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Leptospirosis is a zoonotic tropical disease caused by pathogenic Leptospira sp. 
whose transmission has been linked to extreme hydrometeorological 
phenomena. Hydrometeorological variability in the form of averages and 
extremes indices have been used before as drivers in statistical prediction of 
disease occurrence; however, their importance and predictive capacity are still 
little known. Random forest classification models of leptospirosis occurrence 
were developed to identify the important hydrometeorological indices and 
models’ prediction accuracy, sensitivity, and specificity based on the sets of 
indices used, using case data from three districts in Kelantan, Malaysia. This 
region experiences annual monsoonal rainfall and flooding, and that record high 
leptospirosis incidence rates. First, hydrometeorological data including rainfall, 
streamflow, water level, relative humidity and temperature were derived into 164 
weekly average and extreme indices in accordance with the Expert Team on 
Climate Change Detection and Indices (ETCCDI). Then, the weekly number of 
cases were classified into binary classes ‘high’ and ‘low’ based on an average 
threshold.  17 models based on ‘average’, ‘extreme’ and ‘mixed’ sets of indices 
– based on the type of indices used as input – were trained by optimizing the 
feature subsets using the embedded approach that utilized the mean decrease 
Gini (MDG) scores. The variable importance was assessed through cross 
correlation analysis and the MDG scores. The results showed that the average 
and extreme models showed similar prediction accuracy ranges while the mixed 
models showed some improvement. An extreme model was the most sensitive 
while and average model was the most specific. The time lag associated with 
the driving indices agreed with the seasonality of the monsoon. The variable 
importance analysis based on the MDG scores indicated that overall, the rainfall 
(extreme) factor dominated, suggesting its strong influence on Leptospirosis 
incidence while the streamflow variable was the least important to the model 
development despite showing higher cross correlations with leptospirosis. 
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Leptospirosis merupakan penyakit tropikal zoonotik yang disebabkan oleh 
Leptospira sp. patogenik di mana penularannya sering dikaitkan dengan 
fenomena hidrometeorologi yang ekstrim. Kebolehubahan hidrometeorologi 
dalam bentuk purata dan ekstrim pernah digunakan sebagai faktor dalam 
ramalan statistik kejadian penyakit; walaubagaimanapun, kepentingan dan 
keupayaannya masih kurang diketahui. Model pengelasan hutan rawak kejadian 
leptospirosis dibangunkan untuk mengenalpasti indeks-indeks hidrometeorologi 
yang penting dan ketepatan ramalan, sensitiviti dan kekhususan model yang 
bergantung pada set-set indeks tersebut, dengan menggunakan data kes dari 
tiga daerah di Kelantan, Malaysia. Kawasan ini mengalami hujan monsun 
tahunan dan banjir serta kejadian leptospirosis yang tinggi. Pertama, data 
hidrometeorologi termasuk hujan, aliran sungai, paras air, kelembapan dan suhu 
udara diagregatkan kepada 164 indeks purata dan ekstrim mingguan selaras 
dengan Pasukan Pakar dalam Pengesanan Perubahan Iklim dan Indeks 
(ETCCDI). Kemudian, bilangan kes mingguan dikelaskan kepada kelas binari 
‘tinggi’ dan ‘rendah’ mengikut ambang purata. Model berdasarkan ‘purata’, 
‘ekstrim’ dan ‘campuran’ – berdasarkan kelas indeks sebagai input – dilatih 
dengan mengoptimumkan subset ciri menggunakan cara embedded yang 
memanfaatkan skor purata penurunan Gini (MDG). Kepentingan pemboleh ubah 
telah dinilai melalui cross correlation analysis (CCA) dan skor MDG. Hasil kajian 
menunjukkan bahawa model purata dan ekstrim menunjukkan ketepatan 
ramalan yang serupa manakala model campuran menunjukkan 
penambahbaikan. Model ekstrim adalah yang paling sensitif manakala model 
purata adalah yang paling khusus. Skor MDG menunjukkan hujan ekstrim 
sebagai faktor dominan, mencadangkan pengaruh kuatnya terhadap kejadian 
leptospirosis, manakala aliran sungai, walaupun berkorelasi tinggi dengan 
leptospirosis, kurang penting untuk pembangunan model.  
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CHAPTER 1 

1INTRODUCTION 

1.1 Background 

Leptospirosis is a zoonotic disease caused by a pathogenic spiral-shaped 
bacteria of genus Leptospira sp. that gets transmitted from animals to humans 
(Levett, 2001). The infection takes place in two ways either directly or indirectly. 
The direct infection occurs when humans contract the disease by having a 
contact with the urine of a host that has been infected by the bacteria (Ansdell, 
2017). On the other hand, the indirect infection happens when humans get the 
disease through a contact with the environment (soil and water bodies) that has 
been contaminated by the bacterial community (Ansdell, 2017). The bacteria 
reach the human blood circulation system via an injured skin and/or mucous 
membrane (Ansdell, 2017). The disease has been described in the ancient 
literature, but its modern history began a century ago attributing it to jaundice 
with enlarged spleen, kidney failure, pink eye and skin rashes (Adler, 2015). The 
disease exists in both temperate and tropical countries, but usually higher 
incidence rates are recorded in tropics (10 – 100 per 100,000 population per 
year) compared with the temperate climates (0.1 – 1 per 100,000) (WHO, 2003). 
Tropical regions experience rainfall and hot temperature all year-round, which 
keeps the environment warm and humid. Such an environment is suitable for 
rodent proliferation as well as for the longevity of leptospires (Garba et al., 2018). 
The processes involved in the hydrologic cycle circulate the bacterial community 
among the maintenance (rodents), accidental (humans) hosts, soil and water 
bodies ensuring the endemicity of leptospirosis. 

A recent systematic review study estimated that 1.03 million cases and 58,900 
deaths have occurred annually due to leptospirosis worldwide (Costa et al., 
2015) indicating its global public health importance. However, this is expected to 
be an underestimated number as leptospirosis cases are normally misdiagnosed 
and underreported due to its similar manifestations with other febrile illnesses 
and lack of laboratory diagnostic facilities (WHO, 2001). The actual number of 
leptospirosis cases remains unknown as many probably endemic countries do 
not have a proper notification system (Pappas et al., 2008). The current situation 
of leptospirosis can become even worse as the driving forces are expected to be 
more vigorous with the recent severe climate changes, major flooding events 
and rapid urbanisation (Lau et al., 2010). 

Initially, leptospirosis was seen as an occupational disease as it mostly affects 
farmers, sanitation workers, veterinarians and those who conduct activities in 
soil and water bodies that may be contaminated with infected animal urine 
(Picardeau, 2013). However, recently, the disease incidence has increased and 
been linked with hydrometeorological catastrophes (Guerra, 2013). 
Hydrometeorological catastrophes such as flooding events tend to quicken and 
broaden the transmission of leptospirosis by bringing the bacteria closer to 
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humans and causing outbreaks (Ansdell, 2017). As part of investigating the 
disease occurrence, modelling studies have long been undertaken at different 
spatial and temporal resolutions to understand the roles of risk factors in driving 
leptospirosis (Dhewantara et al., 2019). Modelling is the process of representing 
the interaction between dependent and independent variables by using a set of 
equations or algorithms. Traditional statistical models have established the 
relationships between the risk factors and leptospirosis. Since leptospirosis 
occurs under complex ecological settings involving diverse predictors, machine 
learning models have gained attention as they are highly capable of handling a 
large number of predictors and nonlinear patterns (Ahangarcani et al., 2019). 

1.2 Problem Statement 

Although leptospirosis has been ubiquitous globally due to a vast array of driving 
factors, rapid urbanisation, climate change and hydrometeorological extreme 
events are likely to aggravate the current situation of leptospirosis (Lau et al., 
2010; Picardeau, 2013). Flooding events have contributed to a higher rate of, 
more widespread, and longer lagged infections (Barcellos & Sabroza, 2001; Ding 
et al., 2019; Radi et al., 2018; Sehgal et al., 2002; Togami et al., 2018). This 
indicated that extreme hydrometeorological events including heavy rainfall and 
the consecutive flood disperse leptospires broadly. 

To better understand the mechanism behind leptospirosis transmission, several 
different approaches to statistical prediction have been explored. While many 
have considered the spatial dependency (Lau et al., 2012; Mayfield et al., 2018; 
Mohammadinia et al., 2017; Sánchez-Montes et al., 2015; Schneider et al., 2012; 
Suwanpakdee et al., 2015; Vega-Corredor & Opadeyi, 2014; Zhao et al., 2016), 
fewer studies have analysed the drivers behind the occurrence, transmission 
and outbreak using the time series (Chadsuthi et al., 2012; Desvars et al., 2011; 
Joshi et al., 2017; Weinberger et al., 2014). Additionally, most have employed 
conventional statistical modelling techniques, which inadequately handled the 
non-linearity present in the relationship of leptospirosis and its risk factors 
(Dhewantara et al., 2019). The complex mechanism of leptospirosis 
transmission due to the involvement of multiple variables impedes the models’ 
ability of explaining the disease trends (WHO, 2011). Machine learning models, 
in contrast, can capture the complex patterns in disease occurrences, and 
therefore predict the output with a higher accuracy (Ahangarcani et al., 2019; 
Carvajal et al., 2018; Guo et al., 2017; Hu et al., 2018). Machine learning 
algorithms do not assume linearity between the independent and dependent 
variables as how the traditional statistical models do. Rather, they use non-linear 
functions, which will be implemented individually to each aspect of data to learn 
the complex patterns present in it. Since the relationship between the 
hydrometeorological variables and leptospirosis are highly non-linear, machine 
learning could be a better approach since it can handle non-linearity. For 
example, artificial neural network uses non-linear activation functions, i.e., 
sigmoid and relu, to make non-linear transformations to the input making it 
capable of learning and performing more complex tasks (Grossberg, 1988). 
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However, they are often treated as black boxes when the objective is to optimise 
predictive performance, rather than to gain process insight. 

Nevertheless, knowledge extraction is possible with the use of interpretable 
machine learning algorithms. Random forest machine learning (Breiman, 2001) 
is one that allows insight into feature (input variable) importance. Unlike the 
neural network and support vector machine, the random forest algorithm uses 
tree-based decision making, and can rank the features involved during the model 
training based on how well  they contribute to the classification of output classes 
(Hastie et al., 2009). This indicates that random forest is a better model to use 
when it comes to understanding the contribution of features in the model 
development. The learning is well known for its diversity as the algorithm 
includes data bootstrapping and random selection of predictor subsets at each 
splitting node (Breiman, 2001). Bootstrapping creates multiple training sets with 
shuffled and duplicated records, which makes the models robust since they get 
trained on a variety of data points. This also eventually prevents the model from 
overfitting since the results are aggregated across the different datasets (Zhao 
et al., 2020). Besides that, random forest is an ensemble technique that is 
developed by creating individual weak learners (decision trees), and grouped 
together to achieve a better prediction (Hastie et al., 2009). Prediction is a 
process of a model generating outcomes based on an unseen data. Moreover, 
the random selection of predictors allows for a less biased selection of features 
at each splitting node. This decorrelates the trees present in the forest and 
reduces the effect of multicollinearity. All these advantages could have 
contributed to an equal or better performance of random forest models in the 
past studies (Carvajal et al., 2018; Zhao et al., 2020). 

Random forest machine learning has been applied for predicting water-borne 
and vector-borne diseases, e.g., cholera (Campbell et al., 2020), dengue 
(Carvajal et al., 2018; Khan et al., 2017; Zhao et al., 2020), malaria (Didier 
Barradas-Bautista, 2020), and tick-borne encephalitis (Uusitalo et al., 2020). It 
has also been used to model animal leptospirosis based on annual precipitation 
and temperature as well as socio-economic and landscape factors (Zakharova 
et al., 2021). The random forest model developed in Zakharova et al., (2021) 
ranked the independent variables based on the importance metric of Gini that 
reflects the variable’s responsibility in splitting the output. However, the study did 
not further optimise the model by removing the less important (lower in the rank) 
variables. Eliminating less important or irrelevant variables can reduce the 
complexity of the model, which improves its run time, comprehensibility and 
performance (Kumar, 2014). 

Besides that, hydrometeorological variability in the form of average and extreme 
indices have been used as drivers in past modelling studies. For example, simple 
average and extreme hydrometeorological indices, i.e., mean, sum, minimum 
and maximum, have been investigated (Chadsuthi et al., 2012; Cunha et al., 
2019; Desvars et al., 2011; Gómez et al., 2021; Kupek et al., 2000; Radi et al., 
2018; Rahmat et al., 2019; Schneider et al., 2012; Sumi et al., 2017; Weinberger 
et al., 2014), while more elaborate covariates that represented extreme dry and 
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wet conditions have also been used (Dhewantara et al., 2017; Ding et al., 2019; 
Ehelepola et al., 2019; Rahayu et al., 2018; Sánchez-Montes et al., 2015; 
Tassinari et al., 2008). However, none of the above studies have systematically 
analysed and compared the effects of different variables and their average and 
extreme indices on case predictions. 

1.3 Research Questions 

In this study, cross correlation analysis and the capabilities of the random forest 
algorithm were leveraged to answer the following research questions: 

i. What hydrometeorological variables are highly cross correlated with 
leptospirosis and important in classifying the disease occurrence?  

ii. Does prediction capacity change according to the type of index used as 
model features, whether in the form of average or extreme indices or 
their combination? 

1.4 Aim and Objectives 

The research aim is to compare the variable importance and predictive capacity 
of average and extreme hydrometeorological indices in the leptospirosis 
occurrence of three districts of Kelantan, which are subject to higher incidence 
rate and flooding events, through cross correlation analysis and random forest 
modelling technique. There are several objectives derived as below to achieve 
the aim of the study: 

i. To analyse the importance of hydrometeorological indices through the 
lagged correlation analysis and mean decrease Gini (MDG) score. 

ii. To cross-evaluate the accuracy, sensitivity and specificity of random 
forest classification models for leptospirosis that are built using average 
and extreme hydrometeorological indices with the feature subsets 
optimised mean decrease Gini (MDG). 

1.5 Research Contribution 

The research is a systematic comparison between the derived extreme and 
corresponding average hydrometeorological indices that correlate and classify 
leptospirosis. Apart from that, the random forest model for predicting human 
leptospirosis is a new application. Additionally, this research contributes to 
developing machine learning leptospirosis prediction models for Kelantan. 
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1.6 Research Scope 

The study area only covers those which are susceptible to flooding events as the 
research focuses on extreme hydrometeorological events as well. Only three 
districts with higher leptospirosis incidence rates are selected to reduce 
complexity in a lumped model. Although leptospirosis cases occur among both 
humans and animals, the research develops prediction models for human 
leptospirosis only. Moreover, the research uses five hydrometeorological 
variables only including rainfall, streamflow, water level, relative humidity and 
temperature. These are secondary data, which are collected from the Drainage 
and Irrigation Department (DID) and Malaysian Meteorological Department 
(MetMalaysia). Lastly, the variable importance of the hydrometeorological 
indices is measured based on mean decrease Gini (MDG). 

1.7 Thesis Outline 

1.7.1 Introduction 

This chapter provides a general overview on the research that covers the history 
and background and current information of the thesis problem. The problem to 
be addressed in the study is concisely described. The aim and objectives to 
address the problem are listed in this section. The extent of which the research 
is conducted, and its contributions are also discussed. 

1.7.2 Literature Review 

This chapter synthesises the information gained from the previously published 
works that are related to the field of study. This section presents (1) leptospirosis 
and (2) its relation to hydrometeorological variables, (3) the index representation 
and (4) temporal lags of hydrometeorological variables, (5) the leptospirosis 
modelling and prediction of former studies, (6) machine learning techniques used 
to perform leptospirosis predictions, (7) random forest machine learning and (7) 
the feature selection approaches and measures used in machine learning are 
presented in this section. Conclusion is drawn by reviewing the former studies 
and the research gap is identified. 

1.7.3 Methodology 

This chapter presents all the methods approached to conduct the research 
including case study selection, data collection, processing and analysis, model 
development and optimization. This section explains in detail on how the input 
features are generated and models are configured according to the types of 
hydrometeorological indices and settings. 
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1.7.4 Result and Discussion 

This chapter highlights the main and important findings from the result. The 
research draws the findings from three main stages of the research i.e., cross 
correlation analysis, model development, model optimization using selected 
feature subsets based on an independent criterion. This chapter also interprets 
the meaning of the results with the support of literature at the last of each section. 
The possible reasons for obtaining such results and their importance to the study 
are discussed in this section. Unexpected results and the limitation of the findings 
are also discussed in this section. 

1.7.5 Conclusion and Recommendation 

This chapter summarises the conclusions drawn from the research findings. The 
recommendations on bringing the research forward have also been included. 
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