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a b s t r a c t 

An efficient trigonometrical-fitted two-derivative multistep collocation (TF-TDMC) method us- 

ing Legendre polynomials up to order five as the basis functions, has been developed for solving 

second-order ordinary differential equations with oscillatory solution effectively. Interpolation 

method of approximated power series and collocation technique of its second and third deriva- 

tive are implemented in the construction of the methods. Two-derivative multistep collocation 

methods are developed in predictor and corrector form with varying collocation and interpolation 

points. Later, trigonometrically-fitting technique is implemented into TF-TDMC method, using the 

linear combination of trigonometrical functions, to produce frequency-dependent coefficients in 

TF-TDMC method. The stability of the TF-TDMC method, with fitted parameters, is thoroughly 

analyzed and has been proven to achieve zero stability. Stability polynomials and regions for 

predictor and corrector of TF-TDMC method are developed and plotted. In the operation of the 

TF-TDMC method, initial conditions and the frequency for each problem (based on the exact so- 

lutions) are identified. The frequency-dependent coefficients are then adjusted according to the 

identified frequency. Predictor and corrector steps are implemented to estimate and refine the 

values of the dependent variable and its derivative, ensuring that convergence is achieved. 

A numerical experiment demonstrates that the proposed method significantly outperforms 

other existing methods in the literature, achieving the lowest maximum global error with moder- 

ate computational time across all step sizes for solving second-order ordinary differential equa- 

tions with oscillatory solutions. Additionally, it effectively addresses real-world perturbed Kepler 

problems. The results include a detailed discussion and analysis of the numerical performance. 

• An efficient two-derivative multistep collocation method in predictor-corrector mode with 

trigonometrically-fitting technique (TF-TDMC) is developed for direct solving second-order 

ordinary differential equations with oscillatory solution. 

• TF-TDMC method has been proved to acquire zero-stability and its stability region is analyzed. 

• TF-TDMC method is the best among all selected methods in solving second-order ordinary 

differential equations with oscillatory solution, including perturbed Kepler problem. 
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Background 

Second-order ordinary differential equations (ODEs) find extensive utility in forecasting and predicting the evolution of scien- 

tific phenomena and application issues, particularly within engineering and physics domains. Examples include their application to 

astrophysics, control theory, electric circuits, mass-spring system and classical mechanics [ 1–4 ]. Numerous studies have been con- 

ducted to develop effective techniques for integrating second-order ODEs, particularly those with specific patterns or properties. 

Fitting techniques are especially popular for handling second-order ODEs with periodic solutions, including trigonometrical fitting, 

phase and amplification fitting and functional fitting techniques [ 5–6 ]. By accurately capturing the oscillatory nature of the problem,

these methods ensure that the numerical solution remains close to the exact solution over long time intervals, which is critical for

maintaining accuracy in simulations and predictions. 

Numerous efficient methods have been developed for solving high-order ODEs and application problems, including the block 

collocation methods [ 7–10 ]. Various collocation methods are developed based on different polynomials and functions in recent 

years, including Chebyshev polynomials, Block-Pulse functions, Newton-Gregory backward difference polynomial and power series 

[ 11–13 ]. These methods offer the advantage of efficiently handling large differential equations by dividing the problem into smaller,

more manageable sub-intervals, which simplifies the numerical solution process and improves accuracy. This approach reduces the 

computational complexity and error by transforming the differential equations into algebraic equations within each sub-interval, 

allowing for more precise and stable approximations. 

To effectively integrate differential equations with specific solutions like exponential and periodic functions, many researchers 

have developed linear or block multistep methods that incorporate specialized fitting techniques [ 14–16 ]. The fitting techniques 

in the block collocation method, such as functionally fitted and trigonometric-fitted approaches, enhance accuracy and efficiency 

by customizing the basis functions to align with the specific characteristics of the differential equations being solved [ 17–20 ]. This

customization allows for more precise numerical approximations and improved handling of complex problems, such as oscillatory or 

periodic solutions, leading to better overall performance in solving differential equations. However, there is a lack of advancement 

in further enhancing existing methods that use fitting techniques. Future improvements could involve integrating multiple enhance- 

ments, such as incorporating two-derivative approaches, refining fitting techniques and employing predictor-corrector strategies to 

boost accuracy and efficiency. 

In this study, we propose an explicit fifth-order, two-derivative multistep method using a predictor-corrector approach, denoted as 

the TF-TDMC method, for the direct integration of second-order ODEs with periodic solutions. The TF-TDMC method is derived using

Chebyshev polynomials of up to the fifth order as the basis functions. It involves collocating the differential equation at different points,

interpolating the approximate solution through Chebyshev polynomials at the grid points. The method incorporates a trigonometrical- 

fitting technique to generate frequency-dependent coefficients, enhancing its accuracy for solving second-order ODEs with periodic 

solutions. Additionally, we provide a comprehensive stability analysis and error norm assessment of the proposed method. The article

includes numerical tests comparing the TF-TDMC method with several existing multistep methods, including tests on the notable 

nonlinear perturbed Kepler problem. The final section concludes with a discussion and summary of the findings. 

Method details 

Derivation of two-derivative multistep collocation method 

In this study, we plan to construct efficient fifth-order two-derivative multistep collocation (TDMC) method with predictor- 

corrector mode to solve special class of second-order ordinary differential equation in the form of 

𝑦′′( 𝑥 ) = 𝑓 ( 𝑥, 𝑦 ( 𝑥 )) , 𝑦 (𝑥0 ) = 𝑦0 , 𝑦
′(𝑥0 ) = 𝑦′0 . (1) 

We begin with the general formulation of TDMC method for solving problem (1), comprises the derivative of the solution 𝑦′′′( 𝑥 ) =
𝑔( 𝑥, 𝑦 ( 𝑥 ) , 𝑦′( 𝑥 )) = 𝑔𝑥 ( 𝑥, 𝑦 ( 𝑥 ) , 𝑦′( 𝑥 )) + 𝑔𝑦 ( 𝑥, 𝑦 ( 𝑥 ) , 𝑦′( 𝑥 )) 𝑦′ + 𝑔𝑦′ ( 𝑥, 𝑦 ( 𝑥 ) , 𝑦′( 𝑥 )) 𝑓 as follows: 

𝑘 ∑
𝑗=0 

𝛼𝑗 𝑦 ( 𝑥 + 𝑗ℎ ) +
𝑚1 ∑
𝑗=0 

𝛼𝑣𝑗 
𝑦 ( 𝑥 + 𝑣𝑗 ℎ ) = ℎ2 

( 

𝑘 ∑
𝑗=0 

𝛽𝑗 𝑓𝑛 + 𝑗 +
𝑚2 ∑
𝑗=0 

𝛽𝑣𝑗 
𝑓𝑛 +𝑣𝑗 

) 

+ ℎ3 

( 

𝑘 ∑
𝑗=0 

𝛾𝑗 𝑔𝑛 + 𝑗 +
𝑚3 ∑
𝑗=0 

𝛾𝑣𝑗 
𝑔𝑛 +𝑣𝑗 

) 

, (2) 

where 𝛼𝑗 , 𝛼𝑣𝑗 
, 𝛽𝑗 , 𝛽𝑣𝑗 

, 𝛾𝑗 , 𝛾𝑣𝑗 
∈ ℝ , 𝑚1 , 𝑚2 , 𝑚3 , 𝑘 ∈ ℤ+ and 𝑣𝑗 is non-integer. 

To construct TDMC method, we approximate the solution by employing the interpolating function with Legendre polynomials 

serving as basis functions, 

𝑇 = 1 , 
0 

2
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𝑇1 = 𝑧, 

𝑇2 = 

3 
2 

𝑧2 − 1 
2 

, 

𝑇3 = 

5 
2 

𝑧3 − 3 
2 

𝑧, 

𝑇4 = 

35 
8 

𝑧4 − 15 
4 

𝑧2 + 3 
8 

, 

𝑇5 = 

63 
8 

𝑧5 − 35 
4 

𝑧3 + 15 
8 

𝑧. (3) 

Then, we approximate the solution using an interpolating function (power series) in the following equation: 

𝑌 ( 𝑥 ) =
𝑠1 +𝑠2 + 𝜂−1 ∑

𝑗=0 
𝑎𝑗 𝑇𝑗 ( 𝑥 ) , (4) 

where 𝑥 ∈ [𝑥0 , 𝑏 ] , 𝑎𝑗 is unknown parameter, 𝑇𝑗 is Legendre polynomial, 𝑠1 and 𝑠2 are the number of interpolations for second and

third derivative respectively, 𝜂 is distinct collocation point with 𝜂 > 0 and 𝑏 is endpoints of interval. 

Similarly, the second derivative of third derivative of interpolating function will be as follows: 

𝑌 ′′( 𝑥 ) =
𝑠1 +𝑠2 + 𝜂−1 ∑

𝑗=0 
𝑎𝑗 𝑇

′′
𝑗 ( 𝑥 ) , 

𝑌 ′′′( 𝑥 ) =
𝑠1 +𝑠2 + 𝜂−1 ∑

𝑗=0 
𝑎𝑗 𝑇

′′′
𝑗 ( 𝑥 ) . (5) 

The continuous approximation is formulated by enforcing the following conditions: 

𝑌 (𝑥𝑛 + 𝜂) = 𝑦𝑛 + 𝜂, 𝜂 = 0 , 1 , 5 
3 

, 

𝑌 ′′(𝑥𝑛 +𝑠1 
) = 𝑓𝑛 +𝑠1 

, 𝑠1 = 0 , 1 , 5 
3 

, 2 , 

𝑌 ′′′(𝑥𝑛 +𝑠2 
) = 𝑔𝑛 +𝑠2 

, 𝑠2 = 0 , 1 , 5 
3 

, 2 . (6) 

At first, we develop predictor formulae for TDMC method, we solve three set of equations based on (4) and (5) to obtain the

predictor based on the grid points, 5 3 and 2. We solve 𝑌 (𝑥𝑛 ) , 𝑌 (𝑥𝑛 +1 ) , 𝑌 ′′(𝑥𝑛 ) , 𝑌 ′′(𝑥𝑛 +1 ) , 𝑌 ′′′(𝑥𝑛 ) , 𝑌 ′′′(𝑥𝑛 +1 ) simultaneously to obtain

coefficients 𝑎𝑗 , 𝑗 = 0 , 1 , ..., 5 , then substituting the values 𝑎𝑗 into Eq. (4) and yield the continuous method as follows: 

𝑌 ( 𝑥 ) =
1 ∑
0 

𝛼𝑗 𝑦𝑛 + 𝑗 + ℎ2 
1 ∑
0 

𝛽𝑗 𝑓𝑛 + 𝑗 + ℎ3 
1 ∑
0 

𝛾𝑗 𝑔𝑛 + 𝑗 . (7) 

Later, we express 𝛼𝑗 , 𝛽𝑗 , 𝛾𝑗 as continuous coefficients in terms of 𝑡 by letting 𝑡 = 𝑥 −𝑥𝑛 

ℎ 
, the following parameters as obtained as 

𝛼0 = 1 − 𝑡, 𝛼1 = 𝑡, 

𝛽0 = − 7 
20 

𝑡 + 1 
2 

𝑡2 − 1 
4 

𝑡4 + 1 
10 

𝑡5 , 

𝛽1 = − 3 
20 

𝑡 + 1 
4 

𝑡4 − 1 
10 

𝑡5 , 

𝛾0 = − 1 
20 

𝑡 + 1 
6 

𝑡3 − 1 
6 

𝑡4 + 1 
20 

𝑡5 , 

𝛾1 =
1 
30 

𝑡 − 1 
12 

𝑡4 + 1 
20 

𝑡5 . (8) 

Let 𝑡 = 5 
3 , we get 

𝑦
𝑛 + 5 

3 
= −2 

3 
𝑦𝑛 +

5 
3 

𝑦𝑛 +1 + ℎ2 
( 79 
486 

𝑓𝑛 +
191 
486 

𝑓𝑛 +1 

)
+ ℎ3 

( 11 
243 

𝑔𝑛 +
1 
18 

𝑔𝑛 +1 

)
. (9) 

To obtain the equation for 𝑦′
𝑛 + 5 

3 
, Eq. (7) is differentiated with respect to 𝑥, substituted by 𝑡 = 𝑥 −𝑥𝑛 

ℎ 
and setting 𝑡 = 5 

3 , resulting in: 

𝑦′
𝑛 + 5 

3 
= 1 

ℎ 

[
−𝑦𝑛 + 𝑦𝑛 +1 + ℎ2 

( 883 
1620 

𝑓𝑛 +
1007 
1620 

𝑓𝑛 +1 

)
+ ℎ3 

( 49 
270 

𝑔𝑛 +
679 
1620 

𝑔𝑛 +1 

)]
. (10) 

Similarly, we simultaneously solve for 𝑌 (𝑥𝑛 +1 ) , 𝑌 (𝑥𝑛 +5∕3 ) , 𝑌 ′′(𝑥𝑛 +1 ) , 𝑌 ′′(𝑥𝑛 +5∕3 ) , 𝑌 ′′′(𝑥𝑛 +1 ) , 𝑌 ′′′(𝑥𝑛 +5∕3 ) to derive new coefficients

𝑎𝑗 , 𝑗 = 0 , 1 , ..., 5 . Subsequently, by substituting these 𝑎𝑗 into Eq. (4) , we derived continuous method successfully as follows: 

𝑌 ( 𝑥 ) = 𝛼1 𝑦𝑛 +1 + 𝛼5∕3 𝑦𝑛 +5∕3 + ℎ2 (𝛽1 𝑓𝑛 +1 + 𝛽5∕3 𝑓𝑛 +5∕3 
)
+ ℎ3 (𝛾1 𝑔𝑛 +1 + 𝛾5∕3 𝑔𝑛 +5∕3 

)
. (11) 
3
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Subsequently, when we define 𝛼𝑘 , 𝛽𝑘 , 𝛾𝑘 , 𝑘 = 1 , 5 
3 , as continuous functions of 𝑡 by setting 𝑡 = 𝑥 −𝑥𝑛 

ℎ 
, we acquire 

𝛼1 =
5 
2 
− 3 

2 
𝑡, 𝛼5∕3 = −3 

2 
+ 3 

2 
𝑡, 

𝛽1 = −1 
6 
+ 649 

240 
𝑡 − 25 

4 
𝑡2 + 45 

8 
𝑡3 − 9 

4 
𝑡4 + 27 

80 
𝑡5 , 

𝛽5∕3 = 1 − 323 
80 

𝑡 + 27 
4 

𝑡2 − 45 
8 

𝑡3 + 9 
4 

𝑡4 − 27 
80 

𝑡5 , 

𝛾1 = − 73 
144 

+ 1469 
720 

𝑡 − 25 
8 

𝑡2 + 55 
24 

− 13 
16 

𝑡4 + 9 
80 

𝑡5 , 

𝛾5∕3 = −109 
432 

+ 2327 
2160 

𝑡 − 15 
8 

𝑡2 + 13 
8 

− 11 
16 

𝑡4 + 9 
80 

𝑡5 . (12) 

When 𝑡 = 2 , we obtain 𝑦𝑛 +2 and its derivative (differentiate Eq. (11) with respect to 𝑥 and 𝑡 = 𝑥 −𝑥𝑛 

ℎ 
) as follows: 

𝑦𝑛 +2 = −1 
2 

𝑦𝑛 +1 +
3 
2 

𝑦𝑛 +5∕3 + ℎ2 
( 1 
24 

𝑓𝑛 +1 +
1 
8 

𝑓𝑛 +5∕3 

)
+ ℎ3 

( 1 
144 

𝑔𝑛 +1 +
1 

432 
𝑔𝑛 +5∕3 

)
, 

𝑦′𝑛 +2 =
1 
ℎ 

[
−3 
2 

𝑦𝑛 +1 +
3 
2 

𝑦𝑛 +5∕3 + ℎ2 
( 49 
240 

𝑓𝑛 +1 +
37 
80 

𝑓𝑛 +5∕3 

)
+ ℎ3 

( 29 
720 

𝑔𝑛 +1 +
167 
2160 

𝑔𝑛 +5∕3 

)]
. (13) 

To derive the equation for the corrector, we simultaneously solve for 𝑌 (𝑥𝑛 +1 ) , 𝑌 (𝑥𝑛 +5∕3 ) , 𝑌 ′′(𝑥𝑛 +5∕3 ) , 𝑌 ′′(𝑥𝑛 +2 ) , 
𝑌 ′′′(𝑥𝑛 +5∕3 ) , 𝑌 ′′′(𝑥𝑛 +2 ) . Using the similar ways, we obtain 

𝑦𝑛 +2 = −1 
2 

𝑦𝑛 +1 +
3 
2 

𝑦𝑛 +5∕3 + ℎ2 
(
−1 
4 

𝑓𝑛 +5∕3 +
5 
12 

𝑓𝑛 +2 

)
+ ℎ3 

(
− 11 
108 

𝑔𝑛 +5∕3 −
1 
18 

𝑔𝑛 +2 

)
, 

𝑦′𝑛 +2 =
1 
ℎ 

[
−3 
2 

𝑦𝑛 +1 +
3 
2 

𝑦𝑛 +5∕3 + ℎ2 
(
− 7 
10 

𝑓𝑛 +5∕3 +
41 
30 

𝑓𝑛 +2 

)
+ ℎ3 

(
−163 
540 

𝑔𝑛 +5∕3 −
31 
180 

𝑔𝑛 +2 

)]
. (14) 

Therefore, the complete formula for the corrector is provided below: 

𝑦
𝑛 + 5 

3 
= −2 

3 
𝑦𝑛 +

5 
3 

𝑦𝑛 +1 + ℎ2 
( 79 
486 

𝑓𝑛 +
191 
486 

𝑓𝑛 +1 

)
+ ℎ3 

( 11 
243 

𝑔𝑛 +
1 
18 

𝑔𝑛 +1 

)
, 

ℎ𝑦′
𝑛 + 5 

3 
= −𝑦𝑛 + 𝑦𝑛 +1 + ℎ2 

( 883 
1620 

𝑓𝑛 +
1007 
1620 

𝑓𝑛 +1 

)
+ ℎ3 

( 49 
270 

𝑔𝑛 +
679 
1620 

𝑔𝑛 +1 

)
, 

𝑦𝑛 +2 = −1 
2 

𝑦𝑛 +1 +
3 
2 

𝑦
𝑛 + 5 

3 
+ ℎ2 

( 

1 
24 

𝑓𝑛 +1 +
1 
8 

𝑓
𝑛 + 5 

3 

) 

+ ℎ3 
( 

1 
144 

𝑔𝑛 +1 +
1 

432 
𝑔

𝑛 + 5 
3 

) 

, 

ℎ𝑦′𝑛 +2 = −3 
2 

𝑦𝑛 +1 +
3 
2 

𝑦
𝑛 + 5 

3 
+ ℎ2 

( 

49 
240 

𝑓𝑛 +1 +
37 
80 

𝑓
𝑛 + 5 

3 

) 

+ ℎ3 
( 

29 
720 

𝑔𝑛 +1 +
167 
2160 

𝑔
𝑛 + 5 

3 

) 

, (15) 

Corrector formula: 

𝑦𝑛 +2 = −1 
2 

𝑦𝑛 +1 +
3 
2 

𝑦𝑛 +5∕3 + ℎ2 
(
−1 
4 

𝑓𝑛 +5∕3 +
5 
12 

𝑓𝑛 +2 

)
+ ℎ3 

(
− 11 
108 

𝑔𝑛 +5∕3 −
1 
18 

𝑔𝑛 +2 

)
, 

ℎ𝑦′𝑛 +2 = −3 
2 

𝑦𝑛 +1 +
3 
2 

𝑦𝑛 +5∕3 + ℎ2 
(
− 7 
10 

𝑓𝑛 +5∕3 +
41 
30 

𝑓𝑛 +2 

)
+ ℎ3 

(
−163 
540 

𝑔𝑛 +5∕3 −
31 
180 

𝑔𝑛 +2 

)
. (16) 

Trigonometrically-Fitted two-derivative linear multistep method 

In developing the TDMC method with a trigonometric fitting technique, denoted as TF-TDMC method, we replace some coefficients 

in TDMC method with 𝐴𝑖 and 𝐵𝑖 , 𝑖 = 1 , 2 , ..., 6 as follows: 

𝑦
𝑛 + 5 

3 
= −2 

3 
𝑦𝑛 +

5 
3 

𝑦𝑛 +1 + ℎ2 
(
𝐴1 𝑓𝑛 +

191 
486 

𝑓𝑛 +1 

)
+ ℎ3 

(
𝐴2 𝑔𝑛 +

1 
18 

𝑔𝑛 +1 

)
, 

𝑦𝑛 +2 = −1 
2 

𝑦𝑛 +1 +
3 
2 

𝑦
𝑛 + 5 

3 
+ ℎ2 

( 

1 
24 

𝑓𝑛 +1 + 𝐴3 𝑓𝑛 + 5 
3 

) 

+ ℎ3 
( 

1 
144 

𝑔𝑛 +1 + 𝐴4 𝑔𝑛 + 5 
3 

) 

, 

ℎ𝑦′
𝑛 + 5 

3 
= −𝑦𝑛 + 𝑦𝑛 +1 + ℎ2 

(
𝐵1 𝑓𝑛 +

1007 
1620 

𝑓𝑛 +1 

)
+ ℎ3 

(
𝐵2 𝑔𝑛 +

679 
1620 

𝑔𝑛 +1 

)
, 

ℎ𝑦′𝑛 +2 = −3 
2 

𝑦𝑛 +1 +
3 
2 

𝑦
𝑛 + 5 

3 
+ ℎ2 

( 

49 
240 

𝑓𝑛 +1 + 𝐵3 𝑓𝑛 + 5 
3 

) 

+ ℎ3 
( 

29 
720 

𝑔𝑛 +1 + 𝐵4 𝑔𝑛 + 5 
3 

) 

, (17) 

𝑦𝑛 +2 = −1 
2 

𝑦𝑛 +1 +
3 
2 

𝑦𝑛 +5∕3 + ℎ2 
(
𝐴5 𝑓𝑛 +5∕3 +

5 
12 

𝑓𝑛 +2 

)
+ ℎ3 

(
𝐴6 𝑔𝑛 +5∕3 −

1 
18 

𝑔𝑛 +2 

)
, 

ℎ𝑦′𝑛 +2 = −3 
2 

𝑦𝑛 +1 +
3 
2 

𝑦𝑛 +5∕3 + ℎ2 
(
𝐵5 𝑓𝑛 +5∕3 +

41 
30 

𝑓𝑛 +2 

)
+ ℎ3 

(
𝐵6 𝑔𝑛 +5∕3 −

31 
180 

𝑔𝑛 +2 

)
. (18) 
4
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We set 𝑦𝑛 + 𝑘 = 𝑒i 𝜃𝑥 𝑒𝑘 i 𝑤 , 𝑘 = 0 , 1 , 5 
3 , 2 where i is imaginary unit, 𝑤 = 𝜃ℎ and 𝜃 ∈ ℝ . Subsequently, we determine the first derivative,

𝑦′𝑛 + 𝑘 , second derivative, 𝑓𝑛 + 𝑘 and third derivative, 𝑔𝑛 + 𝑘 using the formula of 𝑦𝑛 + 𝑘 as mentioned above. Then, exponential functions 

𝑒i 𝜃𝑥 and 𝑒−i 𝜃𝑥 are integrated at each stage, we obtain the equations corresponding to 𝑦, ℎ𝑦′ below: 

𝑒
± 5 

3 i 𝑤 = −2 
3 
+ 5 

3 
𝑒±i 𝑤 − 𝑤2 

(
𝐴1 +

191 
486 

𝑒±i 𝑤 
)
∓ i𝑤3 

(
𝐴2 +

1 
18 

𝑒±i 𝑤 
)
, 

𝑒±2i 𝑤 = −1 
2 

𝑒±i 𝑤 + 3 
2 

𝑒
± 5 

3 i 𝑤 − 𝑤2 
( 1 
24 

𝑒±i 𝑤 + 𝐴3 𝑒
± 5 

3 i 𝑤 
)
∓ i𝑤3 

( 1 
144 

𝑒±i 𝑤 + 𝐴4 𝑒
± 5 

3 i 𝑤 
)
, 

𝑒±2i 𝑤 = −1 
2 

𝑒±i 𝑤 + 3 
2 

𝑒
± 5 

3 i 𝑤 − 𝑤2 
(
𝐴5 𝑒

± 5 
3 i 𝑤 + 5 

12 
𝑒±2i 𝑤 

)
∓ i𝑤3 

(
𝐴6 𝑒

± 5 
3 i 𝑤 − 1 

18 
𝑒±2i 𝑤 

)
, 

±i 𝑤𝑒
± 5 

3 i 𝑤 = −1 + 𝑒±i 𝑤 − 𝑤2 
(
𝐵1 +

1007 
1620 

𝑒±i 𝑤 
)
∓ i𝑤3 

(
𝐵2 +

679 
1620 

𝑒±i 𝑤 
)
, 

±i 𝑤𝑒±2i 𝑤 = −3 
2 

𝑒±i 𝑤 + 3 
2 

𝑒
± 5 

3 i 𝑤 − 𝑤2 
( 49 
240 

𝑒±i 𝑤 + 𝐵3 𝑒
± 5 

3 i 𝑤 
)
∓ i𝑤3 

( 29 
720 

𝑒±i 𝑤 + 𝐵4 𝑒
± 5 

3 i 𝑤 
)
, 

±i 𝑤𝑒±2i 𝑤 = −3 
2 

𝑒±i 𝑤 + 3 
2 

𝑒
± 5 

3 i 𝑤 − 𝑤2 
(
𝐵3 𝑒

± 5 
3 i 𝑤 + 41 

30 
𝑒±2i 𝑤 

)
∓ i𝑤3 

(
𝐵4 𝑒

± 5 
3 i 𝑤 − 31 

180 
𝑒±2i 𝑤 

)
. (19) 

The relation cos ( 𝑤 ) = 𝑒i 𝑤 +𝑒−i 𝑤 

2 and sin ( 𝑤 ) = 𝑒i 𝑤 −𝑒−i 𝑤 

2i are substituted in the equations Eq. (19) corresponding to 𝑦 , we get trigono-

metric functions of 𝑤 below: 

cos 
( 5 
3 

𝑤 

)
= −2 

3 
+ 5 

3 
cos ( 𝑤) − 𝑤2 

[
𝐴1 +

191 
486 

cos ( 𝑤) 
]
+ 1 

18 
𝑤3 sin ( 𝑤) , 

sin 
( 5 
3 

𝑤 

)
= 5 

3 
sin ( 𝑤) − 191 

486 
𝑤2 sin ( 𝑤) − 𝑤3 

[
𝐴2 +

1 
18 

cos ( 𝑤) 
]
, 

cos ( 2 𝑤 ) = −1 
2 
cos ( 𝑤) + 3 

2 
cos 

(5 
3 

𝑤 

)
− 𝑤2 

[ 1 
24 

cos ( 𝑤) + 𝐴3 cos 
( 5 
3 

𝑤 

)]
+ 𝑤3 

[ 1 
144 

sin ( 𝑤) + 𝐴4 sin 
(5 
3 

𝑤 

)]
, 

sin ( 2 𝑤 ) = −1 
2 
sin ( 𝑤) + 3 

2 
sin 

(5 
3 

𝑤 

)
− 𝑤2 

[ 1 
24 

sin ( 𝑤) + 𝐴3 sin 
( 5 
3 

𝑤 

)]
− 𝑤3 

[ 1 
144 

cos ( 𝑤) + 𝐴4 cos 
(5 
3 

𝑤 

)]
, 

cos ( 2 𝑤 ) = −1 
2 
cos ( 𝑤) + 3 

2 
cos 

(5 
3 

𝑤 

)
− 𝑤2 

[
𝐴5 cos 

(5 
3 

𝑤 

)
+ 5 

12 
cos ( 2 𝑤 ) 

]
+ 𝑤3 

[
𝐴6 sin 

(5 
3 

𝑤 

)
− 1 

18 
sin ( 2 𝑤 ) 

]
, 

sin ( 2 𝑤 ) = −1 
2 
sin ( 𝑤) + 3 

2 
sin 

(5 
3 

𝑤 

)
− 𝑤2 

[
𝐴5 sin 

(5 
3 

𝑤 

)
+ 5 

12 
sin ( 2 𝑤 ) 

]
− 𝑤3 

[
𝐴6 cos 

(5 
3 

𝑤 

)
− 1 

18 
cos ( 2 𝑤 ) 

]
, (20) 

Further solving Eq. (20) and apply Taylor series expansion, we obtain the frequency-dependent parameters of 𝐴𝑖 , 𝑖 = 1 , 2 , ..., 6 . 

𝐴1 =
79 
486 

+ 191 
104976 

𝑤4 − 56411 
132269760 

𝑤6 + 1043333 
42855402240 

𝑤8 − 44178307 
63640272326400 

𝑤10 + 𝑂
(
𝑤12 ), 

𝐴2 =
11 
243 

+ 919 
787320 

𝑤4 − 10153 
89282088 

𝑤6 + 56603 
12856620672 

𝑤8 − 4655327 
47730204244800 

𝑤10 + 𝑂
(
𝑤12 ), 

𝐴3 =
1 
8 
− 11 

174960 
𝑤4 − 89 

29393280 
𝑤6 + 113 

2645395200 
𝑤8 + 26027 

84853696435200 
𝑤10 + 𝑂

(
𝑤12 ), 

𝐴4 =
1 

432 
− 1 

58320 
𝑤4 + 949 

2380855680 
𝑤6 − 277 

71425670400 
𝑤8 + 29 

1346884070400 
𝑤10 + 𝑂

(
𝑤12 ), 

𝐴5 = −1 
4 
+ 67 

349920 
𝑤4 − 47 

29393280 
𝑤6 + 31 

5290790400 
𝑤8 − 589 

42426848217600 
𝑤10 + 𝑂

(
𝑤12 ), 

𝐴6 = − 11 
108 

+ 1 
116640 

𝑤4 − 11 
340122240 

𝑤6 + 1 
142851340800 

𝑤8 + 1 
4714094246400 

𝑤10 + 𝑂
(
𝑤12 ). (21) 

In a similar manner, we incorporate the relationship between cos ( 𝑤 ) and sin ( 𝑤 ) into the equations Eq. (19) , which correspond to

ℎ𝑦′. As a result, we obtain trigonometric functions of 𝑤 as follows: 

𝑤 sin 
( 5 
3 

𝑤 

)
= 1 − cos ( 𝑤) + 𝑤2 

[
𝐵1 +

1007 
1620 

cos ( 𝑤) 
]
− 679 

1620 
𝑤3 sin ( 𝑤) , 

𝑤 cos 
( 5 
3 

𝑤 

)
= sin ( 𝑤) − 1007 

1620 
𝑤2 sin ( 𝑤) − 𝑤3 

[
𝐵2 +

679 
1620 

cos ( 𝑤) 
]
, 

𝑤 sin ( 2 𝑤 ) = 3 
2 
cos ( 𝑤) − 3 

2 
cos 

( 5 
3 

𝑤 

)
+ 𝑤2 

[ 49 
240 

cos ( 𝑤) + 𝐵3 cos 
(5 
3 

𝑤 

)]
− 𝑤3 

[ 29 
720 

sin ( 𝑤) + 𝐵4 sin 
(5 
3 

𝑤 

)]
, 

𝑤 cos ( 2 𝑤 ) = −3 
2 
sin ( 𝑤) + 3 

2 
sin 

(5 
3 

𝑤 

)
− 𝑤2 

[ 49 
240 

sin ( 𝑤) + 𝐵3 sin 
( 5 
3 

𝑤 

)]
− 𝑤3 

[ 29 
720 

cos ( 𝑤) + 𝐵4 cos 
( 5 
3 

𝑤 

)]
, 

𝑤 sin ( 2 𝑤 ) = 3 
2 
cos ( 𝑤) − 3 

2 
cos 

( 5 
3 

𝑤 

)
+ 𝑤2 

[
𝐵5 cos 

(5 
3 

𝑤 

)
+ 41 

30 
cos ( 2 𝑤 ) 

]
− 𝑤3 

[
𝐵6 sin 

(5 
3 

𝑤 

)
− 31 

180 
sin ( 2 𝑤 ) 

]
, 

𝑤 cos ( 2 𝑤 ) = 3 
2 
sin ( 𝑤) + 3 

2 
sin 

( 5 
3 

𝑤 

)
− 𝑤2 

[
𝐵5 sin 

(5 
3 

𝑤 

)
+ 41 

30 
sin ( 2 𝑤 ) 

]
− 𝑤3 

[
𝐵6 cos 

(5 
3 

𝑤 

)
− 31 

180 
cos ( 2 𝑤 ) 

]
. (22) 

Subsequently, the coefficients above are used to generate parameters 𝐵𝑖 , 𝑖 = 1 , 2 , ..., 6 through Taylor series expansion. 

𝐵1 =
883 + 1169 

𝑤4 − 1193447 
𝑤6 + 24941041 

𝑤8 − 394347413 
𝑤10 + 𝑂

(
𝑤12 ), 
1620 116640 1193447 142851340800 70711413696000 

5
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𝐵2 =
49 
270 

+ 127241 
18370800 

𝑤4 − 25409 
33067440 

𝑤6 + 15764641 
471409424640 

𝑤8 − 1712206627 
2068308850608000 

𝑤10 + 𝑂
(
𝑤12 ), 

𝐵3 =
37 
80 

+ 23 
43740 

𝑤4 − 383 
18370800 

𝑤6 + 367 
1322697600 

𝑤8 − 205327 
106067120544000 

𝑤10 + 𝑂
(
𝑤12 ), 

𝐵4 =
167 
2160 

− 251 
2041200 

𝑤4 + 1259 
476171136 

𝑤6 − 19463 
785682374400 

𝑤8 + 82477 
612832252032000 

𝑤10 + 𝑂
(
𝑤12 ), 

𝐵5 = − 7 
10 

+ 101 
174960 

𝑤4 − 89 
18370800 

𝑤6 + 47 
2645395200 

𝑤8 − 557 
13258390068000 

𝑤10 + 𝑂
(
𝑤12 ), 

𝐵6 = −163 
540 

+ 107 
4082400 

𝑤4 − 239 
2380855680 

𝑤6 + 47 
1571364748800 

𝑤8 + 191 
306416126016000 

𝑤10 + 𝑂
(
𝑤12 ). (23) 

As 𝑤 approaches 0, the coefficients 𝐴𝑖 and 𝐵𝑖 , 𝑖 = 1 , 2 , ..., 6 of the proposed methods using the fitting technique will return to their

classical form values. 

Method validation 

Stability analysis of TF-TDMC method 

Here, we discuss the zero stability of block collocation method for solving second-order ODEs defined by [ 8 ] as follows: 

Definition 1. (Zero stable) A block multistep method with order 𝑝 is zero stable provided the roots, 𝑅𝑙 for 𝑙 = 0 , 1 , ..., 𝑚 of the

characteristic polynomial, 𝜎( 𝑅 ) such that: 

𝜎( 𝑅) = det 

[ 

𝑚 ∑
𝑙=0 

𝑃 ( 𝑙) 𝑅( 𝑚 − 𝑙 ) 

] 

, 𝑃 ( 0) = 𝐼, (24) 

satisfy |𝑅𝑙 | ≤ 1 for 𝑙 = 0 , 1 , ..., 𝑚. If 𝑅𝑙 is a repeated root, then the multiplicity of the root of modulus 1 must be at most 2, where 𝐼

is identity matrix and 𝑃 ( 𝑙) is 𝑚 × 𝑚 matrix. 

First, we use second-order test problem as follow: 

𝑦′′ = −𝜃2 𝑦, 𝜃 > 0 . (25) 

Apply predictor formulae of TF-TDMC method into the test problem above and substitute 𝑤 = 𝜃ℎ , we obtain 

𝑦
𝑛 + 5 

3 
=
(
−2 
3 
− 𝐴1 𝑤

2 
)
𝑦𝑛 +

(5 
3 
− 191 

486 
𝑤2 

)
𝑦𝑛 +1 +

(
−𝐴2 𝑤

2 )ℎ𝑦′𝑛 +
(
− 1 
18 

𝑤2 
)
ℎ𝑦′𝑛 +1 , (26) 

ℎ𝑦′
𝑛 + 5 

3 
=
(
−1 − 𝐵1 𝑤

2 )𝑦𝑛 +
(
1 − 1007 

1620 
𝑤2 

)
𝑦𝑛 +1 +

(
−𝐵2 𝑤

2 )ℎ𝑦′𝑛 +
(
− 679 
1620 

𝑤2 
)
ℎ𝑦′𝑛 +1 , (27) 

𝑦𝑛 +2 =
(
−1 
2 
− 1 

24 
𝑤2 

)
𝑦𝑛 +1 +

( 3 
2 
− 𝐴3 𝑤

2 
)
𝑦

𝑛 + 5 
3 
+
(
− 1 
144 

𝑤2 
)
ℎ𝑦′𝑛 +1 +

(
−𝐴4 𝑤

2 )ℎ𝑦′
𝑛 + 5 

3 
, (28) 

ℎ𝑦′𝑛 +2 =
(
−3 
2 
− 49 

240 
𝑤2 

)
𝑦𝑛 +1 +

( 3 
2 
− 𝐵3 𝑤

2 
)
𝑦

𝑛 + 5 
3 
+
(
− 1 
144 

𝑤2 
)
ℎ𝑦′𝑛 +1 +

(
−𝐵4 𝑤

2 )ℎ𝑦′
𝑛 + 5 

3 
. (29) 

We transform Eqs. (26) –(29) into the matrix form as below: ( 

1 0 
0 1 

) ( 

𝑦𝑛 +2 
ℎ𝑦′𝑛 +2 

) 

=
( 

𝑀11 𝑀12 
𝑀21 𝑀22 

) ( 

𝑦𝑛 +1 
ℎ𝑦′𝑛 +1 

) 

+
( 

𝑁11 𝑁12 
𝑁21 𝑁22 

) ( 

𝑦𝑛 

ℎ𝑦′𝑛 

) 

, (30) 

where 

𝑀11 = 2 − 1091 
1296 

𝑤2 + 35387 
699840 

𝑤4 − 23 
262440 

𝑤6 + 229 
12247200 

𝑤8 − 3893719 
3856986201600 

𝑤10 + 𝑂
(
𝑤12 ), 

𝑀12 = − 13 
144 

𝑤2 + 3211 
349920 

𝑤4 + 7679 
755827200 

𝑤8 − 2666717 
440798423040 

𝑤10 + 𝑂
(
𝑤12 ), 

𝑀21 = 1 − 10639 
6480 

𝑤2 + 804199 
699840 

𝑤4 − 13841 
18370800 

𝑤6 + 119279 
734832000 

𝑤8 − 42351737 
6060978316800 

𝑤10 + 𝑂
(
𝑤12 ), 

𝑀22 = − 13 
144 

𝑤2 + 87691 
874800 

𝑤4 + 18134719 
26453952000 

𝑤8 − 16036448009 
77139724032000 

𝑤10 + 𝑂
(
𝑤12 ), 

𝑁11 = −1 − 205 
1296 

𝑤2 + 15103 
699840 

𝑤4 − 2839 
1049760 

𝑤6 + 522973 
587865600 

𝑤8 − 1486403507 
15427944806400 

𝑤10 + 𝑂
(
𝑤12 ), 

𝑁12 = − 11 
162 

𝑤2 + 11 
1944 

𝑤4 − 919 
524880 

𝑤6 + 126713 
396809280 

𝑤8 − 898069 
42855402240 

𝑤10 + 𝑂
(
𝑤12 ), 

𝑁21 = −1 + 919 
6480 

𝑤2 + 410531 
3499200 

𝑤4 − 91913 
36741600 

𝑤6 + 316789 
139968000 

𝑤8 − 377458272749 
848536964352000 

𝑤10 + 𝑂
(
𝑤12 ), 

𝑁22 = − 11 
𝑤2 + 407 

𝑤4 − 919 
𝑤6 + 2913509 

𝑤8 − 12887129 
𝑤10 + 𝑂

(
𝑤12 ). (31) 
162 19440 524880 3968092800 214277011200 

6
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Fig. 1. The stability region of predictor for TF-TDMC method. 

 

 

 

We substitute 

( 

𝑦𝑛 +2 
ℎ𝑦′𝑛 +2 

) 

= 𝑅2 ,

( 

𝑦𝑛 +1 
ℎ𝑦′𝑛 +1 

) 

= 𝑅 and 

( 

𝑦𝑛 

ℎ𝑦′𝑛 

) 

= 1 , we yield the following first characteristic polynomial 

𝜎( 𝑅, 𝑤 ) =
( 

1 0 
0 1 

) 

𝑅2 −
( 

𝑀11 𝑀12 
𝑀21 𝑀22 

) 

𝑅 −
( 

𝑁11 𝑁12 
𝑁21 𝑁22 

) 

. (32) 

Then we determine the determinant of the first characteristic polynomial and set 𝑤 = 0 . This results in the following stability

polynomial: 

𝑅4 − 2𝑅3 + 𝑅2 = 0 . (33) 

Hence, the roots of stability polynomial are 0,0,1,1. All of the roots have modulus less or equal to one, which satisfied the zero

stable conditions given in Definition 1 . Thus, we conclude that the predictor formulae of TF-TDMC method is zero stable. 

Next, we let 𝜎(𝑅, 𝑤 ) = 0 and solve for 𝑅 in term of 𝑤 within the matrice, resulting in 2 × 2 matrix 𝑃 ( 𝑤 ) . The stability region in

complex plane of TF-TDMC method can be defined as 

𝑅𝑆 =
{
𝑤 ∶ ||𝜆𝑖 ( 𝑃 ( 𝑤) ) || < 1 , 𝑖 = 1 , 2 

}
, (34) 

where 𝜆𝑖 are eigenvalues of 𝑃 ( 𝑤 ) . The stability region of predictor for TF-TDMC method is shown in Fig. 1 . 

Similarly, for analyzing corrector of TF-TDMC method, we can simply transform into the matrix form: (
1 + 5 

12 
𝑤2 

)
𝑦𝑛 +2 =

(
−1 
2 

)
𝑦𝑛 +1 +

( 3 
2 
− 𝐴5 𝑤

2 
)
𝑦

𝑛 + 5 
3 
+
(
−𝐴6 𝑤

2 )ℎ𝑦′
𝑛 + 5 

3 
, (35) 

(
1 − 31 

180 
𝑤2 

)
ℎ𝑦′𝑛 +2 =

(
−3 
2 

)
𝑦𝑛 +1 +

( 3 
2 
− 𝐵5 𝑤

2 
)
𝑦

𝑛 + 5 
3 
+
(
−41 
30 

𝑤2 
)
𝑦𝑛 +2 +

(
−𝐵6 𝑤

2 )ℎ𝑦′
𝑛 + 5 

3 
. (36) 

Substitute Eqs. (26)–(29) into Eqs. (35)–(36) and do some arrangement, we yield ( 

1 0 
0 1 

) ( 

𝑦𝑛 +2 
ℎ𝑦′𝑛 +2 

) 

=
( 

𝑀̂11 𝑀̂12 
𝑀̂21 𝑀̂22 

) ( 

𝑦𝑛 +1 
ℎ𝑦′𝑛 +1 

) 

+
( 

𝑁̂11 𝑁̂12 
𝑁̂21 𝑁̂22 

) ( 

𝑦𝑛 

ℎ𝑦′𝑛 

) 

, (37) 

where 

𝑀̂11 = −2 − 275 
𝑤2 + 35299 

𝑤4 − 931933 
𝑤6 + 436363 

𝑤8 − 198495464521 
𝑤10 + 𝑂

(
𝑤12 ), 
324 349920 31492800 35271936 38569862016000 

7
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Fig. 2. The stability region of corrector for TF-TDMC method. 

 

 

 

 

 

𝑀̂12 = − 1 
12 

𝑤2 − 28829 
349920 

𝑤4 + 2512939 
62985600 

𝑤6 − 4440649 
251942400 

𝑤8 + 590711588113 
77139724032000 

𝑤10 + 𝑂
(
𝑤12 ), 

𝑀̂21 = 1 − 545 
324 

𝑤2 + 696443 
1749600 

𝑤4 − 847921 
551124000 

𝑤6 + 10529609 
99202320000 

𝑤8 − 49162122487 
5303356027200000 

𝑤10 + 𝑂
(
𝑤12 ), 

𝑀̂22 = − 1 
12 

𝑤2 − 386497 
1749600 

𝑤4 − 15930937 
314928000 

𝑤6 − 4634705389 
396809280000 

𝑤8 − 2331023100443 
1928493100800000 

𝑤10 + 𝑂
(
𝑤12 ), 

𝑁̂11 = −1 − 49 
324 

𝑤2 − 8839 
349920 

𝑤4 + 113767 
7873200 

𝑤6 − 30691 
4408992 

𝑤8 + 130045338841 
38569862016000 

𝑤10 + 𝑂
(
𝑤12 ), 

𝑁̂12 = − 11 
162 

𝑤2 + 77 
5832 

𝑤4 − 799 
131220 

𝑤6 + 461737 
198404640 

𝑤8 − 48594977 
53569252800 

𝑤10 + 𝑂
(
𝑤12 ), 

𝑁̂21 = −1 + 59 
324 

𝑤2 − 53843 
1749600 

𝑤4 − 40906333 
1102248000 

𝑤6 − 1239982543 
198404640000 

𝑤8 − 6437720654063 
5303356027200000 

𝑤10 + 𝑂
(
𝑤12 ), 

𝑁̂22 = − 11 
162 

𝑤2 + 1441 
29160 

𝑤4 − 1703 
1749600 

𝑤6 + 31841221 
19840464000 

𝑤8 − 934727497 
10713850560000 

𝑤10 + 𝑂
(
𝑤12 ). (38) 

Using the similar way, we determinant of first characteristic polynomial and set 𝑤 = 0 . Stability polynomial is similar as Eq. (32) ,

the roots of stability polynomial are 0,0,1,1. All the roots have modulus less or equal to one as well. It means that the corrector

formulae of TF-TDMC method is zero stable. Both predictor and corrector method of TF-TDMC method are zero-stable. The stability

region of corrector for TF-TDMC method is shown in Fig. 2 . 

Numerical tests and results 

In this section, we apply the TF-TDMC method to solve second-order ordinary differential equations of the form 𝑦′′( 𝑥 ) = 𝑓 (𝑥, 𝑦 ( 𝑥 ) )
and an application problem featuring a periodic solution. The efficiency of the proposed method in the literature is demonstrated by

comparing it with various existing linear multistep methods, including classical-type and fitted techniques. The following methods 

have been selected for numerical comparison. 

• TF-TDMC - Trigonometrically-fitted two derivative linear multistep method in predictor-corrector mode with fifth-order developed 

in this paper. 

• TF-BMCA - Trigonometrically-fitted extra derivative block multistep collocation method in predictor-corrector mode, developed 

by [ 21 ]. 
8
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• TF-BMCM - Trigonometrically-fitted block multistep methods in predictor-corrector mode with five step number, 𝑘 = 5 , developed 

by [ 18 ]. 

For each second-order oscillatory initial value problem (IVP), a specific fitted frequency, 𝜃 can be identified from the analytical 

solutions. The value of 𝑤 = 𝜃ℎ , where ℎ is the step size, will be determined and substituted into the frequency-dependent parameters

for all selected trigonometrically-fitted methods, including the suggested method. Four numerical problems are selected, encompassing 

some application problems, the Stiefel and Bettis oscillatory problem and two-body problem. Three selected methods, including the 

proposed method are used to solve all the problems with varying step sizes and endpoints, 𝑏 . Then, the numerical approximations

generated by all selected methods will be compared with the analytical solutions to calculate the maximum global error. Below are

the operation steps for TF-TDMC method to outlook the procedures of solving second-order oscillatory IVPs. 

Operation steps of TF-TDMC method 

Step 1 Initialization 

Start with an initial value for the dependent variable and its derivative, along with the initial conditions and step size, ℎ for the

problem. Identify the frequency, 𝜃 of the problem and subsequently, determine the frequency-dependent parameters to be used in 

the predictor and corrector steps of the TF-TDMC method with the information of 𝑤 = 𝜃ℎ . 

Step 2 Predictor Step 

Use two-step predictor, based on previous values, to estimate the dependent variable, 𝑦𝑛 + 𝑘 and its derivative, 𝑦′𝑛 + 𝑘 , 𝑘 =
5 
3 , 2 . 

Step 3 Corrector Step 

Use the predicted values in a corrector formula to refine the estimates of. 𝑦𝑛 +2 and 𝑦′𝑛 +2 with tolerance of 10 −20 . Check for

convergence by comparing the predictor and corrector estimates, or by comparing the previous term with the current term in the

corrector step. If they are sufficiently close, proceed; if not, iterate until convergence is achieved. 

Step 4 Iteration 

Repeat the predictor and corrector steps for subsequent time steps, using the updated values from the corrector step as the starting

point for the next iteration until reach to the endpoints. 

Step 5 Output 

Once the desired accuracy is achieved, output the values of the dependent variable at the specified time steps. 

Numerical problems 

Problem 1. Homogeneous linear problem 

𝑦′′( 𝑥) = −9 𝑦( 𝑥) , 

𝑦( 0) = 1 , 𝑦′( 0) = 2 , 𝑥 ∈ [ 0 , 𝑏 ] , (39) 

with analytical solution, 𝑦 ( 𝑥 ) = 2 
3 sin (3 𝑥 ) + cos (3 𝑥 ) . 

The fitted frequency, 𝜃 = 3 . 

Problem 2. Homogeneous nonlinear problem 

𝑦′′( 𝑥) = −100 𝑦( 𝑥) + 1 
2 
cos ( 𝑥) − sin 2 ( 𝑥) , 

𝑦( 0) = 1 , 𝑦′( 0) = 1 , 𝑥 ∈ [ 0 , 𝑏 ] , (40) 

with analytical solution, 𝑦 ( 𝑥 ) = 1 
10 sin (10 𝑥 ) +

78767 
79200 cos (10 𝑥 ) +

1 
48 cos 

2 ( 𝑥 ) + 1 
198 cos ( 𝑥 ) −

49 
2400 . 

The fitted frequency, 𝜃 = 10 . 

Problem 3. Stiefel and Bettis oscillatory problem, investigated by [ 22 ] 

𝑦′′1 ( 𝑥) = −𝑦1 ( 𝑥) + 0 . 001 cos ( 𝑥) , 𝑦′′2 ( 𝑥) = −𝑦2 ( 𝑥) + 0 . 001 sin ( 𝑥) , 

𝑦1 ( 0) = 1 , 𝑦′1 ( 0) = 0 , 𝑦2 ( 0) = 0 , 𝑦′2 ( 0) = 0 . 9995 , 𝑥 ∈ [ 0 , 𝑏 ] , (41) 

with analytical solution, 𝑦1 ( 𝑥 ) = cos ( 𝑥 ) + 0 . 0005 𝑥 sin ( 𝑥 ) and 𝑦2 ( 𝑥 ) = sin ( 𝑥 ) − 0 . 0005 𝑥 cos ( 𝑥 ) . 
The fitted frequency, 𝜃 = 1 . 
9
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Problem 4. Two-body problem with nonlinear orbital property, investigated by [ 16 ] 

𝑦′′1 ( 𝑥) =
−𝑦1 ( 𝑥) [

𝑦2 1 ( 𝑥) + 𝑦2 2 ( 𝑥) 
] 3 
2 

, 𝑦′′2 ( 𝑥) =
−𝑦2 ( 𝑥) [

𝑦2 1 ( 𝑥) + 𝑦2 2 ( 𝑥) 
] 3 
2 

, 

𝑦1 ( 0) = 1 , 𝑦′1 ( 0) = 0 , 𝑦2 ( 0) = 0 , 𝑦′2 ( 0) = 1 , 𝑥 ∈ [ 0 , 𝑏 ] , (42) 

with analytical solution, 𝑦1 ( 𝑥 ) = cos ( 𝑥 ) and 𝑦2 ( 𝑥 ) = sin ( 𝑥 ) . . 
The fitted frequency, 𝜃 = 1 . 

Problem 5. Nonlinear perturbed Kepler problem with orbital property, studied by [ 23 ] 

The nonlinear perturbed Kepler problem is a variation of the classical Kepler problem, which is central to celestial mechanics and

describes the motion of two bodies under mutual gravitational attraction. This problem is foundational in understanding the orbits

of planets, moons, and satellites. The perturbed Kepler problem, particularly the nonlinear version studied by [ 23 ], incorporates

additional forces or effects that deviate from the simple two-body problem, making the equations of motion more complex and

realistic for certain astrophysical scenarios. 

Historical background and derivation 

The classical Kepler problem is based on Newton’s laws of motion and universal gravitation, yielding elliptical orbits for celestial

bodies in a two-body system. The problem is well-known for its simplicity and accuracy in describing planetary motion. However, real

celestial bodies are often influenced by other factors, such as additional gravitational forces, relativistic effects, or even the presence

of other celestial bodies, leading to deviations from the ideal Keplerian motion. These deviations or perturbations give rise to the

perturbed Kepler problem. 

In the nonlinear perturbed Kepler problem studied by [ 23 ], the differential equations incorporate an additional perturbation term

involving a small parameter, 𝜀 , which modifies the standard inverse-square law of attraction. The equations describe a more complex

interaction that accounts for the perturbative effects on the orbit of a body. To derive the formula for the nonlinear perturbed Kepler

problem, we start from the classical Kepler problem and introduce the perturbative term. The classical Kepler problem describes the

motion of a body in an inverse-square law gravitational field. The governing differential equation is given by: 

𝑟′′( 𝑡) = −𝐺𝑀𝑟( 𝑡) |𝑟( 𝑡) |3 , (43) 

where 𝑟 ( 𝑡 ) is the position vector of the body as a function of time, 𝐺 is the gravitational constant and 𝑀 is the mass of the central body.

Assume 𝑟 ( 𝑡 ) = (𝑦1 ( 𝑡 ) , 𝑦2 ( 𝑡 ) ) in Cartesian coordinates, where 𝑦1 ( 𝑡 ) and 𝑦2 ( 𝑡 ) are the components of the position vector. The equation of

motion in Cartesian form is: 

𝑦′′1 ( 𝑡) = −
𝐺𝑀𝑦1 ( 𝑡) [

𝑦2 1 ( 𝑡) + 𝑦2 2 ( 𝑡) 
]3∕2 , 

𝑦′′2 ( 𝑡) = −
𝐺𝑀𝑦2 ( 𝑡) [

𝑦2 1 ( 𝑡) + 𝑦2 2 ( 𝑡) 
]3∕2 . (44) 

To account for the perturbation, we add a small perturbative term 𝜀 to the classical equations. The perturbative term is typically of

higher order in the distance, representing additional forces that deviate from the simple inverse-square law. The modified equations

become: 

𝑦′′1 ( 𝑡) = −
𝐺𝑀𝑦1 ( 𝑡) [

𝑦2 1 ( 𝑡) + 𝑦2 2 ( 𝑡) 
]3∕2 − 𝐴( 𝜀) 𝑦1 ( 𝑡) [

𝑦2 1 ( 𝑡) + 𝑦2 2 ( 𝑡) 
]5∕2 , 

𝑦′′2 ( 𝑡) = −
𝐺𝑀𝑦2 ( 𝑡) [

𝑦2 1 ( 𝑡) + 𝑦2 2 ( 𝑡) 
]3∕2 − 𝐴( 𝜀) 𝑦2 ( 𝑡) [

𝑦2 1 ( 𝑡) + 𝑦2 2 ( 𝑡) 
]5∕2 . (45) 

where 𝐴 ( 𝜀 ) is a function of the perturbation parameter 𝜀 . 

Below are some numerical simulations with different parameters and are displayed in Figs. 3–5 using classical Runge-Kutta method 

with ℎ = 10 −5 . 
In the study presented by [ 23 ], 𝐺𝑀 = 1 , 𝐴 ( 𝜀 ) = 2 𝜀 + 𝜀2 and set 𝑥 as independent variable, the nonlinear perturbed Kepler problem

with orbital properties can be simplified into: 

𝑦′′1 ( 𝑥) = −
𝑦1 ( 𝑥) [

𝑦2 1 ( 𝑥) + 𝑦2 2 ( 𝑥) 
]3∕2 −

(
2 𝜀 + 𝜀2 

)
𝑦1 ( 𝑥) [

𝑦2 1 ( 𝑥) + 𝑦2 2 ( 𝑥) 
]5∕2 , 𝑦′′1 ( 𝑥) = −

𝑦2 ( 𝑥) [
𝑦2 1 ( 𝑥) + 𝑦2 2 ( 𝑥) 

]3∕2 −
(
2 𝜀 + 𝜀2 

)
𝑦2 ( 𝑥) [

𝑦2 1 ( 𝑥) + 𝑦2 2 ( 𝑥) 
]5∕2 . (46) 

with the initial conditions: 𝑦1 (0) = 1 , 𝑦′1 (0) = 0 , 𝑦2 (0) = 0 , 𝑦′2 (0) = 1 + 𝜀. 

The exact solution is given by 𝑦1 ( 𝑥 ) = cos [(1 + 𝜀 ) 𝑥 ] and 𝑦2 ( 𝑥 ) = sin [(1 + 𝜀 ) 𝑥 ] with fitted frequency, 𝜃 = 1 + 𝜀. In this study, we use a

perturbed value of 𝜀 = 0 . 001 . 
10
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Fig. 3. Numerical simulation for the perturbed Kepler problem, 𝐺𝑀 = 1 , 𝐴 ( 𝜀 ) = 𝜀2 − 𝜀, 𝑦1 (0) = 1 , 𝑦2 (0) = 0 , 𝑦′1 (0) = 0 , 𝑦′2 (0) = 1 + 𝜀, 𝜀 = 0 . 1 and 𝑡 ∈
[0 , 50 ] . 

Table 1 

Numerical comparison between TF-TDMC method with existing methods for problem 1 . 

ℎ METHODS 𝑏 = 100 𝑏 = 1000 

ERROR TIME ERROR TIME 

0.1 TF-TDMC 1.864776 × 10–12 0.154 1.891792 × 10–11 2.407 

TF-BMCA 1.516316 × 10–5 0.170 1.533537 × 10–5 2.565 

TF-BMCM 1.985112 × 10–6 0.135 2.003516 × 10–5 2.101 

0.05 TF-TDMC 4.387876 × 10–16 0.282 4.415057 × 10–15 4.795 

TF-BMCA 2.118361 × 10–7 0.317 2.373446 × 10–7 4.981 

TF-BMCM 1.861337 × 10–9 0.245 1.874340 × 10–8 4.230 

0.025 TF-TDMC 1.059278 × 10–19 0.556 1.066258 × 10–18 8.858 

TF-BMCA 2.493108 × 10–9 0.632 3.701041 × 10–9 9.863 

TF-BMCM 1.801416 × 10–12 0.456 1.812594 × 10–11 7.476 

0.0125 TF-TDMC 2.578761 × 10–23 1.142 2.596275 × 10–22 17.459 

TF-BMCA 2.477719 × 10–11 1.345 5.759004 × 10–11 18.007 

TF-BMCM 1.768468 × 10–15 0.927 1.766190 × 10–14 15.151 

0.00625 TF-TDMC 6.292172 × 10–27 2.244 6.334969 × 10–26 33.209 

TF-BMCA 2.204758 × 10–13 2.623 8.486645 × 10–13 33.423 

TF-BMCM 1.727434 × 10–18 1.837 1.724193 × 10–17 27.830 

 

 

 

 

Tables 1–5 demonstrate the numerical performance of proposed method and other selected methods in term of maximum global

truncation error (ERROR) against computational time in seconds (TIME). The model of computer used in computing the numerical

results is Lenovo ideapad 330 Intel Core i5–8050 U (1.8 GHz). The software utilized for computation is Maplesoft 2023, a mathematical

tool known for its user-friendly interface that facilitates easy analysis, visualization, and exploration of mathematical concepts. 

Figs. 6-10 demonstrate the numerical performance of proposed method and other selected methods in term of maximum global

truncation error against computational time. 
11
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Fig. 4. Numerical simulation for the perturbed Kepler problem, 𝐺𝑀 = 1 , 𝐴 ( 𝜀 ) = 𝜀2 − 𝜀3 , 𝑦1 (0) = 1 , 𝑦2 (0) = 0 , 𝑦′1 (0) = 0 , 𝑦′2 (0) = 1 + 𝜀, 𝜀 = 0 . 02 and 

𝑡 ∈ [0 , 50 ] . 

Table 2 

Numerical comparison between TF-TDMC method with existing methods for problem 2 . 

ℎ METHODS 𝑏 = 100 𝑏 = 1000 

ERROR TIME ERROR TIME 

0.06 TF-TDMC 3.692032 × 10–7 2.036 4.555166 × 10–7 14.545 

TF-BMCA 9.224050 × 10–4 2.149 9.225949 × 10–4 16.678 

TF-BMCM 7.744874 × 10–3 1.896 8.098014 × 10–2 12.678 

0.05 TF-TDMC 1.726065 × 10–7 2.633 1.726065 × 10–7 19.253 

TF-BMCA 3.271016 × 10–4 2.866 3.277727 × 10–4 22.520 

TF-BMCM 1.072426 × 10–3 2.337 1.081199 × 10–2 17.053 

0.04 TF-TDMC 6.902935 × 10–8 3.160 6.902935 × 10–8 24.124 

TF-BMCA 1.090319 × 10–4 3.310 1.090350 × 10–4 27.568 

TF-BMCM 1.044428 × 10–4 2.818 1.046306 × 10–3 21.820 

0.03 TF-TDMC 2.144751 × 10–8 3.862 2.144751 × 10–8 29.471 

TF-BMCA 4.014011 × 10–5 4.029 4.014052 × 10–5 33.542 

TF-BMCM 5.536977 × 10–6 3.339 5.557081 × 10–5 26.534 

0.02 TF-TDMC 4.184704 × 10–9 5.556 4.184843 × 10–9 37.785 

TF-BMCA 1.937355 × 10–5 5.904 1.937405 × 10–5 42.153 

TF-BMCM 9.296420 × 10–8 5.298 9.322769 × 10–7 32.543 

 

 

 

Discussion and conclusion 

In the numerical test, five types of problems with periodic solutions were selected to evaluate the performance of the chosen

methods. The TF-TDMC method was compared to existing trigonometric-fitted block multistep methods in predictor-corrector mode. 

The evaluation focused on computation time and maximum global error produced by each method, with results presented in Tables

1–5 and Figs. 6–10 . The inclusion of the two-derivative term significantly enhances accuracy, especially when combined with the

trigonometric-fitting technique. This combination minimizes error at every stage, particularly with sufficiently small step sizes and 
12
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Fig. 5. Numerical simulation for the perturbed Kepler problem, 𝐺𝑀 = 1 , 𝐴 ( 𝜀 ) = 2 𝜀 + 𝜀2 , 𝑦1 (0) = 1 , 𝑦2 (0) = 0 , 𝑦′1 (0) = 0 , 𝑦′2 (0) = 1 + 𝜀, 𝜀 = 0 . 1 and 

𝑡 ∈ [0 , 50 ] . 

Table 3 

Numerical comparison between TF-TDMC method with existing methods for problem 3 . 

ℎ METHODS 𝑏 = 10 𝑏 = 100 

ERROR TIME ERROR TIME 

0.125 TF-TDMC 1.330810 × 10–8 0.035 1.396892 × 10–7 0.341 

TF-BMCA 3.450393 × 10–8 0.039 2.678761 × 10–7 0.381 

TF-BMCM 2.526971 × 10–7 0.033 4.805749 × 10–2 0.300 

0.10 TF-TDMC 2.628444 × 10–9 0.051 2.761409 × 10–8 0.530 

TF-BMCA 6.453101 × 10–9 0.058 5.471769 × 10–8 0.586 

TF-BMCM 3.403212 × 10–8 0.048 8.066130 × 10–6 0.480 

0.075 TF-TDMC 8.324668 × 10–10 0.071 8.739164 × 10–9 0.782 

TF-BMCA 2.040122 × 10–9 0.058 1.821294 × 10–8 0.820 

TF-BMCM 8.126340 × 10–9 0.048 1.363590 × 10–7 0.745 

0.05 TF-TDMC 1.644482 × 10–10 0.084 1.726436 × 10–9 0.952 

TF-BMCA 4.045599 × 10–10 0.099 3.807051 × 10–9 1.000 

TF-BMCM 1.075513 × 10–9 0.079 1.144815 × 10–8 0.874 

0.025 TF-TDMC 1.027859 × 10–11 0.175 1.079250 × 10–10 1.868 

TF-BMCA 2.542065 × 10–11 0.196 2.525066 × 10–10 1.982 

TF-BMCM 3.371494 × 10–11 0.166 3.538982 × 10–10 1.615 

 

 

 

these benefits lead to TF-TDMC method produces the smallest maximum global error among all methods across different step sizes

and endpoints, demonstrating its superior performance. The TF-TDMC method has a distinct advantage over other methods when 

solving problems involving only trigonometric functions, such as problems 1 and 4 . However, in the case of problems 2 and 3 ,

where the exact solutions involve nonlinearities and non-trigonometric functions, the difference in global truncation error between 

the TF-TDMC method and other methods, such as the TF-BMCM, was smaller. This suggests that while the TF-TDMC method excels

in solving problems with trigonometric solutions, its performance may be slightly less pronounced when dealing with solutions 
13
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Table 4 

Numerical comparison between TF-TDMC method with existing methods for problem 4 . 

ℎ METHODS 𝑏 = 10 𝑏 = 100 

ERROR TIME ERROR TIME 

0.1 TF-TDMC 1.353704 × 10–19 0.066 3.406336 × 10–16 0.802 

TF-BMCA 2.938062 × 10–8 0.072 3.176734 × 10–4 0.962 

TF-BMCM 1.092689 × 10–16 0.061 3.402128 × 10–16 0.645 

0.05 TF-TDMC 4.528368 × 10–23 0.135 1.376001 × 10–21 1.509 

TF-BMCA 1.981663 × 10–10 0.142 1.688161 × 10–7 1.789 

TF-BMCM 2.763311 × 10–20 0.119 2.634101 × 10–19 1.257 

0.025 TF-TDMC 1.540465 × 10–26 0.265 1.027510 × 10–25 2.585 

TF-BMCA 1.433911 × 10–12 0.286 4.168009 × 10–10 3.268 

TF-BMCM 6.788675 × 10–24 0.242 7.156790 × 10–23 2.254 

0.0125 TF-TDMC 4.406450 × 10–30 0.546 1.060644 × 10–29 5.736 

TF-BMCA 1.077299 × 10–14 0.607 1.944607 × 10–12 7.326 

TF-BMCM 1.664261 × 10–27 0.519 1.765264 × 10–26 5.012 

0.00625 TF-TDMC 1.161969 × 10–33 1.120 4.955544 × 10–33 13.278 

TF-BMCA 8.252017 × 10–17 1.256 1.192627 × 10–14 15.507 

TF-BMCM 4.074683 × 10–31 1.038 4.313005 × 10–30 11.121 

Table 5 

Numerical comparison between TF-TDMC method with existing methods for problem 5 . 

ℎ METHODS 𝑏 = 10 𝑏 = 100 

ERROR TIME ERROR TIME 

0.1 TF-TDMC 1.654299 × 10–19 0.095 2.077801 × 10–17 0.981 

TF-BMCA 2.504817 × 10–8 0.126 3.201751 × 10–6 1.322 

TF-BMCM 1.107823 × 10–16 0.072 3.433128 × 10–16 0.841 

0.05 TF-TDMC 6.122643 × 10–23 0.192 2.077882 × 10–21 2.003 

TF-BMCA 1.837986 × 10–10 0.250 3.588304 × 10–8 2.621 

TF-BMCM 2.801710 × 10–20 0.149 2.672955 × 10–19 1.735 

0.025 TF-TDMC 1.813528 × 10–26 0.389 1.410970 × 10–25 4.010 

TF-BMCA 1.388878 × 10–12 0.506 2.247937 × 10–10 5.214 

TF-BMCM 6.884213 × 10–24 0.303 7.269413 × 10–23 3.370 

0.0125 TF-TDMC 4.816545 × 10–30 0.756 1.712940 × 10–29 7.944 

TF-BMCA 1.066655 × 10–14 1.001 1.488749 × 10–12 10.345 

TF-BMCM 1.687701 × 10–27 0.609 1.793263 × 10–26 6.590 

0.00625 TF-TDMC 1.223413 × 10–33 1.531 7.969373 × 10–33 15.738 

TF-BMCA 8.261070 × 10–17 1.997 1.058971 × 10–14 20.459 

TF-BMCM 4.132141 × 10–31 1.265 4.381653 × 10–30 13.089 

Fig. 6. Numerical efficiency of selected methods for problem 1 with 𝑏 = 1000 and ℎ = 0 . 1 
2𝑖 

, 𝑖 = 0 , 1 , ..., 4 . . 
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Fig. 7. Numerical efficiency of selected methods for problem 2 with 𝑏 = 100 and ℎ = 0 . 06 − 0 . 01 𝑖, 𝑖 = 0 , 1 , ..., 4 . . 

Fig. 8. Numerical efficiency of selected methods for problem 3 with 𝑏 = 50 and ℎ = 0 . 125 − 0 . 025 𝑖, 𝑖 = 0 , 1 , ..., 4 . . 

 

 

 

 

that incorporate non-trigonometric components. The presence of these components can introduce inaccuracies in the fitting process, 

leading to relatively higher global errors compared to purely oscillatory cases. 

In the derivation of the TF-TDMC method, the extra derivative plays a crucial role in enhancing numerical performance. By

utilizing additional derivative information, the numerical approximation can more accurately reflect the actual behavior of the 

solution, particularly over larger intervals. This leads to reduced local truncation errors. In many numerical methods, especially 

those addressing differential equations, errors can accumulate over iterations. The inclusion of an extra derivative allows for a better

representation of the solution’s curvature and dynamic behavior, helping to compensate for potential errors introduced in earlier 

steps and thereby improving overall accuracy. 

The derivation of the multistep method is motivated by its ability to achieve higher-order accuracy compared to one-step meth-

ods. By utilizing multiple previous points in the solution, multistep collocation methods can offer a more precise approximation,
15
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Fig. 9. Numerical efficiency of selected methods for problem 4 with 𝑏 = 10 and ℎ = 0 . 1 
2𝑖 

, 𝑖 = 0 , 1 , ..., 4 . . 

Fig. 10. Numerical efficiency of selected methods for problem 5 with 𝑏 = 10 and ℎ = 0 . 1 
2𝑖 

, 𝑖 = 0 , 1 , ..., 4 . . 

 

 

 

 

particularly for problems that require fine resolution. Additionally, stiff differential equations pose challenges for one-step methods, 

which often necessitate small time steps for stability. In contrast, multistep methods can manage stiffness more effectively, allowing

for larger time steps while maintaining both stability and accuracy. Furthermore, by considering multiple points, multistep colloca- 

tion methods enhance interpolation between known values, resulting in a smoother approximation of the solution that is especially 

beneficial for capturing complex behaviors. 

Regarding the rationale for choosing collocation points, we select relatively small distances between them to achieve more precise 

approximations of the solution. By sampling the function more frequently, the method can capture finer details and variations, result-

ing in reduced approximation errors. When collocation points are closer together, the method tends to exhibit improved numerical

stability, which is particularly crucial for stiff equations where small perturbations can cause significant changes in the solution. This

close placement of points helps maintain stability throughout the iterations. 
16
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The trigonometrically-fitting technique is instrumental in aligning the numerical method with the exact solution’s oscillatory 

nature, thereby significantly reducing phase and amplitude errors. This alignment ensures that the TF-TDMC method remains stable 

across a wide range of step sizes, preventing the numerical solution from diverging or exhibiting unphysical behavior. As a result,

the TF-TDMC method proves to be highly efficient and reliable for solving second-order ODEs with oscillatory solutions, making it a

valuable addition to the existing toolbox of numerical methods for such problems. 

Limitations 

1. TF-TDMC method cannot be used to solve general second-order ordinary differential equations in the form of 𝑦′′ = 𝑓 (𝑥, 𝑦, 𝑦′) . This

is because the method specially designed to solve 𝑦′′ = 𝑓 (𝑥, 𝑦 ) . The derivation of method is based on 𝑦′′ = 𝑓 (𝑥, 𝑦 ) , including the 𝑓

function and extra derivative, 𝑔 function. 

2. TF-TDMC method is less effective when solving 𝑦′′ = 𝑓 (𝑥, 𝑦 ) with non-trigonometric solutions. This is because the implementation 

of the trigonometric fitting technique aims to effectively address problems with periodic solutions. For problems that do not

have trigonometric solutions, the numerical performance of the TF-TDMC method is nearly comparable to that of other classical 

two-derivative multistep collocation methods, no much difference in term of absolute maximum global error. 

3. For large systems of ordinary differential equations or stiff equations, the computation using Maplesoft can be slow or may require

significant memory. 
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