
ANALYSIS, DESIGN & COST COMPARISONS 

OF SIMPLY SUPPORTED AND 

CONTINUOUS BRIDGES 
,. 

BY 

ARDAL HASAN ESMAIL 

A project report /thesis submitted in partial fulfillment of the 
requirements for the degree of Master of Science 

in structural engineering and construction 
in the department of civil engineering 

Faculty of Engineering 
I 4 

Universiti Potra Malaysia • , · 

FACULTY OF ENGINEERING 
UNIVERSITI POTRA MALAYSIA 

2001 

 FK 2001 89

© C
OPYRIG

HT U
PM



) 

Wait for me upon a bridge in Baghdad 

M.Alkadhim 

© C
OPYRIG

HT U
PM



1beUbnry 

Universiti Putra Malaysia 

43400 UPM Serdang 

SELANGOR DARUL EHSAN 

DECLARATION 

Permission to make photo-copies of project report I thesis 

I ARDAL HASAN ESMAil., 

Declare that the thesis entitled: 

ANALYSIS, DESIGN & COST COMPARISONS 

OF SIMPLY SUPPORTED AND CONTINUOUS BRIDGES 

belongs to me. The contents of this thesis may be used by anyone for the academic 

purposes of teaching, learning and research only. Universiti Putra Malaysia is permitted to 

make photocopies of this for the same academic purposes. 

Date 

Signature 

Name 

Address 

. . © C
OPYRIG

HT U
PM



iv 

ACKNOWLEDGEMENT 

would like to take this opportunity to express my sincere thanks and utmost gratitude to my 

supervisor Dr. Mohd Saleh Jaafar for his able guidance, understanding and moral support 

extended to me through out the course of this study. His pleasant manners and ever lasting 

patience were a source of inspiration during the dark and frustrating hours of uncertainty and 

despair. I will remain ever grateful to him for his innumerable kindnesses. 

would also like to thank my examiners Dr. Waleed Abdul Malik Thanoon and Dr. Anvar 
1 

Ashrabov for critically examining the thesis and their valuable constructive criticism. 

This acknowledgement would be utterly incomplete if I don't mention the remarkable 

support and help extended to me by my friends Hider Aad, Faris Jasim, Dr. Manoj 

Kulshreshtha, Rabee Habash and Wahab Hussain, for whom I express my most sincere 

thanks and heart felt appreciation. © C
OPYRIG

HT U
PM



ABSTRACT 

,em,st~UAM IEJURUURAA~ OlN SENIBINl 
Ullm\Slll PU™ IAllAl~ 

V 

This study was undertaken to compare the design and -cost of simply supported and 

continuous bridges. Type of bridge selected is deck girder bridge where the girders are 

precast, prestressed of pretension system. All the spans in a given bridge were of equal 

length. Three different spans namely 20, 30 & 40m were considered. Different load cases 

were considered and analyzed using Finite Element Method to identify both, the critical load 

cases, in which the maximum forces occur, and the maximum design forces on which the 

design is based. Design of pretensioned SY- beams, slabs and diaphragms were carried out 

either using ready-made packages or manually. The cost of the bridges was estimated 

manually. The effect of temperature differences & non-uniform support settlements on the 

design and cost of these bridges were examined at seven levels of temperature differences 

and six settlement conditions. 

It was observed that for a given span, moments in both simply supported and continuous 

bridges were maximum at similar loaded spans. If the bridges are designed for the primary 

force effects induced due to dead and live loads only, the continuous types are of lower cost 

compared to the simply supported types. The cost difference between the two types decreases 

as bridge span increases. In a continuous beam deck, non-linear temperature distribution 

across the deck depth and differential settlement of supports, cause additional sagging & 

hogging moments as well as shear forces, resulting in higher costs, and the economical 

superiority of continuous types vanishes at a certain temperature change or support 

settlement level. The effect of differential settlement is more pronounced than that of 

temperature changes. 
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Chapter 1 
Introduction 

1.1 - Bridge: 

1 

Bridge is a structure facilitating a communication route for carrying road traffic or other 

moving loads over a depression or obstruction such as river, stream, channe~ road or railway. 

The communication route may be a railway track, a tramway, a roadway, a footpath, a cycle 

track or a combination of them. (20> 

An ideal bridge meets the following requirements: 

(i) It serves the intended function with utmost safety and convenience. 

(ii) It is aesthetically sound. 

(iii) It is economical. (20> 

1.2 - Bridge engineering: 

When it is necessary to build a bridge, the question arises: What kind of bridge is it necessary 

to build? From a design standpoint, there may be many possibilities. Thus the creative 

capability of the designer plays a large role in answering the question posed above. <2> 

The creativity of the bridge designer must of course be grounded in the discipline of 

engineering. It is also necessary to have a technical mastery of the materials used to build 

bridges before the design process can begin. It is also important for the designer to perfect 

the methods of bridge building, thus advancing the art of bridge engineering. <2> 

Bridge engineering, which began with stone and wooden structures as early as the first 

century, has undergone a dramatic evolution in terms of analysis and use of materials. <1> 

Today it is considered a science. However, about 100 years ago it was hardly worthy to be 

termed an art, and 150 years ago it was no better than a trade. But while bridge building as a 

learned profession is thus of relatively recent origin, it must not be thought that previous 

centuries made no contributions to our knowledge of bridge construction. <2> 

The significance of this study is that it shows, in addition it's own objectives, how advanced 

analytical techniques can be used to analyze a bridge structure and simplify its overall 

design. The resulting validity will underscore the goal of modem practice in producing 

economies. It follows, therefore, that engineers should have a range of options from which to 

choose, and this should encompass bridge types, design philosophies, and construction 

procedures. <•> 
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1.3 - Components of a bridge: 

A bridge is subdivided into: 

a) Superstructlll'e, 

b) Substructure, and 

c) Fowidation 

Bridge deck system is the part of superstructure directly carrying the vehicular loads. It is 

furnished with balustrades or parapets, crash barriers, highway SW'facing, footpaths, traffic 

islands, railway tracks on ties, expansion joints and drainage systerm. 

Substructure oomprises piers, columns or abutments, capping beams and bearings. 

Foundation consists of reinforced concrete footings, spread foundations, rafts bearing directly 

on soil or rock and capping stabs supported on piles, wells and caissons. <11> 

The superstructure or the bridge deck system can be any one or a combination of the 

following: 

• Slabs, 

• Coffered slabs, 

• Grids, 

• Beams, 

• Girders, 

• Cantilevers, 

• Frames, 

• Trusses and arches, 

• Cables, 

• Suspenders and cable-stayed. c11> 

Deck surface members may be classified into the three groups, which may be of: 

(a) Precast, (b) Cast-in situ, and, (c) Composite construction. They may be of conventional 

steel reinforcement, partially or fully prestressed or composite construction. <11) 

1.4 - Classification of bridges: 

Bridges can be classified into various types depending upon the following factors: (20> 

• Materials used for construction: Under this category, bridges may be classified as timber 

bridges, masonry bridges, steel bridges, reinforced cement concrete bridges, pre-stressed 

bridges and composite bridges. 

• Alignment: Under this the bridge can be classified as straight or a skew bridge. 
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• Location of bridge floor: Under this category, bridges can be classified as deck, semi­

through or through bridges. 

• Purpose: Under this the bridge can be classified as a aqueduct, viaduct, highway bridge, 

railway, bridge and footbridge etc. 

• Nature of superstructure action: Under this the bridges may be classified as portal frame 

bridges, truss bridges, balanced cantilever bridges and suspension bridges. 

• Position of high flood level: Under this the bridges may be classified as submersible and 

non-submersible bridges. 

• Life: Under this the bridges may be classified as permanent and temporary bridges. 

• Loadings: Road bridges and culverts have been classified according to the loadings they 

are designed to carry. 

• Fixed or movable: For navigable channels where permanent and sufficient clear 

waterway cannot be provided, the movable bridges used are swinging bridges, bascule 

bridges & lift bridges. 

• Span length: Under this category the bridges can be classified as culverts (span less than 

8 m), minor bridges (span between 8 to 30 m), major bridges (span above 30 m) and long 

span bridges (span above 120 m). 

• Degree of redundancy: Under this the bridges can be classified as determinate bridges 

and indeterminate bridges. 

• Type of connection: U oder this category the steel bridges can be classified as pinned 

connected, riveted or welded bridges. C20> 

1.5 - Development of bridge types: 

It is said that the history of bridges is the history of civili7.8tion. However, achieving progress 

in bridge engineering was not an easy task. Bridges, as most other engineering structures, 

began with the "cut and try" process. Some less kind people say the "try and fail" process. C2> 

The pioneers used empirical methods. They made some intelligent guesses as to the strength 

required and built the bridge accordingly. Many centuries passed before man created the five 

basic types of bridges: 

• The beam, 

• The cantilever, 

• The arch, 

• The suspension, and 

• The truss. 
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The first four types were copied from nature long before recorded history began. C2> 

The natWlll example of the simple beam bridge is that of a fallen tree spanning a stream. The 

next step was to use a stone slab as a bridge quite probably, primitive man discovered the 

principle of the cantilever bridge at a very early stage of bridge development. He made use of 

a cantilever to construct longer spans than he was able to build with simple beams. Timber 

beams or stone slabs projecting out one above the other represented such bridges. C2> 

Natural bridges of stone have also been formed, where the action of water has worn away 

rock until only an arch was left, high above the riverbed. <2> 

The suspension or cable bridge is illustrated in nature by the swinging vine, utiliud by 

anjmals and people to pass from one tree to another over a stream. In its simplest form a 

suspension bridge consists only of cables and unstiffened roads way. In primitive suspension 

bridges, the roadway was often laid on top of the cables. But this position was inconvenient, 

and bridge builders discovered that a level roadway could be obtained by suspending the 

roadway from the iron chain cable. <l> 

The first suspension bridge using this system was erected in Italy in the sixteenth century. 

Since the beginning of the nineteenth century, flat iron bars were used for cables. Finally, the 

Truss-type bridge belongs almost exclusively to modem civilization. (l) 

In the fifteenth century Leonardo da Vinci was the first to investigate the strength of beams 

and the forces in triangular structures in his design for a timber truss bridge. C2> 

1.6 - Types of reinforced concrete bridges: 

In general, a reinforced concrete bridge structure may consist of: 0> 

• Deck slabs, 

• T-beams (deck girders), 

• Through and box girders, 

• Rigid frames, and 

• Flat slab types 

Combinations of these with precasting or prestiessing produce additional structural forms 

and enhance bridge versatility. A major advantage in the use of concrete is the broad variety 

of structural shapes and forms. In the selection of the proper type of bridge, however, cost is 

usually the determining criterion. Occasionally, the selection is complicated by factors such 

as the ratio of dead to live load, appearance, depth constraints and available headroom, 

limited construction time, labor costs, and difficulties in form work because of the support 
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height or because of traffic maintenance requirements during construction. In this case steel 

bridges may be more cost-effective. <0 

t. 7 - Pl ecast beam bridges: 

These widely used structures consist of precast-prestressed I-beams, T-beams, and box 

girders, which may be either pretensioned or posttensioned. Precast I-beams may be built 

with cast-in-place decks. With a precast, prestressed T-beam as with an I-beam, the flange 

must be connected with cast-in-place concrete. Precast, prestressed box sections may be 

placed side by side to form a bridge span. If necessary, they may be posttensioned 

transversely. Precast, prestressed beams are used mainly for spans up to about at locations 

where erection of fitlse work is impossible or not desirable. Such beams are economical for 

mass filbrication. For longer spans it is necessary to provide heavy equipment for erection 

and / or transporting purposes. C2> 

1.8 - Bridge analysis 

1.8.1 - General: 

Structural analysis is the process by which the structural engineer determines the response of 

a structure to specified loads or actions. This response is usually measured by establishing 

the forces and defonnations throughout the structure. A given method of structural analysis 

is commonly expressed as a mathematical algorithm. However, it is based on information 

gained through the application of engineering mechanics theory, laboratory research, model 

and field experimentation, experience, and engineering judgment. C29> 

The earliest demands for sophisticated analysis, coupled with some serious limitations on 

computatiQnal capability, led to a host of special techniques for solving a corresponding set 

of special problems. These so-called classical methods incorporated some ingenious 

innovations and served the needs of the structural engineer very well for many years. 

However, the advent and subsequent development of the digital computer increased 

computational capabilities by several orders of magnitude and thus obviated the need for 

special techniques. The ingenious specialimtions of the classical methods were replaced by 

the sweeping-generalities of the modem matrix methods. C29> 

The transition from the classical methods to the modem matrix methods has triggered some 

revolutionary changes in structural engineering and in the education of structural engineers. 

Although matrix methods have become the foundation of modem structural analysis as it is 

employed in the practice of structural engineering, classical methods continue to play a vital 

role in the educational process because they introduce the fundamentals of structural 
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analysis. By either classical or matrix methods, the analysis process can be a part of 

preliminary design, final design, or construction, as was described in the preceding section. 

However, it is important to note that structural analysis plays a limited role in the structmal 

design process and an even smaller role in the overall design process. Furthennore, the role 

that it plays is entirely supportive of the design process. C29> 

1.8.2 - Methods of analysis: 

Bridge analysis generally requires the solution of number of linear simultaneous equations, 

which depends on the method of analysis. Some methods avoid simuhaneous equations by 

using iterative or successive correction techniques in order to reduce the amount of 

computation, and are suitable when the calculations are made by hand or by a hand-held or 

small desk calculator. cza> 

In office practice, the design of bridges utilizes computers and many versatile software 

packages. Special computer programs have been developed, ranging from simple formula 

applications to elaborate analyses. With rapidly improving and expanding computer 

technology, the most precise but complex analytical techniques become routine options. The 

designer should be cautioned, however, that a computer program is only a tooi and hence the 

designer should clearly understand the basic assumption of the program and all output should 

be verified. Thus, any method of analysis that satisfies equilibrium and compatibility and has 

stress-strain relationships implanted in the process is acceptable. ci> 

Computer-aided analysis, hand computation methods and charts based on some 

approximations and idealizations provided convenient methods of load distribution, which 

are reasonably accurate for design purposes. Many computer-aided methods have been 

developed with the advent of digital computers and are in use although some of these 

methods are highly numerical and expensive. Different techniques commonly in use for the 

analysis of bridge decks of various types and configurations are: <21> 

• Courbon's method 

• Orthotropic plate theory 

• Finite difference method 

• Method of harmonic analysis 

• Grillage and space frame analogy 

• Folded plate analysis 

• Finite element method 

• Finite strip method (27) 
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The main factors, which govern and influence the choice of analytical techniques, are: 

1) Form of construction or type of deck 

2) Plan-geometry of platform 

3) Support conditions <27> 

Each of the above techniques is more suited to a particular type or types of bridge decks 

depending upon the closeness of the actual structure with the assumptions of the method. It 

may be evident that one particular type of bridge deck can be analy7.ed by more than one 

method and in such cases, the choice rests with the designer depending upon the facility, time 

available, economy and of course his familiarity with the method. (27) 

1.8.3 - Finite element analysis of bridge decks: 

The finite element method employs an assemblage of discrete two or three-dimensional 

members. The elements are connected at nodal points, which possess an appropriate number 

of degrees of freedom. Material properties, often more than one, can be incorporated which 

will truly represent various components of the bridge deck. Static and dynamic problems can 

be easily tackled by this single method, thus making in the most powerful technique. OI) 

The bridge is idealized as an assemblage of discrete parts, known as elements. The next stage 

is to evaluate the element properties. This is followed by the structural analysis of the 

element assemblage. Forces, stresses, moments, displacements, strains, etc. are calculated. 

Where a computer program is interactive, those results are plotted which would show the 

exact behavior of various components of the bridge. 0 •> 

Normally, suitable graphical techniques are associated with any finite element program 

package. These are to be used to interpret meaningful results. <1
1) 

1.9 - Bridge design 

1.9.1 - General: 

Bridge design should be based on relevant specifications and should demonstrate compliance 

with applicable standards to ensure credible results. Yet, optimum solutions can be obtained 

only when the designer understands the assumptions and limitations of analysis. In 

retrospect, codes are changed continuously but bridge behavior may not, and this difference 

is important in choosing the contents and the subject matter. In the same context, predicting 

bridge behavior from computer models has become common practice, and the results confirm 

the value of testing in verifying structural response. <1> 
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A critical aspect of the design of concrete bridges is their articulation which, if neglected, 

may lead to excessive local damage. The structure should be designed to ensure that 

movement due to: <4> 

• Loading 

• Ground deformation 

• Thermal expansion or contraction 

• Creep, and 

• Shrinkage 

does not induce stress levels in excess of permissible values. Stresses induced in a structure 

due to shrinkage and thermal movement or settlement of supports are dependent on the 

modulus of elasticity of the concrete and thus will be modified due to creep. <4> 

British design standards adopt limit state philosophy, where the primary limit states for 

concrete bridges are: collapse, and serviceability. Partial safety filctors for loadings and 

materials will be incorporated. At present the principal design standards are those for loading 

and stresses. <16> 

Loading is covered by Departmental Standard 3 7 /88 (Loads for Highway Bridges) and 
I 

consists of 

• Type HA, an equivalent lane loading, which is the normal design loading, and 

• Type BB, an abnormal unit loading to be used when specified by the appropriate authority. 

Permissible stresses for reinforced highway structures are covered by BS 5400: part 4: 

Section 6 (Steel, concrete and composite Bridges: Code of practice for design of concrete 

bridges), which stipulates the use of elastic theory with a modular ratio of 15 for assessing 

the strength of members. Ultimate strength calculations are not required as a factor of safety 

is incorporated in the permissible stress levels. Crack width calculations are required as a 

serviceability check. (16) 

A somewhat different approach is adopted for prestressed highway structures, where a 

mixture of elastic and uhimate load methods is given. The elastic analysis is based on stress 

limits in the order of 21 N/mm2 compression and zero tension for type HA loading. <1'> 

The downward movement of a footing, approach pavement, or structure due to deformations 

and / or changes in the soil properties is known as settlement. Settlement can be initiated by a 

number of mctors, which include, but are not limited to: <4> 

• Overloading the earth at the site 

• Lowering the water table 

• Vibrations from live loads or seismic loads 
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• Loading embankments 

• Changes in soil properties 

Of particular concern to the bridge engineer are differerential settlements where a foundation 

will move downward in an uneven fashion. Such settlements can induce additional forces 

resulting in cracking and instability at superstructure elements. <4> 

The effects of thermal forces on a structure are significant and should not be underestimated 

by the designer. Like the adverse effects, which resuh from uneven settlement, structures can 

suffer from uneven temperature distribution along concrete depth causing high thennal 

forces. <4> 

1.9.2 - Design methods: 

In bridge engineering, there are two principal methods of design in use today. The names 

used to define these design methods vary depending on the structural material being used, the 

design code being referenced, or even the era of a publication. For the purposes of this study, 

we will classify the two design methods as: <4> 

• Working stress design 

• Limit states design 

For most of the century, the working stress design approach was the standard by which 

bridges and other structural engineering projects were designed. By the 1970's, however, 

limit states design began to gain acceptance by the general engineering community. What 

are these two approaches to design and how do they differ? Is one better than the other? To 

answer these questions, it is first necessary to understand the concepts behind each approach. 

The following offers both a background and overview of these two design methods and how 

they apply to the design of structures in general and bridges in particular: <4> 

1.9.2.1 - Working stress design: 

Working stress design is an approach in which structural members are designed so that unit 

stresses do not exceed a predefined allowable stress. The allowable stress is defined by a 

limiting stress divided by a factor of safety, so that, in general, working stress is expressed in 

the form of: <4> 

f actud S /aJlowabl~ 

For a beam, this actual stress would be defined by: 

-r M.C 
Jactra= -- , Where 

I 
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M = Maximum Moment 

C = Distance to the Neutral Axis from the Extreme Fiber 

I = Moment of inertia of the Beam Cross Section 

And the allowable stress could be given by: 

fi 
/a11owable = FS , Where 

fy = Minimum Yield Stress, and 

FS = Factor of Safety 

10 

'The allowable stress could also be defined by some other controlling criterion such as the 

buckling stress for steel, compressive strength of concrete, etc. Thus, the allowable stress 

can be thought of as a fraction of some failure stress for a given material like steel or 

concrete. Under working stress approach, the actual stresses are representative of stresses due 

to the service or working loads that a structure is supposed to carry. The entire structure is 

designed to filll well within the elastic range of the material the element or component is 

constructed with. <4> 

1.9.2.2 - Limit states design: 

The limit states design method was, in part, developed to address the drawbacks to the 

working stress approach mentioned above. This approach makes use of the plastic range for 

the design of structural members and incorporates load factors to take into account the inherit 

variability of loading configurations. <4> 

A limit state can be defined as a condition representing structural usefulness. As mentioned 

previously, working stress suffered from the inability of the factor of safety to adequately 

address the variable nature of loading conditions. One of the advantages of the limit states 

approach is that it takes into account this variance by defining limit states, which address 

strength and serviceability. Bridge designer can think of these terms in the following way: <4> 

• Strength is the limit state which defines the safe operation and adequacy of the structure. 

The criterion, which is used to define this are: yielding, plastic strength, fatigue, buckling, 

overturning, etc. 

• Serviceability is the limit state, which defines the performance and behavior of the 

structure. Some serviceability criterion are: deflection, vibration, drift, etc. <4> 

From the above, it is easy to see why limit states design codes, place a great deal of 

importance on the strength limit state, since this is the one that is concerned with public 

safety for the life, limb and property of human beings. This is why the strength limit state is 

also often referred to as the safety limit state, obviously, the limit states for strength will vary 

© C
OPYRIG

HT U
PM



11 

depending on the type of member being designed, its material properties, and the given 

loading condition. <4> 

Therefore, like working stress design, limit states design methods vary depending on the 

material being used and its related design specification. In general, we can define the limit 

states equation as: 

Strength provided > Strength required (Axial Force, Shear, or bending caused by factored loads). 

The strength provided is defined by the specification applicable to the design of the member. 

The strength required is computed using conventional analysis methods and muhiplying 

computed values by appropriate load factors. This can be translated symbolically into an 

equation whose form is: <4> 

f Sn > L 'I' LL,, Where 

f = Strength reduction factor 

Sn = Nominal strength • 

Li = Service load acting on the member 

'I';= Load factor pertaining to uncertainty of L, 

Thus, the right half of the equation above represents the sum of individual loads; each 

multiplied by its specific load factor. Ifwe were simply considering dead and live loads, the 

strength required would be dead load times some factor plus live load times another factor. 

Specific values for load factors are provided by the applicable design codes. <4> 

1.10 - Economics: 

A comparison of bridge costs is meaningless unless the figures are related to similar design 

standards, economic climate and site conditions. 06> 

There is no one form of design which would be always most economical. It is only by 

comparing a few designs that the economic design can be found in a particular set of 

conditions. However, sometimes the quantities of concrete and steel expressed per square 

meter of deck area are quoted as indicative of economy although these figures are not the 

only ones which govern the cost of bridge. The results of different research reports on cost 

estimates and comparative economics of bridge structures indicate that the most economical 

schemes appean to be consisting of pre-cast pre-stressed girden simply supported for 

self-weight and continuous over pien for finishinp and live load by appropriately cast­

in-situ reinforced deck slab & diaphragms, (i.e. semi-continuous deck). CS> 

Experience of reinforced concrete bridges constructed in the early years of the last century 

has shown that jointless construction can last for 60 years or more. In cases where damage 
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occurred it appears to have been due mainly to fatigue processes. Such damage may have 

been less expensive to repair than articulated bridges having failed expansion joints and 

consequential corrosion. Cl> 

1.11-Scope of the study: 

This study deals with the analysis, design and cost comparison of two types of bridges (in 

terms of support condition), namely: simply supported & continuous bridges. It also deals 

with the effect of temperature and differential settlement on the design and cost comparison. 

The specific details outlining the scope of this study are presented below: 

1) Span length: 20m, 30m & 40m 

2) Bridge width: Dual carriageway of tow lanes with walkway at both sides & crash barrier 

at the center. 

3) Material used: Reinforced concrete 

4) Type of bridge: Deck girder bridge with precast, pretentioned girders 

5) Bridge alignment: Right bridge 

6) Support condition: Simply supported & continuous. 

7) Deck type: Solid, cast in situ slab with precast beams. 

8) Type of analysis: Elastic. 

9) Scope of analysis: Dead & live load cases, temperature case & settlement case. 

10) Method of analysis: Finite Element Method. 

11) Scope of design: Pretentioned Y-beams, slabs & diaphragms. 

12) Coast analysis: For comparison purposes not to evaluate the whole bridge. 

13) Standard Specifications: BS 5400, BS 8110, BD 37/ 88. 

1.12 - Objectives: 

It is generally believed that continuous bridge is more economical than the simply supported 

because the magnitudes of primary forces induced due to dead & live loads are less in 

continuous type resulting in a lesser material and labor consumed. However, it is not very 

definite if this relative economy of continuous bridge will be there in all cases, or all bridge 

span lengths, or not. 

Moreover, the design of these two bridges will be influenced by different load cases. Some of 

these cases will be critical for design. The design of bridges should be based on these critical 

cases, which need to be identified. 

It is well recognized that the temperatme differences existing in concrete structures will 

cause additional stresses, which need to be accounted for in the design of continuous bridges. 
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Similarly, differential settlement among different supports will have significant effect on the 

design. Both these factors will tend to increase the stresses resuhing into a higher cost for 

continuous bridges. 

It may be noted that the design of simply supported bridge is not influenced by temperature 

differences and differential settlement of supports. In such a situation, it is quite natural that 

the economic superiority of continuous bridges over the simply supported bridges may be 

adversely affected due to these factors. 

In view of the above, it is important to examine and quantify the influence of the bridge span, 

temperature differences and support settlement on the relative economics of these two types 

of bridges. 

Therefore, this study was undertaken with the following specific objectives: 

1) Comparison of the design and cost of simply supported and continuous bridges for 

different span ranges, and 

2) Eumine the effect of temperature and support settlement on the design and cost of 

continuous bridges. 
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