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A B S T R A C T

Resistant starches (RS) are non-digestible, low molecular weight polysaccharides that, when consumed, act as 
prebiotics and provide multiple physiological benefits. Colonic fermentation of RS can yield short-chain fatty 
acids (SCFAs), which have therapeutic potential against metabolic disorders such as diabetes, obesity, over-
weight, and hypertension. Underutilized fruits have shown remarkable potential as sources of RS that can be 
fermented into SCFAs. This review explores the possibility of various underutilized tropical fruits as sources of RS 
and their prospective uses in producing SCFAs. The factors influencing the yield of SCFAs and the pathways and 
mechanisms of colonic fermentation are also assessed. The physiological benefits of RS-derived SCFAs are also 
reviewed. Exploiting the under-utilized fruit starches in the production of SCFAs will add value to natural re-
sources and offer various physiological benefits to protect consumers' health.

1. Introduction

The modern era of optimal nutrition has seen advances in food 
processing technology as well as the discovery of novel nutrients due to 
customer demand for high-quality products with health-promoting 
properties (Amiri et al., 2021; Khaneghah, 2021). Efforts in food 
research are focused on formulating starch-based foods with low gly-
cemic index via resistance to enzymatic hydrolysis and are, thus, of 
physiological importance. Of interest are foods formulated from starches 
that can impede or resist enzymatic hydrolysis to glucose (Quintero- 
Castaño et al., 2020). Food starches can be classified as rapidly digest-
ible starch (RDS), slowly digestible starch (SDS), or resistant starch (RS), 
depending on how quickly it hydrolyzes in the small intestine (Englyst & 
Cummings, 1986; Englyst et al., 1987; Lehmann et al., 2002; Englyst 
et al., 2018). RS passes undigested to the large intestine, fermented by 
the bacteria to produce short-chain fatty acids (SCFAs). Some of the 
typical sources of RS are semi-ripe bananas, raw potatoes, whole grains, 
seeds, nuts, legumes, and cooked-then-cooled foods (Miao et al., 2015; 
Dobranowski & Stintzi, 2021).

Resistant starch, as a non-digestible starch, can promote the growth 

of bacteria in the colon, functioning as a prebiotic (Pandey et al., 2015). 
A modern health trend that employs RS as a functional fiber and nu-
traceutical for colon health is consuming foods high in RS (Jaiturong 
et al., 2020). SCFAs, also known as volatile fatty acids (VFAs) such as 
acetate, propionate, and butyrate, are produced by bacterial fermenta-
tion and are essential for intestinal integrity and health (Dronamraju 
et al., 2009). SCFAs are used as an energy source by bacteria and in-
testinal epithelium, which lowers harmful bacteria and facilitates the 
body's complete absorption of food, resulting in rapid growth and good 
health (Tsen et al., 2004). They also maintain normal serum lip-
id–cholesterol levels and further influence the immune system and the 
absorption of minerals like calcium and iron (Scholz-Ahrens et al., 2007; 
Whisner & Castillo, 2018; Bojarczuk et al., 2022). The findings of recent 
studies suggest the therapeutic significance of SCFAs in treating 
neurological disorders. Preclinical research supports the therapeutic 
benefits of SCFAs as modulators of several inflammatory and metabolic 
processes in addition to colonic function (Tang et al., 2022). Fruits have 
long been valued for their micronutrients, natural sugars, organic acids, 
and other high-value phytochemicals such as antioxidants and phenolics 
(Arias et al., 2022). However, research has shown that fruits also contain 
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a lot of starch, particularly when raw (Kringel et al., 2020). Numerous 
investigations conducted on certain fruits, such as bananas, mangoes, 
and kiwis (Wang et al., 2023), have demonstrated that fruit starches 
possess unique physicochemical, structural, and functional characteris-
tics, which establish them as intriguing sources of starch (Kringel et al., 
2020). The abundance of resistant starch, which has prominent physi-
ological benefits, is the peculiar characteristic of fruit starches (Ribeiro 
et al., 2022). Fruits are generally produced worldwide; however, even 
with their high starch potential, some fruits in various regions of the 
world still need to be properly exploited (Chacha et al., 2021; Okigbo 
et al., 2021). These fruits may have substantial food and industrial po-
tential if their value chains are thoroughly investigated and compre-
hended (Mudau et al., 2022). Therefore, exploring the starch content of 
these fruits, primarily the resistant starch, is essential for supporting 
their value-addition as well as potentially identifying native starches 
with suitable qualities for use in the food sector (Silva et al., 2022)This 
review primarily aims to explore the prebiotic potential of RS, derived 
from underutilized tropical fruits, as a substrate for the production of 
SCFAs during intestinal fermentation. In addition, the pathways of 
fermentation and physiological benefits of RS-derived SCFAs are 
reviewed.

2. Resistant starch and dietary fiber

Complex carbohydrates (polysaccharides) have gained increasing 
attention in recent decades as a key component of many dietetic and 
functional foods. In particular, non-digestible carbohydrates, such as 
resistant starches (RS) and dietary fiber (DF), are the focus of extensive 
research due to their bifidogenic and prebiotic potential (Schulz & Sla-
vin, 2021). According to several studies, RS and DF are valued as low 
glycemic index (GI) foods. Their consumption is linked to reducing the 
incidence and/or managing cardiovascular disorders, diabetes, obesity, 
and colon cancer that pose a serious threat to human health (Dega & 
Barbhai, 2023; Dupuis et al., 2014; Matsuda et al., 2016; Wen et al., 
2022). Since they are not broken down by gastrointestinal enzymes, the 
majority of these indigestible carbohydrates ferments and decompose in 
the large intestine as a result of bacterial activity. Therefore, these 
functional components benefit the host by selectively promoting the 
growth and/or activity of colonic bacteria and thus producing high- 
value microbial metabolites with multiple physiological functions 
(Cerqueira et al., 2019; Dayib et al., 2020; Wen et al., 2022). The rate of 
fermentation, the subsequent metabolites (ca. SCFAs) yield and profile 
and the composition of gut microbiota depend on the physico-chemical 
characteristics of RS and DF (Wang et al., 2019; Wen et al., 2022). The 
micro-morphology, the degree of structural order (crystallinity type), 
and molecular size are crucial factors in influencing the metabolite re-
sponses microbial composition, and physiological functions (Sun et al., 
2020; Wen et al., 2022). Hence, understanding these high-value carbo-
hydrate components' chemistry, structural features, and food distribu-
tion sources is essential for developing functional foods and predicting 
their potential physiological benefits.

Resistant Starch: Starch is the main polysaccharide stored in 
different parts of plants such as fruits, seeds, grains, roots, tubers, stem 
core, and rhizomes (Farooq et al., 2021; Zhang & Zhai, 2020). Due to its 
affordability and widespread availability in various plant sources, starch 
serves as a vital energy source and makes up the majority of the car-
bohydrates in the human diet (Singh et al., 2023; Quintero-Castaño 
et al., 2020). World over, starch is conventionally produced from corn 
(64 %), potatoes (6 %), wheat (6 %), cassava and sweet potatoes. 
Presently, there is growing interest in investigating starches from un-
conventional sources such as fruits, cereals, pseudo cereals, legumes and 
nuts following United Nations SDG 2.4, which describes “sustainable food 
production and resilient agriculture practices” (Makroo et al., 2021). Based 
on their digestibility, starch can be classified as rapidly digestible starch 
(RDS), slowly digestible starch (SDS), and resistant starch (RS). RDS is 
the amount of starch that is broken down by enzymes in the upper small 

intestine and absorbed into the bloodstream within 20 min of digestion. 
These are primarily found in many cooked and processed foods, such as 
breakfast cereals, processed breads, French fries, potato chips, etc. SDS 
is primarily found in fibrous plants and whole foods such as fruits, 
vegetables, grains, legumes, and tubers. It can be completely broken 
down in 20 to 120 min (Englyst & Cummings, 1986; Miao et al., 2015).

On the other hand, the RS is a type of starch resistant to enzymatic 
digestion in the small intestine and cannot be broken down within 120 
min. Starch resistance is based on its structure; starch comprises two 
glucose polymers: amylose and amylopectin. Amylose is primarily a 
linear molecule consisting of α-1, 4-linked glucose units, as compared to 
the branched structure of amylopectin, which additionally contains α-1, 
6 linkages. The proportion of these two components and their organi-
zation within a starch granule significantly affects the starch's di-
gestibility. These structural characteristics tend to vary among botanical 
sources. Other structural features include granule size, relative crystal-
linity, amylose content, and amylopectin chain length. Granule size 
plays a pivotal role in enzymatic digestion, as smaller granules provide a 
larger surface area for enzyme interaction, thus enhancing the rate of 
digestion. The length of amylopectin side chains influences starch di-
gestibility, with longer chains slowing down the process. Additionally, a 
higher proportion of crystallinity correlates with a faster digestibility 
rate (RDS; Cornejo-Ramírez et al., 2018; Ramadoss et al., 2019; Gebre 
et al., 2024).

The functional properties of RS are mainly determined by the 
arrangement of starch granules and the molecular structural composi-
tion of amylose and amylopectin as well as the source of plant foods 
(Wen et al., 2022). Common dietary sources of RS include grains, le-
gumes, tubers, and some processed foods such as whole-grain bread and 
pasta (Chen et al., 2024). The type and content of RS varies among 
various natural and processed foods. It is important to understand that 
many real-world foods might have a mixture of RS types. Moreover, the 
amount of RS in various foods may be greatly influenced by variables, 
including storage conditions, food processing techniques, and the pres-
ence of other dietary ingredients (Zhang et al., 2021; Walsh et al., 2022). 
Based on the physicochemical characteristics and the sources, RS can be 
classified into five categories such as:

Resistant starch Type 1 (RS1): RS1 is physically inaccessible starch 
protected by physical barriers, such as plant cell walls and food matrix 
(Kraithong et al., 2022). Granules of this physically embedded starch are 
mostly encapsulated within plant cell wall components and protein 
encasements. These cell wall components give physical protection to the 
granules rendering them intact against enzymatic digestion (Wang et al., 
2023). This type of RS is commonly found in the cell walls of whole 
grains or partially milled seeds, legumes, and pasta.

Resistant starch Type 2 (RS2): This is typically granular starch (e.g., 
potatoes, unripe banana, Hylon®VII); usually ungelatinized amylose 
starch granules with a complex crystalline structure found in raw potato 
and green bananas. Banana starch stands out as one of the primary 
sources of RS2. Studies have shown the remarkable resistance of native 
raw banana starch to enzymatic hydrolysis; up to 84 % of ingested starch 
remains intact until reaching the terminal ileum (Kaur et al., 2020; 
Yongliang et al., 2014). This has made banana flour of interest, espe-
cially as a functional ingredient. Efforts to enhance the utilization of 
bananas economically have led to the production of banana starch from 
unripe fruits, offering a novel strategy to incorporate this versatile 
ingredient into various innovative products (Kembabazi et al., 2018; Li, 
Chou, et al., 2020).

Much as resistance in many starches is attributed to amylose, 
amylopectin chains have also been shown to influence the formation of 
slowly digestible structures upon retrogradation. This feature is unique 
to banana starch (Martinez et al., 2018; Yee et al., 2021). Amylopectin 
chains, as classified based on the internal chain composition of the 
macromolecules, are: Type 1 is devoid of long internal chains and has a 
large distribution of short internal chains. In contrast, Type 4 has many 
long chains and few short chains. These chains are more prone to 
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retrogradation and increase formation of SDS. Banana amylopectin falls 
into this category (Bertoft, 2017; Yee et al., 2021). Investigations into 
the fermentability of banana starch have demonstrated its potential as a 
substrate for colonic fermentation, as evidenced by various parameters 
evaluated using rat inoculum (Langkilde et al., 2002). In vitro studies 
have shown that banana starch undergoes significant fermentation in 
the colon, producing SCFAs such as acetate, butyrate, and propionate 
(Marta et al., 2022). This fermentation process emphasizes the physio-
logical significance of banana starch as a source of fermentable sub-
strates that contribute to gut health and overall well-being.

Resistant Starch Type 3 (RS3): This is a retrograded starch (e.g., 
retrograded starch, Novelose®330), characterized by the recrystalliza-
tion of gelatinized amylose and amylopectin. When some foods are 
cooked and subsequently cooled, RS3 is produced. As a result of the 
cooling process, the starch molecules realign and recrystallize, making 
them even more resistant to enzymatic degradation (Chen et al., 2024). 
The retrogradation process results in the formation of two subtypes of 
RS3: RS3a, formed predominantly from retrograded amylose, and 
RS3b, formed from retrograded amylopectin (Yee et al., 2021). Typi-
cally, breadfruit (Artocarpus altilis) starch has emerged as a potential 
source of starch which, when modified, can yield RS3. Various pro-
cessing techniques involving the disruption of starch granules, and 
enzymatic debranching, ultimately yield RS3 content of up to 54.59 % in 
breadfruit (Mohd Noor et al., 2020). Breadfruit has thus shown potential 
as a valuable source of RS3, offering both nutritional benefits and 
functional versatility in a variety of food formulations (Huang et al., 
2020).

Resistant starch Type 4 (RS4): This is chemically modified starch 
generated by several different methods, including the addition of ester 
cross-links between starch molecules, the addition of chemical constit-
uent groups, or acid hydrolysis and heat treatment. Resistant starch 
Type 5 (RS5) is an amylose-lipid complex, for example, stearic acid- 
complexed high amylose starch.

Other than resistant starch, there are other fermentable components 
in foods, including fruits, such as cell walls, polysaccharides, and dietary 
fiber. The cell wall of plant foods is a structural framework comprised of 
cellulose, hemicellulose, and pectin fibers. Cellulose forms fibrils, rein-
forced by hemicellulose and further strengthened by pectin, resulting in 
a complex, interwoven three-dimensional architecture. Cellulose, 
composed of simple glucose molecules linked in a ß (1–4) arrangement, 
contrasts with the structural diversity of hemicellulose and pectin. 
Pectin, for instance, may exist as linear chains of monomers (homo-
galacturonan) or molecules with side chains comprising various com-
pounds (rhamnogalacturonans), undergoing esterification and sugar 
decoration like xylogalacturonan. This intricate fiber structure not only 
provides support but also encapsulates various nutrients within the plant 
vacuole, including storage carbohydrates. Among these are fructans, 
dietary fibers with a fructose backbone, and starch. Starch is stored in 
granules, such as those found in fruits like (unripe) bananas 
(Gomes-Ruffi et al., 2009; Puhlmann & de Vos, 2022; Khorasaniha et al., 
2023).

Dietary fibers Dietary fiber comprises a wide array of structurally 
and chemically diverse polymers, composed of various sugar molecules 
including glucose, xylose, mannose, galactose, arabinose, and rhamnose 
(Zdunek et al., 2021). These polymers are interconnected through 
glycosidic bonds, which may follow specific or random patterns, 
resulting in either linear or branched structures. Importantly, these 
bonds resist digestion by human endogenous enzymes, rendering dietary 
fiber valuable for its physiological properties. For instance, pectin, 
exemplified by its complex structure known as rhamnogalacturonans, 
exhibits extensive branching with diverse side chains composed of 
different monomers (Feng et al., 2023; Li et al., 2021; Louis et al., 2021). 
Dietary fibers contribute to the structure and storage reserves of plant 
foods and fundamentally impact human health, partly by involving the 
intestinal microbiota, notably in the colon (Puhlmann & de Vos, 2022).

Whole grains, beans, and legumes are the primary sources of plant- 

based polysaccharides; however, fruits and vegetables are also 
becoming recognized as significant sources of these components. It is 
now well known that fruits and vegetable and their by-products are a 
rich source of micronutrients, including vitamins, minerals, and poly-
saccharides such as dietary fiber and starch. Moreover, fruits are highly 
valued for their contributions to dietary health, particularly as sources of 
resistant starch (RS), polysaccharides, and dietary fiber (Wallace et al., 
2020). The polysaccharides content in fruits is noteworthy as these 
components play a crucial role in the overall health benefits associated 
with fruit consumption. The contents and types of RS in various fruits 
vary significantly, with bananas being one of the most notable sources. 
Research indicates that some banana cultivars exhibit high levels of RS, 
attributed to factors like granule size, crystallinity, and amylose content 
(Leonel et al., 2021). The nutraceutical potential of green banana flour, 
which is rich in RS, has been highlighted in studies demonstrating its 
positive effects on metabolic markers in diabetic models (Munir et al., 
2024). Typically, unripe banana flour contains a high content of RS (up 
to 68 % w/w), along with other bioactive compounds such as phenolics, 
phytosterols and β-carotene thereby, it can be used as a novel functional 
ingredient in the prevention of non-communicable diseases (Dibakoane 
et al., 2022; Ho & Wong, 2016). Dietary fiber, another critical compo-
nent of fruits, works synergistically with RS to promote gut health and 
regulate blood sugar levels (Cui et al., 2019). However, more research is 
needed to explore the specific mechanisms by which these components 
exert their beneficial effects, as well as the potential for utilizing novel 
sources of underutilized fruit starches in functional food applications. In 
this regard, analyzing the potential of underutilized tropical plant seed 
sources as a novel supply of starch can be related to the sustainable use 
of natural resources.

2.1. Underutilized tropical fruits

Underutilized fruits (UFs) are referred to as fruit types that experi-
ence a meagre utilization capacity and are less economically valuable 
than more well-known varieties (Chacha et al., 2021). A large number of 
under-utilized fruits are domesticated, eaten across countries, and are 
distributed all over the world's diverse agro-climatic regions (Williams & 
Haq, 2002). Because they are excellent sources of both macro and 
micronutrients, dietary intake of these fruits has demonstrated signifi-
cant potential in mitigating hunger, especially in regions like Africa by 
providing nutrition for the local communities (Okigbo et al., 2021; 
Okigbo et al., 2021; Chacha et al., 2021). The nutritional, folk medicinal 
and functional food benefits of numerous under-utilized fruits have been 
emphasized in recent studies due to their high nutrient density and 
nutraceutical potential (Okigbo et al., 2021; Okigbo et al., 2021; Chacha 
et al., 2021).

As the demand for functional foods and nutraceuticals rises in the 
current era of optimal nutrition, it would be advantageous to expand the 
pool of available food sources by making use of the abundance of under- 
utilized fruits that have a rich profile of high-value phytochemicals 
(Okigbo et al., 2021). Given this, under-utilized fruits have the potential 
to significantly contribute to the health and well-being of the commu-
nities by offering a substantial quantity of sustainable raw materials for 
the production of food products that have physiological benefits (Donno 
& Turrini, 2020). Moreover, by exploring the potential of under-utilized 
fruits for value-addition, small-scale farmers and rural communities can 
improve their household incomes, food security, and nutritional status 
(Okigbo et al., 2021; Chacha et al., 2021;Donno & Turrini, 2020). Thus, 
the valorization of such fruits for value-added products will boost their 
commercial competitiveness, which is essential to extending the avail-
ability of healthy foods in developing and underdeveloped nations. Not 
only do most underutilized fruits have tremendous nutritional and me-
dicinal potential, but they also can produce significant amounts of 
starch, most of which is resistant starch. Being a rich source of resistant 
starches, these fruits' resistance to enzymatic breakdown could be 
attributed to their high dietary fiber and amylose content (Chacha et al., 
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2021).
The majority of tropical fruit production is estimated to come from 

emerging nations, mainly in Asia, the Amazon, and Africa (FAO, 2023). 
The countries in Southeast Asia and their neighbors, endowed with a 
climate conducive to many tropical plants, are the centers of origin of 
many fruit trees. Several less-known fruit species are found in these 
regions, which have significant potential for commercial exploitation as 
a sustainable source of starches.

2.2. Native fruits of the African region

The African continent harbors many native fruit species that are 
potent for food and nutritional security. These fruits can potentially play 
an important role in solving Africa's significant problems in rural 
development, hunger, malnutrition, and gender inequality (Nitcheu 
Ngemakwe et al., 2017). The native fruits of this region are rich in 
macro, micronutrients, and dietary phytochemicals, among other health 
benefits. Despite this and the existence of a vast and limitless niche 
utilization of these fruits in new product development (functional and 
medicinal products), they are primarily processed on a small scale for 
the production of a few food products (Nitcheu Ngemakwe et al., 2017) 
African Breadfruit, guava, and bananas have shown the potential to 
yield polysaccharides (starch), a possible substrate for fermentation into 
SCFAs. Their starch and resistant starch yields show promising potential 
as alternative starch sources.

2.2.1. African breadfruit (Treculia africana L.)
The African Breadfruit (Treculia africana) belongs to the Moraceae 

family, order Rosales and genus Treculia. It is a large evergreen tree in 
tropical and sub-tropical humid forests widely distributed in West, East, 
and Central Africa (Amujiri et al., 2018). The trees yield about 10 t/ha of 
fruit rich in macro and micronutrients (Jiménez-Escrig et al., 2001). 
Interestingly, its rich phytochemical content is responsible for its anti-
oxidant, antimicrobial, and wound-healing properties (Ojimelukwe & 
Ugwuona, 2021). Further studies have revealed that a traditional diet 
based on African breadfruit can mitigate type II diabetes and obesity 
(Turi et al., 2015). African breadfruit has a starch content of 69 % 
(Oderinde et al., 2020), with 30 % amylose content, which is responsible 
for its resistant starch content. The amylose content is increased to 40 % 
upon modifications like annealing, thus increasing the resistant starch 
content. Despite this great potential as a food and medicinal fruit, it 
remains an underutilized fruit, receiving the least research attention 
among members of the mulberry family (Ojimelukwe & Ugwuona, 
2021).

Other than its consumption as a fruit, breadfruit flour has shown the 
potential to partially substitute for wheat flour in composite flours used 
in many confectionaries, bread, pastry, and snack products (Ragone, 
2014).

2.2.2. Guava (Psidium guajava L.)
Guava (Psidium guajava), a member of the family Myrtaceae, is a 

popular fruit widely cultivated in the tropical and subtropical regions of 
the world (Qin et al., 2017). It is also widely grown in East and Central 
Africa (Omayio et al., 2019). The fruit pulp weighs about 14.5 g and 
consists mainly of starch and non-digestible polysaccharides (Chiveu 
et al., 2016). Whereas guava has a low starch content estimated at 13 % 
(Abdullah & Chin, 2021), studies have shown that the guava pulp and 
peel fractions contain a high content of dietary fiber (48.55–49.42 %) 
and 2.62–7.79 % of extractable polyphenols (Jiménez-Escrig et al., 
2001). The fruit has a great nutritional value and is good addition to the 
diet because of its high dietary fiber content. Guava polysaccharides fed 
to high-fat diet-induced obese mice induced growth of beneficial bac-
teria decreased inflammation-related bacteria accompanied by 
enhanced production of colonic SCFAs, especially butyric acid (Li et al., 
2022). Thus, the pronounced effect of guava on the metabolic profile of 
high-fat diet-induced obese mice is via the gut microbiota pathway, 

positioning guava starch as a source of prebiotics (Li et al., 2022). 
Despite this potential, guava must still be considered a minor fruit in the 
African cropping system and, thus, underutilized (Okigbo et al., 2021; 
Omayio et al., 2019). In other parts of the world, Studies have shown 
that guava is an economically significant fruit (Arévalo-Marín et al., 
2021), with the highest production in India, China, Mexico, and Brazil 
(Altendorf, 2018; FAO, 2024).

2.2.3. Bananas (Musa spp.)
Banana (Musa spp.) is one of the world's major fruit crops belonging 

to the Musaceae family. Banana cultivar diversity comprises dessert 
types, like the Cavendish banana, and cooking types, like plantains; this 
diversity affects their commercialization (Hinge et al., 2022). The most 
traded cultivar is the Cavendish banana, which accounts for 50 million 
tonnes of estimated annual global production (FAO, 2023). Banana, also 
regarded as a non-true plantain, is a dual-purpose fruit grown in the East 
African Highlands. In Uganda, bananas are considered a primary staple 
food (FAOSTAT, 2018), contributing up to 30 % of daily caloric intake 
(FEWSNET, 2017).

Bananas are a significant household income-generating commodity, 
giving about US$1244 annually to over 4 million smallholder house-
holds, ranking Uganda as the major banana producer in the East African 
Highland region (KILIMO, 2013; Marimo et al., 2019). Bananas have 
been shown to have over 90 % (dwb) total starch and 50 % resistant 
starch (Le Leu et al., 2007; Yang et al., 2022), with promising potential 
for being used in the formulation of functional foods (Muranga et al., 
2010; Kembabazi et al., 2018). The bananas of this region have been 
shown to yield more resistant starch than other bananas because of their 
waxy nature (Gafuma, 2019). Despite this potential, these bananas are 
still considered an underutilized noncommercial cultivar (Anyasi et al., 
2013; Okigbo et al., 2021).

2.3. Native fruits of the Asian region

Asia's most important commercially grown fruit crops are Mango, 
Banana, citrus, guava, grape, pineapple, papaya, litchi, and apple (Mitra 
et al., 2008). However, as the continent endures a high prevalence of 
malnutrition attributed to low dietary diversity (together with low 
production diversity), the utilization of promising neglected and 
underutilized species (NUS) that are nutrient-dense and locally available 
is timely (Li, Yadav, & Siddique, 2020)Moreover, these fruits are rich in 
macro and micronutrients. Jackfruit and Breadfruit have shown poten-
tial to yield abundant starch, a possible substrate for fermentation into 
SCFAs. Their starch and resistant starch yields show promising potential 
as alternative starch sources.

2.3.1. Jackfruit (Artocarpus heterophyllus L.)
Jackfruit belongs to the Moraceae family and is widely cultivated in 

Asia (Mitra et al., 2008). It has about 60–80 % seeds, a dry matter basis 
accounting for 8–15 % of fruit weight, positioning it as a cheap and 
sustainable carbohydrate source (Zhang et al., 2021). The fruit is eaten 
as a pulp; however, seeds, usually disposed of as waste, have shown 
potential as a starch source. Its seeds yield about 16–25 % starch (Zhang 
et al., 2016) and have an amylose content of about 22.10–38.34 % 
(Zhang et al., 2021), which makes them a potential source of resistant 
and slowly digestible starch. The seed flour has been used in the pro-
duction of particular starch-based food in jackfruit-wheat flour com-
posite in bakery products, extruded products, and traditional products, 
specifically in Asian countries (Suzihaque et al., 2022; Waghmare et al., 
2019). In addition, jackfruit by-products have been used to enhance 
protein content and dietary fiber in meat analogs (Hamid et al., 2020).

Further research is essential to expand the potential usage of jack-
fruit, which has not yet reached its full potential despite its commercial 
value and significant role in ensuring food security (Li et al., 2022; Mitra 
et al., 2008; Zhang et al., 2021).
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2.3.2. Bread fruit (Artocarpus altilis)
Breadfruit (Artocarpus Altilis) belongs to the family of Moracea, 

native to Malaysia and now grown all over the tropics (Wang et al., 
2011). Along with a related species known as breadnut (Artocarpus 
camansi), breadfruit has long been used as a staple diet in the Pacific 
islands and is now widely available and utilized across the tropics. The 
fruit is an underutilized but highly nutritive crop containing complex 
carbohydrates and low in fat (Mehta et al., 2023). Breadfruit flour has 
been shown to contain over 70 % starch, which has been modified to 
give about 50 % resistant starch type 3 (Mohd Noor et al., 2020; Turi 
et al., 2015). The nutritional, functional, technological and physico-
chemical properties of breadfruit have been shown to positively influ-
ence the production of healthier food products using breadfruit flour and 
starch, such as meat analogs, prebiotic beverages and carbohydrate 
staples (Mehta et al., 2023). The nutritional composition of breadfruit 
flour suggests that it has the potential to mitigate type II diabetes and 
obesity in Oceania and elsewhere in the tropics where breadfruit is 
grown, probably due to the high amylose content (Turi et al., 2015). 
Furthermore, the high fiber content of breadfruit can help lower bad 
cholesterol and triglycerides, which lowers the risk of heart disease. It 
has been suggested that breadfruit protects the body from heart attacks 
and heart disease (Olaoye & Ade-Omowaye, 2011). Even though it is a 
staple crop high in carbohydrates and therefore a priority crop in 
reducing hunger and ensuring food security, it still needs to be used 
more, with particular focus paid to its large-scale commercial cultivation 
(Deivanai & Bhore, 2010; Mausio et al., 2020).

2.4. Native fruits of the Amazon region

The Amazon rainforest is the largest continuous tropical rainforest. It 
has a significant reserve of biological diversity, indicating a high po-
tential for use by humanity, including as a new food alternative (Silva 
et al., 2022). Amazon's great fruitful diversity favors the search for 
innovative raw materials, enabling them to be explored as alternative 
sources of ingredients for the industry.

With the tremendous vegetative diversity in the Amazon, there is the 
possibility of alternative sources for the supply of starch, in which raw 
materials destined for disposal can be used and, consequently, added 
value (Arévalo-Marín et al., 2021). Peach palm and St. Hill have shown 
the potential to yield starch, a possible substrate for fermentation into 
SCFAs. Its starch yield and resistant starch show promising potential as 
alternative starch sources.

2.4.1. Peach palm (Bactris gasipaes Kunth)
Bactris gasipaes is a palm tree that was one of the first plants 

domesticated for logging by indigenous people in pre-Columbian times 
in southwestern Amazonia (Ferrari Felisberto et al., 2020). The peach 
palm fruit has 79 % starch, of which 12.40 % is amylose and 66.60 % 
amylopectin, presenting itself as an alternative for higher-scale starch 
production (de Melo Neto et al., 2017) and a possible source of resistant 
starch (Pires et al., 2021). The fruit is a rich source of bioactive com-
pounds with significant antioxidant capacity and nutritional, both 
macro and micronutrient and functional properties (González-Jaramillo 
et al., 2022). Despite being an important food source and presenting 
opportunities for sustainable industrial production, its industrial po-
tential is still poorly explored (Soares et al., 2022). Despite its wide-
spread cultivation area, population, and genetic diversity, the species 
are at risk due to deforestation, neglect, and the climate crisis, yet with 
sustainable innovation, it has the potential to advance the sustainable 
development goals (SDGs González-Jaramillo et al., 2022). Fig. 1 depicts 
the images of some important underutilized fruits.

2.4.2. St. hill (Solanaceae) S. lycocarpum
Solanum lycocarpum St. Hill (Solanaceae) is a common fruit native to 

Brazilian Cerrado. Its fruits weigh from 400 g to 900 g and are consumed 
fresh or cooked in some regions (Pascoal et al., 2013). The abundance of 

S. lycocarpum and its high fruit production have made it a desirable 
target for biotechnological exploitation. Of interest is its high content of 
starch (50–80 %), 10–30 % of which is resistant starch, thus making 
S. lycocarpum a hypoglycemic agent (Clerici et al., 2011; Pereira et al., 
2020). It has further shown prebiotic potential by promoting acetate 
production in broth fermentation experiments using Lactobacillus aci-
dophilus and Lactobacillus casei (Pereira et al., 2020). Despite this rich 
potential, St. Hill fruit and its processing wastes still need to be utilized 
for starch extraction, which can be used as a substrate to produce SCFAs. 
The RS potential for different underutilized fruits from three main 
production regions is depicted in Table 1.

Fig. 1. Images of some important underutilized fruits. A: African Breadfruit, B: 
Peach palm, C: Cooking banana, D: jackfruit, E: guava: F: St. Hill. 
The structure of the large intestine shows where microbial fermentation of 
resistant starch occurs.
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3. Fermentation mechanisms of starch form underutilized fruits

3.1. Colonic fermentation

The large intestine is the last part of the gastrointestinal tract (GIT) 
that trails after the small intestine and ends at the anus. It is also called 
the large bowel, where food waste is formed into feces, kept, and 
excreted; it comprises the colon, rectum, and anus. The colon is divided 
into the cecum, the ascending colon (travelling up), the transverse colon 
(travelling across to the left), the descending colon (travelling down), 
and the sigmoid colon (headed back across to the right). The caecum is 
the ‘pocket’ where most of the microbes are confined, while fermenta-
tion occurs in the ascending and transverse colon, with most SCFAs 
found in the ascending colon (Tan et al., 2014; Bazira, 2022).

The human colon is a habitat for over 3.8 × 1013 bacteria, pre-
dominantly composed of Bacteroidetes, Firmicutes, Proteobacteria, and 
Actinobacteria (Gill et al., 2006; Zhou, Ma, & Hu, 2021). This habitat is 
regulated by colonic anaerobic fermentation using available macronu-
trients; the fermentation rate, sites, and metabolite profile depend on the 
energy source of the microbes. Therefore, diet (in the long term or even a 
meal in the short term) influences microbiota diversity (Ratanpaul et al., 
2023; Rose et al., 2010). These bacteria ferment RS and dietary fiber to 
specific SCFAs, mainly acetate, propionate, and butyrate (Yao et al., 
2023). The structure of the large intestine showing the site for microbial 
fermentation is depicted in Fig. 2.

3.1.1. Pathways involved in colonic fermentation
Anaerobic fermentation is an essential function of the large colon 

through which SCFAs are formed (Wang et al., 2019). While most 
(90–95 %) of SCFAs from carbohydrate sources are acetate, propionate, 
and butyrate, there are other smaller proportions of fatty acids, namely; 
valerate, hexanoate, and branched-chain fatty acids (BCFAs), such as 
isobutyrate and isovalerate which come from protein breakdown 
(Mortensen & Clausen, 1996; Wang et al., 2019). However, in situations 
of carbohydrate unavailability, protein fermentation rises, resulting in 
higher concentrations of potentially toxic products, such as ammonium 
(NH4+) ions whose chronic elevations are known to be harmful to gut 
health and are linked to the progress of colonic cancer (Le Leu et al., 
2007; Grant et al., 2019). Up to (90–95 %) of SCFAs are absorbed by 
colonic epithelial cells, and only 5–10 % are excreted in the feces (Wu 
et al., 2018). The fermentation pathway leading to the formation of 
SCFAs in the colon is depicted in Fig. 3.

There are numerous pathways through which bacteria ferment 
sugar; upon phosphorylation, the sugar goes into either the glycolytic 
pathway, Entner–Doudoroff pathway, or the Bifidobacterium pathway, 
where it is transformed into pyruvate and, in some cases, pyruvate and 
acetyl-phosphate (Markowiak-Kopeć & Śliżewska, 2020). The Emb-
den–Meyerhof–Parnassian (glycolytic) pathway is the main colonic 
catabolic pathway in enterobacteria, clostridia, homofermentative lactic 
acid bacteria, and propionibacteria. It produces only pyruvate as a 
partial oxidation product (Rauf et al., 2022). Regarding gluconate 
fermentation, Zymomonas and Escherichia coli use the Entner-Doudoroff 
pathway for alcoholic fermentation (Scotti, 2004). The Bifidobacterium 
pathway is active in bacteria belonging to the genus Bifidobacterium and 
produces two acetate molecules and one lactate. The phosphoketolase 
pathway, which is common in heterofermentative lactic acid bacteria 

Table 1 
Underutilized fruits as potential sources of resistant starch.

Region of 
underutilization

Fruit Resistant Starch (%) Other fermentable components Reference

Africa African Breadfruit(Treculia 
Africana Decne)

8.2 RS2 Crude fiber (0.79 %) Oderinde et al., 2020, Tan et al., 2014,

Cooking Banana(Musa spp) 40–60 RS2 Not mentioned Paramasivam et al., 2021, Yang et al., 2022, 
Olawoye et al., 2022

Guava(Psidium guajava) Not mentioned Crude polysaccharide Li et al., 2022
Asia Breadfruit(Artocarpus altilis) 48 RS2 and 54 Retrograded 

starch (RS3)
Not mentioned Otemuyiwa & Aina, 2021, Mohd Noor et al., 2020

Jack fruit (Artocarpus 
heterophyllus)Lam

30–77 RS2 Seed starch extracted from fruit 
waste

Kittipongpatana & Kittipongpatana, 2015, Zhang 
et al., 2021, Lee et al., 2022

Amazon Peach palm(Bactris gasipaes) 
Kunth

15–20 RS2 6.7 % dietary fiber and pectic 
polysaccharides

Pires et al., 2021, Ferrari Felisberto et al., 2020, 
Soares et al., 2022

St. Hill (Solanaceae) 
S. lycocarpum

10–32 RS2 Not mentioned Pascoal et al., 2013, Clerici et al., 2011

Fig. 2. Microbial fermentation of resistant starch into SCFAs in the colon (Li et al., 2021). 
The fermentation pathway leading to the formation of SCFAs in the colon.
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and occasionally in Bifidobacterium, produces an extra acetyl-phosphate 
molecule (Louis et al., 2007). The chief product of this catabolism is 
SCFAs. Acetic acid is the most plentiful SCFA in the colon, accounting for 
more than half of the total SCFAs in feces (Scotti, 2004). Intestinal mi-
croorganisms produce acetic acid through two main pathways, the most 
commonly used being the fermentation of indigestible carbohydrates 
(Markowiak-Kopeć & Śliżewska, 2020). Some species of Clostridium, 
including Fusobacterium nucleatum and Butyrivibrio fibrisolvens, as well as 
C. acetobutylicum, C. butyricum, C. pasteurianum, and C. perfringens, are 
involved in butyric fermentation. For propionic fermentation, the pri-
mary substrates are glucose and lactate; their progression varies 
depending on the bacteria (Louis et al., 2007).

3.1.2. Effect of different substrates (resistant starch) on fermentability into 
SCFAs

Different RS sources have distinctive structures that affect the overall 
gut microbiota diversity (Deehan et al., 2020), i.e. the different bacterial 
taxa possess adaptations towards the respective substrates mainly due to 
their distinct crystalline and cross-linked structures (Zhou, Fu, et al., 
2021). In addition, different starch modification methods (annealing 
and linearization) further affect its fermentation (Deehan et al., 2020). 
Studies on RS type 4 (RS4) have shown that only a few microbes possess 
the specialized adaptations needed to access and utilize the molecular 
structures of RS4 competitively (Xu et al., 2007). However, the same 
bacterial taxa (B. adolescentis, R. bromii, and E. rectale) are also able to 
selectively colonize resistant starch type 2 (RS2) granules (Leitch et al., 
2007).

Eubacterium rectale and Bacteroides thetaiotaomicron have a restricted 
ability to ferment RS2 and RS3 compared to Bifidobacterium adolescentis 
and Ruminococcus bromii. In co-culture, however, R. bromii demon-
strated exceptional in stimulating RS2 and RS3 fermentation by the 
other three bacterial species, even in a medium that does not permit the 
growth of R. bromii itself, thus proving that R. bromii has an essential role 
in the fermentation of RS3 in the human large intestine (Ze et al., 2012). 
Studies have further revealed that the comparative abundance of Bifi-
dobacterium significantly rises with RS4; RS4 produces the highest levels 
of acetate, while RS2 produces the highest levels of propionate and 
butyrate. Megamonas and Prevotella are positively associated with the 
higher production of propionate and butyrate. Whereas all resistant 
starch types positively promote intestinal health, RS2 showed more 
abundant probiotic functions (Liang et al., 2021). However, more 
studies have shown that RS3 produces twice as much butyrate than RS2. 
In detail, fermentation of RS2 supports higher numbers of Bifidobacte-
rium spp. RS3 samples stimulated the growth of Faecalibacterium spp., 

Eubacterium spp., and Lachnospiraceace better than the RS2 (Arcila & 
Rose, 2015; Plongbunjong et al., 2017; Zhou, Ma, & Hu, 2021).

Other factors that affect colonic fermentation are the particle size of 
the starch substrate and physicochemical characteristics, such as the 
water-holding capacity of the starch, pectin, and starch content (Yao 
et al., 2023). Starches are inherently insoluble and thus have poor 
functional properties (swelling power, solubility, and water absorption 
capacity). They must be modified physically and/or chemically to 
enhance their positive attributes. Water holding capacity has shown 
greater associations with microbial community changes, functional 
profiles, and fermentation outcomes (Yao et al., 2023)Thus, it may be 
concluded that modifying the water-holding capacity of some plant- 
based food components in diets could alter the microbiota and obtain 
desirable fermentation outcomes.

In addition, starch-lipid complexes in the starch substrate signifi-
cantly raise the comparative abundance of some beneficial gut micro-
biota, such as Roseburia and Prevotella (Zhou, Fu, et al., 2021). Gut 
transit time is another aspect that affects colonic fermentation. Whereas 
gut transit time is primarily disregarded in many gut microbiome 
studies, there is growing evidence that whole gut transit time (WGTT), 
segmental transit time (SITT), or Colonic transit time (CTT) influences 
microbial composition (Procházková et al., 2023).

Variations in gut transit time have been linked to changes in fecal pH, 
fecal microbial load, and composition but, most importantly, with die-
t–microbe interactions and microbial metabolism, including shifts from 
saccharolytic to proteolytic fermentation (Procházková et al., 2023). 
Again, RS has been implicated in lowering gut transition time and 
increasing fecal bulk density (Topping & Clifton, 2001).

3.2. In vitro fermentation

Short-chain fatty acids have vast industrial applications in food, 
textile, cosmetics, detergents, and pharmaceutics, to mention but a few, 
thus positioning them as potential products for commercial industrial 
production (Sun et al., 2020). Several in vitro fermentation methods 
have been devised, namely static and dynamic batches, cells and ex-vivo 
models, and animal and human studies, to meet the SCFA's needs for the 
food and pharmaceutical industries (Luo et al., 2020). In vitro fermen-
tation models offer exceptional advantages by closely simulating the 
microbial composition and action in the GIT and are thus commended 
replacements to in vivo studies. In addition to in vitro models being 
comparatively modest, they have no ethical restrictions and can be 
effectively controlled (Wang et al., 2019). In vitro models further allow 
for quantifiable measurements of metabolites formed by microbiota 

Fig. 3. Pathway leading to the formation of SCFA in the colon (Scotti, 2004; Tran et al., 2020). 
In vitro fermentation batches of resistant starch into SCFAs using a colonic simulator and Biomass fermentation bioreactor.
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after fermentation of specific substrates that may significantly impact 
the host's health (Wang et al., 2019). However, these models are limited 
by their failure to involve epithelial or immune cells, limiting their 
applicability to metabolite function studies in the colon (Wang et al., 
2019). Fig. 4 depicts the in vitro fermentation batches of resistant starch 
into SCFAs using a colonic simulator and Biomass fermentation 
bioreactor.

To closely mimic physiological fermentation, conditions in the 
mouth, stomach, and small intestine are reproduced in vitro before 
simulating colonic fermentation through in vitro static batch fermen-
tation models. These fermenters are generally closed anaerobic envi-
ronments in sealed tubes or reactors with single bacterial strains or 
mixed cultures of gut microbiota from animals or humans (Wang et al., 
2019). The cultures are usually from human or pig fecal inoculum. Pigs, 
being monogastric omnivores, tend to have almost similar colonic 
habitation of microbes to humans, dominated by Firmicutes and Bac-
teroidetes (Lancheros et al., 2020). Other than using fecal inoculum, 
microbes have been used to produce SCFAs from bio-based substrates; 
Saccharomyces cerevisiae has been used to ferment SCFAs from yeast 
extract, and Pseudomonas sp. has been used to produce isobutyric acid 
(Lang et al., 2014; Shi et al., 2019; Yu et al., 2016). However, the low 
yield and high feedstock cost limit their practical applications for large- 
scale production (Yu et al., 2016).

In vitro, anaerobic fermentation faces a drawback of methano-
genesis, which causes relatively low yield, making it expensive and 
unsustainable. Thus, more studies on the optimization of substrate 
concentration and inhibition of methanogenesis need to be done in 
addition to the economic feasibility (Simonetti et al., 2021). There is 
evidence that RS, compared to other non-starch polysaccharides, favors 
the production of SCFAs, especially butyrate (Zhou et al., 2013). Just as 
it is for microbial fermentation, starches from various botanical sources, 
when used as substrates in the bioreactor fermenters, are fermented 
differently and give varying yields of SCFAs (Singh et al., 2023). The 
differences in yield could also be attributed to the experimental method 
used, sample preparation, type, amount, and structure of RS, and 
feeding duration (Ferguson & Jones, 2000). Nevertheless, under tightly 
controlled experimental conditions, the starch's nature is vital in 
modulating bacterial fermentation and the amount and type of SCFA 

produced (Zhou et al., 2013). The utilization of different fermentation 
mechanisms and resistant starch sources to yield SCFAs is depicted in 
Table 2.

3.3. In vivo models

In vivo models of RS fermentation aid in understanding the complex 
interactions between RS and the gut microbiota, thus offering insights 
into its potential health benefits. These models involve use of animal 
subjects, such as rodents or pigs, which closely mimic human physiology 
and gastrointestinal processes (Domínguez-Oliva et al., 2023). By 
feeding these animals with diets containing specific types and amounts 
of RS, the effects of RS fermentation on gut microbial composition, 
metabolite production, and host physiology are monitored (Jha et al., 
2019). In addition, parameters, including changes in SCFA concentra-
tions, modulation of gut barrier function, and alterations in host meta-
bolic parameters can be studied (Overby & Ferguson, 2021). Animals 
and human models have been used in different prebiotic studies, as 
shown in Tables 3 and 4. Wister male rats are commonly used as 
compared to females whose sex hormone changes may affect the studies 
(Quirós Cognuck et al., 2020). Crustacean models have recently been 
used (Tran et al., 2020). For human models, people of different ages, 
genders, or carrying various diseases can be selected to conduct the 
experiments, the experiments are generally conducted with a random-
ized, double-blind, placebo-controlled design (Deehan et al., 2020).

3.4. Physiological functions of short chain fatty acids (SCFAs)

Due to their physiological importance, SCFAs are being produced 
industrially using polysaccharide substrates, including resistant starch, 
non-starch polysaccharides, dietary fiber, sugar alcohols, and oligo-
fructose yielding 95 % SCFAs (acetic acid, propionic acid, and butyric 
acid). Industrial production has further established optimal ratios 
(60:20:18, 60:25:10, or 60:25:15), which are effective at causing phys-
iological importance (Tan et al., 2014; Wong et al., 2006). Industrial in 
vitro fermentation of polysaccharides has yielded synthetic SCFAs, 
which have been used in studies to exhibit their physiological impor-
tance further.

Fig. 4. In vitro fermentation of starch into SCFAs (Xiao et al., 2018; Luo et al., 2020). A. Fermentation using a colonic simulator, B. Biomass fermentation using 
a bioreactor.
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SCFAs have been shown to improve the integrity of the intestinal 
tight junction barrier in human intestinal Caco-2 cells, pro-resolving 
mediators due to their already-known role in the immune response 
modulation in COVID-19 patients. They have shown the ability to alle-
viate gut inflammation in murine colitis, have an anti-inflammatory 
effect on natural killer cells, have neuroprotective and neurodegenera-
tive effects in the peripheral nervous system, and alleviate stress- 
induced brain-gut axis alterations (Grütera et al., 2022; Isayama et al., 
2023; Jardou & Lawson, 2021; Lee et al., 2022; van de Wouw et al., 
2018; Zaiatz-Bittencourt et al., 2023). The Physiological benefits of 
SCFAs derived from starches of different fruit sources are depicted in 
Table 3.

Resistant starch which is a vital substrate for the fermentation into 
SCFAs, is known to have physiological importance: glucose tolerance, 
superior cellular sensitivity to insulin, and improved post-meal satiety 
(Bojarczuk et al., 2022). Resistant starch does this by modulating the 
intestinal microbiota, resisting complete digestion into dextrins, which 
are high glycemic index products, decreasing inflammation, and regu-
lating the hypoglycemic-related enzymes (Liu et al., 2022). Dietary 
feeding of RS3 has exhibited effectiveness in the modulation of glucose 
and lipid profile in serum and in suppressing oxidative stress in rats 
under diabetic and high-fat diet conditions (Reddy et al., 2017). Fiber 
(essentially plant polysaccharide molecules) has further exhibited the 
potential to promote healthy fecal bulk during constipation and diarrhea 
(Qi & Tester, 2019). Whereas it is commonly known that dietary fiber 
promotes defecation, on the contrary, it regulates the luminal volume of 
fecal matter in health and disease. This effect is mainly linked to soluble 
fibers that modulate the fecal solid to water volume and water reten-
tion/absorption/loss from the body through the fecal matter (Qi & 
Tester, 2019).

A few recent pediatric research have demonstrated the beneficial 

effect of dietary fibers and/or different fiber blends on constipation, 
abdominal pain, and irritable bowel syndrome (Salvatore et al., 2023). 
Animal studies have shown that RS can effectively decrease adiposity 
and weight gain in obesity-prone and obesity-resistant rats due to 
reduced energy intake, deviations in gut hormones, and extensive bowel 
carbohydrate fermentation (Belobrajdic et al., 2012). In several subjects, 
RS further decreases hyperglycemic, hyperinsulinemic, and hyper-
lipidemic reactions by controlling gluconeogenesis, boosting glycogen-
esis, sustaining glucose and lipid homeostasis, and alleviating pancreatic 
dysfunction (Meenu & Xu, 2019). In addition, prebiotic treatment with 
RS instigated stable alpha and beta-diversity alongside altered fecal 
butyrate and calprotectin concentrations in patients with Parkinson's 
disease, prompting research into the effect of RS on the modification of 
the clinical course of Parkinson's disease (Becker et al., 2022)Resistant 
starch from underutilized fruits has the potential to ferment into SCFAs 
of physiological importance, as Table 3 shows.

Since SCFAs have shown therapeutic potential, especially against 
metabolic disorders, their fermentation ought to be made commercially 
sustainable, which calls for using even the underutilized RS sources as a 
substrate for industrial anaerobic fermentation and packaging of the 
SCFAs for use as drugs and or food supplementations. The industrial 
utilization of underutilized fruit starches aligns with the Sustainable 
Development Goal 2 (SDG2) of the 2030 Agenda, which aims to “end 
hunger, achieve food security and improved nutrition and promote 
sustainable agriculture”. It is important to note that the steady progress 
in achieving this SDG over the last couple of decades was hampered by 
the persistently high numbers of hungry and those suffering from under- 
nutrition and yet the emergence of obesity and diet-related non- 
communicable diseases worldwide, which is a health paradox that re-
quires urgent attention.

Table 2 
Fermentation of starch from various sources along with subsequent yield of SCFAs.

Type of 
fermentation

Inoculum Type and source of starch Microbe involved SCFA content (%) Reference

In vitro Human fecal inocula Resistant starch type5 (RS5) Roseburia and Prevotella Propionate (27), acetate 
(33)

Zhou, Ma, & Hu, 
2021

Saccharides, saccharide esters, 
fructooligosaccharides, starches, modified 
starches and non-starch polysaccharides

Not mentioned Acetate (23), propionate 
(5), butyrate (16)

Ferguson & 
Jones, 2000

Resistant starch type 2 (RS2) and type 3 (RS3) Bifidobacterium spp. RS2 (61:19:20) RS3 
(54:10:36) Acetate: 
propionate: butyrate

Plongbunjong 
et al., 2017

Tomato flour Bifidobacterium and 
Clostridium

Acetate (65), propionate 
(22), and butyrate (13)

Coelho et al., 
2023

Peach palm fruits (Bactris gasipaes) Not mentioned Acetate (16.2), 
propionate (6.2), and 
butyrate (11.2)

Cantu-Jungles 
et al., 2017

Simulated digestion Grey mangrove (Avicennia marina (Forssk.) 
Vierh.

Megasphaera, Mistuokella, 
Prevotella, and Megamonas.

Acetate (80) and 
propionate (20)

Yuan et al., 2022

Simulator of the human 
gut microbial ecosystem

A short-chain fructooligosaccharide Bifidobacteria and Lactobacillus Acetate (57), propionate 
(35), and butyrate (8)

Tiwari et al., 
2021

Pig fecal Resistant starch from native purified starches Not mentioned Acetate (75), propionate 
(15), and butyrate (5)

Giuberti et al., 
2014

Mixed human fecal and 
bacteria

dietary fiber and resistant starch (RS2- and RS3- 
resistant starches)

R. bromii Not mentioned Ze et al., 2012

MRS broth Solanum lycocarpum St. Hill starch Lactobacillus acidophilus (LA5), 
Lactobacillus casei (LC01)

Acetate Pereira et al. 
(2020)

In vivo Placebo Type-IV resistant starches (RS4s) Eubacterium rectale, 
Oscillibacter spp, and 
Ruminococcaceae

Propionate (10) and 
butyrate (12)

Deehan et al., 
2020

Pig porcine large 
intestine

Fruit cell-wall matrix (mango) or a soluble cell- 
wall polymer (pectin),

Faecalibacterium prausnitzii 
(Pectin), and Lactobacillus 
mucosae (Mango)

Propionate (5), acetate 
(60), butyrate (10)

Grant et al., 2019

Wister rat model banana pulp flour L. acidophilus, Bifidobacteria 
spp and E. coli

Not mentioned Mahore & 
Shirolkar, 2018

Mud crab (Scylla 
paramamosain), a 
crustacean model

Galactooligosaccharides (GOS) and resistant 
starch (RS)

GOS (Bacteroidetes), RS 
(Tenericutes)

Acetate (80), Propionate 
(15), and Butyrate (5)

Tran et al., 2020

SCFAs: Short chain fatty acids.
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4. Conclusion and future prospects

Historically, rice, corn, cassava, and potato have been referred to as 
the conventional starch sources. However, with the increased urbani-
zation and climate change, there is growing demand in tropical coun-
tries to utilize their native fruits as alternative starch sources. Due to 
their high RS content and abundance of starch, the profile and potential 
health benefits of starches from the fruits of various plants have been 
suggested, including peach palm (Bactris gasipaes) Kunth, African 
breadfruit (Treculia Africana Decne), breadfruit (Artocarpus altilis), 
jackfruit (Artocarpus heterophyllus) Lam, and green bananas (Musa Spp). 
Both in vitro and in vivo, it has been demonstrated that these starches 
can be used as substrates for microbial fermentation, producing physi-
ologically important SCFAs, including acetate, propionate, and butyrate, 
that may be used therapeutically to treat metabolic diseases. SCFAs offer 
a versatile range of applications across different industries; in the food 
industry, they can be used to develop functional foods, natural pre-
servatives, and flavor enhancers. In pharmaceutics, SCFAs have the 
potential for disease prevention and targeted drug delivery, while in 
agriculture, they contribute to sustainable agronomic practices, animal 
health, and bio-based material production. Further studies on the 
mechanisms through which SCFAs are therapeutically potent need to be 
investigated using modern technologies, including in vivo trials, mo-
lecular docking, clinical trials, and computational techniques. Further-
more, effective agricultural practices must be used to produce these 
natural fruits as a commodity and help the tropical countries that are 
their primary producer.
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Jiménez-Escrig, A., Rincón, M., Pulido, R., & Saura-Calixto, F. (2001). Guava fruit 
(Psidium et al.) as a new source of antioxidant dietary fiber. Journal of Agricultural 
and Food Chemistry, 49(11), 5489–5493. https://doi.org/10.1021/jf010147p

Kaur, L., Dhull, S. B., Kumar, P., & Singh, A. (2020). Banana starch: Properties, 
description, and modified variations - A review. International Journal of Biological 
Macromolecules, 165, 2096–2102. https://doi.org/10.1016/j.ijbiomac.2020.10.058

Kembabazi, S., Martin, M, & Crespo, M. V. (2018). Formulation of a nutrient-rich 
complementary biscuit for children between eight months and fifty nine months. 
International Journal of Food Science and Biotechnology, 3(1), 33. https://doi.org/ 
10.11648/j.ijfsb.20180301.15

Khaneghah, A. M. (2021). New emerging techniques in combination with conventional 
methods in improving the quality, safety, and nutrient values of food products: 
Current state, further challenges, and the future. Quality Assurance & Safety of Crops 
and Food, 13, 12–13. https://doi.org/10.15586/qas.v13iSP1.1009

Khorasaniha, R., Olof, H., Voisin, A., Armstrong, K., Wine, E., Vasanthan, T., & 
Armstrong, H. (2023). Diversity of fibers in common foods: Key to advancing dietary 
research. Food Hydrocolloids, 139(December 2022), Article 108495. https://doi.org/ 
10.1016/j.foodhyd.2023.108495

KILIMO TRUST (2013). Understanding Market Opportunities and Challenges for Trade 
Based Food and Income Security in the EAC (Issue July 2012).

Kraithong, S., Wang, S., Junejo, S. A., Fu, X., Theppawong, A., Zhang, B., & Huang, Q. 
(2022). Type 1 resistant starch: Nutritional properties and industry applications. 
Food Hydrocolloids, 125(November 2021), Article 107369. https://doi.org/10.1016/ 
j.foodhyd.2021.107369

Kittipongpatana, O. S., & Kittipongpatana, N. (2015). Resistant starch contents of native 
and heat-moisture treated jackfruit seed starch. Scientific World Journal, 2015. 
https://doi.org/10.1155/2015/519854

Kringel, D. H., Dias, A. R. G., Zavareze, E. da R., & Gandra, E. A. (2020). Fruit Wastes as 
Promising Sources of Starch: Extraction, Properties, and Applications. Starch/ 
Staerke, 72(3–4). https://doi.org/10.1002/star.201900200

Lancheros, J. P., Espinosa, C. D., & Stein, H. H. (2020). Effects of particle size reduction, 
pelleting, and extrusion on the nutritional value of ingredients and diets fed to pigs: 
A review. Animal Feed Science and Technology, 268, Article 114603. https://doi.org/ 
10.1016/j.anifeedsci.2020.114603

Lang, K., Zierow, J., Buehler, K., & Schmid, A. (2014). Metabolic engineering of 
Pseudomonas sp. strains VLB120 as platform biocatalyst for the production of 
isobutyric acid and other secondary metabolites. Microbial Cell Factories, 13(1). 
https://doi.org/10.1186/1475-2859-13-2

Langkilde, A. M., Champ, M., & Andersson, H. (2002). Effects of high-resistant-starch 
banana flour (RS2) on in vitro fermentation and the small-bowel excretion of energy, 
nutrients, and sterols: An ileostomy study. American Journal of Clinical Nutrition, 75 
(1), 104–111. https://doi.org/10.1093/ajcn/75.1.104

Le Leu, R. K., Brown, I. L., Hu, Y., Morita, T., Esterman, A., & Young, G. P. (2007). Effect 
of dietary resistant starch and protein on colonic fermentation and intestinal 
tumourigenesis in rats. Carcinogenesis, 28(2), 240–245. https://doi.org/10.1093/ 
carcin/bgl245

Lee, J. G., Lee, J., Lee, A., Reum Jo, S. V., Park, C. H., Han, D. S., & Eun, C. S. (2022). 
Impact of short-chain fatty acid supplementation on gut inflammation and 
microbiota composition in a murine colitis model. Journal of Nutritional Biochemistry, 
101, Article 108926. https://doi.org/10.1016/j.jnutbio.2021.108926

Lehmann, U., Jacobasch, G., & Schmiedl, D. (2002). Characterization of resistant starch 
type III from banana (Musa acuminata). Journal of Agricultural and Food Chemistry, 
50(18), 5236–5240. https://doi.org/10.1021/jf0203390

Leitch, E. C. M. W., Walker, A. W., Duncan, S. H., Holtrop, G., & Flint, H. J. (2007). 
Selective colonization of insoluble substrates by human faecal bacteria. 
Environmental Microbiology, 9(3), 667–679. https://doi.org/10.1111/j.1462- 
2920.2006.01186.x

Leonel, M., Leonel, S., dos Santos, T. P. R., Souza, J. M. A., Martins, R. C., & da 
Silva, M. S. C. (2021). Agronomic yield and starch properties of banana cultivars. 
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