+xb+xC+xd) 

=‘,“,:” Q(G). 

Suppose that there is a graph H such that P(G)=P(H). By Lemma 4 in [6], we 

know that H is also a generalized polygon tree and the interior region number 

r(H)= r(G)= 3, the intercourse number o(H) =a(G)= 1, i.e. H is either a 4-bridge 

graph or a graph obtained from a generalized O-graph and a cycle by overlapping on 

an edge. 

Assume that H is a 4-bridge graph with a’, b’, c’ and d’ to be the lengths of its paths, 

where a’ 2 b’ 3 c’ 3 d’. Comparing the coefficients of the terms with the lowest degrees 

in Q(G) and Q(H), we conclude that d’ must be equal to d. By Lemma 4 in [6], the 

girth g(H)= g(G), hence we have c’= c. It is easy to obtain that b’ = b and a’ =a. 

Therefore, H is isomorphic to G. 

Now suppose that H is obtained from a generalized B-graph 6&,‘c’ and a cycle Cd, by 

overlapping on an edge, where a’>b$c’a2 and d’33, a’+b’+c’+d’-3= 

(V(H)I=n,i.e.a’+bffc’+d’=a+b+c+d+1.SincethegirthofGismorethan3,the 

girth of H is also more than 3, therefore d’>4. We compute the chromatic polynomial 

of H. 

1 
P(H)=----- 

x(x - 1) 
p(~a’b’c’)p(cd’) 

=‘,“,:” [(l +x)--(xd’-1 +Xd’+XC’+Xb’+Xn’) 

=‘,“,:” Q(H). 

Now we solve the equation Q(G)=Q(H). After canceling x”“, x and constant 

terms, we get 

a+b+c+d=a’+b’+c’+d’-1, a>b>c>d>2, a’>b’Lc’>,2, d’a4, 
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Q(G): X2_Xd_xd+l_X~_x~+1_Xb_xb+1_X._xXn+1 

+Xc+d+Xb+d+X.+d+Xb+c+xo+c+xa+b, 

Q(H): -xd’-l _Xd’_Xc’_xb’_Xa’+Xc’+d’-l 

+Xb’+d’-l+Xa’+d’-l+X~‘+b’+c’-l 

Since d=min{d,d+l,c,c+l,b,b+l,a,a+lf and min{a’+d’-l,b’+d’-1, 

c’+d’-1, a’+&+~‘-1}>2, x2 of Q(G) can only be canceled with xd of Q(G), i.e. 

d=2. 

a+b+c+3=a’+b’+c’+d’, aZb>c>,2, a’>b’>c’>2, d’a4. 

Q(G): _X~_X~-X~+~_Xb_Xb+~_X~_X~+~ 

+Xc+Z+Xb+2+Xa+Z+Xb+c+xa+c+x~+b 

Q(H): _xd’- 1 _xd’ _Xc’_Xb’_Xa’+Xc’+d’-l 

+X 
b’+d’-1 +Xa’+d’-l +Xa’+b’+c’-l 

Sincemin{c+2,b+2,a+2,b+c,a+c,u+b}>3, -x30fQ(G)canonlybecanceled 

with one term of Q(H), i.e. -xd’-‘, -xd’, -xc’, -xb’ or -x0’. Because d’a4, -x3 
cannot be canceled with -x”. If -x3 is canceled with -x”- ‘, then d’=4; otherwise 

one of c’, b’ and a’ must be equal to 3. Without loss of generality we may assume d’ = 4 

or c’ = 3. Thus we consider the following two cases. 

Case 1. d’= 4. 
In this case, we have 

u+b+c=u’-tb’+c’+l, uBbBc>2, u’>b’ac’>2. 

Q(G): -Xc-Xf+~-Xb_Xb+~_X~_X(l+l 

+Xc+2+Xb+2+Xa+2+Xb+c+xa+c+xa+b 

Q(H): _,X4_Xc’_Xb’_Xa’+Xc’+3+Xb’+3+,x~’+3+Xn’+b’+c’-l 

By observing the terms with the highest power, we may conclude that 

u+b=u’+b’+c’-1 and c=2. Thus c’=2. We now have 

u+b=a’+b’+l, ukb>,2, a’Zb’>2. 

Q(G): _X~_~~_x~+~_X~_X~+~+X~+~X~+~+~X~+~~ 

Q(H): _X4-Xb’-Xa’+x~+Xb’+3+Xa’+3~ 

Then we have u=u’+l=b’+l=b+l. 

Q(G): -x~-~x~+~+.x~+x~+~. 

Q(H): -x4-xb+x5. 
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The solution is b = 3. Therefore F(4,3,2,2) is chromatic equivalent with the graph 

obtained from F (3,3,2) and C4 by overlapping on an edge. 

Case 2. c’ = 3. 

In this case we have 

a+b+c=a’+b’+d’, aZb>c>,2, a’>b’>2, d’>5. 

Q(G): -Xc_Xc+l-Xb_Xb+l_Xn_Xa+l 

+Xc+2+Xb+2+Xs+2+Xb+c+XLlfC+Xa+b, 

Q(H): -xd’-l _Xd’_Xb’_Xa’+Xd’+2+Xb’+d’-1+Xu’+d’-1+Xa’+b’+2~ 

By comparing the least power terms, we can see that c = d’ - 1 or c = b’. If c = d’ - 1, 

then the girth of G is c + 2 > d’ which is a contradiction. So c = b’. We now have 

a+b=a’+d’, aab>c, a’>c>2, d’>5. 

Q(G): _Xc+l_Xb_Xb+l_Xa_Xa+l 

Q(H): _Xd’-l_Xd’_Xa’+Xd’+Z+Xc+d’-1+Xa’+d’-l+Xa’+c+2~ 

We now compare the terms of highest power. Since c + d’ - 1 < a’ + d’ - 1 = a + b - 1, 

we have a+b=a’+c+2=a’+d’. Thus d’=c+2. So we get 

a+b=a’+c+2, a>b>c, a’>c>3. 

Q(G): _Xb_Xb+l_Xn_X’+1+Xc+Z+Xb+2+X.+Z+Xb+f+X.+c. 

Q(H): _Xc+2_X”‘+X~+4+X2c+1+Xa’+c+l~ 

In order that xc+2 can be canceled, at least two of a, b, a + 1 and b + 1 must be equal 

to c+2. If a=b=c+2, then a’=c+2. There is no solution. If a=b=c+ 1, then a’=~. 
Again, no solution. If a = b + 1 = a + 2, then a’ = a + 1 and we have the solution. Thus 

F(c +2, c + 1, c, 2) is chromatic equivalent with the graph obtained from F (c + 1, c, 3) 

and CC+, by overlapping on an edge. 

Now we have solved the equation Q(G)= Q(H) and completed the proof. From the 

above argument we can see that when a = b + 1 = c + 2 and d = 2, the graphs obtained 

from %c,c+l and C,+, by overlapping on an edge are the only graphs chromatically 

equivalent to F (c + 2, c + 1, c, 2). 0 

2. Some complete classes of chromatically equivalent graphs 

Now we consider the chromaticity of some s-bridge graphs and graphs related 

to s-bridge graphs. First we consider the class { {eobcr Cd}, {K,}}, i.e. the set of 

those graphs that are obtained from a O-graph and a cycle by overlapping on 

an edge. 
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Theorem 2. {{bC~G>~{K,))7 h w ere a > b 3 c > 2 and d > 3, is not a complete class of 

chromatically equivalent graphs if and only if c = 3 and d = a + 1 = b + 2. 

Proof. Let GE{ {8,,6_ C,}, {K2}}. Then G is a generalized polygon tree, r(G)=3 and 

o(G)= 1. By Lemma 4 in [7], if there is a graph H such that P(G)=P(H), then H is 

either a 4-bridge graph or a graph obtained from a generalized B-graph and a cycle by 

overlapping on an edge. If H is a 4-bridge graph, and the lengths of whose 4 paths are 

a’, b’, c’ and d’, then by Theorem 1, P(G) = P(H) if and only if c = 3, d = a + 1 = b + 2, 

d’=2, a’=b’+l=c’+2 and b=c’. So we only need to prove that if 

HE{ {&Y,Y> C,,},{K,}), where a’ab’>c’, and P(G)=P(H), then a’=a, b’=b, c’=c 

and d’=d. Let a+b+c+d=a’+b’+c’+d’=n. If d’=d, then by the chromatic 

uniqueness of the generalized O-graph, it follows a’ =a, b’= b and c’ =c. So in the 

following we prove that if d #d’, then there is no solution for P(G)= P(H). 

As done in Section 1, let P(G)=[(-l~-‘x/(x-l)2]Q(G) and 

P(H)= [( - l)“-‘x/(x- l)‘]Q(H). We try to solve the equation Q(G)=Q(H). Cancel- 

ing some terms, we get 

a+b+c+d=a’+b’+c’+d’, a>b>ca2, a’>b’>c’a2, dfd’. 

Q(G): -xd-’ _Xd_Xc_Xb_X~+Xc+d-l+Xb+d-1+Xa+d-l+xa+d-l+x~+b+c-l~ 

Q(H): _Xd’-1_Xd’_Xc’__b’_Xa’+Xc’+d’-1+Xb’+d’-1+X.’+d’-1+X(1’+b’+c’-1 

Without loss of generality, we can assume d > d’. Then the girth of G must be b + c 

satisfying d > b + c and the girth of H is either d’ or b’ + c’ if b’ + c’ cd’. In both cases, 

comparing the terms with lowest degrees of Q(G) and Q(H) yields c’=c and b’=b. 

Q(G): _Xd-l_Xd_Xs+Xc+d-l+Xa+b+c-l~ 

Q(H): _Xd’-l_Xd’_Xa’+Xc’+d’-l+Xa’+b’+c’-l~ 

Thesolutionsare(1)a’=aandd’=d;(2)a’=d-1,a=d’-1andc=cf=1,wherethe 

first one contradicts the assumption that d > d’ and the second one contradicts the 

condition that c > 2. Thus we have finished the proof. 0 

Since w2,2,2, Cd>, {K,)}(=l, the graph obtained from O2,2,2 and a cycle by 

overlapping on an edge is chromatically unique. 

Theorem 3. Let g={G,,...,G,} and X=k{K,}, where Go,...,Gk are all nonsepa- 

rable generalized polygon trees. Then, if (9,X) 1s a complete class of chromatically 

equivalent graphs, so is {%us(KJ}, Xus{K2}} for any positive integer s. 

Proof. We first prove that if a graph H is a nonseparable generalized polygon tree 

with r(H)> 1, then g(H)> 3. Now H can be obtained from some cycles by overlapping 

on paths. If one cycle has length 3, it must overlap on edges with other subgraphs, i.e. 

H is separable. A contradiction. 
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Suppose that G is chromatically equivalent to {Sus{K~},Xus{Kz}). Then 

G is a generalized polygon tree. Let GE{%“,X’). Then all graphs in 9’ must 

be generalized polygon trees. Let S’={H,,,...,H,) and X’=t{K,}, where 

,,, . . ., II, are all nonseparable. If r(Hi)> 1, then g(Hi)> 3. Therefore 9’ must 

krtain at least s triangles. So {9’\s(K3}, X’\s{K,}} is chromatically equivalent 

to {a, Xj. Since (9,X) is a complete class of chromatically equivalent graphs, 

(9’\s(K,},X’\s{K,})={~,~}, i.e. (97, X’} = {$?us{K~), XUS{K~}}. There- 

fore {~~us{K,}, XUS{K,} } is a complete class of chromatically equivalent 

graphs. 0 

Theorem 4. Let G be an s-bridge graph, where the lengths of the s paths are all m. Then 
G is chromatically unique. 

Proof. The vertex number of G is (n- 1)s + 2, g(G)= 2n, the number of cycles in G 

with length 2n is (g), and G is a generalized polygon tree with r(G)= s- 1 and 

a(G)= 1. 

Now if there is a graph H such that P(H)=P(G), then [ V(H)I=(n-l)s+2, 
g(H)=2n and H is also a generalized polygon tree with o(H)= 1. So H is obtained 

from a t-bridge graph H’ and s-t cycles by overlapping on edges where t Gs. 

Since g(H)=2n, if one path of t-bridge graph H’ has length n’ <II, the others 

must have lengths at least 2n- n’. So IV(H’)(>(n-l)t+2 and the number of 

cycles in H’ with length 2n is at most (i). It is easy to see that the number of cycles 

in H with length 2n is at most ($)+(n- l)(s-t)/(2n-2)<(z) and the equality 

holds if and only if t =s and H is isomorphic to G. Hence G is chromatically 

unique. 0 

As a special case, K2,s is chromatically unique, which was proved in [4] using other 

methods. 

Theorem 5. Let G be an s-bridge graph, the lengths of whose s paths satisfy 

j, 3 . ..>j.>s- 1. Then G is chromatically unique. 

Proof. Suppose that there is a graph H such that P(H)=P(G). Then H is either an 

s-bridge graph or a graph obtained from a t-bridge graph and s-t cycles by 

overlapping on edges, where t < s. 

If H is an s-bridge graph, we solve equation P(H) = P(G) and it is easy to conclude 

that H is isomorphic to G. 

Suppose that H is obtained from a t-bridge graph and s-t cycles by overlapping 

on edges, where the lengths of t paths in t-bridge graph are kI B ..->, k,, and the 

lengths of s-t cycles are I1 2 . . . al,_,. First we give the chromatic polynomials 
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of G and H. 

P(G)= 
(y+& 

fl(y”+(- l)“‘i)+ ‘” n(Yjl-l+(_l)j;) 
(y+ 1)s-1 

P(H)= ’ 
(y+ l)s-i 

~(yk~+(-l)k~+l)+y~-l,(yk~-l+(-l)k~) 

n(y”-‘+(-l)‘) 

=(v+);y-l Q(H). 

We solve the equation Q(G)=Q(H). Since 1 V(G)l=l V(H)j, we have 

~.ji-s+2=Cki+Cli_2s+t+2. It is easy to see that the term with the lowest 
power in 

Q(G)-(_ l)xii+S 

must be either 

(- l)C$- 1 or (_ l)LJ--s+ iyk, 

which cannot be canceled with each other. The corresponding term in 

Q(H)-( _ l)~k+~h+t 

must be one of the three terms: 

(_ l)kw%+~k~+~ykr (_ l)xk++-1 and (_ l)~~t,_,li+Cki-tyl,-t-l 
3 

which cannot be canceled either, so 

min(t-l,k,,I,_,-l}=min{s-l,j,}. 

Since t-ks-l<j,, the equality cannot hold, i.e. there is no solution for 

P(G)= P(H). 0 

Theorem 6. Let M be an s-bridge graph, the lengths of whose s paths are all n. Then 

((M, CA {K2 11 is a complete class of chromatically equivalent graphs. 

Proof. First we give the chromatic polynomial of GE{ {M, C,}, {K,} } as follows: 

P(G)=- (y~l)“((y”+(-l)“+‘)‘+y’-‘(y”‘+(-lI)”)”)(y~-’+(-l)9 

=&Q(G). 
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The term of Q(G)-(-l)““+“+P with the lowest power must be one of the three 
terms:(_l)(S-l)(“+‘)+Psy”,(_l)sn+Pys-l and (- l)sn+syp- ’ which cannot be canceled 

with each other. 

Suppose that there is a graph H such that P(H)=P(G). Then H is either an 

(s + 1)-bridge graph or a graph obtained from a r-bridge graph (t d s) and cycles by 

overlapping on edges. 

Case 1. H is an (s + 1)-bridge graph. If g(G)= 2n <p, then because G has (5) or 

(z)+ 1 cycles with length 2n, it is easy to conclude that there is no solution for 

P(G)=P(H). So p<2n. Let the lengths of s+ 1 paths of H be j, >... >j,+,. Then 

js+js+l=p and 

P(H)=2 
(y+l) 

~(y”+(-l)j’+‘)+ys~(yj~-~+(-l)j~) 
> 

=&Q(H). 

The term in 

Q(H)-( _ l)~j~+s+’ 

with the lowest power is either 

(_ l)Ei+r+lA+sJ,j,+l or (_ l)Ciiys, 

which cannot be canceled with each other. So 

We can only get js+ 1 = s - 1 and s = n. However, there is no solution for Q(G) = Q(H). 
Case 2. H is obtained from a t-bridge graph and the cycles C,,, . . . , CI,_t+, by 

overlapping on edges, where t < s, the lengths of the t paths of the t-bridge graph are 
ji>... >/j, and I,>,...>/,_,+,. 

If the equality lk = p holds for an integer k, we can know that HE { {M, C,}, (K,} }. If 

2n dp, since g(G)= 2n and G has (t) or (;)+ 1 cycles with length 2n, it is easy to 

conclude that HE{{M,C~~,(K~)). Now g(G)=p<2n, jt+jt_l=p<l,_,+l and 

P(H) =y 
(y+l) 

~(Yj~+(_l)j~+l)+y’-l~(Yji-l+(_l)j~) 

IJ(yl’_l+(-1)“) 

=& Q(H). 

Then 

min{p-1,n,s-1}=min{I,_,+,-1,t-l,j,}. 

Since t<s, j,<n and jr<p-1, there is no solution for Q(G)=Q(H). 
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Since I{ {K2+ C,}, {K2 >} ( = 1 the graph obtained from Kzss and C, by overlapping 

on an edge is chromatically unique. 

At last, we give the following theorem without proof, which is similar to Theorems 

5 and 6. 

Theorem 7. Let M be an s-bridge graph with s paths whose lengths are jr B ... 2js>s. 

Then ({M,C,),{K2)} . 1s a complete class of chromatically equivalent graphs. 

Now if M is an s-bridge graph, then 1 {{M, C,>, {K,} > I=? Let [al be the minimum 

integer equal to or more than a. The following result is obvious: Suppose that the 

s-bridge graph M has t paths with different lengths j, > ... >j,. Then 
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