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A B S T R A C T

As a promising platform on the Internet of Things (IoT), the smart Internet of Vehicle (IoV) has emerged with the
advent of the key connectivity to Industry 4.0, i.e. Fifth-Generation Mobile Communication (5G). However,
problems with adequate battery life, powerful computing, and energy economy have hampered the development
of this technology in light of the enormous increase in data traffic in 5G and 6G mobile communication networks.
To address these limitations, this study proposes an Internet of Vehicles (IoV) system empowered by Edge
Computing (EC), wherein intelligent vehicle nodes interact with an anchor node integrated with an EC server for
data upload and download. Rather than solely focusing on enhancing the central cloud infrastructure, the
integration of EC and IoT enables real-time and efficient services, thereby bolstering the storage and processing
capabilities of underlying networks. By employing an offloading strategy within the Edge Computing-based
Internet of Vehicles (EC-IoV) framework, users can allocate their workloads to suitable EC servers, leading to
improved resource management and computational capabilities. However, challenges persist in evaluating the
impact of uncertain user-EC server connectivity on offloading decision-making and mitigating potential declines
in offloading efficiency.

1. Introduction

With the continuous technological advancements in our modern
cities over the past decades, infrastructure management has encoun-
tered growing challenges, necessitating the adoption of novel and effi-
cient methods for monitoring and maintaining of transportation
infrastructure (e.g. airports, bridges, tunnels, roadways, and ports [1,2].
In this direction, the main aim of Intelligent Transportation Systems
(ITS) is to enhance transportation mobility and safety, as well as
improve the integration of advanced technologies into the trans-
portation infrastructure [3]. Vehicular Ad Hoc Network (VANET) [4]
plays a significant role as a facilitator in ITS. Being a special kind of
Mobile Ad Hoc Networks (MANETs), VANETs are comprised of two
basic elements: vehicles and Road-Side Units (RSUs) [5,6]. Vehicles are
equipped with communication devices, which enables short-range
wireless transportation. RSUs are distributed along the road to be

connected to the backbone network for the purpose of facilitating
network access. Data communication in VANETs can be realized in two
models: Vehicle-to-Vehicle (V2V) and Vehicle-to-RSU (V2R) [7,8].
Using the two communication models, vehicular networks support an
array of applications, which include three main categories: 1) road
safety applications (e.g., lowering the risk of accidents); 2) traffic effi-
ciency applications (e.g., reducing travel time and alleviating traffic
congestion; and 3) value-added applications (e.g., providing infotain-
ment, path planning and internet access).

The rapid evolution of vehicular networks is poised to facilitate the
widespread adoption of smart vehicles, enabling a diverse array of ap-
plications [9,10]. However, the implementation of these applications
requires substantial resources for data storage and processing. Due to the
limitations in computation and communication capacities of vehicles,
meeting the increasing resource demands, especially for applications
with intensive computation and stringent delay requirements, poses a

* Corresponding author.
E-mail addresses: marieh.talebkhah@yahoo.com, marieh.t2018@gmail.com (M. Talebkhah), aduwati@upm.edu.my (A. Sali).

Contents lists available at ScienceDirect

Engineering Science and Technology,
an International Journal

journal homepage: www.elsevier.com/locate/jestch

https://doi.org/10.1016/j.jestch.2024.101699
Received 12 October 2023; Received in revised form 8 April 2024; Accepted 21 April 2024

mailto:marieh.talebkhah@yahoo.com
mailto:marieh.t2018@gmail.com
mailto:aduwati@upm.edu.my
www.sciencedirect.com/science/journal/22150986
https://www.elsevier.com/locate/jestch
https://doi.org/10.1016/j.jestch.2024.101699
https://doi.org/10.1016/j.jestch.2024.101699
https://doi.org/10.1016/j.jestch.2024.101699
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jestch.2024.101699&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Engineering Science and Technology, an International Journal 54 (2024) 101699

2

challenge. To address these issues, Mobile Cloud Computing (MCC) has
emerged as a widely recognized and promising solution [11]. By inte-
grating computation and communication technologies, MCC allows the
execution of user application services on remote cloud infrastructure.
Consequently, MCC offers users several advantages, including: 1)
reduced energy consumption; 2) the ability to support sophisticated
services; and 3) access to substantial storage capacity. Various survey
articles have explored MCC from different perspectives [12–15]. In [13],
the definition, architecture, and application of MCC were introduced,
along with an overview of existing challenges and corresponding ap-
proaches. The work presented in [16] delved into applications, chal-
lenges, and opportunities associated with MCC. Dedicated efforts have
been directed towards the integration of MCC with vehicular networks
to enhance road safety and elevate travel comfort [12]. In [17], the
authors introduced a cloud-supported gateway model designed to
enable seamless internet access in ITS, ultimately enhancing the overall
user experience. The proposed model contributes to improved connec-
tivity. Additionally, a VANET-CC model was introduced in [18],

leveraging Cloud Computing (CC) resources to enhance the Quality of
Service (QoS). The cloud system presented in [19] facilitated vehicles in
locating their requested resources through mobile services.

Despite the benefits of MCC, the considerable distance between the
cloud and users leads to high transmission latency. Additionally, the
exponential growth of mobile data poses a substantial burden on the
load of backhaul networks. Sending all data to the cloud for processing
results in significant bandwidth consumption and competition. To
address these challenges, Mobile Edge Computing (MEC), also inter-
changeably referred to as Fog Computing (FC), is envisioned as a
promising paradigm [20–23]. In MEC, cloud services are brought to the
network edge, meaning that computation and storage resources are
relocated in proximity to users. This approach significantly reduces la-
tency and contributes to substantial energy savings. Several survey pa-
pers in the MEC literature provide comprehensive overviews [24,25].
The research presented in [25] offers a comprehensive overview of
current developments in MEC, covering advantages, architectures, and
applications. Additionally, the paper delves into the issues surrounding
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security and privacy, providing insights into existing solutions. In [26],
the authors introduced work on computing and communication in MEC,
with a specific focus on joint radio and computational resource alloca-
tion. Enabling technologies in MEC, including Virtual Machine (VM),
Software Defined Networking (SDN), and Network Function Virtuali-
zation (NFV), are thoroughly discussed in [27].

Regarding the rapid expansion of IoT, the storage and processing
capabilities of these IoT devices must be inevitably integrated to offer
real-time and prompt services [28,29] recent years have witnessed the
emergence of massive Industry 4.0 data computing and the demand for
advanced services that provide an enhanced user experience like auto-
matic navigation, unmanned driving, virtual reality, augmented reality,
ultrahigh definition videos, and online games (see Fig. 1). For example,
Fig. 1 illustrates the widespread utilization of Unmanned Aerial Vehicles
(UAVs) and Internet of Drone (IoD) resources in delivering various
anticipated services and applications [30,31]. By incorporating fog
servers into UAVs, it leverages the advantages of both FC and drone
technologies to offer unprecedented benefits such as coverage expan-
sion, low latency, and flexible processing with the trade-off of increased
energy usage [32]. These fog-enabled drones can be deployed rapidly to
specific locations, fly directly to where data is generated, and provide
on-demand processing capabilities to nearby IoT devices. As a result,
they empower IoT networks with enhanced real-time data analytics,
low-latency responses, and improved data privacy, all while ensuring a
higher degree of fault tolerance [33,34].

Issues such as communication latency and expensive operations have
seriously challenged the use of CC-based remote computing task loading
mode. EC is often integrated with IoT. EC is capable of supplying the
services and CC demands of wireless users [21]. As a consequence, it can
provide the underlying networks with real-time and low-latency services
[35]. EC requires less number of data centers in comparison with
traditional cloud architectures, making it a promising candidate to meet
the advanced services’ demands for responsiveness, latency, and pri-
vacy. The current trend is to develop the EC by integrating wireless
technology and mobile computing [36–38]. However, there is a growing
need for more practical approaches to reduce the time it takes for mobile
terminals and networks to respond and minimize the amount of energy
they consume, in order to achieve better resource management.

IoV requires a collaboration between the vehicles and infrastructure
for the delivery of value-added ITS services like infotainment services,
traffic management, accident reduction, and route recommendation
[29]. The IoV establishes a connection between the ITS devices and CC
servers, i.e. The place for processing and analytics [21]. Nonetheless, the
offload of a great deal of data from geologically distributed smart de-
vices and vehicles may lead to network overhead and bottlenecks,
requiring excessive network resources. Furthermore, the application of
the remote cloud servers for the analysis of the ITS data streams leads to
long processing and response times, which may not be tolerated by the
latency-sensitive ITS applications. IoV is a novel paradigm for enhancing
vehicle-user information interactions to improve urban traffic [36]. In
an IoV environment, the vehicles are connected to various transmitters
and receivers can transport required signals to connect vehicles to
remote infrastructures or other vehicles [37]. The discrepancy between
the capacity limitations and the communication service needs of the
vehicles is a serious problem considering the fast increment of road
traffic. The onboard network, on the other hand, is challenged by the
requirement of ubiquitous connection and high-quality service for a
large number of vehicles. The aforementioned issues can be addressed
through the utilization of EC technology, which leverages the compu-
tational capabilities at the edge of vehicle wireless access networks
[38,39]. IoV is an application of the IoT technology in the area of
intelligent transportation capable of intelligent management of the
traffic and offering more mature applications in terms of path planning,
navigation, online interactive games, autonomous driving, augmented
reality, intelligent-assisted driving, and other media applications for
passengers [40,41]. The lightweight edge server on the roadside unit,

however, does not suffice to handle various computational tasks with
diverse granularity and QoS requirements. Therefore, providing an
efficient operation for complex services specifically, supplying depend-
able connectivity and top-notch network services for numerous vehicles
could be a serious challenge.

The paradigm of CC can offers computing resources on a “pay-as-
you-go” basis [29] which can be easily accessed through the Internet
from any place at any time [21]. CC has been recently employed in data
storage, processing, and analysis for the IoV. At the same time, some
applications related to vehicular networking were deployed to the cloud
to supply relevant services to customers. The cloud load is increasing
with the exponential rise in the number of vehicles and mobile termi-
nals. Furthermore, the relatively long distance between the CC centers
and end users can result in great processing latency, posing serious
challenges to the latency-sensitive applications in the IoV, like an
ambulance requiring its surrounding traffic data in real time for timely
arrival at the rescue site, or a moving vehicle in need for instantaneous
information to warn collision.

To transmit tasks and handle EC resources in IoV, EC can act as a core
access point [42]. The centralized cloud models have limitations when it
comes to the average task latency and resource cost, primarily due to the
inherent delay caused by the distance between the edge IoT device and
data center [43,44]. Regarding the exponential growth of edge devices,
applications requiring end-to-end communication may face major dif-
ficulties due to the high latency of these devices.

Vehicular Edge Computing (VEC) is an innovative networking
paradigm that aims to enhance the computational capabilities of
vehicular networks. The increasing demand for modern vehicular ap-
plications has presented a challenge in meeting the communication and
computational requirements. With VEC, service providers can host ser-
vices near smart vehicles, resulting in reduced latency and improved
QoS. Unlike centralized services like Vehicular Cloud Computing (VCC),
VEC is designed for applications with distributed deployments. By
extending the benefits of centralized cloud services to the network edge,
VEC offers several advantages [40,41,45]. EC more efficiently improves
the computational capacity in vehicular environments [46]. In EC, data
processing and analysis are performed near the end devices, with the
edge serving as an intermediary between the cloud and vehicles. Edge
nodes, which are servers with ample computational and storage capac-
ities, are deployed near vehicular networks. This proximity enables EC
to offer improved QoS by providing computing and storage services in
close proximity to the users. Moreover, to support modern applications
within vehicular networks, a robust communication and computational
mechanism is necessary [42].

In the IoV, a plethora of vehicle-network services has emerged,
including traffic jam notification and danger alarming services [47].
Additionally, a growing number of vehicles are now equipped with
multimedia devices to offer entertainment services to passengers within
the vehicles [48]. These services result in significant data flow, and the
generated data is intended for sharing among users [49,50] Conse-
quently, these services need to be meticulously designed in alignment
with the tasks’ requirements and the capabilities of Edge Computing
Devices (ECDs). Therefore, effective resource management is crucial for
efficiently offloading computing tasks in the VEC system.

The sensors in vehicles gather data, which is then processed and
stored by the edge servers. These services enable low-latency commu-
nication with increased context awareness. EC offers numerous advan-
tages for low-latency applications, including safety applications such as
driving safety and context awareness, as well as non-safety applications
like video streaming, Augmented Reality (AR), and infotainment. VCC is
compared with VEC in Table. 1.

1.1. Motivation and contribution

One of the primary challenges in VEC is the Computing Offloading
(ComOf) process, which involves vehicles selecting the optimal edge
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nodes in real-time while considering criteria such as latency, cost, and
Energy Efficiency (EE). Furthermore, it is important for service pro-
viders to generate revenue through such programs. Another critical issue
is the caching of content at specific edge nodes and delivering it directly
to the relevant vehicles. Uncertainty still exists regarding the methods
for data computation offloading, which are closely tied to the optimi-
zation problem of VEC resource management. According to the litera-
ture, ComOf focuses mostly on optimizing scheduling and task
allocation processes, which is the main focus of our study. ComOf allows
for the execution of computationally demanding and time-sensitive ac-
tivities in an edge server while also reducing processing delay and en-
ergy usage. The foundation of VEC is ComOf. However, because of the
high mobility and changing network topology of vehicles in IoV envi-
ronment, computation offloading in VEC is fraught with difficulty.
Furthermore, each vehicular terminal in the VEC, in contrast to other
commonly used mobile terminals, can serve as both a task vehicle for
task execution and a task vehicle for service requests simultaneously.

The studies described in Table. 2, which provides a summary of the
existing research in the field, highlight that while many studies address
task offloading in vehicle contexts, there is a noticeable gap in discussing
task offloading in vehicular environments from the viewpoint of the
vehicular communication network.

In general, existing surveys have covered various topics such as MEC
[39], opportunistic offloading [40], mobile data offloading methods
[41,45], particularly in cellular networks [46], and game theory in
multi-access edge computing [42]. However, only a few studies have
specifically focused on VEC [43].

As a result, ComOf in VEC is a crucial area for research. We examine
and provide a summary for computation offloading on VEC after doing a
thorough investigation and research on VEC. The contribution of our
survey in this area is extensive. Our survey offers a concise yet
comprehensive overview of the VEC concept. We delve into its in-
tricacies, exploring its architecture, layers, communication technolo-
gies, and diverse range of vehicular applications. By doing so, we
establish a solid foundation for understanding the critical aspects that
shape computational offloading challenges in VEC.

In conclusion, our survey not only identifies the existing research
gaps and unsolved challenges within the VEC domain but also sheds
light on potential future research directions. By highlighting these op-
portunities, we aim to inspire both novice and experienced researchers
to delve deeper into this exciting field. We firmly believe that this survey
will serve as a valuable resource, providing a solid foundation for further
advancements and significant contributions in the realm of VEC.

Our survey goes beyond a mere literature review and provides novel

Table 1
Comparison between VEC and VCC.

Features Vehicle Edge Computing
(VEC)

Vehicle Cloud Computing
(VCC)

Location At user’s proximity Remote Location
Latency Low High
Mobile Support High Limited
Decision Making Local Remote
Communication Real Time Constraints in Bandwidth
Security High Limited
Reliability High High
Architecture

Scability
High distributed Limited centralized

Storage Capacity Limited Highly Scalable
Context Awareness Yes No
Power Consumption Limited High
Platform Mostly ASIC Mostly CPU, GPU, FPGA
Device

Heterogeneity
Highly Supported Limited Supported

Computing
Capability

Medium High

Cost of
Development

Low High

Table 2
Overview of related works.

Reference Task Offloading Main Contribution
V2V V2I V2X

[40] × × × Exploring voluntary opportunity offloading
Techniques considering traffic and
computational offloading protocols. However,
this survey primarily relied on mobile device-
based data and centralized task offloading.

[51] × × × In this paper, the authors initially highlighted
a Software-Defined Vehicular Edge Computing
(SD-VEC) architecture. In this architecture, a
controller plays a dual role by guiding the
strategy for task offloading from vehicles and
also determining the strategy for allocating
edge cloud resources. To derive the optimal
strategies, they formulated a problem related
to the selection of edge clouds and the
allocation of resources. The objective of this
problem is to maximize the likelihood that a
task will be successfully completed within a
predefined time limit.

[52] × × × The researchers designed a dynamic approach
to offload specific components or modules of
vehicular applications. They created heuristic
mechanisms for the placement and scheduling
of these modules, considering the on-board
unit versus the cloud. Notably, their design’s
key feature is its capability to flexibly offload
computations to the cloud, making dynamic
decisions based on varying network
conditions.

[53] × × × This paper presented a systematic literature
review of ComOf schemes and methods within
the domain of VEC. It categorized the existing
research on ComOf into distinct categories.

[54] × × × In this paper, a literature review is developed
to explore the concept of computation
offloading in EC. Various facets of
computation offloading, such as energy
consumption minimization, QoS, and Quality
of Experience (QoE), are thoroughly
examined.

[55] × × × This survey is examined to comprehensively
review and structure the existing body of
literature on computation offloading within
vehicular environments. Furthermore, it aims
to clarify certain concepts, introduce a
taxonomy highlighting critical aspects, and
categorize the majority of works in this field
based on their respective categories.

[56] × × × In this paper, Authors presented an overview
of VEC, covering its introduction, architecture,
key enablers, advantages, challenges, and
various appealing application scenarios.
Subsequently, they detailed several common
research areas where VEC finds application.

[9] × × × In this manuscript, the authors delineated
various facets of VEN, with a specific focus on
VEC. This included an examination of its
structural elements, hierarchical layers,
communication mechanisms, as well as its
roles in ComOf and content caching and
delivery (CachDel) scenarios. Additionally,
they conducted an appraisal of the current
methodologies employed to address the
challenges in ComOf and CachDel within the
framework of VEC architecture. In conclusion,
the authors underscored noteworthy
obstacles, unresolved matters, and potential
areas for future research in the domains of
ComOf and CachDel within the context of
VEC.

[57] × × × This study concentrated on the offloading of
computational tasks within VEC. It surveyed
the primary offloading schemes and methods
within the VEC domain and categorized the

(continued on next page)
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contributions in the form of brand-new summary tables and valuable
insights gained from studying the task offloading domain. These sum-
mary tables serve as comprehensive references, presenting a consoli-
dated view of the key findings and approaches in task offloading
research. By distilling the essence of existing studies, our survey offers a
valuable resource for researchers and practitioners seeking a deeper
understanding of task offloading in various domains.

In conclusion, we shed light on the remaining research challenges
and identify promising future research directions in this dynamic and
evolving field. By pinpointing the unresolved issues, we aim to inspire
further investigations and stimulate the curiosity of researchers. We
believe that addressing these open research problems will not only
enhance our understanding of the subject but also pave the way for
innovative solutions and advancements in the field of task offloading.

We are confident that our survey will provide valuable insights and
benefits to researchers across all levels of expertise, from newcomers to
seasoned professionals. By presenting a comprehensive overview of the
VEC landscape and highlighting key research findings and trends, our
survey serves as a valuable resource for researchers to deepen their
understanding of the field. Furthermore, we believe that our survey can
serve as a catalyst for inspiring further research and innovation, acting
as a springboard for researchers to make significant contributions to the
advancement of VEC and its related domains.

The paper is structured as follows. In Section 2, we provide an
explanation of the related works. In Section 3, we delve into the VEC
architecture, examining its key components and the overall framework.
Section 4 explores the concept of smart vehicles and its essential ele-
ments, along with an in-depth analysis of the smart vehicle network and
its diverse range of services and applications. We explain the concept of
offloading in Section 5. In section 6, we examine the realm of vehicular
task offloading, exploring its diverse categories: V2V, V2I and V2X
schemes. We shed light on the intricacies of each approach, elucidating
their significance and contributions within the vehicular computing
landscape. Section 7 encompasses the discussion of task offloading in
Dynamic Edge-IoV networks. In Section 8, we categorize the technical
issues related to VEC, discussing topics such as computation offloading,
resource management, and network connectivity. Section 9 not only
highlights the challenges and potential roadblocks associated with VEC
implementation, but also sheds light on the open gaps found in the
selected literature, along with a discussion of future research work.
Finally, in Section 10, we provide concluding remarks summarizing the
key findings and insights from the paper. The overall organization of the
paper is visualized in Fig. 2, which illustrates the flow and structure of
the paper. Please take note that Table. 3 contains all the acronyms and
abbreviations used throughout the study.

2. Related works

Recent years have witnessed the continuous evolution of Information
and Communication Technologies (ICT), which has improved the pro-
cessing and computation capacity of diverse applications. Concerning
the IoV, advancements such as AR and self-driving applications [36] led
to the expansion of vehicle communication mechanisms due to higher
connection and intelligence [35]. Such advancements require remark-
able computational and massive data generation [37]. Delay-sensitive
applications (emergency help and natural disaster rescue) have to be
processed in specified time constraints [38]. They also require sufficient
vehicular computational and communication resources. MCC has been
used by researchers to offload the necessary work using high-capacity
servers on a distant cloud [44]. Resource limitations can be solved
through task offloading, which allows a vehicle with limited resources to
complete its compute duties in a vehicle with abundant resources nearby
[61]. The vast transmission distance between the source cars and the
cloud servers, despite benefits like decreased energy usage and greater
storage capacity, may cause network congestion and latency [62]. As a
newly emerged research area, MEC is aimed to decline the transmission
distance and computational load of the cloud. Upon integration with
conventional vehicular networks, MEC can lead to VEC to bring the
computational resources of a cloud closer to the end-user (vehicle). VEC
has a major contribution to supplying edge services at the shorter delay
and wider bandwidth [63]. RSUs, which are edge servers placed closer
to the cars for real-time data collecting, processing, and storage, can be
thought of in the context of VEC as suppliers of communication,
compute, and storage. If the computational resources of the source
vehicle do not suffice, the vehicle can offload the tasks to RSUs [64].

VEC has become the major trend and numerous studies have been
devoted to resolving its challenges [65,66]. In addition, the VEC has
offered a versatile paradigm for decreasing the computational burden of
vehicles and offering real-time responses to the task requests [67].

Wang et al. [68] proposed a cooperative data processing approach
using a multilayer model consisting of user, access, and cloud layers. In
this model, computing and transmission resources were allocated to
each device, and a convex optimization problem was formulated to
maximize the effectiveness of resource allocation strategies. Their work
aimed to enhance the overall data processing efficiency by leveraging
cooperation among different layers of the network architecture.

A virtualization technology was adopted by Zhang et al. [69] for
online allocation of resources in a dense cloud wireless access network.
To strike a balance between minimizing delay and reducing mean

Table 2 (continued )

Reference Task Offloading Main Contribution
V2V V2I V2X

current offloading of computational tasks into
distinct categories.

[58] × × × In this paper, the authors classified state-of-
the-art computation resource allocation
schemes using three key criteria: (1) Their
optimization objectives, (2) The mathematical
models/algorithms employed, and (3) The
primary technologies applied. Additionally,
they identified and discussed ongoing
challenges related to computation resource
allocation in VEC and proposed potential
avenues for future research.

[59] × × × They offered an extensive overview of all
computing paradigms associated with
vehicular networks. Additionally, they
presented the architectural specifics,
commonalities, distinctions, and crucial
attributes of each computing paradigm. The
study concluded by highlighting outstanding
research challenges within vehicular networks
and suggesting potential directions for future
research.

[60] × × × This study introduced an innovative federal
classification distinguishing between cloud,
edge, and fog computing. It also outlined a
research roadmap for offloading in diverse
federated scenarios. The authors conducted a
comprehensive literature survey to explore the
various optimization methods employed in
addressing the offloading challenge,
comparing their notable characteristics.
Additionally, they presented a survey on
offloading within federated systems,
specifically focusing on machine learning
approaches, and shared valuable insights
gained from these surveys.

Our paper ✓ ✓ ✓ We begin by establishing a foundation in
vehicular communication technologies,
communication modes, and various
computing architectures. We
comprehensively examined the
architecture of VEC, exploring it across
three distinct layers (Cloud, Edge, and
Smart Vehicle layers). Finally, we address
some open issues and outline future work
in our paper.
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energy consumption, they employed the Lyapunov optimization theory.
Additionally, Chen et al. [70] devised a search tree algorithm utilizing
the branch and bound method to address the challenge of minimizing
delay in computational offloading and resource allocation.

Zhao et al. [71] proposed a cloud-edge cooperation model to develop
an optimal decision-making scheme for routing requests to either the
edge server or the cloud for sequential processing. In this model, mobile
device requests are transmitted through the access point in chronolog-
ical order. For maximizing resource use, Ning et al. [72] combined
several edge servers to offload computation and allocate cache. The
utilization of EC significantly reduces the distance between on-board
tasks and computing resources, enabling real-time services with mini-
mal latency in the IoV cloud-EC compared to centralized cloud in-
frastructures. Kumar et al. [73] proposed an efficient and energy-saving
resource scheduling strategy for IoV based on MEC. This strategy focuses
on controlling energy consumption through edge servers, making it
well-suited for large-scale and widely distributed vehicle networks.

Yu et al. [74] introduced an offloading approach based on MEC for
IoV, aiming to identify the most suitable MEC server for task manage-
ment. Their approach leveraged both computation and vehicle mobility
factors in the offloading decision-making process. In the domain of
multi-user fog computing, Zhang et al. [75] proposed an energy-saving
ComOf strategy and developed a distributed algorithm using the alter-
nating direction multiplier technique. Ma et al. [76] tackled the chal-
lenge of multi-user computational offloading in a multi-channel wireless

interference environment by employing game theory techniques. They
presented a computational offloading technique that optimizes resource
allocation. Xiong and coworkers [77] proposed an optimization
approach to enhance the distribution of computational and network
resources, aiming to reduce transmission latency and computation time.
distribution of computational and network resources to reduce trans-
mission latency and computation time. Dai et al. [78] employed a real-
time traffic management approach for vehicle offloading, leveraging fog
computation to minimize the mean reaction time of vehicle computing
tasks. They utilized queuing theory to develop a mathematical model for
vehicle-based fog nodes, providing an initial solution to the offloading
optimization problem. Zhou and colleagues [28] investigated a novel
two-stage strategy for resource sharing and task offloading, integrating
contract theory and computational intelligence. In the initial stage, they
introduced an effective incentive mechanism, employing contract the-
ory to encourage servers to share their remaining computational re-
sources. The subsequent stage involved an analysis of a decentralized
task offloading algorithm that leverages the online learning capabilities
of a multi-armed bandit. Specifically, they addressed a distance-aware,
occurrence-aware, and task-property-aware volatile upper confidence
bound algorithm designed to minimize the prolonged delay in task off-
loading. To evaluate the effectiveness of the proposed algorithm,
comprehensive simulations were conducted, confirming its
performance.

Game theory has emerged as a powerful tool for analyzing and

Fig. 2. Organization of the paper.

M. Talebkhah et al.



Engineering Science and Technology, an International Journal 54 (2024) 101699

7

optimizing resource allocation in IoT-Fog environments. In this context,
IoT devices and fog nodes act as rational decision-makers aiming to
maximize their own utility, often in the form of throughput, energy ef-
ficiency, or latency minimization. Game-theoretic models facilitate the
understanding of interactions among these entities, considering factors

such as competition for resources, cooperation incentives, and potential
conflicts of interest [79]. Various game-theoretic frameworks, such as
non-cooperative games, cooperative games, and evolutionary game
theory, have been applied to address different aspects of resource allo-
cation in IoT-Fog systems. These models enable the characterization of
equilibrium solutions, such as Nash equilibrium or Pareto optimality,
which provide insights into the stability and efficiency of resource
allocation strategies in dynamic and heterogeneous environments [80].
Based on [80], the authors reviewed a computational framework that
takes into account energy consumption and transmission latency as key
factors in determining task offloading for IoT applications. They
approached the problem by framing it as a game, wherein IoT devices
aim to optimize task distribution to minimize energy consumption and
latency collectively. They further devised a decentralized algorithm for
task distribution, allowing devices to adapt their strategies based on the
actions of others. Additionally, they demonstrated that their algorithm
converges to a Nash equilibrium, ensuring stable outcomes. Lastly, the
authors conducted thorough evaluations, comparing their computa-
tional model and findings with those from previous studies.

Liwang et al. [81] presented a 5G cloud-enabled scenario in VCC,
where a vehicular terminal functions as either a service provider with
available computation resources or a requestor with a computation-
intensive task. This task can be executed locally or offloaded to nearby
providers through opportunistic V2V communications. The study
addressed three key issues: (i) determining the appropriate offloading
rate for requestors; (ii) selecting the most suitable computation service
provider; and (iii) identifying the optimal pricing strategy for each
service provider. To address these challenges, they proposed a two-
player Stackelberg-game-based opportunistic computation offloading
scheme. This approach considers situations with both complete and
incomplete information, focusing on factors such as task completion
duration and service price. In the case of complete information, they
simplified it into a common resource assignment problem with mathe-
matical solutions. For incomplete information, they derived Stackelberg
equilibria of the offloading game and discussed the corresponding ex-
istence conditions in detail. The effectiveness of the proposed methods is
demonstrated through Monte-Carlo simulations, revealing a significant
reduction in task completion duration. Simultaneously, the approaches
ensure the profitability of service providers, leading to mutually satis-
factory computation offloading decisions.

Swain and colleagues [82] reported an effective task offloading
strategy named METO, which relies on matching theory principles to
minimize total system energy consumption and the occurrence of task
deadline violations in an IoT-Fog interconnected network. To address
the multi-criteria nature of resource allocation, they established the
weights of various criteria through the CRITIC method, considering
inter-criteria correlations. Subsequently, to prioritize alternatives, they
employed the TOPSIS approach. Utilizing this prioritization, they
formulated the offloading problem as a one-to-many matching game and
employed the Deferred Acceptance Algorithm (DAA) to achieve a stable
assignment. They conducted simulations under two distinct scenarios
involving the offloading of both homogeneous and heterogeneous tasks.
Through extensive simulations in these environments, their proposed
METO algorithm demonstrates superior performance compared to
existing schemes, exhibiting enhancements in energy consumption,
completion time, and execution time. Additionally, METO exhibits a
reduced number of task deadline violations compared to the baseline
methods used for comparison.

Chiti et al. [83] proposed an efficient strategy for offloading
computationally intensive tasks from end-user devices to Fog Nodes. The
computation offload problem was formulated as a matching game with
externalities, with the aim of minimizing the worst-case service time by
taking into account both computational and communications costs. In
particular, this paper proposed a strategy based on the deferred accep-
tance algorithm to achieve efficient allocation in a distributed mode and
ensure stability over the matching outcome. The performance of the

Table 3
Abbreviations and acronyms.

Abbreviations and acronym Description

5G FIFTH-GENERATION WIRELESS COMMUNICATION

6G SIXTH-GENERATION WIRELESS COMMUNICATION

AI ARTIFICIAL INTELLIGENCE

AR AUGMENTED REALITY

APs ACCESS POINTS

BS BASE STATION

BD BIG DATA

CC CLOUD COMPUTING

ComOf COMPUTING OFFLOADING

CIoTs CONSUMER INTERNET OF THINGS

CSOS CONTEXT-SENSITIVE OFFLOADING SYSTEM

CAS COLLISION AVOIDANCE SYSTEM

CaaS COMPUTATION AS A SERVICE

CRL CERTIFICATE REVOCATION LIST

CAS COLLISION AVOIDANCE SYSTEM

DDPG DEEP DETERMINISTIC POLICY GRADIENTS

DSRC DEDICATED SHORT-RANGE COMMUNICATIONS

DRL DEEP REINFORCEMENT LEARNING

EC EDGE COMPUTING

EE ENERGY EFFICIENCY

ECDS EDGE COMPUTING DEVICES

EC-IoV EDGE COMPUTING-BASED INTERNET OF VEHICLE

FC FOG COMPUTING

GPS GLOBAL POSITIONING SYSTEM

IoT INTERNET OF THINGS

IoD INTERNET OF DRONE

IoV INTERNET OF VEHICLES

IGR IMPROVED GEOGRAPHIC ROUTING

IaaS INFOTAINMENT AS A SERVICE

ITS INTELLIGENT TRANSPORTATION SYSTEM

ICT INFORMATION AND COMMUNICATION TECHNOLOGIES

KNN K-NEAREST NEIGHBORS

LTE LONG-TERM EVOLUTION

LIDAR LIGHT DETECTION AND RANGING

MAEC MULTI ACCESS EDGE COMPUTING

MANETs MOBILE AD HOC NETWORKS

MCC MOBILE CLOUD COMPUTING

MEC MOBILE EDGE COMPUTING

MBS MICRO BASE STATION

MECO MOBILE-EDGE COMPUTATION OFFLOADING

NaaS NETWORK AS A SERVICE

NFV NETWORK FUNCTION VIRTUALIZATION

NVMe NONVOLATILE MEMORY

OBCS ON-BOARD COMPUTERS

OUE ONBOARD USER EQUIPMENT

PSO PARTICLE SWARM OPTIMIZATION

QoS QUALITY OF SERVICE

QoE QUALITY OF EXPERIENCE

RSUs ROADSIDE UNITS

RADAR RADIO DETECTION AND RANGING

SaaS STORAGE AS A SERVICE

SDN SOFTWARE DEFINED NETWORKING

SLAs SERVICES LEVEL AGREEMENTS

UES USER EQUIPMENT

UAVs UNMANNED AERIAL VEHICLES

VANET VEHICULAR AD HOC NETWORK

VCC VEHICULAR CLOUD COMPUTING

VEC VEHICULAR EDGE COMPUTING

V2V VEHICLES-TO-VEHICLES

V2I VEHICLE- TO- INFRASTRUCTURE

V2S VEHICLE − TO − SENSOR

V2P VEHICLE –TO- PEDESTRIAN

V2R VEHICLE − TO − ROAD SIDE UNITS

V2N VEHICLE − TO − NETWORK

V2E VEHICLE- TO- EVERYTHING

VEN VEHICLES EDGE NETWORK

VM VIRTUAL MACHINE

M. Talebkhah et al.



Engineering Science and Technology, an International Journal 54 (2024) 101699

8

proposed method was evaluated through computer simulations in terms
of worst total completion time, mean waiting, and mean total comple-
tion time per task. Moreover, with the aim of highlighting the advan-
tages of the proposed method, performance comparisons with different
alternatives were also presented and critically discussed. Finally, a
fairness analysis of the proposed allocation strategy was also provided
on the basis of the evaluation of the Jain’s index. In [84], the authors
framed the issue of user-fog pairing as a matching game with minimum
and maximum quota constraints. They introduced a Multi-Stage De-
ferred Acceptance (MSDA) algorithm to balance fog resource usage and
improve response times for users. Simulation results demonstrated that
the proposed model, when compared to a baseline user matching
approach, resulted in reduced delays for users. Swain et al. [85]
described a matching theory-based protocol, A-DAFTO, to address
challenges in offloading computations from Consumer Internet of Things
(CIoTs) to nearby fog nodes for real-time consumer applications. A-
DAFTO distributed network and computational load while meeting
application deadlines, utilizing the Artificial Cap Deferred Acceptance
(ACDA) algorithm. Simulation experiments demonstrated A-DAFTO’s
effectiveness, achieving zero outages and a 15.32 % reduction in total
offloading delay compared to baselines. Gue et al. [86] addressed this
research to investigate the Mobile-Edge Computation Offloading
(MECO) challenge in highly compact IoT networks and introduced a
two-tier game-theoretic greedy offloading approach as a resolution.
Substantial numerical findings affirm the outstanding effectiveness of
implementing computation offloading across numerous edge servers in
ultra-dense IoT networks.

IoT-fog networks leverage offloading to enhance data processing
capabilities closer to the network edge, facilitating real-time decision-
making and reducing latency [30]. Similarly, UAVs can leverage their

mobility to overcome spatial constraints and enable flexible communi-
cation. However, their limited computing resources and battery power
pose significant challenges for UAVs. In [87], a task offloading algorithm
is introduced to aid UAVs in executing computationally demanding
tasks. This algorithm offers two approaches for offloading tasks. The first
approach, known as airborne offloading, enables UAVs to transfer their
computational tasks to nearby UAVs equipped with sufficient computing
and energy resources. The second approach, termed ground offloading,
facilitates the transfer of tasks from a multi-level edge cloud unit, linked
with a ground station, to an edge cloud server. In [88], researchers delve
into a scenario involving a fleet of small UAVs engaged in an exploration
mission. They furnish a thorough demonstration of the existence of Nash
equilibrium and propose a distributed algorithm that converges to this
equilibrium. Guo and Liu [89] introduced the integration of UAV-aided
communication and MEC as a promising approach to address the
increasing demands for Big Data (BD) processing in UAV-aided IoT ap-
plications. The proposed algorithm effectively reduced energy con-
sumption during task execution. Additionally, in [90], a new UAV-
enabled MEC system is proposed, facilitating interaction with IoT de-
vices, UAVs, and ECs. To enhance quality of service, the authors devise
an optimization problem aimed at minimizing the weighted sum of
service delays for all IoT devices while considering UAV energy
consumption.

3. VEC key enablers

3.1. VEC application scenario

The development of VEC has led to the emergence of a wide variety
of applications (Fig. 3). Some of these scenarios will be discussed in the

Fig. 3. Application scenarios of VEC.
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following. Table. 4 exhibits a comprehensive overview of various ap-
plications, showcasing their specific bandwidth, latency, and data re-
quirements. The table offers valuable insights into the distinctive
characteristics of each application, including the volume of data they
necessitate, their tolerance for time delay (latency), and the required
bandwidth for efficient operation.

i. Road Safety: Vehicles and sensors installed along the road can
continuously send data which can be real-time analyzed by the
edge servers in the proximity of vehicles. Upon finding risk data,
edge servers alarm the surrounding vehicles to avoid the hazard
by taking proper actions, such as braking, changing the lane
changing, or turning around. The Collision Avoidance System
(CAS) [91] passes the collision-related data among the adjacent
vehicles and warns the driver by beep sounds. As depicted in
Fig. 4, to transmit information, this system makes use of the V2V
network. As a collision mitigation system that uses radar and
other sensors (working on laser or cameras to deal with the
crash), CAS also functions as a precrash system to warn of
impending collisions. It warns the driver on the cluster panel for
on-time braking [4].

ii. Entertainment: By the emergence of smart vehicles, drivers are
liberated from complicated driving tasks, thus, they have time to
spend on entertainment, e.g., surfing the internet, playing
gaming, or watching video [92]. The mentioned applications can
use the advantages of the VEC computation and storage re-
sources. For instance, drivers can directly fetch their desired
videos without resorting to the remote cloud just through coop-
erative caching of popular contents among edge servers and ve-
hicles. This will lower the delay and improve the experience of
the user.

iii. Traffic Control: Edge servers cover a communication zone; any
vehicle in this zone sends its current status (location, speed) and
collected data (weather and road conditions) for the corre-
sponding server. By analyzing the information from these vehi-
cles, the server can have an insight into local traffic conditions to
control the traffic flow and avoid traffic congestion [93].

iv. Path Navigation: Real-time navigation systems are of crucial
significance in providing an optimal route. Real-time navigation

requires data sensing, collection, and processing. Which can be
supplied by the VEC.

v. Ultra-low Latency Service: VEC facilitates the delivery of ser-
vices with ultra-low latency and high reliability, as highlighted in
[94]. Applications like autonomous driving demand accurate and
timely information about the surrounding environments, which
can be effectively achieved through VEC by providing robust
computational resources for executing critical tasks.

vi. Computation-intensive Service: VEC offers the potential to
offload computation-intensive applications, such as AR and face
recognition. Users of vehicles often face limitations in meeting
the computation requirements of these applications due to
limited resources. By leveraging the computation resources of
VEC, these applications can be efficiently transferred to edge
servers, enabling seamless execution, and enhancing the user
experience.

vii. Data Aggregation and Data Mining: The increasing adoption of
intelligent vehicles has resulted in a substantial rise in sensor-
generated data and data exchanged among vehicles [95]. By
deep exploitation of these data in VEC, more knowledge can be
employed for improved data efficiency and network
performance.

3.2. VEC architecture

The architecture, roles, and modes of operation are explained in this
section for each component of the VEC system. According to Fig. 5, the
VEC architecture is based on three layers: cloud, edge cloud, and smart
vehicular layers.

i. Cloud Layer: The cloud layer is responsible for tasks that require
computational capabilities beyond what the edge nodes can provide
such as data mining, data aggregation, storage, batch processing,
analysis optimization, and computation of complex data [96].
Furthermore, the cloud can compute a huge deal of data and complex
computations rapidly. The infrastructure of the cloud includes two
major parts: storage and computation. The collected data are sent to
the cloud layer for permanent storage for future analyses. The
computation part is responsible for computing and analyzing com-
plex computational tasks in shorter times. Only non-latency-sensitive
computing operations are transmitted through edge nodes to the
cloud.

ii. Edge Layer: The edge layer serves as a crucial link between the
smart vehicular layer and the cloud layer, ensuring a dependable
connection. To achieve this, vehicles utilize wireless communication
protocols (e.g. 802.11p, 3GPP, 3G, 4G, LTE, and 5G). The goal is to
achieve low latency, location awareness, caching, content discovery,
emergency management, and computation at a better QoS due to the
proximity of the layer to vehicles, enabling real-time interactions
[97]. Applications demanding rapid replies can be handled by the
edge cloud layer with extremely low latency [98] such as environ-
ment recognition and video analytics. This layer offers the following
services:

• Infotainment as a Service (IaaS): This service aims to enhance the
user experience and passenger safety by providing a combination of
information and entertainment options. The primary goal of IaaS is
to provide passengers with a high-quality, interactive, and engaging
experience during their journey. This service encompasses features
such as real-time navigation, traffic updates, weather information,
multimedia streaming, internet connectivity, and access to various
entertainment options. By integrating information and entertain-
ment functionalities, IaaS aims to make travel more enjoyable,
convenient, and safe for the passengers.

• Network as a Service (NaaS): Users with internet connectivity can
assist others by providing connection access through their vehicles,
RSUs, or MBS. This service proves to be highly valuable, especially in

Table 4
Application requirements.

Application Bandwidth Delay Source Time

Health Monitoring
System

High Real
Time

On-board
Sensors

Sub-second

Infotainment High Real
Time

On-board
Sensors

Sub-second

Multi User Gaming High Real
Time

On-board
Sensors

Sub-second

Nearby Driver
Collaboration

Low Low Nearby
Vehicles

Several
minutes

Platooning Low Real
Time

Nearby
Vehicles

Several
minutes

Parking Lot’s
Information

Low Low Nearby
Vehicles

Several
minutes

Vehicles Tracking Low Low Edge
Coverage

Several
hours

Traffic Light
Management
Emergency

Low Low Edge
Coverage

Several
hours

Vehicle Warning Low Low Edge
Coverage

Several
minutes

File Sharing
(Multimedia)

High High Entire
network

Several
days

Driver Behavior Low High Entire
network

Several
days

Maps Update High High Entire
network

Several
days
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times of crisis. This service allows individuals to act as mobile
network providers, extending network coverage and connectivity to
areas where it may be limited or unavailable. NaaS becomes
particularly valuable in emergency situations, as it can provide vital
communication capabilities to affected areas where traditional
network infrastructure may be disrupted. By leveraging the con-
nectivity capabilities of vehicles and roadside units, NaaS offers an
on-demand network service that can be deployed quickly and effi-
ciently to assist in various scenarios, ensuring reliable communica-
tion and connectivity when it is most needed.

• Storage as a Service (SaaS): Vehicles may require additional storage
to execute their programs or temporarily store backups. This need

can be fulfilled by the edge server, which offers free storage services
to cater to such requirements. SaaS allows vehicles to offload their
storage requirements to the edge server eliminating the need for
onboard storage expansion or relying solely on limited local storage
capacity. By leveraging the storage resources provided by the edge
server, vehicles can efficiently manage their data storage needs,
ensuring seamless application operation and secure data backup.

• Computation as a Service (CaaS): Vehicles that are parked in parking
lots or caught in traffic jams often have idle computational resources
for extended periods. This presents an excellent opportunity for other
vehicles or users who need to augment their processing capacity to
handle heavy computational workloads.

Fig. 4. Mechanism of CAS in IoV.

Road Side
Unit (RSU)

V2I
V2I

V2VV2V

V2P

V2SV2S

V2R V2R V2R

Centralized
Cloud Server

V2V

Smart vehicles

Road Side
Unit (RSU)

Fig. 5. Three-layer VEC architecture.
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Additionally, this layer serves as a platform for V2V communication
and also facilitates communication between vehicles and external
infrastructure (V2I). In the V2V scenario, vehicles interact with each
other, allowing data to be transmitted through vehicles until it reaches
the edge for further processing. Emergency alerts are broadcast to
nearby vehicles as well as the edge if any vehicle exhibits unusual
behavior (due to a change in direction, exceeding the posted speed limit,
or mechanical failure). The location, speed, and direction of the vehicle
may be included in this communication. Using infrastructures like
roadside devices, micro base stations, and edge servers, the V2I offers a
dependable platform for operational data exchange among vehicles
through wireless networks.

iii. Smart Vehicles Layer: The smart vehicular layer encompasses a
group of neighboring vehicles that communicate wirelessly to
share computational and storage resources. This layer abstract
information from various embedded sensors, GPS, cameras,
radar, Lidar, and other devices presents in vehicles. The collected
data can be transmitted to the edge cloud layer for storage or
utilized by various application layer services. Consequently, this
layer facilitates the observation of occupants’ and drivers’
behavior as well as the surrounding environment. The funda-
mental component of this layer is the vehicle itself, and in this
paradigm, a smart car is one that is equipped with the latest
sensors and communication technology. In the upcoming section,

we will delve deeper into the concept of “smart vehicles”,
exploring their essential components, communication methods,
services, and applications.

4. Smart vehicles

Any kind of vehicle that is capable of being autonomously driven and
outfitted with OBUs, several sensors, including RADAR, LIDAR, GPS,
videography, and cameras are developed to enhance the movement of
vehicles by the minimization of the travel time and declining traffic
congestions. The OBU contains networking, storage, and computing
capabilities. In the VEC architecture, the smart vehicles are also referred
to as Autonomous Vehicle (AVs), client vehicles, task vehicles, and
service requestors [99].

4.1. Transforming transportation: The role of 5G networks in smart
vehicle communication

The dynamic nature of vehicular networks and their diverse QoS
demands have given rise to numerous challenges. These challenges are
addressed through the integration of real-time information sharing ap-
plications and infrastructures, providing vehicles with access to relevant
information about their immediate environment. This leads to the
development of road safety and traffic efficiency applications.

Vehicular communication can be broadly accomplished through two

Fig. 6. (a) A taxonomy for IoV communication, (b) Vehicle-to-Everything (V2X) communication.
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primary modes: V2V and V2I. These communication approaches enable
various entities such as vehicles, pedestrians, and roadside units to
gather data pertaining to their surrounding environment. This data is
obtained by receiving information from other vehicles or sensors,
fostering the development of intelligent services that focus on cooper-
ative collision warning and autonomous driving [100]. By facilitating
effective communication and data exchange, V2V and V2I communi-
cation contribute to the advancement of technologies aimed at
enhancing road safety and enabling autonomous driving systems.

According to Fig. 6(a), the concept of the IoV is derived from five
distinct types of network communication. These communication types
serve as the foundation for enabling connectivity and data exchange
within the IoV ecosystem. On the other hand, Fig. 6(b) provides a visual
representation of how smart vehicles establish communication among
themselves. It illustrates the comprehensive network of communication
between these vehicles, highlighting the interconnectedness and ex-
change of information facilitated by smart vehicle technologies.

Previously discussed, communication in vehicular settings can be
categorized into V2V, V2I, and V2X, encompassing interactions with
both infrastructure and other vehicles. When utilizing 5G networks, the
subsequent advantages should be considered [101], contrasting with
IEEE 802.11p:

• Millimeter-Wave (mmWave): The utilization of mmWave technology
ensures high throughput and bandwidth, which is crucial for
enabling fast and efficient communication between vehicles and
various entities within a dynamic and ever-changing topology
scenario.

• Non-Orthogonal Multiple Access (NOMA): Through techniques such
as power multiplexing or encoding, multiple users can effectively
share time or frequency resources. In the context of V2X communi-
cation, NOMA holds the potential to cancel interference, thereby
enhancing the capability of V2X systems to mitigate signal
interference.

• Multiple Radio Access Technology (Multi-RATS): The deployment of
5G networks can bring significant benefits to V2I or V2N commu-
nications. In this context, V2N refers to vehicles communicating
directly with servers or the cloud using cellular infrastructure. These
benefits can be achieved through increased network capacity and
throughput, which allows for faster and more efficient data transfer
between vehicles and the network. Additionally, 5G networks can
enhance performance in certain remote driving scenarios by
providing increased redundancy, ensuring a more reliable and robust
connection between vehicles and the network.

• Antenna Design: By leveraging Multiple Input Multiple Output
(MIMO) technology and other related techniques, the overall ca-
pacity of the system can be increased, enabling support for a greater
number of V2X activities. MIMO utilizes multiple antennas for both
transmitting and receiving data, which allows for the simultaneous
transmission of multiple data streams. This technique effectively
boosts the capacity of the communication system, enabling it to
handle a higher volume of V2X activities, such as V2V, V2I, and V2N
communications. The use of MIMO, along with other advanced
techniques, contributes to a more efficient and robust V2X
ecosystem.

• In-Band Full-Duplex (FD): The implementation of In-Band FD tech-
nology allows for the doubling of throughput by utilizing the same
frequency band for both receiving and transmitting data. In tradi-
tional communication systems, separate frequency bands are used
for transmitting and receiving, resulting in potential limitations in
overall throughput. However, with In-Band FD, the ability to trans-
mit and receive data simultaneously on the same frequency band
eliminates these limitations and effectively doubles the throughput
capacity. This technology enhances the efficiency of communication
systems, including V2X networks, by maximizing the utilization of
available spectrum resources.

• Mobile Edge Computing (MEC): MEC has the potential to facilitate
real-time situational awareness by enabling various capabilities,
such as creating high-definition local maps and performing real-time
analysis of data exchanged from multiple sources. With MEC,
computational and storage resources are located at the edge of the
network, closer to the end-users and devices. This proximity allows
for faster processing and reduced latency in data analysis.

In the context of V2X communication, MEC can enhance the capa-
bilities of vehicles and infrastructure to perform tasks such as generating
detailed maps with high precision, taking into account real-time data
from multiple sources. By leveraging the computational power at the
network edge, MEC enables quick and efficient analysis of the
exchanged data, facilitating timely decision-making and improving
situational awareness for various applications, including ITS and
autonomous driving [99].

4.2. Advantages for smart vehicles

Safeguarding traffic, enhancement of travel efficiency, and declining
the emission of pollutants are among the main goals of studies on
VANET technology. Regarding the commercialization issues, even the
developed countries have only employed the most basic VANET tech-
nologies in the last two decades. The ineffective practical application of
VANET technology can be assigned to the following reasons:

• Due to the failure to cooperate with other networks, the vehicles in
the ad hoc network will lose network services upon disconnection.
Thus, VANET cannot ensure continuous and stable communication.

• The incompatible network architecture of VANET has prevented its
communication with several new communication devices.

• Many intelligent applications cannot be implemented due to the
insufficient computing ability and storage space of VANET in addi-
tion to its lack of CC capability.

• The low precision of the application services since VANET only cal-
culates and processes localized traffic data.

Therefore, more reliable, and market-oriented vehicle communica-
tion technologies are highly required. The deficiencies of VANET can be
resolved by IoV technology, drawing promising prospects in the devel-
opment of smart transportation systems. The advantages of IoV will be
addressed from multiple perspectives:

i) Thanks to its heterogeneous network architecture, IoV promotes
cooperation between the communication networks of vehicles and
others.

ii) The majority of daily communication devices are compatible with
IoV.

Efficient cooperation of various types of networks and the advent of
multiple communication models (V2S, V2V, V2P, V2R, V2I) have
contributed to sharing BD in addition to offering reliable communica-
tion services and expanding the scope of automotive communication
applications. This is one of the most prominent benefits of IoV. In
particular, V2S offers onboard sensor communication via Ethernet and
Wi-Fi. V2V and V2R show the possibility of vehicles and RSU commu-
nication through WAVE. V2P indicates the communication between a
vehicle and a personal handheld terminal device using Apple’s CarPlay,
OAA Android system, or NFC. V2I enables communication between
vehicles and infrastructure through Wi-Fi or LTE/4G/5G/B5G/.

iii) Thanks to the improvement of data processing and the develop-
ment of CC and AI technologies, vehicles can autonomously ac-
cess the most-efficient performing networks to guarantee stable
network connectivity.

M. Talebkhah et al.



Engineering Science and Technology, an International Journal 54 (2024) 101699

13

4.3. Challenges in the path of development of smart vehicles

The IoV is aimed at adapting to various customers, heterogeneous
networks, and vehicles and supply continuous, convenient, manageable,
maintainable, and safe connections. Moreover, IoV requires several is-
sues due to their differences compared to other networks. These re-
quirements pose various challenges in the development of IoV [102].
The great dynamics and mobility of the vehicles and frequent topology
alterations led to poor network connection and stability and network
and connection failures, hence the loss of packets. Consequently, a major
difficulty is ensuring reliable connectivity and coverage. IoV applica-
tions have latency restrictions in terms of delays, but they don’t call for
large data rates. For instance, if someone breaks on the highway, in-time
notifications must be sent to the other vehicles to avoid accidents. In
these situations, the minimum delay, not the average delay, determines
the outcome.

In terms of service sustainability, delivering sustainable service in
the IoV environment and the network mechanism’s user-friendly design
is a significant problem. The establishment of continuous services by
heterogeneous networks in a real-time environment is a critical obstacle
as these services possess special network bandwidth, limited-service
platforms, various wireless access, and complex urban structures
[103,104].

The most difficult problem for every IoV application is to safeguard
the user’s security and privacy. For reliable information to be obtained
from its originating point to its endpoint, the relevant user must be
authorized. IoV continues to face a serious problem with protecting
private data breaches, leaving it open to cyberattacks.

5. Offloading in 5G-enabled VEC system

5.1. Motivation for offloading

Considering the growing number of vehicles and the rapid expansion
of the IoV, vehicles are now a remarkable part of internet-connected
things. The IoV paradigm provides smart automobiles with intelligent
vehicle control, traffic management, and interactive applications which
may require considerable computation resources at short delay [105].
Nonetheless, automobile terminals have limited computational capa-
bility. Thus, applications demanding large computation resources may
be a great challenge for the vehicular terminals with limited resources.

In this context, the novel paradigm of cloud-based vehicular
networking has been introduced to handle the huge computation de-
mands of automobile terminals and improve service performance.
Through the integration of communication and computing technologies,
cloud-enabled networks enable applications to run locally on the vehicle
terminals or be offloaded to a remote cloud.

MCC can remarkably improve resource utilization and computation
performance. Nevertheless, locating the cloud servers far away from the
mobile vehicles might seriously deteriorate the offloading efficiency due
to the capacity limitations and delay fluctuations of the transmission on
the backhaul and backbone networks. MEC is thus developed to derive
cloud service to the edge of the radio access network and offer cloud-
based computation offloading near the mobile vehicular network.

The computational tasks of the MEC networks may have various
resource requirements (the computation resources for task execution
and task transmission). As MEC servers function at the edge of the radio
access network and transmit the tasks through connected RSUs, their
service scope might be limited by the radio coverage of the RSUs.
Regarding the high mobility of vehicles, they may pass several RSUs and
MEC servers during the task-offloading process, therefore, they could
offload their task to any MEC servers in access. The choice of the MEC
servers can influence the offloading efficiency.

Moreover, vehicles can employ several methods (V2I and V2V
modes) to access RSUs in connection to MEC servers. The dynamic to-
pological variations due to the mobility of vehicles can add to the

complexity of offloading transmission. An optimal task-offloading
scheme with MEC server selection and communication management is
required in the MEC cloud-based vehicular networks to enhance task
accomplishment efficiency.

CC infrastructures have been utilized to handle resource-demanding
applications. Cloud resources are, however, located far from the users
which may lead to bandwidth problems, failure in supporting delay-
vulnerable applications, and security and privacy issues [106]. There-
fore, the resources should be brought closer to the network edge for
complete support of dynamic scalability, network processing efficiency,
and better design of computing paradigms [107]. Accordingly, Multi
Access Edge Computing (MAEC) can decrement the latency and save
energy by offloading computation on the edge servers [108]. The con-
ventional MEC-based offloading approach may fail in the vehicular
environment due to the high mobility and short validity period of fast
mobility [109].

Considering the dynamic and latency-sensitive nature of vehicular
networks, EC-based offloading strategies emerge as the most suitable.
Unlike traditional cloud-centric approaches, EC allows for data pro-
cessing and analysis closer to the point of data generation, minimizing
latency and bandwidth consumption [110]. In vehicular environments,
where real-time decision-making is crucial for safety and efficiency, EC
offers low-latency processing and reduced dependency on centralized
cloud resources [58]. Furthermore, EC enables localized processing,
which is essential for addressing connectivity challenges and ensuring
continuity of services in vehicular networks [111]. Thus, the integration
of EC with the IoV presents an effective offloading strategy, enhancing
resource management and computational capabilities while mitigating
challenges associated with network connectivity and latency-sensitive
applications.

Current attempts are now focused on merging the MEC technology
into a vehicular network. In particular, VEC is an MEC technology for
vehicular networks. VEC is specifically beneficial for computation-
demanding and time-constrained tasks [97]. Computational latency
and energy consumption of vehicular applications can be remarkably
decremented at a reduced chance of network congestion by offloading
complex computational tasks over VEC servers. Task offloading to edge
servers may be sometimes infeasible due to high energy consumption
and long process times [112]. The challenge involves making the best
offloading decision considering overall computational and communi-
cation costs. Moreover, vehicles may encounter unprecedented con-
straints such as inadequate computational capacity and high energy
consumption [113]. These constraints may lead to the following
scenarios:

• Meeting the real-time stringent time and energy demands of the
vehicles regarding their limited computational and energy resources.

• To guarantee mileage durability of the vehicles especially autono-
mous ones with high energy demand for computation-intensive
applications.

• Efficient management, transmission, and storage of massive data
generated by autonomous vehicles.

• Coping with high hardware costs as the vehicular computing capa-
bilities cannot bear the growing computing demands.

The above-mentioned challenges can be well addressed by task off-
loading approaches.

5.2. Task offloading techniques

The offloading strategy aims to decide whether the vehicle should
engage in offloading and the extent of the offloading. Typically, there
are three outcome categories associated with offloading policies in VEC:
full, partial, and binary task offloading. The determination of the task
vehicle’s outcomes is influenced by both the vehicle’s energy delay and
the computing task’s time delay. The objectives of the offloading
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strategy can be encapsulated in several dimensions, including mini-
mizing delay, decreasing energy consumption, achieving a balance be-
tween delay and energy, and optimizing overall system performance.

1. Full task offloading:

Full task offloading involves transferring the entire computational
task from a local device (e.g., a mobile device or vehicle) to a remote
server or cloud. This approach is suitable for tasks with high computa-
tional demands and minimal dependency on local resources. It can help
offload the entire burden of computation, freeing up local resources for
other applications [114].

2. Partial task offloading:

Partial task offloading focuses on dividing a computational task into
segments, where some segments are offloaded to remote servers or the
cloud, while others are processed locally. This approach is useful when
certain parts of a task can be efficiently processed locally, and only
resource-intensive segments need to be offloaded [115].

3. Binary task offloading:

Binary task offloading involves making a decision on whether to
offload the entire task or keep it entirely local. This decision is typically
based on specific conditions, such as the availability of network re-
sources, the computational capability of the local device, and the ur-
gency of task execution. It provides a binary choice between offloading
or keeping the task on the device [13].

5.3. Computing offloading

Computation offloading refers to the offload of computationally
expensive or delay-vulnerable tasks to edge devices or nearby edge
servers to efficiently ensure high user service quality [116]. The
computation offloading is mainly aimed at reducing the response delay
and improving the service quality. Furthermore, the overall perfor-
mance of the system can be enhanced by transferring the computation
tasks to the edge server or the cloud data centers in cases with insuffi-
cient processing capability of the edge node. Diverse issues (e.g. per-
formance maximization at minimal energy consumption) should be
included while making the computation offloading decisions. The
following queries must be addressed before computation offloading:

• Is it possible to offload the task? The task scheduler determines the
possibility of offloading the task, i.e., what is offloaded; partially or
totally?

• When to offload? The task scheduler determines the time of off-
loading considering various constraints.

• Offloading place; where is the best location to offload the workload
execution, considering available resources distribution.

• What is the offloading procedure? The basic goals of task offloading,
single performance maximization, or joint optimization and trade-off
between many goals are all relevant to this query. For instance, the
architectural, performance, and power supply heterogeneity of
massive edge devices can lead to non-uniform distribution of EE
among devices. Additionally, dynamic variations of network band-
width and latency among cloud data centers and edge equipment can
alter energy consumption of the data transmission. Thus, various
computation offloading policies lead to differences in the power
consumption. The overall computation delay, data transmission, and
performance metrics must be ideally balanced in a good computation
offloading policy. Current trends in computation offloading, as well
as challenges and future research directions, will be discussed in the
continue.

The implementation of an offloading system, resource allocation,
and offloading policy are all included in ComOf, as shown in Fig. 7. The
procedure for unloading is as follows:

• A service request: Within its communication range, the task vehicle
transmits a service request to the infrastructure (e. g. base station,
RSU).

• Upload tasks: Through V2E connection, the task vehicle transmits the
computing tasks to edge servers.

• Execute tasks: The edge server decides to offload duties to another
location in accordance with resource allocation strategy to complete
computing tasks.

• Deliver outcome: The computational output is returned to the vehi-
cles via the edge server.

The proximity of edge nodes to the vehicles in VEC offers a
compelling reason to incorporate EC into the architecture, primarily to
tackle the issue of latency. In high- and low-density networks, one
approach to mitigate this problem is through data computation off-
loading. Typically, significant delays are experienced when vehicles
transmit data to the central cloud [117].

As depicted in Fig. 8, both RSUs and vehicles, whether in motion or
parked, can serve as edge nodes and contribute computing resources
within the VEC framework. Client nodes, including vehicles that require
additional computing power, onboard User Equipment (UEs), and pe-
destrians, generate computation tasks with varying workloads and delay
requirements. These tasks are offloaded from the client nodes to the VEC
for further processing. Noteworthy, it is important to note that each
vehicle can assume the role of an edge node or a client node, referred to
as an edge vehicle or a client vehicle, respectively. The role of each vehicle
may change over time, meaning that it may have excess computing re-
sources to share with the network as an edge vehicle or require support
from other nodes as a client vehicle.

1) What to offload: Offloaded workload’s description

The objectives of EC to reduce the service latency and network
bandwidth cannot be accomplished unless the workload in cloud data
centers can be offloaded to edge devices and servers. The original
workloads performed at cloud data centers must be divided in edge-
cloud coexisting environments, and part of them should be operated
on edge devices and servers. The distribution of local computing re-
sources across a large number of heterogeneous devices, such as IoT
devices, is non-homogeneous. This non-homogeneity often leads to
insufficient computing resources to effectively run complex programs.
Lower latency and improved system performance can be achieved with
careful offloaded workload selection.

There are several ways to increase the Quality of the User’s Experi-
ence (QoE), including caching content data close to the end users,
outsourcing data processing to proxy servers, caching dynamic page
fragments, and conducting page composition after the user has accessed
the page.

Based on the Lyapunov optimization, Z. Ning et al. [67] developed
the online multi-decision making algorithm known as OMEN, which can
function independently of future system information. Theoretically, it
has been demonstrated that OMEN performs optimally within a defined
deviance. The function of different RSUs was then analytically described
to create the best peer offloading strategy using the Lagrange multipliers
method. J. Xu et al. [118] proposed an algorithm named online service
caching for mobile edge computing (OREO) for online stochastic service
caching with no need for future information. OREO was developed on
the basis of the Lyapunov optimization and managed to achieve close-to-
optimal performance in comparison with the optimal algorithm with full
future information, while avoiding the violation of energy constraints.

Offline prefetching, also known as traditional ComOf, entails moving
user-entered data from the edge device to the cloud data center or edge
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server before processing, which can generate a lot of network commu-
nication traffic.

D. Han et al. [119] proposed a unified framework to minimize the
overall outage probability in different mobile computation offloading
scenarios. Specifically, the outage bottleneck is determined through
asymptotic analysis, with no need for precise outage probabilities for
both transmissions and computations. Resource pairing, matching, and
allocation policies are explored to cope with the outage bottleneck.
Theoretical analysis, as well as numerical findings, indicated the
dependence of the outage bottleneck not only on the accessibility of
spectrum and computation resources but also the probability distribu-
tions of computational complexity of the tasks.

2) When to offload: The exact timing

To reduce latency for services that require processing, computation
offloading makes use of the computing, storage, networking, and energy
capabilities of edge devices. Nonetheless, regarding the continuous
changes in network conditions, decisions on workload offloading should
specify when to offload the workload. To put it another way, the task
scheduler must precisely plan the timing of the offload while taking into
account all circumstances and system status. For instance, during times
of network congestion, data caching can significantly improve system
performance while easing the transfer of huge amounts of data to cloud
data centers over adequate lines.

The issue of offloaded workload selection was addressed in the

previous section including data caching, data storage and computation
and analysis. Here, the offload timing is discussed. The question of when
to offload can be inferred from the precise temporal slots at which
workload offloading produces the optimum performance at minimum
costs or overheads. Upon deciding on the computation offloading, the
data and task are partitioned. Proper and accurate scheduling of task
offloading can effectively improve the system performance while mini-
mizing resource utilization because of the dynamics of network
connection and availability of edge devices. The performance of the
system might also be impacted by the partitioned workload’s execution
sequence. Therefore, improved offloading decisions can result from
system monitoring and workload evaluations based on task arrival rates
and deadlines.

3) Where to offload: Offloaded workload’s scheduling

During the workload offloading process, partitioned tasks are
scheduled to specific edge servers and devices based on various factors
such as performance, network bandwidth, energy requirements, and
data privacy protection strategies. The selection of targeted edge devices
and servers takes into consideration these factors to optimize the overall
system performance. For example, energy-intensive tasks are offloaded
to cloud servers to conserve energy, as these servers are typically
equipped with higher computational capabilities and can handle such
tasks efficiently. On the other hand, data-intensive processes are off-
loaded to edge servers, which are closer to the edge devices, to reduce
latency and minimize network traffic. This approach improves the
overall responsiveness of the system by ensuring that data-intensive
tasks are processed closer to the data source. Additionally, data pri-
vacy protection strategies are considered to ensure the security and
confidentiality of sensitive data during the offloading process.

When scheduling offloaded tasks, it is crucial to consider the overall
system status, which includes the network status, task requirements, and
device information. This comprehensive approach ensures that tasks are
assigned to the most suitable computing resources. For instance, when
there is sufficient network bandwidth available, cloud servers can be
utilized to perform workloads efficiently. Cloud servers often possess
high computational power and can handle resource-intensive tasks
effectively. However, if the network bandwidth is limited or the latency
requirements are stringent, edge servers or local devices are more
appropriate options. Edge servers, being closer to the edge devices, can
provide low-latency processing and reduce the dependence on the
network infrastructure. By considering the system status and the specific
needs of each task, the scheduling process optimizes the allocation of
tasks to the most suitable computing resources, ensuring efficient
execution and meeting the desired performance objectives.

The best offloading decisions are made upon determining the

Fig. 7. Integrated offloading system with resource allocation and offloading policy.

Fig. 8. Task offloading in the VEC.
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offloading place to enhance the system performance for achieving
maximal efficiency. Such an offloading decision, however, requires pe-
riodic monitoring of several parameters which could be computationally
expensive, leading to additional overheads upon running on a mobile
device. To overcome this problem, W. Junior et al. [120] developed a
Context-Sensitive Offloading System (CSOS) which utilized the main
machine-learning reasoning techniques and robust profiling system for
offloading decision-making with excellent precision. In their study, the
researchers evaluated different classification algorithms for their data-
base and found that the JRIP and J48 classifiers achieved an accuracy
rate of 95 %. They further extended their investigation to include
controlled and real scenarios, where the context information varied
between different experiments. In these varying conditions, the CSOS
system demonstrated the ability to make accurate decisions while also
improving overall performance and EE. The results indicated that CSOS
effectively adapted to changing contexts and provided reliable decision-
making capabilities while achieving performance gains and energy ef-
ficiency objectives.

4) A tradeoff between energy and QoS in data computation and
communication

With the ever-increasing use of applications on smart mobile devices,
the user’s QoS can serve as a prominent indicator of the success of the
applications and devices. These smart mobile devices often possess
limited computing and storage resources, as well as battery capacity,
hindering the satisfaction of the growing demands of mobile users.
Better quality services can be achieved through scheduling resources
based on the user requirements and Services Level Agreements (SLAs).
In this way, delay-sensitive applications are prioritized while
computation-demanding applications are provided with sufficient
computing resources. In this regard, the QoE can represent the user’s
subjective perception on the QoS and device performance. Computation
offloading to the edge servers and then resending the results to the
mobile devices can remarkably modulate the resource demand of the
smart mobile devices. During computation offloading requires imple-
mentation of QoS and QoE requirements, formulating a reasonable task
offloading sequence, and determination of the offloading timing for each
task [121,122]. Computing offload to mobile devices can save energy
and enhance the processing power, however, communication between
the involved components (e.g. mobile devices, edge nodes, and cloud
servers) leads to execution delays, affecting the performance of the
application. This highlights the significance of establishing a balance
between computing and communication.

To enhance the efficiency of the edge node system in terms of data
storage and real-time data access, one approach is to deploy high-
density, low-power, low-latency, and high-write nonvolatile storage
media, such as Nonvolatile Memory (NVMe), at the edge device. This
enables efficient and uninterrupted storage of data while ensuring
continuous and real-time access to it. Additionally, power profiling and
accounting support provided by the system call and runtime library can
be utilized to reduce power consumption during runtime. By optimizing
the power usage of the code, the programmability and EC of the edge
node system can be increased, contributing to improved overall per-
formance and sustainability.

5.4. Offloading process

The offloading process determines when and how much to offload
from the vehicle. Offloading policy VEC, local execution, total off-
loading, and partial offloading policies typically produce three different
types of outputs. The task vehicle’s outcomes are influenced by the ve-
hicle’s energy delay and the computing task’s time delay.

Offloading strategy’s main objectives can be perfectly described as
minimizing delay, decreasing energy consumption, and balancing delay
and energy consumption. In Fig. 9, user tasks, depicted in the

illustration, have the option to be performed both locally within the VEC
and transferred to the network edge, which is enhanced by cloud ca-
pabilities in terms of computation and storage resources. This process
significantly reduces delay and eases the burden on the network
infrastructure.

• Local Operation: The vehicle itself completes the computing task.
• Approved offloading: The computing task is delegated to RSUs, who

processes it.
• Restricted offloading: The RSUs server processes the remaining

portions of the computing task while some of it is handled locally.

As illustrated in Fig. 10, the delay, energy cost, and delivery of task
vehicles under various offloading policies are stated.

The offloading process must take into account the computing latency
since it may compromise the QoE. Additionally, the issue of energy
consumption must also be considered. The battery of the mobile device
terminals will run out if the device uses too much energy.

6. Classification of offloading

The widely-scattered computing resources of a Vehicles Edge
Network (VEN) offer diverse offloading routes. Various communication
techniques have been jointly utilized to support data transmission be-
tween client and edge nodes; among which IEEE 802.11p-based Dedi-
cated Short-Range Communications (DSRC) and LTE-V can be
mentioned which supports vehicle-to-everything (V2X) communications
such as V2V, V2I, and V2P communications. In addition to vehicles,
pedestrians can also access RSUs through 3G or 4G LTE networks. This
enables pedestrians to connect to the vehicular network and access the
services provided by the RSUs. Furthermore, onboard UEs, such as
smartphones or other mobile devices, can offload their tasks to the ve-
hicles they are traveling in using Bluetooth technology. This allows UEs
to leverage the computational resources of the vehicles for offloading
tasks, enabling efficient processing, and enhancing the capabilities of
the UEs. By supporting connectivity options like 3G, 4G LTE, and
Bluetooth, the vehicular network extends its reach to include both pe-
destrians and onboard UEs, facilitating seamless communication and
task offloading across different entities in the network. The V2V mode of
communication is depicted in Fig. 11. Applications like Road-Accident
and Street Parking leverage the cooperation between vehicles and
roadside units to extend the communication range of the vehicular
network when direct V2V communication is not feasible. In scenarios
where vehicles are out of range for V2V communication, these appli-
cations rely on other vehicles to act as intermediaries. These interme-
diary vehicles receive information from the source vehicle and then
forward it to RSU within its communication range. This collaborative
approach enables the sharing of critical information, such as road ac-
cidents or available parking spaces, by leveraging the relay capabilities
of vehicles and the coverage provided by RSUs. By utilizing these
intermediary vehicles, the communication range of the vehicular
network is extended, facilitating effective information exchange, and
enhancing overall system efficiency.

Fig. 9. Example of task offloading.
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6.1. Data offloading through Vehicles-to-Vehicles (V2V) communication

Vehicles can directly offload their tasks (and also the tasks offloaded
by their passengers) to adjacent edge vehicles. Each client vehicle finds
accessible edge vehicles in its communication range. Note that the di-
rection and speed of the movement should be considered (obtained by
V2X communication protocols) to maintain a relatively long contact
time. Several edge vehicles may be simultaneously available. Each client
independently decides to select which edge vehicle, as it is difficult to
obtain global information, moreover, there might be no centralized
entity for making such decisions.

The computing units integrated within vehicles have the capability
to support applications that require low latency and extensive compu-
tation. These vehicles can function as edge servers, offloading compu-
tational tasks to reduce the burden on infrastructure nodes. When
vehicles are in close proximity, they can establish V2V connections to

offload their tasks, either completely or partially. This approach,
referred to as V2V-based computation offloading, is depicted in Fig. 12-
A.

In a study [123], two vehicles communicated with each other by a
cellular network. The EC server employed the network state routing to
discover the V2V offloading path with the longest communication life.
Upon disconnection of the corresponding V2V path, the two vehicles
switched back to the cellular network for communication. IDM IM
model was employed in a study [124] to model the vehicle movement.
Vehicle tasks were divided and offloaded to adjacent vehicles. The
maximum and minimum fair algorithm was utilized to determine the
extent of offloading in a special scenario while the Particle Swarm
Optimization (PSO) algorithm was employed to obtain the offloading
scheme within a general scenario. This approach minimized the delay.
However, the neighboring vehicles in this paper were not within the
one-hop communication range of the VT. A task offloading scheme was

Fig. 10. Offloading processes: delay, energy cost, and delivery.

Fig. 11. V2V and V2I communications.
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also developed [125] by utilizing multi-hop vehicle computation re-
sources in VEC on the basis of vehicle mobility analysis. Besides the
vehicles in one hop from the task vehicle, certain multi-hop vehicles
meeting the link connectivity and computation capacity requirements
were also utilized to complete the offloaded tasks. An optimization
problem was also considered for the task vehicle to minimize the
weighted sum of execution time and computation costs. To gain insights
into the computational offloading schemes in the V2V communication
domain, Table. 5 highlights the distinct features and contributions of the
research.

6.2. Data offloading through Vehicles-to-Infrastructure (V2I)

Within the framework of conventional offloading strategies, the
vehicle can only offload their tasks within the communication range of
the EC server. Such an offloading approach may fail in meeting the
offload delay requirements. This approach considers the vehicles within
and outside the communication range of the EC server as the destination
and source nodes, respectively.

Vehicles access VEC servers through V2I communication links. Ve-
hicles with local computing resources cannot perform computation-
demanding and complex tasks on their own [126]. VEC can supply the
heavy vehicular computing demand by offering computing capabilities
at the edge of the network. To this end, a vehicle connects the roadside
infrastructure (like RSUs or BS) via V2I for entire or partial offload of its
task on the MEC server as depicted in Fig. 12-B.

An assistant algorithm was utilized in V2V [127] to predict the
arrival time to the subsequent RSU. In this system, the tasks are trans-
ferred through V2V to the subsequent RSU. The results can be directly
acquired upon the arrival of the vehicle to the next RSU. In comparison

with the task offloading to the current RSU, it is more cost-effective to
exchange the results between RSUs when the vehicles move and arrive at
the next RSU and then return to the vehicle. However, it is not reason-
able to consider a fixed value for the cost of each hop. It does not
consider situations such as link disturbance due to V2V transmission.
Wireless interference and transmission capacity limitations were not
investigated for the simplicity of the unloading process. To improve
service reliability, a deep learning-inspired RSU Service consolidation
solution [128] based on two models was created. The RSU Migration
model and the Multicast model based on linear programming are used to
define the RSU coverage issue and content delivery challenges, respec-
tively. On the basis of content correlation, an adaptive packet-error
measurement system can also be used to improve service reliability
rates at the edge of cooperative vehicular networks. Table. 6 provides a
comprehensive summary of the latest research contributions in the
category of V2I-based computation offloading.

6.3. Data offloading through Vehicles-to-X (V2X) / mixed offloading

V2X communication, encompassing various modes like V2V, V2I,
V2P, and V2N, proves to be the most effective approach for offloading
computations in vehicular networks. In the context of computation
offloading, vehicles can engage in communication with nearby vehicles
(V2V), roadside infrastructures (V2I), and pedestrians (V2P) to offload
tasks completely or partially for computation. This method, referred to
as V2X-based computation offloading, is depicted in Fig. 12-C.

Task offloading highly depends on the task type. The tasks demand
low computations, but a huge amount of task data can be locally
accomplished. The tasks with large computation demand and low data
transmission requirement can be offloaded to edge servers, the remote

Fig. 12. Computation offloading scenarios in 4G and 5G RAT systems (i.e., RSU, eNB, and gNB): Exploring various communication modes defined as scenarios A: for
Vehicle-to-Vehicle (V2V) communication, B: for Vehicle-to- Infrastructure (V2I) communication, and C for Vehicles-to- X (V2X) / mixed offloading.
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Table 5
Overview of V2V computation offloading schemes.

Object Scheme Computing
Architecture

Advantages Disadvantages Proposed solution

Minimization
of Latency

Distributed
[129]

VEC Establishing an Adequate
System Model

Assumption of Equal Input/output
Sizes

To achieve reduced latency, tasks are
duplicated and transferred to multiple SeVs
(Service Vehicles) while employing the
framed LTRA (Latency-Aware Task
Replication and Adaptation) algorithm,
which can dynamically adapt to the time-
varying topology of the VEC system.

Centralized
[130]

VEC Optimum use of vehicle
resources

There is no consideration for different
service types

Developed an innovative on-policy
reinforcement learning framework for
computation migration that adapts to
changing environments through continuous
learning.

Distributed
[131] VCC

Notable performance against
expectations

large overhead signals. Not taken into
account is the high-density vehicle
scenario

Through the utilization of SMDP (Semi-
Markov Decision Process), an offloading
policy that is sensitive to the requirements of
the application is implemented to derive an
optimal scheme for allocating computation
resources.

Distributed
[132]

VCC Optimal use of a vehicle’s
resources

A lack of thought went into choosing
the vehicles. Application completion
time uncertainty

To support time-sensitive applications with a
sequential task graph, a computation-
relaying system was investigated.

Distributed
[133]

VEC Optimum use of the resources
available to vehicles

Possible major delay due to the number
of offloading hops

Without the use of RSUs, the vFog
framework uses the onboard processing
capability of the cars to communicate with
surrounding vehicles.

Distributed
[134]

VCC Analyzing real-world mobility
traces for comprehensive
mobility assessment.

Sophisticated model architecture A three-layer architecture has been devised
in the IoV framework, employing Deep
Reinforcement Learning (DRL) techniques.
The primary objective is to minimize overall
energy consumption while simultaneously
adhering to specified delay constraints.

Distributed
[124]

VCC Satisfying the demands of
delay-sensitive applications
through collaborative vehicular
computing approaches.

Insufficient examination of the
influence of vehicle mobility on
offloading performance analysis.

A task offloading strategy leveraging V2V
communication is developed to effectively
utilize idle resources in vehicles. The
problem is optimized using the Particle
Swarm Optimization (PSO) algorithm.

Distributed
[135]

VEC Adapting to dynamic
environmental conditions and
mobility patterns.

Absence of comprehensive analysis
regarding mobility patterns and their
impact

Introduced a novel deep Q network
algorithm aimed at minimizing both delay-
related costs and energy consumption.

Resource
Allocation

Distributed
[136]

VCC A realistic mobility scenario
reflecting actual movement
patterns and dynamics.

Significantly extended computation
time or prolonged computational
processing.

The AVE (Adaptive Vehicular Edge)
framework is developed to enhance the
computational capabilities of vehicles. This
framework efficiently manages the
underutilized computing resources without
relying on centralized control.

Distributed
[137]

VEC A well-structured and
organized system model that
meets the desired criteria.

Lack of inclusion of mobility analysis
based on real-world traces in the
current approach.

A collaborative computing scheme is
proposed, where a group of autonomous
vehicles (AVs) is utilized to enhance the
scalability and efficiency of autonomous
driving. This scheme leverages Software-
Defined Networking (SDN) principles to
facilitate effective communication and
coordination among the vehicles

Centralized
[138]

VEC Ensuring system stability and
achieving low latency through
efficient resource utilization.

Inadequate performance under high
mobility conditions resulting in
suboptimal outcomes.

Proposed a collaborative task scheduling
scheme for computation offloading in
Vehicular Cloud (VC) environments using a
modified genetic algorithm with low
complexity.

Distributed
[139]

VEC Limited resources in densely
populated areas.

Limited resources in densely populated
areas.

Developed a framework for offloading based
on machine learning principles and Multi-
Armed Bandit (MAB) theory. The framework
enables vehicles to learn from nearby
vehicles with sufficient resources, enhancing
offloading performance.

Centralized
[140]

VEC The payment procedure for the
seller, specifically the vehicle
fog node, is established.

Prioritizing offloading to the seller
instead of the local vehicle as the initial
option.

A centralized reverse auction mechanism
based on VCG (Vickrey-Clarke-Groves) is
devised to ensure individual rationality and
truthfulness while considering economic
aspects.

N/A
[141]

VEC Achieving the optimal decision
for task offloading.

The self-organized and ad-hoc nature of
the system results in challenges related
to security and resource management,
which are not adequately addressed.

A V2V computation offloading approach is
introduced in the context of 5G cloud-
enabled IoV, considering scenarios with both
complete and incomplete information.

(continued on next page)
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clouds, or other idle vehicles [197]. Thus, a combination of several
offloading schemes can be simultaneously taken into account for the
vehicles handling multiple types of tasks.

The pure V2V offloading has been rarely explored. The current V2V
offload is mainly concentrated on routing designs which involve routing
the MEC-uncovered vehicle tasks to the closest MEC. This scheme is not,
however, suitable in scenarios with poor MEC coverage. Additionally,
the current method restricts the range of vehicles supplying computa-
tional offloading service to two hops in a distributed V2V offloading
scenario [6,124]. A joint frequency scheduling and power control
scheme was also developed in [198] to improve the connectivity of
multi-hop V2I/V2V networks. V2I and V2V links were associated with
tuple-links. Then, an NP-hard problem was formulated where the fre-
quency scheduler and power controller were collectively designed for
the tuple-links.

Adiththan and colleagues [199] proposed an adaptive data off-
loading technology for CC control calculations to achieve a ComOf
technology for vehicle safety and stability requirements in the presence
of unreliable communication networks. This method took current
network conditions and control application requirements into account
to determine the feasibility of remote computing and storage resources.
In the meantime, a cloud-based path was described utilizing crowd-
sourced data for path planning. Accordingly, the authors developed an
adaptive offloading controller architecture capable of determining the
offloading time of control calculations on the cloud such that additional
data and computing resources could be utilized for the implementation
of CC. The feasibility of the developed method was confirmed by a
cloud-based path controller using Matlab.

Wang and colleagues [187] developed a ComOf scheme that com-
bined FC with a decentralized traffic management system for real-time
traffic management in a fog-based IoV system to minimize the average
response time. To this end, they initially developed a distributed urban
traffic management system where vehicles in proximity of RSUs can be
utilized as fog nodes. Based on the queuing theory, they subsequently
modeled the parking and moving vehicle-based fog nodes and came to
the conclusion that the mobile vehicular fog nodes could be modeled as
M /M /1 queues. At last, an approximate method was proposed to

optimize the offloading problem by decomposing the optimization
problem into two sub-problems and scheduling the traffic flows in
different fog nodes. The performance of the proposed method was
explored by simulations considering the real-world tax trajectory data-
set. The results indicated the superior performance of the proposed
method over conventional methods.

Table. 7 provides a comprehensive overview of the state-of-the-art
research contributions in the V2X category, facilitating readers’ under-
standing and providing a clear snapshot of the advancements in the
field.

7. Task offloading in dynamic Edge-IoV networks

In the landscape of Edge-IoV networks, the dynamic nature of
vehicular movement poses unique challenges to the effective imple-
mentation of task offloading strategies. This section aims to delve into
the complexities and considerations associated with task offloading in
dynamic scenarios, where vehicles are in constant motion. Under-
standing how task offloading adapts to the dynamic environment of
Edge-IoV networks is crucial for optimizing computational efficiency
and ensuring seamless operation.

The continuous movement of vehicles introduces unprecedented
challenges to the task offloading process. Factors such as varying signal
strength, intermittent connectivity, and frequent handovers between
different network elements significantly impact the decision-making
process of when, where, and how to offload tasks. In Fig. 13, we illus-
trate several key challenges in VEC along with their interconnections.
These challenges have been acknowledged in the literature, empha-
sizing the need for tailored solutions in the context of dynamic IoV en-
vironments [200,201].

To confront these challenges, innovative strategies have been pro-
posed to enhance the adaptability of task offloading mechanisms in the
presence of continuous vehicle movement. Predictive modeling for
vehicle trajectories, adaptive offloading triggers based on real-time
vehicle data, and dynamic resource allocation methodologies have
emerged as key strategies [184,202]. These adaptive strategies aim to
optimize task offloading decisions in real-time, accounting for the

Table 5 (continued )

Object Scheme Computing
Architecture

Advantages Disadvantages Proposed solution

Distributed
[142]

VEC Rapid convergence rate Limited resource availability in densely
populated regions

Proposed an adaptive learning-based
offloading algorithm utilizing the principles
of Multi-Armed Bandit (MAB) theory. To
account for dynamic environments, the
algorithm incorporates input-awareness and
occurrence-awareness. This enables efficient
offloading of a vehicle’s tasks to nearby
vehicles with sufficient resources.

Centralized
[143]

VEC Efficient utilization of available
computing resources.

Applicable to modest and small-scale
scenarios

A task offloading framework based on DRL is
proposed to optimize the cumulative reward
of task vehicles. The framework takes into
account various factors such as the state of
V2V links, service vehicles’ motivation, costs
associated with tasks and service vehicles,
and the availability of resources in service
vehicles, efficiently maximizing the overall
reward.

Distributed
[144]

VCC Improved user QoE and QoS Unreasonable assumptions made by
randomly selecting arrival rates

Presented a Reinforcement Learning (RL)
algorithm for the self-adaptive resource
allocation in the IoV environment. The
algorithm takes into account both Semi-
Markov Decision Process (SMDP) and
Markov Decision Process (MDP) models to
optimize resource allocation.

Distributed
[145]

VEC Formulating an approach that
meets the required criteria and
conditions.

The introduced DL model does not
account for the inference error that it
may introduce.

A joint optimization scheme is formulated,
taking into account road metrics and
resource management. The scheme utilizes a
sleeping multi-armed bandit tree-based
algorithm to efficiently manage resources.
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Table 6
Overview of V2I computation of offloading schemes.

Object Scheme Computing
Architecture

Advantages Disadvantages Proposed solution

Load Balancing,
Resource Allocation,
and Server Selection

Centralized
[78]

MEC A low-complexity system model
that is deemed acceptable and
manageable

A mobility model that
incorporates stochastic elements,
accounting for random variations
and uncertainties in the movement
patterns of entities.

A low-complexity algorithm is
introduced to enhance server selection,
optimizing the offloading ratio and
computation resource allocation.

N/A
[146]

MEC A well-designed and appropriate
system model that meets the
required specifications and
criteria.

suboptimal conditions in vehicular
environments.

Introduced a stochastic optimization
model utilizing dynamic programming,
along with a data transmission
scheduling scheme. This approach aims
to maximize the lower bound of
performance while accounting for the
inherent randomness in V2I
communications.

Centralized
[51]

MEC Improve the probability of task
success.

inadequate concluding remarks. An introduced mobility-aware greedy
algorithm is utilized to determine the
allocation of edge cloud resources to
individual vehicles. This algorithm aims
to achieve near-optimal performance
while enhancing the probability of
successful task execution.

Distributed
[147]

MEC Enhances the overall utility of
the system.

A general vehicular mobility
model that captures the movement
patterns and dynamics of vehicles
in a realistic manner.

Developed the DCORA (Distributed
Cooperative Offloading with Reduced
Complexity Algorithm) algorithm, which
effectively reduces the overall system
complexity.

Distributed
[148]

MEC The approach proves to be
effective in reducing latency and
improving network connections.

The proposed approach results in
an increase in computational
complexity and poses challenges
in achieving convergence.

A scheme based on Multi-Agent Deep
Deterministic Policy Gradient
(MADDPG) is proposed to manage the
spectrum, computing, and caching
resources allocated to the MEC
− mounted MeNB (Mobile Edge NodeB)
and Unmanned Aerial Vehicles (UAVs).

Distributed
[149]

MEC The framework enables
distributed knowledge sharing
and facilitates knowledge reuse
between agents, thereby
accelerating the learning
process.

The computational complexity
exhibits an exponential increase as
the number of agents in the system
grows.

A multi-agent deep Q-learning approach
is proposed and applied to maximize the
utilization of communication and
computation resources.

Minimization of Energy N/A
[150]

MEC The proposed scheme exhibits
adaptability to variations in
vehicles’ speeds and changes in
the wireless transmission
environment.

The current approach
demonstrates inadequate
performance when faced with
complex vehicle mobility
scenarios.

A dynamic offloading scheduling scheme
is introduced specifically for vehicular
networks, taking into account the limited
resources and mobility constraints of the
vehicles.

Centralized
[151]

MEC Efficient utilization of energy
through offloading and power
control strategies.

The current approach lacks an
analysis of mobility patterns or
considerations of vehicle
movement dynamics.

An energy-efficient resource allocation
algorithm based on Alternating Direction
Method of Multipliers (ADMM) is
developed for in-vehicle User Equipment
(UEs) with limited battery capacity.

N/A
[152]

MEC A system model that meets the
required standards and criteria,
considered suitable for the given
context.

Absence of a dedicated mobility
model.

An approach is introduced for
dynamically making task offloading
decisions, allowing for flexible
subdivision of tasks. This aims to
minimize energy consumption and
reduce packet drop rates.

Centralized
[153]

MEC Expediting Convergence Not validated in a network
environment.

An adaptive offloading approach
utilizing deep deterministic policy
gradient is proposed with the aim of
minimizing the total cost associated with
data transmission delay and energy
consumption.

Centralized
[154]

MEC Accelerated convergence Absence of a specified mobility
model

Proposed a DRL algorithm aimed at
minimizing both execution delay and
energy consumption.

Distributed
[155]

MEC Optimization of offloading
decisions and resource allocation
considering latency and energy
constraints.

Energy feasibility of switching
between communication modes
may be challenging.

Introduced a decentralized algorithm
that offers an optimal solution for the
problem of computation efficiency. The
algorithm is designed to jointly optimize
task offloading decisions and
computation resource allocation.

Distributed
[156]

MEC Attains convergence within a
restricted number of iterations,

Inadequate performance observed
in highly complex vehicular
environments

Developed a Double Deep Q-Network
(DDQN) algorithm for predicting the
offloading behavior of User Equipment

(continued on next page)
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Table 6 (continued )

Object Scheme Computing
Architecture

Advantages Disadvantages Proposed solution

thereby mitigating transmission
overhead.

(UEs) with tasks having a semi-online
distribution. The algorithm calculates
and updates the total rewards after each
offloading decision.

Minimization of
Latency,
Communication, and
cost of Computation

Distributed
[157]

MEC Valid system model. Unrealistic assumption regarding
the initial offloading tasks in the
vehicular route.

Proposed a contract-based computation
offloading approach to enhance both the
benefits of MEC service providers and
the utility of vehicles.

Object Scheme Computing
Architecture

Advantages Disadvantages Proposed solution

Minimization of
Latency,
Communication, and
Cost of Computation

Distributed
[158]

MEC An economically efficient
approach that considers
deadline constraints.

Insufficient organization. A novel approach has been developed to
improve the efficiency of offloading in
vehicles by considering deadlines and
cost-effectiveness as key factors.

Centralized
[159]

MEC Effectively manages
interdependent tasks.

Does not take into account the
specific use cases and variations in
vehicular mobility patterns

To address the need for fast offloading in
vehicular environments, an offloading
algorithm called SVMO was developed.
SVMO draws inspiration from the
principles of Support Vector Machines
(SVM) to optimize the offloading process
and improve efficiency.

Centralized
[160]

MEC Resource allocation
optimization for efficient
offloading

Lacks analysis of mobility
characteristics

Developed the JOPRAO algorithm,
which takes into account the offloading
proportion, communication resource,
and computation resource allocation.

N/A
[52]

MEC Demonstrated the system’s
validity through the utilization
of real-world traces.

Lacks clarity and organization. Proposed heuristic offloading for
efficient placement and scheduling of
vehicular application components
between OBU and the cloud.

Distributed
[161]

MEC Efficient resource utilization/
Simplified approach.

Does not meet the requirements
for ensuring QoS in a realistic
manner.

Introduced a decentralized offloading
algorithm utilizing game theory
principles within vehicular edge
networks.

N/A
[162]

MEC An effective task and resource
allocation model is proposed to
optimize the allocation of tasks
and resources in the system.

A large number of contracts and
the lack of latency analysis are
considered in the proposed
approach.

An algorithm for server selection and
resource allocation based on a contract
theoretic approach is developed to
optimize the offloading scheme for the
service provider.

N/A
[163]

MEC Scalability, practicality, and
offers improved incentives for
vehicles, thereby promoting
their active involvement and
motivation.

Security vulnerabilities arise when
sharing resources between MEC
platforms and vehicles, leading to
insecure data access and potential
breaches.

A price-based two-stage Stackelberg
game is utilized to model and simulate
the computation trading process
between Cloudlet and vehicles, allowing
for efficient resource allocation and
pricing strategies.

N/A
[164]

MEC Efficient computational
complexity

Inadequate resource allocation in
densely populated areas.

An optimal approach is presented for
task offloading and resource allocation
in both independent and cooperative
MEC servers. This ensures efficient
decision-making and maximizes the
overall performance of the system.

Centralized
[165]

MEC Well-structured system model Insufficient coordination,
inadequate management

A novel algorithm is introduced that
enables dynamic organization of
computing resources through multi-
platform offloading and resource
allocation.

Centralized
[166]

MEC Three distinct mobility models
and road conditions are
employed for analysis and
evaluation.

prohibiting partial offloading at
the local vehicle.

Proposed pricing-based algorithms for
one-to-one and one-to-many matching in
computation offloading.

N/A
[167]

MEC Well-structured problem
formulation.

Vehicular environment with
minimal complexity.

Presented an optimization algorithm for
selecting, computing, and adjusting the
contention window, resulting in a
reduction in the execution completion
time.

Centralized
[168]

MEC Collaborative computing model
effectively reduces
computational latency and
improves service reliability.

Significant computational
complexity.

A collaborative computing model is
proposed to address the issue of
computing latency and improve service
reliability in vehicular networks.

N/A
[169]

MEC Well-suited for multi-user and
multi-server environments.

Does not account for the
variability in tasks’ parameters
and MEC network.

The presented algorithm combines
offloading decision and task scheduling
to minimize task delay and computing
resource consumption.

(continued on next page)
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unpredictable nature of vehicular mobility.
In response to the challenges posed by the dynamic movement of

vehicles, recent research has witnessed the emergence of solutions that
leverage cutting-edge technologies. EC, ML algorithms [203], and
adaptive decision-making approaches [204] have been explored to
enhance the efficiency of task offloading in dynamic Edge-IoV scenarios
[205–207]. These solutions contribute to the development of a robust
offloading framework capable of dynamically adapting to the ever-
changing vehicular environment. Fig. 14 depicts the ComOf scenario
for networks characterized by both high and low density.

The process of computation offloading unfolds through the following
steps. Vehicles possess a specific computational capacity that guides
their decisions regarding task offloading. This underscores the online,
distributed, and low-complexity nature of the computation offloading
scheduling algorithm. Each vehicle can obtain necessary data for off-
loading from the RSU. If a vehicle opts not to offload its computation
task, the On-Board Computers (OBCs) execute the task. Conversely, if a
vehicle chooses to offload, it generates a packet containing computation
data and relevant task attributes, sending this packet to the RSU via V2I
communication. Upon receiving the computation offloading request, the
edge server deliberates whether to execute the task locally or transmit
the packet to the cloud server. Upon confirmation by the cloud server or
edge servers, if there is no VM for the vehicle’s application task, one is
created with appropriate computation resources; otherwise, the task is
added to the task queue of the corresponding VM. Upon completion, the
results are transmitted back to the vehicles, as illustrated in Fig. 15.

7.1. Task offloading optimization

Existing studies on computational offloading typically center on
enhancing both delay and energy efficiency. In VEC, diverse approaches
and techniques are applied to address various goals within the realm of
computational offloading. Specifically, the categorization of computa-
tional offloading in VEC reveals two distinct divisions, as illustrated in
Fig. 16.

i. User-Side Optimization:
• Delay minimization: The advancement of vehicle applications has

significantly enhanced user experiences. However, these applica-
tions are often characterized by real-time demands, complexity, and
intensity [208]. Prolonged processing time for application tasks may
compromise data effectiveness, potentially leading to traffic acci-
dents. VEC delay encompasses transmission, computing, and
communication delays. Computing delays involve offloading,
queuing, and processing delays. Consequently, the reduction of la-
tency in VEC applications holds paramount importance. Zhao et al.
[209] introduced a scheme for edge cache and computing manage-
ment, optimizing service caching, request scheduling, and resource

allocation strategies. Results indicate suboptimal delay performance
with this approach.

• Delay and Energy Consumption Optimization: Deploying computing-
intensive applications in VEC with strict time constraints poses
challenges, often leading to increased energy consumption. When a
vehicle’s energy is low, meeting onboard application requirements
becomes challenging. Thus, it’s crucial to consider energy con-
sumption alongside time constraints, necessitating a VEC offloading
approach that balances and minimizes both delay and energy usage.
This optimization aims to achieve higher channel gain and reduce
local calculation energy consumption. Zhan et al. [154] argued an
adaptive learning-based task offloading algorithm that comprehends
neighboring vehicles’ delay performance during offloading calcula-
tions. This algorithm effectively minimizes the average load delay
and energy consumption for each task vehicle. In a related context,
Zhan et al. [210] delved into the ComOf scheduling issue in VEC
scenarios. They modeled it using a well-crafted Markov decision
process and developed a cutting-edge, near-end policy optimization
algorithm based on DRL.

• Delay and Cost Optimization: VEC strives to minimize offloading,
encompassing communication and computing costs. Illustrated
through cellular network communication, vehicles may incur
charges for data transmission in a cooperative distributed computing
framework, wherein vehicles function as computing resources for
VEC. Qiao et al. [175] presented a cooperative task offloading and
transmission mechanism, effectively mitigating system delay and
energy consumption. Meanwhile, Zhao et al. [147] discussed a
cooperative ComOf and resource allocation optimization approach,
featuring a designed algorithm for distributed ComOf and resource
allocation. This method enhances overall system utility, considering
factors like task processing delay and computational resource costs,
achieved through the optimization of offloading strategy and
resource allocation using game theory principles. Salman Raza and
colleagues [181] explored cloud-based a motion-aware partial task
offloading algorithm aimed at minimizing the overall offloading
cost. This approach considers the expenses associated with necessary
communication and computing resources. It involves dividing the
task into three segments and determining the allocation ratio for
each part based on the vehicle’s available resources. Simulation re-
sults demonstrate the effectiveness of this method in reducing
communication costs for proximate vehicles and alleviating the
workload on VEC servers, particularly in densely populated urban
settings.

ii. System Server Optimization:
• System utility maximization: In the context of ComOf for VEC,

maintaining a balanced distribution of system resources is essential.
The goal is to prevent devices from being overloaded or remaining
idle, thus optimizing the overall system utility of VEC. Liu and

Table 6 (continued )

Object Scheme Computing
Architecture

Advantages Disadvantages Proposed solution

Distributed
[170]

MEC Optimal offloading decisions
that take into account both
latency and energy
considerations.

without specific limitations and
mobility scenarios.

A comprehensive integration model is
formulated to combine computational
offloading and resource allocation, with
the objective of minimizing the overall
system cost in terms of latency and
energy consumption.

Distributed
[171]

MEC A well-defined and
comprehensive system model.

Lack of specificity in the
considered application domains.

Introduced a cost-effective offloading
model tailored for 5G-enabled vehicular
networks, aiming to minimize the overall
offloading cost while ensuring adherence
to latency constraints.

Distributed
[172]

MEC Well-defined model. Not tailored to specific
applications and lacks
consideration of mobility factors.

Designed a multilevel offloading
approach based on Stackelberg game
theory, aiming to maximize the utilities
of both vehicles and VEC servers.
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Table 7
Overview of V2X computation offloading schemes.

Object Scheme Computing
Architecture

Advantages Disadvantages Proposed solution

Minimization
of Latency

Both
[173]

MEC + NV Real-world vehicular mobility
patterns

Lack of clarity and structure in the
presentation.

A framework is proposed to optimize task
offloading and resource utilization by
identifying suitable surrogates for
dynamically allocating tasks. The aim is
to enhance efficiency and maximize the
utilization of available resources.

Centralized
[174]

MEC + VCC Well-defined formulation Uniform treatment of tasks regardless of
their deadlines.

Suggested the BETA policy as a solution
to address the challenge of complexity,
where tasks are assigned a minimum
number of replicas.

Distributed
[175]

MEC + NV Load Balancing The system experiences high latency
when there is a limited number of
resource-rich vehicles available.

The paper introduces the VE-MAN
hierarchical network framework and
proposes a hybrid control collaborative
task offloading scheme to eliminate
redundant computation tasks.

Distributed
[176]

MEC + NV A well-defined system model that
accurately captures the network
characteristics and includes
practical estimation methods for
transmission rates.

Insufficient analysis of challenging road
conditions and their impact on the
proposed federated offloading scheme.

The proposed scheme involves a
federated offloading approach that
combines V2I and V2V communication in
MEC enabled vehicular networks.

Centralized
[81]

MEC + NV The organization of the system is
well-structured, presenting the
concepts and findings in a logical
and coherent manner

In complex and dynamic IoV
environments, it is important to
consider not only performance
optimization but also stability to ensure
consistent and reliable system
operation.

investigated an integrated architecture
that combines satellite networks and 5G
IoV to leverage the benefits of both
technologies.

Distributed
[177]

MEC or NV A comprehensive system model that
considers various factors such as
vehicle mobility, network
connectivity, and resource
availability.

Lack of analysis of dynamic vehicle
mobility patterns.

A novel algorithm is developed to
determine the optimal offloading route
for distributing computing tasks between
a source vehicle and a target vehicle.

Distributed
[178]

MEC + NV Achieving rapid convergence while
avoiding premature convergence is
a key focus of the proposed
approach.

Applicable across various domains,
without being limited to specific
applications.

A KD (Knowledge Distillation) service-
offloading framework is proposed to
derive an optimal service offloading
policy that achieves long-term
performance optimization.

Distributed
[179]

MEC + VU Efficient utilization of vehicular
communication resources.

Not focus on a specific application and
does not address the issue of delay
performance.

A system called Mobile Edge is
introduced, which leverages the
computational power of passengers’
mobile devices to enhance the
capabilities of the on-board Vehicle
Control Unit (VCU).

Distributed
[180]

MEC + NV The formulation used in the study is
considered acceptable and provides
a solid foundation for addressing
the research problem.

Does not take into account any specific
mobility model.

The recommended architecture is based
on SDN and aims to enable low-latency
computing services in vehicular and RSU
infrastructures.

Centralized
[111]

MEC + NV The proposed approach includes a
practical mobility analysis to assess
the movement patterns and
dynamics of vehicles in real-world
scenarios.

The presence of a large number of
offloading hops can result in significant
delays in the system.

The proposed strategy is a multi-hop
VANETs-assisted offloading approach
that leverages the link correlation theory
to optimize task offloading decisions and
resource allocation.

Distributed
[181]

MEC + NV Effectively utilizing the available
vehicular resources and accurately
estimating the transmission rates
based on practical scenarios.

primarily focuses on independent tasks,
neglecting the consideration of
interdependent task dependencies.

The MAP task offloading algorithm is
designed to allocate tasks among the
local, V2V, and V2I components, taking
into account the task allocation ratio.
Additionally, the transmission rates for
V2V and V2I communication are
empirically measured based on practical
assumptions.

Distributed
[182]

MEC + NV An effective system model that
captures the essential aspects of the
problem and provides a realistic
representation.

Did not address the handover
challenges associated with computation
offloading.

Introduced a strategy based on Q-
Learning to minimize the average delay in
computation.

Object Scheme Computing
Architecture

advantages disadvantages Proposed solution

Incentive-Based
Resource Allocation,
Load Balancing, and
Server Selection

N/A
[183]

MEC + NV Cost-effective deployment Lacks in addressing security and
resource management challenges
due to its self-organized and ad-
hoc nature.

A VFC system is proposed with the aim of
augmenting the available resources and
enhancing the achievable capacities.

N/A
[184]

MEC + NV local and FC resources and
incorporates an adaptive
transmission mode.

multiple offloading hops can result
in notable delays.

A comprehensive offloading scheme is
proposed that enables the efficient
transfer of tasks to the MEC server using

(continued on next page)
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Table 7 (continued )

Object Scheme Computing
Architecture

advantages disadvantages Proposed solution

either direct transmission or predictive
relay transmission.

Distributed
[185]

MEC + NV Efficient and minimal delay and
overhead.

Limited resources in high-density
areas.

Introduced a distributed algorithm for
optimal computation offloading
decisions in vehicular terminals.

Centralized
[186]

MEC or NV Designed an offloading strategy
that takes into account the
characteristics of specific
applications and focuses on
maximizing long-term rewards.

Lacks comprehensive analysis of
latency and its impact on the
proposed framework.

Presented a multi-timescale framework
based on DRL to address challenges
related to communication, caching, and
computing.

Centralized
[35]

MEC + NV Optimal trade-off between service
latency and quality degradation.

Lack of incorporation of multi-
vehicular cloudlets, leading to
limited scalability and potential
inefficiencies in resource
utilization.

Developed a dynamic task allocation
scheme that strikes a balance between
service latency and quality loss, ensuring
optimal performance.

Distributed
[187]

MEC + NV Effectively addresses resource
allocation and load balancing
challenges.

Underutilization of vehicles as fog
nodes in the proposed system
architecture.

Developed a distributed traffic
management system that utilizes vehicle-
based fog nodes, with the modeling of
these nodes based on queuing theory.

N/A
[188]

MEC + NV Alleviates the burden on MEC
systems and offers cost-effective
deployment.

Insufficient resource management
and security considerations.

Introduced a load-aware scheme for task
offloading that takes into consideration
the load balance of MEC servers and cost
prediction.

Distributed
[63]

MEC + NV Provide incentives to both edge
servers and cloud servers.

Limited resource availability in
high-density areas.

Introduced a contract-based incentive
model leveraging contract theory to
maximize the utility of BS. Additionally,
devised a stable matching algorithm
based on pricing to ensure stability in the
matching process.

Optimizing Energy
Efficiency

Centralized
[189]

MEC + NV The vehicle fog node efficiently
serves multiple tasks or vehicles,
maximizing resource utilization
and enhancing overall system
performance.

Resource scarcity in high-density
areas poses a challenge in terms of
providing sufficient resources to
meet the demands of multiple
users.

Two online strategies were proposed to
examine the task scheduling and
offloading decision in scenarios
involving multiple smart vehicles.

Centralized
[190]

MEC + NV Manageable complexity. Not tailored to a particular
application context.

Proposed an online algorithm that
combines Lyapunov’s method and SCA-
based optimization to minimize delays
while satisfying energy constraints.

Distributed
[191]

MEC + NV Enhanced QoE through various
improvements and optimizations.

Lacks consideration for specific
applications, limiting its
applicability and effectiveness in
addressing domain-specific
challenges.

Proposed a DRL algorithm to optimize
the QoE by minimizing energy
consumption and achieving optimal
performance.

Minimization of Cost Distributed
[192]

MEC+NV Application-aware offloading and
long-term reward.

Lacks comprehensive analysis of
latency.

Provided is a probability-based contact
graph, a dynamic offloading tree, and the
use of a greedy algorithm, collectively
forming a comprehensive approach to
address spatiotemporal constraints.

Centralized
[193]

MEC+NV Reduce the cost associated with
transferring data and utilizing
computational resources for task
offloading.

The presence of multiple
offloading hops has the potential
to result in considerable delays.

Suggested design underwent validation
through a practical application scenario,
and the acquired outcomes demonstrated
its alignment with specific application
requirements, along with ensuring
commendable scalability and
responsiveness.

Distributed
[194]

MEC+NV Allocation of resources between a
PV system and a service provider.

High complexity and slow learning
rate for large problems and high
reliance on certain factors.

Proposed Knowledge-Driven (KD) service
offloading decision framework. This
framework utilizes DRL to formulate the
offloading decision of multi-tasks in a
service as a long-term planning problem.

Distributed
[195]

MEC+NV Improving QoE, Load Balancing Overload of fractional Edge Nodes
(ENs) due to the explosive growth
of offloaded vehicle applications.

Introduced solution is computation
offloading method, designed to address
the challenges of offloading applications
in overloaded ENs to other idle ENs. This
method jointly optimizes to reduce
application offloading delay and
offloading cost across ENs while
achieving the load balance of ENs
globally.

Distributed
[196]

MEC+NV Revenue maximization Through
the development of an
appropriate pricing algorithm

Limited practical validation A novel optimization methodology is
introduced, emphasizing a cost-based
approach that simultaneously evaluates
the expense associated with partial
offloading in comparison to the pricing
structure of the MEC server. The

(continued on next page)
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collaborators [211] addressed this challenge by proposing an off-
loading strategy and resource allocation scheme tailored for both
vehicle edge servers and fixed edge servers. To address the inherent

randomness and uncertainty in vehicle communication, they trans-
formed the total utility maximization problem of the VEC network
into a semi-Markov process. They provided a reinforcement learning

Table 7 (continued )

Object Scheme Computing
Architecture

advantages disadvantages Proposed solution

proposed methodology is subjected to
performance analysis.

Fig. 13. Challenges of VEC.

Fig. 14. ComOf scenario.
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method and a DRL approach based on Q-Learning to identify optimal
strategies for ComOf and resource allocation. Additionally, Dai et al.
[212] examined an Artificial Intelligence (AI)-enhanced VEC and
cache scheme. This architecture combines EC with intelligent
resource caching, enabling cross-layer offloading, multi-point cach-
ing, and delivery. The integration of DRL and Deep Deterministic
Policy Gradients (DDPG) algorithms enhances system utilities.

• System cost minimization: Tan et al. [186] examined a comprehen-
sive resource allocation framework encompassing communication,
caching, and computing within VEC networks. Addressing the opti-
mization challenge of resource allocation, they put forth a multi-time
scale framework-based algorithm rooted in DRL. This approach aims
to optimize resource allocation while contending with constraints
such as limited storage capacity, computational resources, and
stringent delay requirements for both vehicles and RSUs. In a related
effort, Zhang et al. [213] devised a strategy for joint cache and
computing allocation to minimize system caching. They investigated
mobile recognition active cache technology, emphasizing acquiring
and storing video content in the base station’s cache. The strategy
employs a K-Nearest Neighbors (KNN) algorithm to identify the
optimal joint view set, maximizing total rewards and minimizing
system costs.

• Mission Success Rate Maximization: Qiao et al. [214] concentrated
on collaborative edge caching and supplementary caching, present-
ing a cooperative edge caching strategy to enhance content place-
ment and delivery. The optimization challenge involves a two-time
scale Markov decision process. Liang et al. [215] utilized model
resource sharing and employed deep Q-network-based approaches as
multi-agent reinforcement learning tools in network spectrum
sharing. They designed a V2V spectrum and power allocation scheme
to enhance the reliability of payload delivery over the V2V link and
achieve periodic sharing of safety–critical messages.

8. VEC technical categorization

8.1. Opportunities

The key advantages of VEC can be listed as:

Fig. 15. ComOf process.

Fig. 16. ComOf optimization in VEC system.
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i. Response Time: The response time includes the delivery time of
the data offloaded to edge servers and back and the time for their
processing in the servers. Compared with the clouds, the edge
servers are situated nearer to vehicular users, significantly
lowering the execution time, which is specifically advantageous
for delay-sensitive applications, like safety applications.

ii. Energy Efficiency: The growing number of smart vehicles has
led to an explosive boost of diverse vehicular applications which
will require a huge deal of energy. With the help of VEC, electric
vehicles with limited energy sources can receive sufficient sup-
port for such applications.

iii. Bandwidth: The rapid proliferation of smart vehicles leads to a
substantial increase in data generation encompassing diverse
content requests. However, centralized management through CC
may struggle to meet the bandwidth demands for processing such
massive amounts of data, especially considering the long dis-
tances involved with user interactions. VEC presents an effective
solution to address this bandwidth challenge by leveraging back-
haul networks and relocating computation and storage resources
from the cloud to the network edge. This approach enables data
processing and storage tasks to be performed closer to the source,
reducing the burden on centralized infrastructure, and opti-
mizing bandwidth utilization. By distributing computational re-
sources to the edge, VEC enhances the efficiency and capacity of
the overall network, ensuring that smart vehicles can access the
required bandwidth for seamless data processing and
communication.

iv. Storage: Unlike the case for clouds, VEC enables data storage in
edge servers located near vehicular users. The caching technol-
ogy also provides the possibility of in-time access to the stored
data, while decreasing the storage loads of the remote clouds.

v. Proximity Services: Diverse proximity services can be offered
due to the closer distance of the servers to vehicular users in VEC.
This can improve the user experience while efficiently managing
the traffic. For instance, upon arrival at the site and uploading
sensing information from vehicles, edge servers can contribute to
data processing and construct a High Definition (HD) map and
send it to vehicles.

vi. Context Information: In VEC, edge servers can attain real-time
information on the behavior and location of vehicles, traffic sta-
tus, and network conditions which can be utilized to improve
various applications. For instance, such real-time data can be
employed for content delivery to vehicular users according to
their interests.

8.2. Obstacles

Some of the technical issues of VEC are categorically discussed as
listed in Table. 8.

i. Latency: Many burgeoning vehicular applications require real-
time mobility support (e.g., positioning systems and smart
traffic lights which may result in network latency. The latency
cannot be assigned only to long cloud-vehicle distance as it could
be due to the routing inability or delayed queueing as well.
Nonetheless, new vehicular applications require a large compu-
tational capacity for processing complex tasks. Several ap-
proaches have been developed to lower the data transmission
delay while maximizing the throughput.

• Routing Approach: The routing approach applies geographic
routing (position-based) for local decision-making. A node
transmitting a data packet should consider three positions: its
current position, destination, and its one-hop neighbor. A routing
scheme was proposed under the title of Improved Geographic
Routing (IGR) [216], targeting the vehicles moving in a city
environment. IGR exploits VEC for utilizing computational

Table 8
VEC technical issue.

Issue Reference Year Paper Contribution

Latency Routing [216] 2018 FC enables
geographic
routing for
urban area
vehicular
network

Proposing an
enhanced
geographic
routing (IGR)
scheme for
routing in urban
environments,
specifically
tailored to
vehicles in
motion.

[217] 2021 Edge Network
Routing
Protocol Base
on Target
Tracking
Scenario

Introducing a
routing and
forwarding
protocol for
edge networks
specifically
designed for
target tracking
scenarios.

SDN [47] 2017 Latency
Control in
Software-
Defined
Mobile-Edge
Vehicular
Networking

Introducing a
comprehensive
suite of latency
control
mechanisms
that encompass
various aspects
such as radio
access steering
and cache
processing at
the base station.

[218] 2019 Detour:
Dynamic Task
Offloading in
Software-
Defined Fog for
IoT
Applications

Addressing the
problem of task
offloading in a
software-
defined access
network in
which multi-
hop IoT access-
points (APs)
connect IoT
devices to FC
nodes.

5G [219] 2020 Secure and
Efficient
Privacy-
Preserving
Authentication
Scheme for 5G
Software
Defined
Vehicular
Networks

Using an RL
instead of a
certificate
revocation list
(CRL) to decline
the verification
delays due to
checking the
long CRLs and
the storage costs
arising from a
large number of
pseudonyms.

[220] 2017 Foud:
Integrating Fog
and Cloud for
5G-Enabled
V2G Networks

5G technologies
were employed
to resolve the
problem of the
explosive
growth of
vehicular
terminals and
mobile data
traffic.

Scheduling and
Load-Balancing

[221] 2017 Exploring fog
computing-
based adaptive
vehicular data
scheduling
policies
through a

Introduction of
a scheduling
scheme based
on queue length
and response
time and
formulation of a

(continued on next page)
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Table 8 (continued )

Issue Reference Year Paper Contribution

compositional
formal method
− PEPA

design for a
vehicular cloud,
based on a
compositional
approach
(PEPA).

[222] 2022 Enhanced time-
constraint
aware tasks
scheduling
mechanism
based on
predictive
optimization
for efficient
load balancing
in smart
manufacturing

An enhanced
Time Constrain
Aware (TCA)
tasks scheduling
mechanism was
proposed as an
improved
version of Fair
Emergency First
(FEF)
scheduling
which takes
accurate
decision
(prediction)
measures and
minimal task
time into
account.

[223] 2022 SDN-based load
balancing
technique in
the internet of
the vehicle
using
integrated
whale
optimization
method SDN
Based Load
Balancing
Technique in
the Internet of
Vehicle using
Integrated
Whale
Optimization
Method

Introduction of
a software-
defined
network-based
load balancing
strategy for IoV
to minimize
latency and
tasks with the
help of cloud
and EC devices
using an
integrated
whale
optimization
algorithm
(WOA).

Offloading [184] 2017 Predictive
offloading in
cloud-driven
vehicles: using
mobile-EC for a
promising
network
paradigm

Development of
a computational
offloading
infrastructure
with emphasis
on the
computational
efficiency of the
transfer
frameworks of
V2I and V2V
communication
modes.

[224] 2020 Resource
Allocation for
Vehicular FC
using
Reinforcement
Learning
Combined with
Heuristic
Information

Presenting an
offloading
scheme based
on deep
learning neural
networks to
assess the
movement
patterns of
vehicles and
forecast the
accessibility of
resources for
subsequent
offloading
decisions. In
this method, the
Proximal Policy
Optimization

Table 8 (continued )

Issue Reference Year Paper Contribution

(PPO) algorithm
was employed
by integration
of the Recurrent
Neural Network
(RNN) with a
Deep Neural
Network (DNN).

[38] 2020 Blockchain and
Learning-Based
Secure and
Intelligent Task
Offloading for
Vehicular

Development of
an online
learning-based
framework for
intelligent task
offloading
where vehicles
are trained to
discover the
optimal task
offloading
strategy with
the minimum
latency. The
learning process
relies on
handover cost,
queuing delay,
and the
reliability of the
accessible fog
nodes

Resource
Management

[226] 2022 A Federated
Deep Learning
Empowered
Resource
Management
Method to
Optimize 5G
and 6G Quality
of Services
(QoS
Intelligent
Transportation
System

Providing
insight on
resource
allocation in 5G
vehicular
networks.
Furthermore, a
new federated
deep
reinforcement
learning (FDRL)
was presented.

[227] 2022 An Intelligent
Approach for
Cloud-Fog-
Edge
Computing
SDN-VANETs
Based on Fuzzy
Logic: Effect of
Different
Parameters on
Coordination
and
Management of
Resources

Using an
integrated fuzzy
logic system to
determine the
best resources
for vehicles
under different
conditions.
These
conditions
include the
quality of the
intravehicular
networks, their
size and
longevity, the
number of
accessible
resources, and
the application
requirements.

[228] 2017 Resource
Management in
Fog-Enhanced
Radio Access
Network to
Support Real-
Time Vehicular
Services

The
management
strategies of
each edge node
(fog node) in
FeRANs were
targeted to
improve
resource
management of
channels. This
focused on

(continued on next page)
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resources and vehicular communications. In its updated greedy
forwarding mode, the link error rate is treated in the path se-
lection. The IGR remarkably improved the packet rate along with
end-to-end delay.

An edge network routing and forwarding protocol was also devel-
oped on the basis of target tracking scenarios [217]. Such a protocol
can cover the dynamic variations in node locations and the elastic
node scale expansion. Failure of an individual node will not influence
the overall network while ensuring efficient real-time communica-
tion with less overhead. According to experimental results, the pro-
tocol managed to decrease the communications volume of the edge
network, enhance network efficiency, and decide on the best sample
interval to minimize the network delay.
• SDN approach: To ensure robust resource management and

effective traffic control, this networking approach emphasizes
centralized control of the logical network. SDN is at the core of
this framework, offering network programmability, flexibility,
and knowledge. In the context of wireless services, addressing
high-speed vehicular environments, the most critical QoS
requirement is minimizing delay. Software-Defined Mobile-Edge
Vehicular Networking tackles this challenge by employing a
comprehensive set of latency control strategies [47]. These stra-
tegies range from radio access steering to cache processing at
base stations, all aimed at meeting the stringent delay re-
quirements. However, when deploying vehicular technologies for
autonomous driving systems, it becomes crucial to address the
issue of advanced processing capabilities. Wireless in-
frastructures alone cannot guarantee the safety of drivers in such
scenarios. Therefore, sophisticated processing capabilities need
to be integrated into the system to ensure the reliability and se-
curity of the driving machines.

Misra and Saha [218] addressed the problem of task offloading in a
software-defined access network in which multi-hop IoT Access
Points (APs) connect IoT devices to FC nodes. The developed scheme
considered the following aspects: a) optimum decision on local or
remote task computing, b) selecting optimal fog node, and c)
choosing an optimal offloading path. The authors thus formulated a
multi-hop task offloading problem in the form of an Integer Linear
Program (ILP). Regarding the non-convexity of the feasible set, a
greedy-heuristic-based approach was developed. The greedy solu-
tion considered multi-hop paths, energy consumption, delay, and
dynamic network conditions (e.g. link utilization).
• 5G Approach: The emergence of 5G mobile communication net-

works not only improved the performance of the current vehic-
ular networks but also supported new applications in vehicular
networks. A novel architecture of 5G software was examined
[219] to develop a safe and privacy-preserving authentication
scheme for vehicular networks. The mentioned scheme used
elliptic-curve public-key cryptography and a registration list for
achieving efficient message authentication and avoiding the use
of growing certificate revocation lists. This scheme employed an
RL rather than a Certificate Revocation List (CRL) which can
decrement the verification delay arising from the evaluation of
the long CRL and the storage cost due to a large number of
pseudonyms in the CRL.

A new hybrid-computing model architecture (Foud) was also
explored [220] for V2G networks. As suggested by its name, Foud
supplies edge/fog and cloud to the V2G networks. The infrastructure
of Foud includes temporary fog and permanent cloud sub-models. EC
can be applied as a Foud sub-model because of its dynamic mobile
communication resource. Additionally, 5G technologies can over-
come the issue of the increase in vehicular terminals and mobile data
traffic.
ii. Scheduling and Load-Balancing: Vehicle networks provide

efficient communication to enhance data dissemination among
vehicles. Many vehicles conduct data dissemination, enhancing

Table 8 (continued )

Issue Reference Year Paper Contribution

enhancing QoS
for real-time
vehicular
services. To
achieve this, fog
resource
reservation and
fog resource
reallocation
mechanisms
were developed.
This approach
enhanced the
on-hop
probability of
real-time
vehicular
services, even in
situations where
fog resources
were heavily
utilized.

Security and
Privacy

[229] 2017 A Privacy-
Preserving
Vehicular
Crowdsensing-
Based Road
Surface
Condition
Monitoring
System Using
Fog Computing

Proposing a
privacy-
preserving
protocol that
enhances
security in a
crowdsensing-
based road
condition
monitoring
system by
leveraging EC.
The scheme
utilizes
certificateless
aggregate
signcryption
schemes to
reduce
communication
overhead and
expedite the
verification
process, thereby
improving
overall
efficiency.

[230] 2018 Secure,
efficient, and
revocable data
sharing scheme
for vehicular
fogs

Introducing a
data-sharing
scheme that
employs
effective
decryption
techniques in a
multiauthority
CP-ABE system,
ensuring
protection
against
collusion
attacks.

[231] 2017 A Secure Trust
Model Based on
Fuzzy Logic in
Vehicular Ad
Hoc Networks
With Fog
Computing

Presenting a
fuzzy trust
model that
efficiently
identifies faulty
nodes and
unauthorized
intruders while
effectively
handling data
uncertainty in
vehicular
networks.
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the load. The latest scheduling algorithms can adapt to the
diverse challenges of queue length. The classic shortest queue
policy is one of these algorithms. The shortest queue does not
necessarily mean minimal waiting time; therefore, time-based
scheduling schemes are more effective and reliable. A sched-
uling method was developed by Chen et al. [221] based on
response time and queue length to enable the possession of
varying communication environments for vehicular communi-
cations. They also established a three-layer vehicular cloud based
on edge/fog computing. The developed architecture relies on a
compositional approach (PEPA) which helps in modeling large-
scale systems owing to its compositionality and abstraction.

An enhanced Time Constrain Aware (TCA) tasks scheduling
mechanism was also developed [222] as an improved version of
the Fair Emergency First (FEF) scheduling, considering accurate
decision (prediction) measures and minimal task time for effi-
cient task scheduling. This study was aimed at efficient task
execution sequence to enhance smart manufacturing and effi-
ciency of resource utilization in real-time through maximization
of the usage of smart machines, minimization of tasks idle time,
and autonomous control of the smart manufacturing environ-
ment using sensors and actuators.

Darade and colleagues [223] proposed a software-defined
network-based load balancing strategy for IoV which mini-
mized the delay and tasks of the IoV by cloud and EC devices
through an integrated Whale Optimization Algorithm (WOA).
The terminal users produce high traffic, explaining the enhanced
latency of the cloud network. Owing to software-defined
networking, clouds, IoV, and fog networking are benefited from
centralized control and global knowledge. The performance of
the proposed model was compared with the WOA in terms of
latency. Based on experimental findings, the IoV-based load
balancing of SDN through integrated WOA outperformed other
load balancing schemes. It could effectively minimize the latency
while improving the QoS in fog computing, providing mobility
and position awareness in IoT.

iii. Offloading: Thanks to their proximity to vehicular users, edge
servers can lower the transmission cost and provide a rapid
response in the offloading services. Despite their prompt
response, edge servers usually encounter resource limitations in
comparison with conventional cloud servers with large compu-
tational capacities. The edge servers require a certain time for
computation tasks. This finds especial importance in the edge
servers situated at the road segments, as they face a large density
of vehicles. Zhang et al. [184] examined a computational off-
loading infrastructure with emphasis on the computational effi-
ciency of the transfer frameworks of V2I and V2V
communication. They also proposed an efficient predictive
combination-mode relegation scheme considering the execution
time of the tasks and vehicle mobility. In the mentioned model,
the tasks are offloaded to the MEC servers through direct upload
and predictive relay transmissions.

Lee and Lee [224] developed an offloading scheme based on
deep learning neural networks for evaluating the mobility pat-
terns of various vehicles and predicting resource accessibility for
future offload decisions. They employed the Proximal Policy
Optimization (PPO) algorithm as the DRL method through the
integration of the Recurrent Neural Network (RNN) with the
Deep Neural Network (DNN). This model was then applied to
assess previous resource allocation trends within the VFC envi-
ronments. Liao and coworkers [38] developed an online learning-
based framework for intelligent task offloading. In their model,
vehicles were trained to find an optimal task offloading strategy
with minimal latency. The training process relies on handover
costs, queuing delays, and the reliability of the accessible vehic-
ular fog nodes.

iv. Resource Management: Connectivity should be included in the
vehicles [225], thus, connected vehicles can increment the posi-
tional analysis to supply more information on the environment.
Acquisition, storage, and processing of the data of these vehicles
and their management are highly challenging.

Alsulami and colleagues [226] addressed the allocation of 5G
vehicular network resources for empowering network commu-
nication. Moreover, they developed a novel Federated Deep
Reinforcement Learning (FDRL) based on the vehicle communi-
cation method. They ultimately presented a UAV-aided vehicular
communication system based on FDRL-based UAVs for opti-
mizing QoS of 5G and 6G.

An edge server must include enough resources to be able to
transfer services from the source to the target nodes. In reality,
however, the edge node does not have sufficient resources, which
may lead to overload when several requests arrive. Using an in-
tegrated fuzzy logic [227], an approach was developed to
determine the best resources for vehicles for different conditions.
These situations include the quality of the inter-vehicular net-
works, their size and longevity, the number of accessible re-
sources, and the application requirements. The management
strategies were addressed in each edge node (fog node) by
channeling resource management in FeRANs [228]. The QoS was
enhanced with an emphasis on real-time vehicular services. Two
schemes were introduced in this regard: fog resource reservation
and fog resource reallocation. This approach managed to increase
the on-hop probability for real-time vehicular services even in
cases where the fog resource was loaded.

v. Security and Privacy: Security and privacy issues are of crucial
significance in vehicular crowd sensing, highlighting the need for
preserving the users’ identity and location. Diverse approaches
have been developed concerning crowdsensing and vehicle-based
sensing. EC can resolve these issues. Basudan et al. [229]
employed EC to introduce a privacy-preserving protocol to alle-
viate security in a crowdsensing-based road monitoring system.
The mentioned approach introduces certificateless aggregate
signcryption schemes with a prominent role in decreasing
communication overhead and accelerating the verification pro-
cess. This scheme exhibited minimal computational costs relative
to the other schemes. Moreover, the system model considered a
control center, RSUs, cloud servers, and vehicles as a part of the
road condition monitoring system.

As an inseparable element of intelligent transportation, the
vehicular communication network supports diverse mobile ap-
plications. Therefore, a secure method should be established to
provide effective data sharing. A data sharing scheme was
developed by Fan et al. [230], capable of analyzing a multi-
authority CPABE scheme through efficient decryption while
preserving a CPABE system against collusion attacks. The major
decryption is put forward to the cloud. An effective user and
multi-authority CPABE was also developed to ensure forward and
backward security. Fan and colleagues [230] addressed a novel
multiauthority CPABE scheme with the most efficient decryption
to realize data access control in a vehicle network and present an
efficient user- and attribute-revocation method. Numerous secu-
rity issues may emerge due to the fast-growing vehicular edge
networks. Therefore, more dynamic frameworks are required for
better encryption of information to prevent security and privacy
violations and reach a more secure EC system.

In VANETs, establishing trust among vehicles is crucial to
ensure the secure integrity and reliability of applications. Trusted
sources, which provide credible information from nearby vehi-
cles, play a significant role in this regard. Soleymani and co-
workers [231] have developed a fuzzy trust model that offers
higher speed, accuracy, and reliability. This model incorporates a
series of security checks to verify the credibility of the received
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information. It effectively handles data uncertainty in both line-
of-sight and non-line-of-sight scenarios. Additionally, the model
is capable of detecting defective nodes and identifying unautho-
rized attackers, enhancing the overall security of the network. By
employing this fuzzy trust model, VANETs can establish a trusted
environment where vehicles can rely on the information received
from other vehicles, ensuring the integrity and reliability of ap-
plications in various driving scenarios.

9. Critical challenges, open issue, and future work

Decentralizing the service infrastructure in VEC brings several ad-
vantages, including reduced latency, efficient energy utilization, and
increased throughput. To leverage these benefits, a minimum number of
vehicles are equipped with sensors for processing and wireless
communication, offering potential advantages such as improved safety,
efficiency, and convenience. However, there are several challenges that
need to be addressed in the VEC. The following sections provide a
detailed explanation of each of these issues.

9.1. Critical challenges

1. Mobility:

Traditional sensor network models are designed for static environ-
ments, while ad hoc networks primarily consider limited mobility sce-
narios involving laptops and manual devices. In contrast, vehicular
networks are characterized by continuous mobility, which poses unique
challenges. The mobility patterns of vehicles exhibit a strong correla-
tion, but each vehicle interacts with a constantly changing set of
neighbors. This dynamic nature makes reputation-based approaches less
applicable, as vehicles may not have sufficient data to evaluate the
trustworthiness of other vehicles. Additionally, the short-lived in-
teractions between vehicles limit the feasibility of protocols that rely on
sender-receiver interactions. To address these challenges, an enhanced
mobility model is necessary. This model should provide information on
vehicular speed, predict vehicular reputation, and capture temporal and
spatial distributions. By understanding vehicular attributes and mobility
patterns, communication and computational resource utilization can be
improved. Unlike conventional data centers, edge devices in VEC are
distributed across diverse platforms, introducing heterogeneity that re-
quires optimization of QoS across these platforms. Therefore, an effi-
cient mobility model is crucial for studying mobility patterns in different
environments and optimizing resource utilization. This model should
take into account the dynamic nature of vehicular networks and provide
insights into vehicular attributes and behavior to enhance the overall
performance of VEC.

2. Routing and forwarding:

Routing and forwarding in VEC pose several challenges related to the
switching of edge servers and their services as vehicles move from one
location to another. Two key issues are edge server switching and ser-
vice switching:

1) Edge server switching: Due to the high-speed movement of vehi-
cles, it is challenging to determine which vehicle is receiving services
from which base station or edge server based on traffic and public
transportation information. Predicting the next move of vehicles
remains an open research problem despite the development of
various techniques. This issue requires effective methods to track and
predict the movements of vehicles to ensure seamless handover of
services between edge servers.

2) Service switching: When vehicles change their position and move
to a different edge server, their associated services need to be
transferred to the new server. This requires efficient mechanisms to

predict the QoS for service recommendations. Comput and col-
leagues [232] developed an algorithm to address this problem by
predicting the QoS requirements for recommending suitable services
to vehicles during the switching process. Despite the efficiency of this
algorithm for mobile users, it might not be very efficient in a
vehicular environment. Therefore, a timely and reliable service
transmission between vehicles and edge servers to maintain the QoS
in a vehicular environment is a complex and delicate issue.

3. Content caching:

Content caching (e.g. prefetching and cooperative caching) can also
be implemented in VEC. The caching contents may include elements that
were not requested by vehicles, but they can take these contents over a
wireless connection. It might be useful for the vehicles to save or for-
ward these unrequested contents (e.g., alarms upon trouble). Some gaps
have yet remained in caching policies that encompass the most effective
temporal and spatial scopes of the vehicular contents, for instance,
caching-in contents out of their spatial scope (e.g., emergency signals on
the far-off side but still in the relevance area) and also caching-out the
old contents (e.g., traffic congestion an hour ago) with the following
technical implications:

• V2V communication can increment the network capacity in terms of
content caching, however, it fails in validating a reliable and high-
rate data service due to the dynamic and uncertain nature of the
network and its strict channel conditions.

• As the SRSUs are situated in various places and different network
operators can possess them, the cooperation of the SRSUs for content
provision must be regarded in terms of the pricing models.

• A caching scheme must be developed to increment content hit rate
with the least handover costs, by the identification of cache size
splitting, prevalent content updates, and ensuring mobility-aware
caching for smooth handover even for high-mobility vehicles.

These vehicular caching systems need such strategies, considering
the topographies and network configurations.

4. Deployment of network elements:

An adequate number of network elements can improve the perfor-
mance of the network on a large scale. Regarding the costly deployment
of the network equipment, a proper number of network elements should
be optimally installed. The main issue is the proper location to maximize
the efficiency of vehicular networks. Moreover, the cost and the position
of edge servers and SRSUs must be optimized to make the best use of the
available resources. Regarding the variable urban traffic distribution, a
higher number of servers must be installed in crowded areas. Given the
essential role of servers in the transmission of traffic packets, the SRSUs
in the proximity of the servers guide the traffic packets to the infra-
structure with no need for multi-hop communications. Using these in-
frastructures, the packets will be transferred to other nodes within the
network. Access to the infrastructure through a smaller number of hops
can decrease the receiving time of servers. Thus, an optimal model is
required capable of determining the minimum number of needed edge
servers and SRSUs to minimize the deployment cost while maximizing
the QoS.

5. Task migration:

Vehicle users must outsource computationally demanding and delay-
sensitive operations to edge servers owing to the capacity limitations.
Optimizing task migration decisions is essential given the dynamic
channel environment and frequently changing topology.

6. Resource management:
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The computation and storage capabilities of VEC are constrained in
comparison to CC. Therefore, it is important to know how to manage
these resources. The optimization of resource allocation is a difficult task
due to changing resource demands, various application features, and
complex traffic situations.

7. Security and Privacy:

The major application in VEC involves offloading the computation-
intensive tasks with strict delay to the edge of networks. The offloaded
tasks include sensitive and private data. Therefore, data confidentiality
should be guaranteed to avoid any type of information leakage. To avoid
the modification of forwarded or stored data, the integrity requirements
should be fulfilled. Moreover, vehicular users need a verifiable
computing scheme to make sure on receiving correct computation re-
sults from edge servers.

Security and privacy are two major issues in VEC with a huge impact
on the deployment and development of VEC systems. The great mobility
of vehicles has hindered solving the problem of trustworthiness among
nodes. Regarding the heterogeneity of VEC due to the presence of
numerous and various devices in vehicular networks, conventional trust
and authentication schemes will fail in this system. The clouds are
placed near users which makes the edge servers prone to attacks due to
their public deployment with no physical isolation. Moreover, they may
be turned malicious due to the user’s curiosity. Studies on the security
and privacy of VEC are in their infancy as a lot of problems have
remained unsolved. This opens fascinating research opportunities which
explain restless efforts in this field.

These challenges highlight the need for robust solutions that can
accurately predict vehicle movements and provide seamless service
switching between edge servers. By addressing these issues, VEC can
enhance the overall performance and QoS for vehicles in dynamic and
fast-paced environments.

9.2. Open issue

1. QoS:

Vehicle networks have a wide range of applications, which are pri-
marily divided into safety applications and non-safety applications.
Various types of applications are anticipated to have different QoS re-
quirements. While some non-safety applications, such as multimedia
downloading, can tolerate some delays, safety applications, which
include collision avoidance and traffic control, have severe delay re-
quirements that should be handled as quickly as possible. Therefore, a
worry in VEC is offering a flexible scheduling strategy to ensure the QoS
of various applications according to their priority.

2. Scalability:

Applications are coming in in abundance and growing quickly. As a
result, there are increased demands for low latency, excellent reliability,
and abundant computing and storage capacity. For completing various
task kinds, it is essential to schedule resources effectively and perform
connectivity management effectively. Furthermore, unlike traditional
clouds, vehicle users in VEC may be dispersed unevenly throughout
vehicular networks.

Vehicle densities are changing over time in various locations. The
system that was created should be able to adjust to changing network
conditions.

3. Monetary advantage:

Resource sharing is at the heart of the VEC implementation.
If they can be fairly compensated, resource owners are prepared to

share their resources. The pricing system assumes a crucial role in this

scenario. How can the values of various resources be quantified to bal-
ance the profits of both resource users and resource providers The dis-
tribution of retained earnings among connected companies, such as
cloud service providers, mobile service providers, and edge service
providers, should be taken into consideration by resource providers.

4. Big data analytics:

It is essential to efficiently classify and evaluate vehicle data because
of the variances, temporal and spatial data elements, large volumes, and
various data elements. BD integration with SDN and NFV in the real-
world setting of vehicle offloading is still a controversial topic [10].

5. Cooperative vehicular environment:

A significant method to manage severe channel fading and offload
data from infrastructures is cooperative communication. In a scenario
involving cooperative computing, several vehicles can participate by
acting as cooperators to assist their nearby counterparts in carrying out
computing activities and delivering the outcome to the beneficiary. In
particular, the cooperation strategy should be developed by jointly
considering user behaviors and vehicle status. Additionally, it is crucial
to combine promising optimization theory with BD.

Users in vehicle networks could share interests in particular content
due to comparable social activities. Contrarily, content is transmitted by
RSU-based MEC because direct connection between vehicles is ineffec-
tive. Consequently, researching different V2V and V2I communication
protocols is essential for enhancing performance, particularly in the case
of V2V and V2I offloading [208].

6. Data timeliness:

The high velocity, dynamic temporal/spatial fluctuation, and
rigorous timeliness requirements of BD gathered from the trans-
portation, ICT, energy, and social sectors could cause the data to
instantly become outdated. More consideration should be given to data
timeliness. To ensure that the data of end-user devices, surroundings,
and systems can be obtained in a timely manner and that successful
strategies for energy-efficient VEC can be realized, it is imperative to
create efficient data collecting and processing approaches [10].

9.3. Future work

1. Energy Efficiency and Several Applications for Vehicles:

The subject of offloading computation to independent computing
tasks has been examined in numerous research that has already been
published. However, implementing energy-efficient ComOf decisions
continues to be a difficult topic because of the inter-task dependency in
multiple devices that frequently occurs in IoV systems.

A crucial EC strategy for effectively enhancing the processing ca-
pacity of IoT sensors is ComOf. Additionally, computation offloading
can reduce calculation energy consumption at the expense of increased
transmission energy use. As a result, one of the main difficulties in the
ComOf problem is balancing the trade-off between computation and
communication costs to maximize offloading solutions.

2. Interference Coordination:

In VEC, interference is a critical problem, particularly when it comes
to co-channel transmission when caching and offloading are occurring.
D2D is one of the strategies used by VEC to meet the demands of 5G. It is
necessary to investigate how to handle the conflict between D2D and
conventional communications.

3. Privacy and Security:
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Proper privacy data security methods should be implemented since
the majority of proposed VEC frameworks incorporated a variety of
information, ranging from mobile devices to infrastructures. To ensure a
secure connection and uphold data confidentiality during the offloading
procedures, the underlying threat must be investigated. Since the end-
user must obtain trustworthy data for safer driving objectives, false in-
formation conveyance and traffic scene forgeries are among the security
issues in VEC. To prevent data theft, it is also important to secure vehicle
content.

4. Improved Vehicle Communications:

When you’re operating a vehicle, every second counts. The infor-
mation gathered by local sensors in vehicles would then be continuously
uploaded to the closest edge device. To prevent service interruptions and
QoS loss, energy and power consumption at the edge should be taken
into account.

Additionally, certain situations, such as severe traffic congestion,
unforeseen weather conditions, or unforeseen road construction activ-
ities, require significant QoS enhancement to handle periodic high
traffic loads. As a result, more research is required to improve and
control QoS in the context of V2X while considering a heterogeneous
edge-based environment.

5. Offloading AI Algorithms:

Cutting-edge advances in AI techniques have opened up a slew of
new opportunities for ITS, aided in particular by the vehicles’ intelligent
sensors, which are constantly improving over time and allowing the
vehicles to better assess their surroundings [233]. Both the paradigms of
task offloading, and vehicle data have seen the use of AI or ML
algorithms.

In most cases, ML algorithms demand higher computational re-
sources, which can be provided by edge servers, such as VEC or VCC.

In terms of Al algorithms, further study in this field is urgently
needed, given the dynamic nature of the vehicles environment, the va-
riety of application needs, and the strict delay requirements of vehicular
applications and services [234].

In most cases, ML algorithms demand higher computational re-
sources, which can be provided by edge servers, such as VEC or VCC.
Numerous vehicular-focused AI applications implementing DL frame-
works also require offloading for processing, in addition to AI algorithms
for offloading to make optimal decisions.

10. Conclusion

In conclusion, this study delved into the transformative landscape of
EC and its pivotal role in reshaping the future of computational para-
digms. With its attributes of reduced latency, optimized bandwidth
usage, and enhanced data privacy, EC sets the stage for critical ad-
vancements across various application domains, ranging from autono-
mous vehicles to smart homes.

The focal point of our investigation was the intricate domain of
computation offloading within the context of Edge-IoV networks,
particularly in the industry 4.0 era and beyond. Navigating through the
collaborative environment of cloud-edge computing, our research ad-
dresses the complex decision-making processes involved in computation
offloading, necessitating resource management and allocation across
multiple entities.

Our exploration extended to the promising architecture of VEC,
designed to bolster scalability, facilitate real-time data delivery, and
enhance mobility within vehicular networks. The impact of VEC on
computational performance, promoting intelligent vehicular computing
and optimal utilization of underutilized computational resources within
vehicles, was a key focal point.

This study also conducted an exhaustive review of existing works in

the realm of VEC, shedding light on the current state of research and
laying the foundation for future advancements. To guide further
exploration, we have proposed several avenues for future research and
identified open challenges that beckon the attention of academics and
researchers in this dynamic field.

In reflection, our discussions aim to serve not only the research
community but also offer valuable insights for industrial practitioners.
The comprehension of computation offloading within the EC framework
presented in this article can inform the development of superior systems,
incorporating advanced resource management and computing place-
ment mechanisms.

Despite these contributions, we acknowledge the need for clarity in
our conclusion. To better serve our readers, we commit to refining and
elucidating our concluding remarks, ensuring a more seamless under-
standing of the implications and findings of our study.
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