ANALYSIS, DESIGN & COST COMPARISONS OF SIMPLY SUPPORTED AND CONTINUOUS BRIDGES

BY

ARDAL HASAN ESMAIL

A project report /thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in structural engineering and construction in the department of civil engineering Faculty of Engineering Universiti Putra Malaysia

FACULTY OF ENGINEERING UNIVERSITI PUTRA MALAYSIA 2001

FK 2001 89

UPM

1

Wait for me upon a bridge in Baghdad

M. Alkadhim

•

.

DECLARATION

The Library

Universiti Putra Malaysia 43400 UPM Serdang SELANGOR DARUL EHSAN

Permission to make photo-copies of project report / thesis

ARDAL HASAN ESMAIL

Declare that the thesis entitled:

ANALYSIS, DESIGN & COST COMPARISONS

OF SIMPLY SUPPORTED AND CONTINUOUS BRIDGES

belongs to me. The contents of this thesis may be used by anyone for the academic purposes of teaching, learning and research only. Universiti Putra Malaysia is permitted to make photocopies of this for the same academic purposes.

Date	: _	 	·		
Signature	: _	 			
Name	: .	 			
Address	: _	 			
	_				
	-			·	

ACKNOWLEDGEMENT

would like to take this opportunity to express my sincere thanks and utmost gratitude to my supervisor Dr. Mohd Saleh Jaafar for his able guidance, understanding and moral support extended to me through out the course of this study. His pleasant manners and ever lasting patience were a source of inspiration during the dark and frustrating hours of uncertainty and despair. I will remain ever grateful to him for his innumerable kindnesses.

would also like to thank my examiners Dr. Waleed Abdul Malik Thanoon and Dr. Anvar Ashrabov for critically examining the thesis and their valuable constructive criticism.

This acknowledgement would be utterly incomplete if I don't mention the remarkable support and help extended to me by my friends Hider Aad, Faris Jasim, Dr. Manoj Kulshreshtha, Rabee Habash and Wahab Hussain, for whom I express my most sincere thanks and heart felt appreciation.

PERPUSTAKAAN KEJURUTERAAN DAN SENIBINA UNIVERSITI PUTRA MALAYSIA

ABSTRACT

This study was undertaken to compare the design and cost of simply supported and continuous bridges. Type of bridge selected is deck girder bridge where the girders are precast, prestressed of pretension system. All the spans in a given bridge were of equal length. Three different spans namely 20, 30 & 40m were considered. Different load cases were considered and analyzed using Finite Element Method to identify both, the critical load cases, in which the maximum forces occur, and the maximum design forces on which the design is based. Design of pretensioned SY- beams, slabs and diaphragms were carried out either using ready-made packages or manually. The cost of the bridges was estimated manually. The effect of temperature differences & non-uniform support settlements on the design and cost of these bridges were examined at seven levels of temperature differences and six settlement conditions.

It was observed that for a given span, moments in both simply supported and continuous bridges were maximum at similar loaded spans. If the bridges are designed for the primary force effects induced due to dead and live loads only, the continuous types are of lower cost compared to the simply supported types. The cost difference between the two types decreases as bridge span increases. In a continuous beam deck, non-linear temperature distribution across the deck depth and differential settlement of supports, cause additional sagging & hogging moments as well as shear forces, resulting in higher costs, and the economical superiority of continuous types vanishes at a certain temperature change or support settlement level. The effect of differential settlement is more pronounced than that of temperature changes.

TABLE OF CONTENTS

CHAPTER CONTENT

	Title page	i
	Approval sheets	ii
	Declaration form	iii
	Acknowledgement	iv
	Abstract	v
	Table of contents	vi
	List of tables	xvii
	List of figures	xxxii
1	INTRODUCTION	1
1.1	Bridge	1
1.2	Bridge engineering	1
1.3	Components of a bridge	2
1.4	Classification of bridges	2
1.5	Development of bridge types	3
1.6	Types of reinforced concrete bridges	4
1.7	Precast beam bridges	5
1.8	Bridge analysis	5
1.8.1	General	5
1.8.2	Methods of analysis	6

•

PAGE

٠

1.8.3	Finite element analysis of bridge decks	7
1.9	Bridge design	7
1.9.1	General	7
1.9.2	Design methods	9
1.9.2.1	Working stress design	9
1.9.2.2	Limit states design	10
1.10	Economics	11
1.11	Scope of the study	12
1.12	Objectives	12
2	LITRITURE REVIEW	14
2.1	History of bridges	14
2.1.1	The ancient period	14
2.1.2	The roman period	15
2.1.3	The middle ages	15
2.1.4	An age of iron and steel bridges	16
2.1.5	An era of suspension bridges	17
2.1.6	An era of cable-stayed bridges	18
2.1.7	An era of concrete bridges	18
2.1.7.1	Reinforced concrete bridges	18
2.1.7.2	Prestressed concrete bridges	19
2.2	Reinforced concrete bridges	20
2.2.1	Slab bridges	20
2.2.2	Deck-girder bridges	22

.

•

vii

2.2.3	Box-girder bridges	24
2.2.4	Prestressed concrete segmental bridges	24
2.2.5	Reinforced concrete trusses	26
2.2.6	Frame bridges	27
2.2.7	Arches	27
2.2.7.1	Introduction	27
2.2.7.2	Concrete suspension bridges	29
2.2.8	Concrete cable-stayed bridges	30
2.3	Bridge deck types	32
2.3.1	Non-composite and composite decks	32
2.3.2	Cast-in-place concrete slab	33
2.3.3	Precast, prestressed concrete panels	33
2.3.4	Steel orthotropic plate	33
2.3.5	Steel grid	34
2.3.6	Timber	34
2.4	Precast prestressed concrete beam bridges	34
2.4.1	Introduction	34
2.4.2	General principles of pre-stressed concrete	35
2.4.3	Pre-stressed versus reinforced concrete	36
2.4.3.1	Serviceability	36
2.4.3.2	Safety	37
2.4.3.3	Economics	37
2.4.4	Sources of prestress force	38

•

•

2.4.5	Design basis	40
2.4.6	Design of prestressed members	41
2.4.7	Simple and continuous spans	41
2.5	Continuity in R.C bridges	42
2.5.1	General	42
2.5.2	Historical development	43
2.5.3	Continuity in decks with precast beams	45
2.5.3.1	Introduction	45
2.5.3.2	Theoretical Background	46
2.5.3.3	Details of continuity	47
2.5.3.4	Procedure for ultimate negative moment	49
2.5.4	Service moments	50
2.5.5	Practical issues	50
2.5.6	Design considerations	51
2.5.6.1	SLS hogging bending	51
2.5.6.2	ULS hogging bending	52
2.5.6.3	Parasitic effects	54
2.5.7	Construction sequences	56
2.5.8	Advantages and disadvantages of continuity	56
2.6	Bridge loading	56
2.6.1	Synopsis	56
2.6.2	General back ground	57
2.6.3	Definitions	58

2.6.4	Relevant studies	58
2.6.5	BS loadings	60
2.6.6	Load distribution	60
2.7	Thermal effects	62
2.7.1	Introduction	63
2.7.2	Basic principles	63
2.7.3	Air temperature	64
2.7.4	Heat exchange and thermal effects	64
2.7.5	Thermal stress analysis	65
2.7.6	Idealization of differential thermal design gradient	65
2.7.7	Causes of thermal Stresses	65
2.7.8	Self-equilibrating stresses	69
2.7.9	Theoretical studies	71
2.7.10	Thermal crack pattern	72
2.7.11	Effect on ultimate load carrying capacity	73
2.7.12	Useful observations & suggested guidelines	74
2.8	Effects of settlement	75
2.8.1	General	75
2.8.2	Assessment of settlement	76
2.8.3	Differential settlement	76
2.8.4	Components of bridge settlement	77
2.8.5	Criterion for tolerable settlements	77
2.9	Economics	78

.

2.9.1	Introduction	79
2.9.2	Economic evaluation	80
2.9.3	Comparative economics	81
3	METHODOLOGY	82
3.1	Engineering problems and numerical methods	82
3.2	Finite element method	82
3.2.1	Introduction	82
3.2.2	A brief history, definition and description of FEM	84
3.2.3	Benefits of using Finite Element Method	84
3.3	STAAD III	86
3.3.1	Synopsis	86
3.3.2	General features	87
3.3.3	Program capabilities	87
3.3.3.1	General	87
3.3.3.2	Static analysis	88
3.3.3.3	Dynamic / Seismic analysis	88
3.3.3.4	Secondary analysis	88
3.3.3.5	Loads and load generation	88
3.4	Organization of study	89
4	ANALYSIS	91
4.1	Load cases	91
4.2	Loading on 20m span bridge	93
4.2.1	General details	9 3

4.2.2	Loading on single span	94
4.2.3	Loading on two spans	99
4.2.4	Loading on three spans	99
4.2.5	Summary of HA loading & KEL	99
4.2.6	Type HB loading	100
4.2.7	Calculations of load cases for simply supported spans	101
4.2.8	Calculations of load cases for continuous spans	109
4.2.8.1	Loading on 1 st span	109
4.2.8.2	Loading on the 2 nd span	110
4.2.8.3	Loading on the support	112
4.2.8.4	Loading on 1 st & 2 nd spans	114
4.2.8.5	Loading on three spans	121
4.2.9	Summary	122
4.3	Loading on 30m span bridge	124
4.3.1	General details	124
4.3.2	Loading on single span	. 125
4.3.3	Loading on two spans	130
4.3.4	Loading on three spans	130
4.3.5	Type HB loading	130
4.3.6	Calculations of load cases for simply supported spans	131
4.3.7	Calculations of load cases for continuous spans	134
4.3.7.1	Loading on 1 st span	134
4.3.7.2	Loading on the 2 nd span	135

4.3.7.3	Loading on the support	137
4.3.7.4	Loading on 1 st & 2 nd spans	140
4.3.7.5	Loading on three spans	142
4.3.7.6	Summary	143
4.4	Loading on 40m span bridge	146
4.4.1	General details	146
4.4.2	Load calculations	151
4.5	Analysis of (SY) beams	153
4.5.1	20m span bridge	154
4.5.1.1	Maximum forces	154
4.5.1.2	Comparison of results	164
4.5.1.3	Concluding remarks	168
4.5.1.4	Input data	168
4.5.2	30m span bridge	169
4.5.2.1	Maximum forces	169
4.5.2.2	Comparison of results	171
4.5.2.3	Concluding remarks	175
4.5.2.4	Input data	175
4.5.3	40m span bridge	176
4.5.3.1	Maximum forces	176
4.5.3.2	Comparison of results	179
4.5.3.3	Concluding remarks	182
4.5.3.4	Input data	182
	,	

4.5.4	Comparison between the three bridges	182
4.6	Maximum design forces for SY-beams	184
4.6.1	20m span bridge	184
4.6.2	30m span bridge	187
4.6.3	40m span bridge	189
4.7	Analysis of solid slabs	191
4.7.1	20m span bridge	191
4.7.1.1	Maximum moments	191
4.7.1.2	Concluding remarks	193
4.7.2	30m span bridge	194
4.7.2.1	Maximum moments	194
4.7.2.2	Concluding remarks	195
4.7.3	40m span bridge	196
4.7.3.1	Maximum moments	1 96
4.7.3.2	Concluding remarks	1 98
4.7.4	Comparison between the three bridges	198
5	DESIGN	199
5.1	Design of prestressed SY - beams	1 99
5.1.1	20m SY1 - beams	200
5.1.1.1	Simply supported span	200
5.1.1.2	Continuous spans	204
5.1.2	30m SY3 - beams	217
5.1.2.1	Simply supported span	217

5.1.2.2	Continuous spans	211
5.1.3	40m SY6 - beams	214
5.1.3.1	Simply supported span	214
5.1.3.2	Continuous spans	218
5.2	Design of solid slabs	221
5.2.1	20m span bridge	221
5.2.1.1	Simply supported span	221
5.2.1.2	Continuous spans	224
5.2.2	30m & 40m spans bridges	227
5.3	Design for hogging moments	232
5.4	Design of diaphragms	233
5.4.1	20m span bridge	233
5.4.2	30m span bridge	236
5.4.3	40m span bridge	237
6	COST ANALYSIS	239
6.1	20m span bridge	239
6.2	30m span bridge	242
6.3	40m span bridge	245

6.4 Comparison

6.5 Concluding remarks

7 **TEMPERATURE EFFECTS**

7.1 20m continuous span bridge

7.2 30m continuous span bridge

250

251

251

255

7.3	40m continuous span bridge	258
7.4	Conclusion	261
8	SETTLEMENT EFFECTS	262
8.1	20m continuous span bridge	262
8.2	30m continuous span bridge	271
8.3	40m continuous span bridge	279
8.4	Conclusion	287
9	SUMMARY AND CONCLUSIONS	288
	REFERENCES	290
	APPENDIX A	293
	APPENDIX B	313

xvi

LIST OF TABLES

TABLE	CONTENT	PAGE
4.1	Load cases for bridge of three spans	92
4.1a	Loading on simply supported spans	92
4.1b	Loading on continuous spans - Loading on 1 st span	92
4.1c	Loading on continuous spans - Loading on 2 nd span	92
4.1d	Loading on continuous spans - Loading on the support	92
4.1e	Loading on continuous spans - Loading on 1 st & 2 nd spans	93
4.1f	Loading on continuous spans - Loading on three spans	93
4.2	Distributed (HA & KEL) loads for 20m span bridge	100
4.3	Loading on the nodes when HB is on the 1 st lane of simply supported span - 20m span bridge	105
4.4	Loading on the nodes when HB is on the 1 st & 2 nd lanes of simply supported span - 20m span bridge	107
4.5	Loading on the nodes when HB is on the 2 nd lanes of simply supported span - 20m span bridge	109
4.6	Loading on the nodes when HB is on the 1 st lane of the 2 nd continuous span - 20m span bridge	111
4.7	Loading on the nodes when HB is on the 1^{st} & 2^{nd} lanes of the 2^{nd} continuous span - 20m span bridge	111
4.8	Loading on the nodes when HB is on the 2 nd lane of the 2 nd continuous span - 20m span bridge	113
4.9	Loading on the nodes when HB is on the 1 st lane of the support - 20m span bridge	113

xviii

4.10	Loading on the nodes when HB is on the 1 st & 2 nd lanes of the support - 20m span bridge	113
4.11	Loading on the nodes when HB is on the 2 nd lane of the support - 20m span bridge	114
4.12	Concentrated KEL for different span cases in 20m span bridge	123
4.13	HB + HA Loading for different span cases in 20m span bridge	123
4.14	HB loading at nodes in 20m span bridge	124
4.15	Loading on the nodes when HB is on the 1 st lane of simply supported span - 30m span bridge	135
4.16	Loading on the nodes when HB is on the 1 st & 2 nd lanes of simply supported span - 30m span bridge	133
4.17	Loading on the nodes when HB is on the 2 nd lanes of simply supported span - 30m span bridge	134
4.18	Loading on the nodes when HB is on the 1 st lane of the 2 nd continuous span - 30m span bridge	136
4.19	Loading on the nodes when HB is on the 1^{st} & 2^{nd} lanes of the 2^{nd} continuous span – 30m span bridge	147
4.20	Loading on the nodes when HB is on the 2 nd lane of the 2 nd continuous span – 30m span bridge	147
4.21	Loading on the nodes when HB is on the 1 st lane of the support - 30m span bridge	138
4.22	Loading on the nodes when HB is on the 1 st & 2 nd lanes of the support - 30m span bridge	139
4.23	Loading on the nodes when HB is on the 2 nd lane of the support - 30m span bridge	139
4.24	Distributed (HA & KEL) loads for 30m span bridge	144
4.25	Concentrated KEL for different span cases in 30m span bridge	144
4.26	HB + HA Loading for different span cases in 30m span bridge	145

4.27	HB loading at nodes in 30m span bridge	145
4.28	Distributed (HA & KEL) loads for 40m span bridge	151
4.29	Concentrated KEL for different span cases in 40m span bridge	152
4.30	HB + HA Loading for different span cases in 40m span bridge	152
4.31	HB loading at nodes in 40m span bridge	153
4.32	Maximum forces for 20m simply supported bridge Loading on 1 st span	154
4.33a	Maximum forces for 20m continuous bridge Loading on 1 st span	156
4.33b	Maximum sagging moments for 20m continuous bridge Loading on 1 st span	156
4.34a	Maximum forces for 20m continuous bridge Loading on 2 nd span	158
4.34b	Maximum sagging moments for 20m continuous bridge Loading on 2 nd span	159
4.35a	Maximum forces for 20m continuous bridge Loading on the support	159
4.35b	Maximum sagging moments for 20m continuous bridge Loading on the support	159
4.36a	Maximum forces for 20m continuous bridge Loading on the 1 st & 2 nd spans	160
4.36b	Maximum sagging moments for 20m Continuous Bridge Loading on the $1^{st} \& 2^{nd}$ spans	160
4.37a	Maximum forces for 20m continuous bridge Loading on three spans	162
4.37Ъ	Maximum sagging moments for 20m continuous bridge Loading on three spans	162
4.38	Maximum forces in 20m span bridge	165

٠

4.38a	Sagging moments & shear forces in simply supported bridge	165
4.38b	Sagging & hogging moments in continuous bridge	165
4.38c	Shear forces in continuous bridge	165
4.39	Maximum forces for 30m simply supported bridge Loading on 1 st span	169
4.40a	Maximum forces for 30m continuous bridge Loading on 1 st span	170
4.40b	Maximum sagging moments for 30m continuous bridge Loading on 1 st span	170
4.41a	Maximum forces for 30m continuous bridge Loading on the 1 st & 2 nd spans	170
4.41b	Maximum sagging moments for 30m continuous bridge Loading on the 1 st & 2 nd spans	171
4.42	Maximum forces in 30m span bridge	172
4.42a	Sagging moments & shear forces in simply supported bridge	172
4.42b	Sagging & hogging moments in continuous bridge	172
4.42c	Shear forces in continuous bridge	172
4.43	Maximum forces for 40m simply supported bridge Loading on 1 st span	176
4.44a	Maximum forces for 40m continuous bridge Loading on 1 st span	1 77
4.44b	Maximum sagging moments for 40m continuous bridge Loading on 1 st span	177
4.45a	Maximum forces for 40m continuous bridge Loading on the 1 st & 2 nd spans	1 77
4.45b	Maximum sagging moments for 40m continuous bridge Loading on the 1 st & 2 nd spans	178

4.46	Maximum forces in 40m span bridge	179
4.46a	Sagging moments & shear forces in simply supported bridge	179
4.46b	Sagging & hogging moments in continuous bridge	179
4.46c	Shear forces in continuous bridge	179
4.47	Summary of maximum forces of the three bridges	183
4.48	Maximum design forces for 20m simply supported bridge	185
4.48a	[D.L + HA & KEL] combination	185
4.48b	[D.L + HB & HA (L2)] combination	185
4.49	Maximum design forces for 20m continuous bridge	186
4.49a	[D.L + HA & KEL] combination	186
4.49b	[D.L + HB & HA (L2)] combination	186
4.50	Summary of maximum factored design forces for 20m span bridge	186
4.51	Maximum design forces for 30m simply supported bridge	187
4.51a	[D.L + HA & KEL] combination	187
4.51b	[D.L + HB & HA (L1)] combination	187
4.51c	[D.L + HB & HA (L2)] combination	188
4.52	Maximum design forces for 30m continuous bridge	188
4.52a	[D.L + HA & KEL] combination	188
4.52b	[D.L + HB & HA (L1)] combination	188
4.53	Summary of maximum factored design forces for 30m span bridge	189
4.54	Maximum design forces for 40m simply supported bridge	189
4.54a	[D.L + HA & KEL] combination	190
4.54b	[D.L + HB & HA (L1)] combination	190

xxi

VV11

4.55	Maximum design forces for 40m continuous bridge	190
4.55 a	[D.L + HA & KEL] combination	1 90
4.55b	[D.L + HB & HA (L1/L2)] combination	1 90
4.56	Summary of maximum factored design forces for 40m span bridge	191
4.57	Maximum moments in the slabs of 20m span bridge	192
4.57a	Simply supported	192
4.57b	Continuous - Loading on 1 st span	192
4.57c	Continuous - Loading on 2 nd span	192
4.57d	Continuous - Loading on the support	192
4.57e	Continuous - Loading on 1 st & 2 nd spans	193
4.57f	Continuous - Loading on three spans	193
4.58	Summary of maximum moments at slabs of 20m span Bridge	193
4.59	Maximum moments in the slabs of 30m span bridge	194
4.59a	Simply supported	1 94
4.59b	Continuous - Loading on 1 st span	1 9 4
4.59c	Continuous - Loading on 2 nd span	1 94
4.59d	Continuous - Loading on the support	195
4.59e	Continuous - Loading on 1 st & 2 nd spans	195
4.59f	Continuous - Loading on three spans	195
4.60	Summary of maximum moments at slabs of 30m span bridge	196
4.61	Maximum moments in the slabs of 40m span bridge	1 96
4.61a	Simply supported	1 96
4.61b	Continuous - Loading on 1 st span	1 96

VV111
-

4.61c	Continuous - Loading on 2 nd span	1 97
4.61d	Continuous - Loading on the support	197
4.61e	Continuous - Loading on 1 st & 2 nd spans	197
4.61f	Continuous - Loading on three spans	1 97
4.62	Summary of maximum moments at slabs of 40m span bridge	1 98
5.1	General input data for prestressed SY beam design	199
5.2	Allowable concrete stresses	199
5.3	Design input data for 20m SY1 beams	200
5.4	Applied moments on 20m simply supported SY1 beam Class 2 design	200
5.5	Design output data for 20m simply supported SY1 beam Class 2 design	201
5.6	Applied moments on 20m simply supported SY1 beam Class 1 design	201
5.7	Design output data for 20m simply supported SY1 beam Class 1 design	201
5.8	Shear links for 20m simply supported SY1 beams	202
5.9	Applied moments on 20m continuous SY1 beam Class 2 design	204
5.10	Design output data for 20m continuous SY1 beam Class 2 design	204
5.11	Applied moments on 20m continuous SY1 beam Class 1 design	204
5.12	Design output data for 20m continuous SY1 beam Class 1 design	205
5.13	Shear links for 20m continuous SY1 beams	205

VY1	v
~~	•

5.14	Design input data for 30m SY1 beams	207
5.15	Applied moments on 30m simply supported SY1 beam Class 2 design	207
5.16	Design output data for 30m simply supported SY1 beam Class 2 design	208
5.17	Applied moments on 30m simply supported SY1 beam Class 1 design	208
5.18	Design output data for 30m simply supported SY1 beam Class 1 design	208
5.19	Shear links for 30m simply supported SY1 beams	209
5.20	Applied moments on 30m continuous SY1 beam Class 2 design	211
5.21	Design output data for 30m continuous SY1 beam Class 2 design	211
5.22	Applied moments on 30m continuous SY1 beam Class 1 design	211
5.23	Design output data for 30m continuous SY1 beam Class 1 design	212
5.24	Shear links for 30m continuous SY1 beams	212
5.25	Design input data for 40m SY1 beams	214
5.26	Applied moments on 40m simply supported SY1 beam Class 2 design	214
5.27	Design output data for 40m simply supported SY1 beam Class 2 design	215
5.28	Applied moments on 40m simply supported SY1 beam Class 1 design	215
5.29	Design output data for 40m simply supported SY1 beam Class 1 design	215

5.30	Shear links for 40m simply supported SY1 beams	216
5.31	Applied moments on 40m continuous SY1 beam Class 2 design	218
5.32	Design output data for 40m continuous SY1 beam Class 2 design	218
5.33	Applied moments on 40m continuous SY1 beam Class 1 design	219
5.34	Design output data for 40m continuous SY1 beam Class 1 design	219
5.35	Shear links for 40m continuous SY1 beams	219
5.36	Input data for design of the slabs	221
5.37	Span lengths for the designed elements	227
5.38	Solid slab design summery of 30m & 40m span bridges	227
5.39	Design for hogging moments in the three bridges	232
5.39a	20m continuous bridge	232
5.39b	30m continuous bridge	232
5.39c	40m continuous bridge	232
6.1	Bill of quantities for 20m simply supported R.C bridge	240
6.2	Bill of quantities for 20m continuous R.C bridge	241
6.3	Bill of quantities for 30m simply supported R.C bridge	243
6.4	Bill of quantities for 30m continuous R.C bridge	244
6.5	Bill of quantities for 40m simply supported R.C bridge	246
6.6	Bill of quantities for 40m continuous R.C bridge	247
6.7	Summary of costing	248

XXXV

7.1	Maximum forces due to temperature in 20m continuos span bridge	252
7.2	Temperature effect on design forces of 20m span continuous bridge	253
7.2a	Effect on design sagging moment	253
7.2b	Effect on design hogging moment	253
7.2c	Effect on design shear force	253
7.3	Maximum forces due to temperature in 20m continuos span bridge	255
7.4	Temperature effect on design forces of 20m span continuous bridge	256
7.4a	Effect on design sagging moment	256
7.4b	Effect on design hogging moment	256
7.4c	Effect on design shear force	256
7.5	Maximum forces due to temperature in 20m continuos span bridge	258
7.6	Temperature effect on design forces of 20m span continuous bridge	259
7.6a	Effect on design sagging moment	259
7.6b	Effect on design hogging moment	259
7.6c	Effect on design shear force	259
8.1	Maximum forces due to settlement for 20m span continuous bridge	263
8.1a	1 st support displacements	263
8.1b	2 nd support displacements	264
8.1c	1 st & 2 nd support displacements	265
8.1d	1 st & 3 rd support displacements	266
8.1e	2 nd & 3 rd support displacements / No hogging moments	267
8.1f	1 st & 4 th support displacements / No sagging moments	268
8.2	Settlement effect on design forces of 20m span continuous bridge	269

١

xxvii

8.2a	Effect on design sagging moment	269
8.2b	Effect on design hogging moment	269
8.2c	Effect on design shear force	269
8.3	Maximum forces due to settlement for 30m span continuous bridge	271
8.3a	1 st support displacements	271
8.3b	2 nd support displacements	272
8.3c	1 st & 2 nd support displacements	273
8.3d	1 st & 3 rd support displacements	274
8.3e	2 nd & 3 rd support displacements / No hogging moments	275
8.3f	1 st & 4 th support displacements / No sagging moments	276
8.4	Settlement effect on design forces of 30m span continuous bridge	277
8.4a	Effect on design sagging moment	277
8.4b	Effect on design hogging moment	277
8.4c	Effect on design shear force	277
8.5	Maximum forces due to settlement for 40m span continuous bridge	279
8.5a	1 st support displacements	279
8.5b	2 nd support displacements	280
8.5c	1 st & 2 nd support displacements	281
8.5d	1 st & 3 rd support displacements	282
8.5e	2 nd & 3 rd support displacements / No hogging moments	283
8.5f	1 st & 4 th support displacements / No sagging moments	284
8.6	Settlement effect on design forces of 20m span continuous bridge	285
8.6a	Effect on design sagging moment	285

	٠	٠
XXV	1	1
~~~	-	4

`

8.6b	Effect on design hogging moment	285
8.6c	Effect on design shear force	285
A.1	Maximum forces for 30m continuous bridge - Loading on 2 nd span	394
A.2	Maximum sagging moments for 30m continuous bridge - 2 nd span	394
A.3	Maximum forces for 30m continuous bridge - Loading on support	394
A.4	Maximum sagging moments for 30m continuous bridge - support	395
A.5	Maximum forces for 30m continuous bridge - Loading on 3 spans	395
A.6	Maximum sagging moments for 30m continuous bridge - 3 spans	396
A.7	Maximum forces for 40m continuous bridge - Loading on 2 nd span	396
A.8	Maximum sagging moments for 40m continuous bridge - 2 nd span	396
A.9	Maximum forces for 40m continuous bridge - Loading on support	397
A.10	Maximum sagging moments for 40m continuous bridge - support	397
A.11	Maximum forces for 40m continuous bridge - Loading on 3 spans	396
A.12	Maximum sagging moments for 40m continuous bridge - 3 spans	398
A.13	Maximum design forces for 20m simply supported bridge	
~ <b>.</b> . 1 J	Load case No. 150: - Total factored D.L+ HA & KEL	3 <b>98</b>
A.14		
A.14	Maximum design forces for 20m simply supported bridge Load case No. 151: - Total factored D.L+ HA & HB (20)	399
		577
A.15	Maximum design forces for 20m simply supported bridge	200
	Load case No. 152: - Total factored D.L+ HA & HB (40)	399
A.16	Maximum design forces for 20m continuous bridge - 1 st span	
	Load case No. 150: - Total factored D.L+ HA & KEL	399
A.17	Maximum design forces for 20m continuous bridge - 1 st span	
	Load case No. 151: - Total factored D.L + HB&HA (20)	300

.

A.18	Maximum design forces for 20m continuous bridge - 1 st span Load case No. 152: - Total factored D.L + HB&HA (40)	300
A.19	Maximum design forces for 20m continuous bridge - 1 st & 2 nd spans Load case No. 150: - Total factored D.L+ HA & KEL	300
A.20	Maximum design forces for 20m continuous bridge - 1 st & 2 nd spans Load case No. 151: - Total factored D.L + HB&HA (20)	301
A.21	Maximum design forces for 20m continuous bridge - 1 st & 2 nd spans Load case No. 152: - Total factored D.L + HB&HA (40)	301
A.22	Maximum design forces for 20m continuous bridge - 1 st span	301
A.22a	[D.L + HA & KEL] combination	301
A.22b	[D.L + HB & HA (L2)] combination	302
A.23	Maximum design forces for 20m continuous bridge - 1 st & 2 nd spans	302
A.23a	[D.L + HA & KEL] combination	302
A.23b	[D.L + HB & HA (L2)] combination	302
A.24	Maximum design forces for 30m simply supported bridge	
	Load case No. 150: - Total factored D.L+ HA & KEL	303
A.25	Maximum design forces for 30m simply supported bridge	
	Load case No. 151: - Total factored D.L+ HA & HB (20)	303
A.26	Maximum design forces for 30m simply supported bridge	
	Load case No. 152: - Total factored D.L+ HA & HB (40)	303
A.27	Maximum design forces for 30m continuous bridge - 1 st span	
	Load case No. 150: - Total factored D.L+ HA & KEL	304
A.28	Maximum design forces for 30m continuous bridge - 1 st span	
	Load case No. 151: - Total factored D.L+ HA & HB (20)	304
A.29	Maximum design forces for 30m continuous bridge - 1 st span Load case No. 152: - Total factored D.L+ HA & HB (40)	304
A.30	Maximum design forces for 30m continuous bridge - 1 st & 2 nd spans	504
* ****V	Load case No. 150: - Total factored D.L+ HA & KEL	305

.

A.31	Maximum design forces for 30m continuous bridge - 1 st & 2 nd span	205
	Load case No. 151: - Total factored D.L+ HA & HB (20)	305
A.32	Maximum design forces for 30m continuous bridge - 1 st & 2 nd span	
	Load case No. 152: - Total factored D.L+ HA & HB (40)	305
A.33	Maximum design forces for 30m continuous bridge - 1 st span	306
A.33a	[D.L + HA & KEL] combination	306
A.33b	[D.L + HB & HA (L1)] combination	306
A.33c	[D.L + HB & HA (L2)] combination	306
A.34	Maximum design forces for 30m continuous bridge - 1 st & 2 nd spans	307
A.34a	[D.L + HA & KEL] combination	307
A.34b	[D.L + HB & HA (L1)] combination	307
A.35	Maximum design forces for 40m simply supported bridge	
	Load case No. 150: - Total factored D.L+ HA & KEL	307
A.36	Maximum design forces for 40m simply supported bridge	
	Load case No. 151: - Total factored D.L+ HA & HB (20)	308
A.37	Maximum design forces for 40m simply supported bridge	
	Load case No. 152: - Total factored D.L+ HA & HB (40)	308
A.38	Maximum design forces for 40m continuous bridge - 1 st span	
	Load case No. 150: - Total factored D.L+ HA & KEL	308
A.39	Maximum design forces for 40m continuous bridge - 1 st span	
	Load case No. 151: - Total factored D.L+ HA & HB (20)	309
A.40	Maximum design forces for 40m continuous bridge - 1 st span	
	Load case No. 152: - Total factored D.L+ HA & HB (40)	309
A.41	Maximum design forces for 40m continuous bridge - 1 st & 2 nd spans	
	Load case No. 150: - Total factored D.L+ HA & KEL	309
A.42	Maximum design forces for 40m continuous bridge - 1 st & 2 nd span	
	Load case No. 151: - Total factored D.L+ HA & HB (20)	310

Maximum design forces for 40m continuous bridge - 1st & 2nd span A.43 Load case No. 152: - Total factored D.L+ HA & HB (40) 310 Maximum design forces for 40m continuous bridge - 1st span 310 A.44 [D.L + HA & KEL] combination A.44a 310 [D.L + HB & HA (L1)] combination A.44b 311 [D.L + HB & HA (L2)] combination A.44c 311 Maximum design forces for 40m continuous bridge - 1st & 2nd spans A.45 311 A.45a [D.L + HA & KEL] combination 311 [D.L + HB & HA (L2)] combination A.45b 312

xxxii

#### **LIST OF FIGURES**

.

FIGURE	CONTENT	PAGE
2.1	Slab bridge	21
2.2	Preccast integral-deck bridge units	21
2.3	Deck-girder bridge	22
2.4	Composite steel-concrete bridge	23
2.5	Composite prestressed concrete bridge	23
2.6	Cross-sections for different types of box girders	24
2.7	Span by span assembly of precast segments with truss	25
2.8	Progressive placement procedure	25
2.9	Balanced cantilever method	26
2.10	Schemes of Vierendel trusses	26
2.11	Schemes of reinforced concrete trusses	27
2.12	Hinge arrangements in arches	28
2.13	Arch bridge types	29
2.14	Suspension bridges	30
2.15	Longitudinal cable configurations	31
2.16	Tower configurations	31
2.17	Span arrangements	32
2.18	Methods of prestressing	40
2.19	Data on SY- beams	42

xxxiii

2.20	Stress distribution due to prestressing	48
2.21	Bending Moment diagrams for different loaded lengths	49
2.22	Minimizing number of bearings	51
2.23	Hogging at SLS and ULS	52
2.24	Strain compatibility method	53
2.25	Possible sagging at SLS	54
2.26	Stages in design of a typical precast, prestressed beam bridge	55
2.27	Plan and axle arrangement for one unit of HB loading	62
2.28	Total thermal gradient	66
2.29	The build-up of total thermal gradient	67
2.30	Net moment in simple span	68
2.31	Net moment in continuous span	68
2.32	Temperature-induced strain distribution	69
2.33	Strain difference	69
2.34	Member restrained at the ends	70
2.35	Distribution and resultant of self- equilibrating stresses	71
2.36	Thermal effect on ultimate load carrying capacity	73
2.37	Components of settlement and angular distortion in bridges	78
2.38	Relationship between span and cost	80
3.1	Flow chart of the study	90
4.1	Cross-section for (20m) span bridge	94
4.2	Mesh lines of 20m simply supported span bridge	95
4.3	Joint numbers on the mesh lines of 20m continuous span bridge	96

xxxiv

4.4	Member numbers on the mesh lines of 20m continuous span bridge	97
4.5	Element numbers on the mesh lines of 20m continuous span bridge	98
4.6	Location of HB - vehicle	101
4.7	Beam self - weight in simply supported bridge	101
4.8	Walkway load in simply supported bridge	102
4.9	Crash barrier load in simply supported bridge	102
4.10	Premix load in simply supported bridge	102
4.11	Parapet load in simply supported bridge	103
4.12	HA loading in simply supported bridge	103
4.13	Concentrated KEL in simply supported bridge	104
4.14	HA loading on simply supported bridge when HB is on the 1 st lane	104
4.15a	Loading on the longitudinal mesh lines when HB is on the 1 st lane	105
4.15b	Loading on the transversal mesh lines when HB is on the 1 st lane	105
4.16	HB node loading on the 1 st lane of simply supported bridge	106
4.17	HA on simply supported bridge when HB is on the 1 st & 2 nd lanes	106
4.18	Loading on the longitudinal mesh lines - HB is on 1 st & 2 nd lanes	107
4.19	HB node loading on the $1^{st} \& 2^{nd}$ lanes of simply supported bridge	107
4.20	HA loading in simply supported bridge when HB is on the 2 nd lane	108
4.21	Loading on the longitudinal mesh lines when HB is on the 2 nd lane	108
4.22	HB node loading on the 2 nd lane of simply supported bridge	109
<b>4.23</b>	Loading on the transversal mesh lines when HB is on the 1 st lane	110
4.24	Loading on the transversal mesh lines when HB is on the 1 st lane	113
4.25	HA loading on the 1 st & 2 nd spans of continuous bridge	115

XXXX

4.26	KEL on the 1 st continuous span when HA is on 1 st & 2 nd spans	115
4.27	HA on $1^{st}$ & $2^{nd}$ continuous spans when HB is on $1^{st}$ lane of $1^{st}$ span	115
4.28	HB on $1^{\text{st}}$ lane of $1^{\text{st}}$ continuous span when HA is on $1^{\text{st}}$ & $2^{\text{nd}}$ spans	116
4.29	HA on 1 st & 2 nd continuous spans - HB on 1 st & 2 nd lanes of 1 st span	116
4.30	HB on 1 st & 2 nd lanes of 1 st continuous span - HA on 1 st & 2 nd spans	117
4.31	HA on $1^{st}$ & $2^{nd}$ continuous spans - HB is on $2^{nd}$ lane of $1^{st}$ span	117
4.32	HB on $2^{nd}$ lane of $1^{st}$ continuous span - HA is on the $1^{st}$ & $2^{nd}$ spans	117
4.33	HB on 1 st lane of 2 nd continuous span - HA is on 1 st & 2 nd spans	119
4.34	HB on 1 st & 2 nd lanes of 2 nd continuous span- HA on 1 st & 2 nd spans	119
4.35	HB on 2 nd lane of 2 nd continuous span - HA is on the 1 st & 2 nd spans	119
4.36	HB on the 1 st lane at support - HA loading is on the 1 st & 2 nd spans	120
4.37	HB on the 1 st & 2 nd lanes at support - HA is on the 1 st & 2 nd spans	120
4.38	HB on the 2 nd lane at support - HA loading is on the 1 st & 2 nd spans	120
4.39	Cross-section of (30m) span bridge	125
4.40	Mesh lines of 30m simply supported span bridge	126
4.41	Joint numbers on the mesh lines of 30m continuous span bridge	127
4.42	Member numbers on the mesh lines of 30m continuous span bridge	128
4.43	Element numbers on the mesh lines of 30m continuous span bridge	129
4.44	Location of HB - vehicle	131
4.45a	Loading on the longitudinal mesh lines when HB is on the 1 st lane	132
4.45b	Loading on the transversal mesh lines when HB is on the 1 st lane	132
4.46	Loading on the longitudinal mesh lines - HB is on 1 st & 2 nd lanes	133
4.47	Loading on the longitudinal mesh lines when HB is on the 2 nd lane	134

xxxxvi

.

4.48	Loading on the transversal mesh lines when HB is on the 1 st lane	136
4.49	Loading on the transversal mesh lines when HB is on the 1st lane	138
4.50	Cross-section of (40m) span bridge	146
4.51	Mesh lines of 40m simply supported span bridge	147
4.52	Joint numbers on the mesh lines of 40m continuous span bridge	1 <b>48</b>
4.53	Member numbers on the mesh lines of 40m continuous span bridge	149
4.54	Element numbers on the mesh lines of 40m continuous span bridge	150
4.55a	Maximum sagging moments for 20m span simply supported bridge	155
4.55b	Maximum shear forces for 20m span simply supported bridge	155
4.56 <b>a</b>	Maximum sagging moments for 20m span continuous bridge Loading on 1 st span	157
4.56b	Maximum hogging moments for 20m span continuous bridge Loading on 1 st span	157
4.56c	Maximum shear forces for 20m span continuous bridge Loading on 1 st span	15 <b>8</b>
4.57 <b>a</b>	Maximum sagging moments for 20m span continuous bridge Loading on 1 st & 2 nd spans	163
4.57b	Maximum hogging moments for 20m span continuous bridge Loading on 1 st & 2 nd spans	163
4.57c	Maximum shear forces for 20m span continuous bridge Loading on 1 st & 2 nd spans	164
4.58a	Summary of maximum sagging moments for 20m span simply supported bridge	166
4.58b	Summary of maximum shear forces for 20m span simply supported bridge	166
4.59 <u>a</u>	Summary of maximum sagging moments for 20m span continuous bridge	167

xxxxii

4.59b	Summary of maximum hogging moments for 20m span	
	continuous bridge	167
4.59c	Summary of maximum shear forces for 20m span	
	continuous bridge	168
4.60a	Summary of maximum sagging moments for 30m span	
	simply supported bridge	173
4.60b	Summary of maximum shear forces for 30m span	
	simply supported bridge	173
<b>4.61a</b>	Summary of maximum sagging moments for 30m span	
	continuous bridge	174
4.61b	Summary of maximum hogging moments for 30m span	
	continuous bridge	174
4.61c	Summary of maximum shear forces for 30m span	
	continuous bridge	175
4.62a	Summary of maximum sagging moments for 40m span	
	simply supported bridge	180
4.62b	Summary of maximum shear forces for 40m span	
	simply supported bridge	180
4.63a	Summary of maximum sagging moments for 40m span	
	continuous bridge	181
4.63b	Summary of maximum hogging moments for 40m span	
	continuous bridge	181
4.63c	Summary of maximum shear forces for 40m span	
	continuous bridge	182
5.1	Debonding details for 20m simply supported SY1 beams	202
5.2	SY1 Pretentioned beam for 20m span simply supported bridge	203
5.3	Debonding details for 20m continuous SY1 beams	205
5.4	SY1 Pretentioned beam for 20m span continuous bridge	206

•

xxxviii

5.5	Debonding details for 30m simply supported SY3 beams	209
5.6	SY3 pretentioned beam for 30m span simply supported bridge	210
5.7	Debonding details for 30m continuous SY3 beams	212
5.8	SY3 Pretentioned beam for 30m span continuous bridge	213
5.9	Debonding details for 40m simply supported SY6 beams	216
5.10	SY6 pretentioned beam for 40m span simply supported bridge	217
5.11	Debonding details for 40m continuous SY6 beams	219
5.12	SY6 Pretentioned beam for 40m span continuous bridge	220
5.13	Slab reinforcement details for 20m span simply supported bridge	223
5.14	Slab reinforcement details for 20m span continuous bridge	226
5.15	Slab reinforcement details for 30m span simply supported bridge	228
5.16	Slab reinforcement details for 30m span continuous bridge	229
5.17	Slab reinforcement details for 40m span simply supported bridge	230
5.18	Slab reinforcement details for 40m span continuous bridge	231
5.19	Reinforcement details for 20m span simply supported bridge	
	diaphragms	234
5.20	Reinforcement details for 20m span continuous bridge diaphragms	236
5.21	Reinforcement details for 30m span simply supported bridge	
	diaphragms	236
5.22	Reinforcement details for 30m span continuous bridge diaphragms	237
5.23	Reinforcement details for 40m span simply supported bridge	
	diaphragms	237
5.24	Reinforcement details for 40m span continuous bridge diaphragms	238
6.1	Total cost for 20m span bridge	242

____

•

xxxix

6.2	Total cost for 30m span bridge	. 245
6.3	Total cost for 40m span bridge	248
6.4	Effect of span length on cost of bridges	249
6.5	Effect of span length on % of reduction in cost	249
7.1	Additional forces due to temperature in 20m span continuous bridge	254
7.2	Additional forces due to temperature changes in 30m span continuous bridge	257
7.3	Additional forces due to temperature changes in 40m span continuous bridge	260
8.1	Additional forces due to support settlement in 20m span continuous bridge	270
8.2	Additional forces due to support settlement in 30m span continuous bridge	278
8.3	Additional forces due to support settlement in 40m span	
	continuous bridge	286

•

# Chapter 1 Introduction

#### 1.1 - Bridge:

Bridge is a structure facilitating a communication route for carrying road traffic or other moving loads over a depression or obstruction such as river, stream, channel, road or railway. The communication route may be a railway track, a tramway, a roadway, a footpath, a cycle track or a combination of them.⁽²⁰⁾

An ideal bridge meets the following requirements:

- (i) It serves the intended function with utmost safety and convenience.
- (ii) It is aesthetically sound.
- (iii) It is economical.⁽²⁰⁾

#### 1.2 - Bridge engineering:

When it is necessary to build a bridge, the question arises: What kind of bridge is it necessary to build? From a design standpoint, there may be many possibilities. Thus the creative capability of the designer plays a large role in answering the question posed above.⁽²⁾

The creativity of the bridge designer must of course be grounded in the discipline of engineering. It is also necessary to have a technical mastery of the materials used to build bridges before the design process can begin. It is also important for the designer to perfect the methods of bridge building, thus advancing the art of bridge engineering.⁽²⁾

Bridge engineering, which began with stone and wooden structures as early as the first century, has undergone a dramatic evolution in terms of analysis and use of materials. ⁽¹⁾ Today it is considered a science. However, about 100 years ago it was hardly worthy to be termed an art, and 150 years ago it was no better than a trade. But while bridge building as a learned profession is thus of relatively recent origin, it must not be thought that previous centuries made no contributions to our knowledge of bridge construction. ⁽²⁾

The significance of this study is that it shows, in addition it's own objectives, how advanced analytical techniques can be used to analyze a bridge structure and simplify its overall design. The resulting validity will underscore the goal of modern practice in producing economies. It follows, therefore, that engineers should have a range of options from which to choose, and this should encompass bridge types, design philosophies, and construction procedures.⁽¹⁾

# 1.3 - Components of a bridge:

A bridge is subdivided into:

- a) Superstructure,
- b) Substructure, and
- c) Foundation

Bridge deck system is the part of superstructure directly carrying the vehicular loads. It is furnished with balustrades or parapets, crash barriers, highway surfacing, footpaths, traffic islands, railway tracks on ties, expansion joints and drainage systems.

Substructure comprises piers, columns or abutments, capping beams and bearings. Foundation consists of reinforced concrete footings, spread foundations, rafts bearing directly on soil or rock and capping stabs supported on piles, wells and caissons. ⁽¹⁸⁾

The superstructure or the bridge deck system can be any one or a combination of the following:

- Slabs,
- Coffered slabs,
- Grids,
- Beams,
- Girders,
- Cantilevers,
- Frames,
- Trusses and arches,
- Cables,
- Suspenders and cable-stayed. (18)

Deck surface members may be classified into the three groups, which may be of: (a) Precast, (b) Cast-in situ, and, (c) Composite construction. They may be of conventional steel reinforcement, partially or fully prestressed or composite construction.⁽¹³⁾

## 1.4 - Classification of bridges:

Bridges can be classified into various types depending upon the following factors: ⁽²⁰⁾

- Materials used for construction: Under this category, bridges may be classified as timber bridges, masonry bridges, steel bridges, reinforced cement concrete bridges, pre-stressed bridges and composite bridges.
- Alignment: Under this the bridge can be classified as straight or a skew bridge.

- Location of bridge floor: Under this category, bridges can be classified as deck, semithrough or through bridges.
- Purpose: Under this the bridge can be classified as a aqueduct, viaduct, highway bridge, railway, bridge and footbridge etc.
- Nature of superstructure action: Under this the bridges may be classified as portal frame bridges, truss bridges, balanced cantilever bridges and suspension bridges.
- Position of high flood level: Under this the bridges may be classified as submersible and non-submersible bridges.
- Life: Under this the bridges may be classified as permanent and temporary bridges.
- Loadings: Road bridges and culverts have been classified according to the loadings they are designed to carry.
- Fixed or movable: For navigable channels where permanent and sufficient clear waterway cannot be provided, the movable bridges used are swinging bridges, bascule bridges & lift bridges.
- Span length: Under this category the bridges can be classified as culverts (span less than 8 m), minor bridges (span between 8 to 30 m), major bridges (span above 30 m) and long span bridges (span above 120 m).
- Degree of redundancy: Under this the bridges can be classified as determinate bridges and indeterminate bridges.
- Type of connection: Under this category the steel bridges can be classified as pinned connected, riveted or welded bridges. ⁽²⁰⁾

## 1.5 - Development of bridge types:

It is said that the history of bridges is the history of civilization. However, achieving progress in bridge engineering was not an easy task. Bridges, as most other engineering structures, began with the "cut and try" process. Some less kind people say the "try and fail" process. ⁽²⁾ The pioneers used empirical methods. They made some intelligent guesses as to the strength required and built the bridge accordingly. Many centuries passed before man created the five basic types of bridges:

- The beam,
- The cantilever,
- The arch,
- The suspension, and
- The truss.

The first four types were copied from nature long before recorded history began.⁽²⁾

The natural example of the simple beam bridge is that of a fallen tree spanning a stream. The next step was to use a stone slab as a bridge quite probably, primitive man discovered the principle of the cantilever bridge at a very early stage of bridge development. He made use of a cantilever to construct longer spans than he was able to build with simple beams. Timber beams or stone slabs projecting out one above the other represented such bridges.⁽²⁾

Natural bridges of stone have also been formed, where the action of water has worn away rock until only an arch was left, high above the riverbed.⁽²⁾

The suspension or cable bridge is illustrated in nature by the swinging vine, utilized by animals and people to pass from one tree to another over a stream. In its simplest form a suspension bridge consists only of cables and unstiffened roads way. In primitive suspension bridges, the roadway was often laid on top of the cables. But this position was inconvenient, and bridge builders discovered that a level roadway could be obtained by suspending the roadway from the iron chain cable.⁽²⁾

The first suspension bridge using this system was erected in Italy in the sixteenth century. Since the beginning of the nineteenth century, flat iron bars were used for cables. Finally, the Truss-type bridge belongs almost exclusively to modern civilization.⁽²⁾

In the fifteenth century Leonardo da Vinci was the first to investigate the strength of beams and the forces in triangular structures in his design for a timber truss bridge.⁽²⁾

# 1.6 - Types of reinforced concrete bridges:

In general, a reinforced concrete bridge structure may consist of: (1)

- Deck slabs,
- T-beams (deck girders),
- Through and box girders,
- Rigid frames, and
- Flat slab types

Combinations of these with precasting or prestressing produce additional structural forms and enhance bridge versatility. A major advantage in the use of concrete is the broad variety of structural shapes and forms. In the selection of the proper type of bridge, however, cost is usually the determining criterion. Occasionally, the selection is complicated by factors such as the ratio of dead to live load, appearance, depth constraints and available headroom, limited construction time, labor costs, and difficulties in form work because of the support height or because of traffic maintenance requirements during construction. In this case steel bridges may be more cost-effective.⁽¹⁾

#### 1.7 - Precast beam bridges:

These widely used structures consist of precast-prestressed I-beams, T-beams, and box girders, which may be either pretensioned or posttensioned. Precast I-beams may be built with cast-in-place decks. With a precast, prestressed T-beam as with an I-beam, the flange must be connected with cast-in-place concrete. Precast, prestressed box sections may be placed side by side to form a bridge span. If necessary, they may be posttensioned transversely. Precast, prestressed beams are used mainly for spans up to about at locations where erection of false work is impossible or not desirable. Such beams are economical for mass fabrication. For longer spans it is necessary to provide heavy equipment for erection and / or transporting purposes.⁽²⁾

#### 1.8 - Bridge analysis

#### 1.8.1 - General:

Structural analysis is the process by which the structural engineer determines the response of a structure to specified loads or actions. This response is usually measured by establishing the forces and deformations throughout the structure. A given method of structural analysis is commonly expressed as a mathematical algorithm. However, it is based on information gained through the application of engineering mechanics theory, laboratory research, model and field experimentation, experience, and engineering judgment.⁽²⁹⁾

The earliest demands for sophisticated analysis, coupled with some serious limitations on computational capability, led to a host of special techniques for solving a corresponding set of special problems. These so-called classical methods incorporated some ingenious innovations and served the needs of the structural engineer very well for many years. However, the advent and subsequent development of the digital computer increased computational capabilities by several orders of magnitude and thus obviated the need for special techniques. The ingenious specializations of the classical methods were replaced by the sweeping generalities of the modem matrix methods.⁽²⁹⁾

The transition from the classical methods to the modem matrix methods has triggered some revolutionary changes in structural engineering and in the education of structural engineers. Although matrix methods have become the foundation of modem structural analysis as it is employed in the practice of structural engineering, classical methods continue to play a vital role in the educational process because they introduce the fundamentals of structural analysis. By either classical or matrix methods, the analysis process can be a part of preliminary design, final design, or construction, as was described in the preceding section. However, it is important to note that structural analysis plays a limited role in the structural design process and an even smaller role in the overall design process. Furthermore, the role that it plays is entirely supportive of the design process. ⁽²⁹⁾

#### 1.8.2 - Methods of analysis:

Bridge analysis generally requires the solution of number of linear simultaneous equations, which depends on the method of analysis. Some methods avoid simultaneous equations by using iterative or successive correction techniques in order to reduce the amount of computation, and are suitable when the calculations are made by hand or by a hand-held or small desk calculator.⁽²⁰⁾

In office practice, the design of bridges utilizes computers and many versatile software packages. Special computer programs have been developed, ranging from simple formula applications to elaborate analyses. With rapidly improving and expanding computer technology, the most precise but complex analytical techniques become routine options. The designer should be cautioned, however, that a computer program is only a tool, and hence the designer should clearly understand the basic assumption of the program and all output should be verified. Thus, any method of analysis that satisfies equilibrium and compatibility and has stress-strain relationships implanted in the process is acceptable.⁽¹⁾

Computer-aided analysis, hand computation methods and charts based on some approximations and idealizations provided convenient methods of load distribution, which are reasonably accurate for design purposes. Many computer-aided methods have been developed with the advent of digital computers and are in use although some of these methods are highly numerical and expensive. Different techniques commonly in use for the analysis of bridge decks of various types and configurations are:  $^{(27)}$ 

- Courbon's method
- Orthotropic plate theory
- Finite difference method
- Method of harmonic analysis
- Grillage and space frame analogy
- Folded plate analysis
- Finite element method
- Finite strip method an

The main factors, which govern and influence the choice of analytical techniques, are:

- 1) Form of construction or type of deck
- 2) Plan-geometry of platform
- 3) Support conditions ⁽²⁷⁾

Each of the above techniques is more suited to a particular type or types of bridge decks depending upon the closeness of the actual structure with the assumptions of the method. It may be evident that one particular type of bridge deck can be analyzed by more than one method and in such cases, the choice rests with the designer depending upon the facility, time available, economy and of course his familiarity with the method. ⁽²⁷⁾

# 1.8.3 - Finite element analysis of bridge decks:

The finite element method employs an assemblage of discrete two or three-dimensional members. The elements are connected at nodal points, which possess an appropriate number of degrees of freedom. Material properties, often more than one, can be incorporated which will truly represent various components of the bridge deck. Static and dynamic problems can be easily tackled by this single method, thus making in the most powerful technique. ⁽¹⁴⁾

The bridge is idealized as an assemblage of discrete parts, known as elements. The next stage is to evaluate the element properties. This is followed by the structural analysis of the element assemblage. Forces, stresses, moments, displacements, strains, etc. are calculated. Where a computer program is interactive, those results are plotted which would show the exact behavior of various components of the bridge. ⁽¹⁸⁾

Normally, suitable graphical techniques are associated with any finite element program package. These are to be used to interpret meaningful results. ⁽¹⁸⁾

### 1.9 - Bridge design

#### 1.9.1 - General:

Bridge design should be based on relevant specifications and should demonstrate compliance with applicable standards to ensure credible results. Yet, optimum solutions can be obtained only when the designer understands the assumptions and limitations of analysis. In retrospect, codes are changed continuously but bridge behavior may not, and this difference is important in choosing the contents and the subject matter. In the same context, predicting bridge behavior from computer models has become common practice, and the results confirm the value of testing in verifying structural response.⁽¹⁾ A critical aspect of the design of concrete bridges is their articulation which, if neglected, may lead to excessive local damage. The structure should be designed to ensure that movement due to: ⁽⁴⁾

- Loading
- Ground deformation
- Thermal expansion or contraction
- Creep, and
- Shrinkage

does not induce stress levels in excess of permissible values. Stresses induced in a structure due to shrinkage and thermal movement or settlement of supports are dependent on the modulus of elasticity of the concrete and thus will be modified due to creep.⁽⁴⁾

British design standards adopt limit state philosophy, where the primary limit states for concrete bridges are: collapse, and serviceability. Partial safety factors for loadings and materials will be incorporated. At present the principal design standards are those for loading and stresses. ⁽¹⁶⁾

Loading is covered by Departmental Standard 37/88 (Loads for Highway Bridges) and consists of:

• Type HA, an equivalent lane loading, which is the normal design loading, and

• Type HB, an abnormal unit loading to be used when specified by the appropriate authority.

Permissible stresses for reinforced highway structures are covered by BS 5400: part 4: Section 6 (Steel, concrete and composite Bridges: Code of practice for design of concrete bridges), which stipulates the use of elastic theory with a modular ratio of 15 for assessing the strength of members. Ultimate strength calculations are not required as a factor of safety is incorporated in the permissible stress levels. Crack width calculations are required as a serviceability check.⁽¹⁶⁾

A somewhat different approach is adopted for prestressed highway structures, where a mixture of elastic and ultimate load methods is given. The elastic analysis is based on stress limits in the order of 21 N/mm² compression and zero tension for type HA loading. ⁽¹⁶⁾

The downward movement of a footing, approach pavement, or structure due to deformations and / or changes in the soil properties is known as settlement. Settlement can be initiated by a number of factors, which include, but are not limited to:⁽⁴⁾

- Overloading the earth at the site
- Lowering the water table
- Vibrations from live loads or seismic loads

- Loading embankments
- Changes in soil properties

Of particular concern to the bridge engineer are differerential settlements where a foundation will move downward in an uneven fashion. Such settlements can induce additional forces resulting in cracking and instability at superstructure elements.⁽⁴⁾

The effects of thermal forces on a structure are significant and should not be underestimated by the designer. Like the adverse effects, which result from uneven settlement, structures can suffer from uneven temperature distribution along concrete depth causing high thermal forces.⁽⁴⁾

#### 1.9.2 - Design methods:

In bridge engineering, there are two principal methods of design in use today. The names used to define these design methods vary depending on the structural material being used, the design code being referenced, or even the era of a publication. For the purposes of this study, we will classify the two design methods as:⁽⁴⁾

- Working stress design
- Limit states design

For most of the century, the working stress design approach was the standard by which bridges and other structural engineering projects were designed. By the 1970's, however, limit states design began to gain acceptance by the general engineering community. What are these two approaches to design and how do they differ? Is one better than the other? To answer these questions, it is first necessary to understand the concepts behind each approach. The following offers both a background and overview of these two design methods and how they apply to the design of structures in general and bridges in particular:⁽⁴⁾

## 1.9.2.1 - Working stress design:

Working stress design is an approach in which structural members are designed so that unit stresses do not exceed a predefined allowable stress. The allowable stress is defined by a limiting stress divided by a factor of safety, so that, in general, working stress is expressed in the form of:⁽⁴⁾

# $f_{actual} \leq f_{allowable}$

For a beam, this actual stress would be defined by:

$$f_{actual} = \frac{M.C}{I}$$
, Where

M = Maximum Moment

# 1000692588

C = Distance to the Neutral Axis from the Extreme Fiber

I = Moment of inertia of the Beam Cross Section

And the allowable stress could be given by:

$$f_{allowable} = \frac{f_y}{FS}$$
, Where

fy = Minimum Yield Stress, and

$$FS = Factor of Safety$$

The allowable stress could also be defined by some other controlling criterion such as the buckling stress for steel, compressive strength of concrete, etc. Thus, the allowable stress can be thought of as a fraction of some failure stress for a given material like steel or concrete. Under working stress approach, the actual stresses are representative of stresses due to the service or working loads that a structure is supposed to carry. The entire structure is designed to fall well within the elastic range of the material the element or component is constructed with.⁽⁴⁾

# 1.9.2.2 - Limit states design:

The limit states design method was, in part, developed to address the drawbacks to the working stress approach mentioned above. This approach makes use of the plastic range for the design of structural members and incorporates load factors to take into account the inherit variability of loading configurations.⁽⁴⁾

A limit state can be defined as a condition representing structural usefulness. As mentioned previously, working stress suffered from the inability of the factor of safety to adequately address the variable nature of loading conditions. One of the advantages of the limit states approach is that it takes into account this variance by defining limit states, which address strength and serviceability. Bridge designer can think of these terms in the following way:⁽⁴⁾

- Strength is the limit state which defines the safe operation and adequacy of the structure. The criterion, which is used to define this are: yielding, plastic strength, fatigue, buckling, overturning, etc.
- Serviceability is the limit state, which defines the performance and behavior of the structure. Some serviceability criterion are: deflection, vibration, drift, etc.⁽⁴⁾

From the above, it is easy to see why limit states design codes, place a great deal of importance on the strength limit state, since this is the one that is concerned with public safety for the life, limb and property of human beings. This is why the strength limit state is also often referred to as the safety limit state, obviously, the limit states for strength will vary

depending on the type of member being designed, its material properties, and the given loading condition.⁽⁴⁾

Therefore, like working stress design, limit states design methods vary depending on the material being used and its related design specification. In general, we can define the limit states equation as:

Strength provided  $\geq$  Strength required (Axial Force, Shear, or bending caused by factored loads). The strength provided is defined by the specification applicable to the design of the member. The strength required is computed using conventional analysis methods and multiplying computed values by appropriate load factors. This can be translated symbolically into an equation whose form is:⁽⁴⁾

 $\phi S_n \geq \sum \psi L_i$ , Where

 $\phi$  = Strength reduction factor

 $S_n$  = Nominal strength ·

Li = Service load acting on the member

 $\psi_i$  = Load factor pertaining to uncertainty of  $L_i$ 

Thus, the right half of the equation above represents the sum of individual loads; each multiplied by its specific load factor. If we were simply considering dead and live loads, the strength required would be dead load times some factor plus live load times another factor. Specific values for load factors are provided by the applicable design codes.⁽⁴⁾

#### 1.10 - Economics:

A comparison of bridge costs is meaningless unless the figures are related to similar design standards, economic climate and site conditions.⁽¹⁶⁾

There is no one form of design which would be always most economical. It is only by comparing a few designs that the economic design can be found in a particular set of conditions. However, sometimes the quantities of concrete and steel expressed per square meter of deck area are quoted as indicative of economy although these figures are not the only ones which govern the cost of bridge. The results of different research reports on cost estimates and comparative economics of bridge structures indicate that the most economical schemes appears to be consisting of pre-cast pre-stressed girders simply supported for self-weight and continuous over piers for finishings and live load by appropriately cast-in-situ reinforced deck slab & diaphragms, (i.e. semi-continuous deck).⁽⁵⁾

Experience of reinforced concrete bridges constructed in the early years of the last century has shown that jointless construction can last for 60 years or more. In cases where damage

occurred it appears to have been due mainly to fatigue processes. Such damage may have been less expensive to repair than articulated bridges having failed expansion joints and consequential corrosion.⁽³⁾

#### 1.11 - Scope of the study:

This study deals with the analysis, design and cost comparison of two types of bridges (in terms of support condition), namely: simply supported & continuous bridges. It also deals with the effect of temperature and differential settlement on the design and cost comparison. The specific details outlining the scope of this study are presented below:

- 1) Span length: 20m, 30m & 40m
- 2) Bridge width: Dual carriageway of tow lanes with walkway at both sides & crash barrier at the center.
- 3) Material used: Reinforced concrete
- 4) Type of bridge: Deck girder bridge with precast, pretentioned girders
- 5) Bridge alignment: Right bridge
- 6) Support condition: Simply supported & continuous.
- 7) Deck type: Solid, cast in situ slab with precast beams.
- 8) Type of analysis: Elastic.
- 9) Scope of analysis: Dead & live load cases, temperature case & settlement case.
- 10) Method of analysis: Finite Element Method.
- 11) Scope of design: Pretentioned Y-beams, slabs & diaphragms.
- 12) Coast analysis: For comparison purposes not to evaluate the whole bridge.

13) Standard Specifications: BS 5400, BS 8110, BD 37/88.

### 1.12 - Objectives:

It is generally believed that continuous bridge is more economical than the simply supported because the magnitudes of primary forces induced due to dead & live loads are less in continuous type resulting in a lesser material and labor consumed. However, it is not very definite if this relative economy of continuous bridge will be there in all cases, or all bridge span lengths, or not.

Moreover, the design of these two bridges will be influenced by different load cases. Some of these cases will be critical for design. The design of bridges should be based on these critical cases, which need to be identified.

It is well recognized that the temperature differences existing in concrete structures will cause additional stresses, which need to be accounted for in the design of continuous bridges.

Similarly, differential settlement among different supports will have significant effect on the design. Both these factors will tend to increase the stresses resulting into a higher cost for continuous bridges.

It may be noted that the design of simply supported bridge is not influenced by temperature differences and differential settlement of supports. In such a situation, it is quite natural that the economic superiority of continuous bridges over the simply supported bridges may be adversely affected due to these factors.

In view of the above, it is important to examine and quantify the influence of the bridge span, temperature differences and support settlement on the relative economics of these two types of bridges.

Therefore, this study was undertaken with the following specific objectives:

- 1) Comparison of the design and cost of simply supported and continuous bridges for different span ranges, and
- 2) Examine the effect of temperature and support settlement on the design and cost of continuous bridges.



# References

- Petros P. Xanthakos (1993) Theory and design of bridges.
   John Wiley & Sons, Inc. New York.
- M. S. Triotsky (1994) Planning and Design of Bridges.
   John Wiley & Sons, Inc. New York.
- Brian Pritchard (1993) Continuous and Integral Bridges.
   E & FN SPON. London.
- 4- Demetrios E. Tonias (1994) Bridge Engineering.
   McGraw-Hill, Inc. New York.
- 5- Dr. V. K. Raina (1991) Concrete Bridge Practice (Analysis, Design and Economics). TATA McGraw-Hill & Gammon India Limited, New Delhi.
- 6- F. K. Kong & R. H. Evans (1987) Reinforced and Prestressed Concrete (3rd Edition). English Language Book Society / Van Nostrand Reinhold (UK).
- 7- Saeed Moaveni (1999) Finite Element Analysis.
   PRENTICE HALL, Upper Saddle River, New Jersey.
- 8- Zienkiewicz, O. C., and Cheung, Y K. K (1967) The Finite Element Method in Structural and Continuum Mechanics. McGraw-Hill. London.
- 9- Zienkiewiez, 0. C. (1979) The Finite Element Method (3rd Edition).
   McGraw-Hill, London.
- 10-British Standards Institution (1984) BS 5400: part 4: Section 6 (Steel, concrete and composite Bridges: Code of Practice for design of concrete bridges). BSI, London.
- 11- British Standards Institution (1997) BS 8110: part 1 (Structural use of concrete: Code of Practice for design and construction). BSI, London.

- 12- Department of Transport (1989) Departmental Standard 37/88 (Loads for Highway Bridges). DoT, London.
- 13- Research Engineers. Inc (1995) STAAD III : Reference Manual,
   Research Engineers (Europe). Ltd. U.K.
- 14- Research Engineers. Inc (1995) STAAD III For Windows: Getting Started and Example Manual. Research Engineers (Europe). Ltd. U.K.
- 15- http://www.reiworld.com/es/structural/staad/features.htm
- 16- Reynolds, C. E. and Steedman (1981) Rein forced Concrete Designers Handbook (9th Edition). Cement and Concrete Association Viewpoint Publication. Slough.
- 17- Harris, A. J.(1975) Aims of Structural Design, Institution of Structural Engineers. London.
- 18- M. Y. H. Bangash (1999) Prototype Bridge Structures : Analysis and Design. Thomas Telford Publishing, Thomas Telford Limited, I. Her4on Quay. London.
- 19- Derrick Beckett (1973) An introduction to structural design: (1-Concrete Bridges). Surrey University Press. U.K
- 20- S. P. Bindra (1976) Elements of Bridges, Tunnel and Railway Engineering.
   Dhanpat Rai & Sons. Delhi
- 21- Sushil Kumar (1984) Treasure of R.C.C. Designs.Standard Book House. Delhi
- 22- J. MACGINLEY & B. S. CHOO (1991) Reinforced Concrete: Design Theory and Examples (Second edition). E &FN SPON. London.
- 23- CHANAKYA ARYA (1994) Design of Structural Elements: Concrete, Steelwork, Masonry and Timber Design to British Standards and Eurocodes.
  E &FN SPON. London.
- 24- SK. ABDUS SALAM (1988) Design of Reinforced Concrete Structures (According to BS 8110). Universiti Pertanian Malaysia. Kuala Lumpur.

- 25- George Winter & Arthur H. Nilson (1997) Design of Concrete Structures (9th Edition). McGraw-Hill Book Company, New York.
- 26- David S.Burnett (1988) Finite Element Analysis: From Concepts to Application (2nd Edition). Addison-Wesley Publishing Company, United States of America.
- 27- C. S. Surana & R. Agrawal. (1998) Grillage Analogy in Bridge Deck Analysis Narosa Publishing House. New Delhi.
- 28- A. Ghali A. & M. Neville (1989) Structural Analysis: a unified classical and matrix approach, (3rd Edition). Chapman And Hall. London, New York.
- 29- Harry H. West & Louis F. Gechwindner (1993) Fundamentals of Structural Analysis. John Wiley & Sons, Inc. New York.
- 30- D. JOHNSON VICTOR (1973) Essentials of Bridge Engineering (3rd Edition). OXFORD & IBH PUBLISHING CO. New Delhi.