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A B S T R A C T   

This study examined recent advances in remote sensing (RS) techniques used for the quantitative monitoring of 
groundwater storage changes and assessed their current capabilities and limitations. The evolution of the 
techniques analyses spans from empirical reliance on sparse point data to the assimilation of multi-platform 
satellite measurements using sophisticated machine learning algorithms. Key developments reveal enhanced 
characterisation of localised groundwater measurement by integrating coarse-resolution gravity data with high- 
resolution ground motion observations from radar imagery. Notable advances include improved accuracy ach
ieved by integrating Gravity Recovery and Climate Experiment (GRACE) and Interferometric Synthetic Aperture 
Radar (InSAR) data. Cloud computing now facilitates intensive analysis of large geospatial datasets to address 
groundwater quantification challenges. While significant progress has been made, ongoing constraints include 
coarse spatial and temporal resolutions limiting basin-scale utility, propagation of uncertainties from sensor 
calibrations and data merging, and a lack of systematic validation impeding operational readiness. Addressing 
these limitations is critical for continued improvement of groundwater monitoring techniques. This review 
identifies promising pathways to overcome these limitations, emphasising standardised fusion frameworks for 
satellite gravimetry, radar interferometry, and hydrogeophysical techniques. The development of robust cloud- 
based modelling platforms for multi-source subsurface information assimilation is a key recommendation, 
highlighting the potential to significantly advance groundwater quantification accuracy. This comprehensive 
review serves as a valuable resource for water resource and remote sensing experts, providing insights into the 
evolving landscape of methodologies and paving the way for future advancements in groundwater storage 
monitoring tools.   

1. Introduction 

Groundwater remains the primary water source in many parts of the 
world, enabling irrigation and rural socioeconomic endeavors Gleeson 
et al. (2012). It serves as the lifeblood of numerous ecosystems and 
sustains the livelihoods of billions of people worldwide (Fan et al., 
2022). It is the ultimate natural freshwater reservoir, supporting 
approximately half of the world’s drinking water, 40% of irrigated 
agricultural water, and 30% of industrial needs (Famiglietti, 2014). 
Groundwater plays a critical role in hydrological processes, water 

resource management, ecological sustainability, and climate change 
adaptation, thus necessitating a profound understanding of its dynamics 
(Fan et al., 2022; Li et al., 2023a; Petitta et al., 2023). 

Understanding groundwater storage dynamics is essential in hy
drology, as it governs the availability, quality, and sustainability of this 
resource (Groundwater, 2021). Furthermore, in the context of 
increasing anthropogenic activities and climate change impacts, an ac
curate and comprehensive assessment of groundwater storage variations 
is important for effective water resource management and climate 
adaptation strategies (Houben et al., 2022; Rahman et al., 2023; 
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Saeedpanah and Azar, 2023a; Springer et al., 2023; Wunsch et al., 2022; 
Xie et al., 2022). 

Groundwater storage modelling involves the development of models 
that calculate changes in groundwater storage based on the mass bal
ance of fluxes and withdrawals (Scheidegger et al., 2021). This type of 
model faces challenges owing to limited observed data and poor quality, 
particularly in regions with weak observation facilities (Chi et al., 2022). 
Studies on groundwater storage dynamics models have historically 
presented challenges because of their hidden nature beneath the Earth’s 
surface (Adams et al., 2022). 

However, the complex nature of groundwater storage dynamics 
poses challenges that necessitate innovative approaches and advanced 
technologies (Lü et al., 2011; Sun et al., 2020; Wehbe, 2021). Traditional 
monitoring methods, such as wells and boreholes, often fall short in 
providing a comprehensive understanding, particularly in regions with 
weak observation facilities (Ahamed et al., 2022). 

In recent decades, a paradigm shift has occurred with the advent of 
Remote Sensing (RS) technologies, offering a noninvasive and cost- 
effective alternative to overcome these limitations (Hasnat and Singh, 
2018; Kyra et al., 2022; Ni et al., 2018; Bennett, 2024; Rampheri et al., 
2023; Rodell et al., 2009; Atazadeh and Mahdavifard, 2021). This allows 
for a more holistic understanding of the complex interactions between 
the surface and subsurface hydrological compartments, contributing to a 
more accurate and reliable representation of the groundwater storage 
dynamics. The RS technologies provide a transformative means of 
monitoring hydrological parameters, including soil moisture, land sur
face displacements, and vegetation dynamics (Hilbich et al., 2022). 
Satellite-based sensors and airborne platforms offer a comprehensive 
understanding of the surface and subsurface hydrological compart
ments, significantly enhancing the representation of groundwater stor
age dynamics (Adams et al., 2022). 

Recent studies (Ni et al., 2018; Sreekanth et al., 2023; Akhter et al., 
2021) have underscored the effectiveness of remote sensing for quan
tifying groundwater changes, renewable groundwater stress, and eval
uating groundwater sustainability globally. However, a comprehensive 
overview of remote sensing applications that specifically address 
groundwater storage anomalies is lacking, which highlights the need for 
this review. The review aims to thoroughly examine the applicability of 
various remote sensing methods employed in monitoring groundwater 
storage dynamics, from traditional monitoring approaches to 
cutting-edge data assimilation techniques and machine learning algo
rithms, with the following objectives: (1) To examine various remote 
sensing methodologies used in monitoring groundwater storage dy
namics; (2) To evaluate the strengths and limitations of remote sensing 
technologies in capturing changes in groundwater storage; (3) To 
identify factors influencing groundwater storage dynamic models; (4) 
To explore the integration of remote sensing techniques with hydro
logical models; and (5) To highlight future directions and challenges of 
remote sensing applications for groundwater storage dynamics. Our 
overarching hypothesis is that “The integration of diverse remote 
sensing technologies offers a transformative approach to monitor 
groundwater storage dynamics, providing valuable insights for sus
tainable resource management and climate change adaptation.” Draw
ing on case studies from diverse geographical contexts, this study 
synthesises the most promising avenues for future research by envi
sioning transformative impacts on groundwater management, sustain
able resource allocation, and climate change adaptation strategies. The 
integration of RS technologies into hydrological analyses has redefined 
our capacity to observe, quantify, and interpret subsurface hydrological 
processes with unparalleled precision and scope. Through the deploy
ment of satellite-based sensors and airborne platforms, researchers have 
gained access to a wealth of data, ranging from passive and active mi
crowave sensors to Synthetic Aperture Radar (SAR) and gravity-based 
(GRACE missions), to capture soil moisture variability and thermal 
infrared imagery, revealing land surface displacements and uncovering 

complex subsurface features. This review provides insights into the 
current state of research, identifies gaps, and contributes to the devel
opment of effective RS approaches for groundwater storage dynamics. 

In conclusion, this review aims to synthesise syntheses from the 
literature, state-of-the-art advancements beyond the conventional 
boundaries of groundwater storage, and identify literature gaps that 
contribute to the body of knowledge on the development of RS ap
proaches for groundwater storage studies. 

Among the range of techniques surveyed, particular emphasis was 
placed on the Gravity Recovery and Climate Experiment (GRACE) sat
ellite mission, given its uniqueness in providing direct gravimetric ob
servations of changes in total terrestrial water storage. With near-global 
coverage and coarse spatial resolution, GRACE delivers an integrated 
measure of groundwater mass fluctuations encompassing entire aquifer 
systems, a perspective that is unmatched by any other remote sensing 
platform (Rodell et al., 2009). 

By synergizing GRACE’s large-scale water storage anomaly infor
mation with other higher resolution satellite data and hydrological 
models, novel insights can be gained into surface–subsurface in
teractions governing groundwater behavior from local to regional scales 
(Bailing et al., 2019; Cornero et al., 2021; Famiglietti et al., 2011b; 
Gupta et al., 2022; Jha et al., 2006; Jothimani et al., 2022; Liu et al., 
2019; Massoud et al., 2020; Massoud et al., 2022b; Massoud et al., 2021; 
Massoud et al., 2018; Sainju, 2021; Sun et al., 2023; Zhang et al., 
2023b). Thus, GRACE merits a detailed examination given the trans
formative impact it continues to have across hydrological sciences and 
groundwater resource management. It is important to note that among 
the various RS technologies identified, GRACE was given more emphasis 
(Section 3.6) because of its data availability and accessibility, as well as 
its global coverage, which allows for groundwater studies to be con
ducted in any region. 

2. Methodology 

To address these objectives, a systematic bibliometric analysis was 
conducted across Web of Science, SCOPUS, and Google Scholar, utilizing 
search terms related to “remote sensing” and “groundwater.” The 
Preferred Reporting Items for Systematic Reviews and Meta-Analyses 
(PRISMA) statement guides the identification, screening, and inclusion 
criteria (Matthew et al., 2021). 

The search terms used were “ Remote sensing ” AND “groundwater” 
along with related terms such as “satellite”, ”gravity”, “electrical re
sistivity”, etc. as follows: (”Remote Sensing“ AND ”Groundwater“ OR 
”Remote Sensing“ AND ”subsurface water“ OR ”Interferometric Syn
thetic Aperture Radar“ AND ”Groundwater storage“ OR ”Gravity Re
covery and Climate Experiment“ AND ”Groundwater storage“ OR 
”Aquifer Storage“ AND ”Remote Sensing“ OR ”Electrical Resistivity 
Imaging“ AND ”Groundwater storage“ OR ”Ground-Penetrating Radar“ 
AND ”Groundwater storage“ OR ”Time Domain Reflectometry“ AND 
”Groundwater storage“ OR ”Remote Sensing“ AND ”Groundwater 
Model“ OR ”Remote Sensing“ AND ”Groundwater Modelling“). The 
same search terms were used for all the three databases. 

Fig. 1 depicts the detailed methodology used to refine the search 
results. The PRISMA-based identification, screening, eligibility, and in
clusion criteria considered in the identification and selection of the 
specific literature included in this study are as follows:  

a) Only titles that are directly applicable to assessing changes in 
groundwater storage.  

b) Only technologies that have been validated and shown to provide 
accurate and reliable measurements of groundwater storage 
dynamics.  

c) Only articles published in the last decade (2013–2023).  
d) Only publications from high quality reputable indexed journals and 

Published in English Language. 

A. Ibrahim et al.                                                                                                                                                                                                                                



Journal of Hydrology X 23 (2024) 100175

3

The selected publications were analysed using selected bibliometric 
indicators, which provided insights into the influence of publications, 
interconnectivity of research areas, and emergence of new research 
topics. 

3. Findings 

An analysis of the literature reveals several key findings. First, 
research on RS technology applications in GWS studies has shown a 
significant increase in publication output over the past decade, indi
cating the growing importance of this topic. 

3.1. Publication trends and sources 

The initial search results yielded over 4000 publications, indicating a 
substantial body of remote sensing research applied to GWS studies. 
After careful screenings and exclutions, the number of publications 
narrowed to 173. Preliminary analysis of only the included articles 
showed an upward trend in yearly publications, from 7 publications in 
2013 to 40 publications in 2023. This indicates the growing recognition 

of RS data and methods by the groundwater research community 
(Fig. 2). 

RS and groundwater literature is spread across journals spanning 
sustainable water resource management, hydrology, remote sensing, 
hydrogeology, and the Arabic Journal of Science, Water, and Applied 
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Fig. 1. Methodology flow Diagram based on PRISMA, adopted from Matthew et al., 2021.  

Fig. 2. Publication trends of RS techniques applications on GWS in last 
decade (2013–2023). 
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Geomatics. The top three publishing journals were Sustainable Water 
Resource Management, Remote Sensing, and the Arabian Journal of 
Geoseience (Fig. 3). 

3.2. Remote sensing methods with key area of applications used in the 
surveyed litrature 

Electrical resistivity imaging, ground-penetrating radar, time- 
domain reflectometry, airborne electromagnetics, LiDAR, Satellite 
multispectral/hyperspectral imaging, SAR, Gravity (GRACE mission) 
were the key methods commonly employed in the 173 selected articles. 
The key areas applied by these technologies include aquifer character
isation, groundwater exploration, monitoring water table levels, esti
mating recharge rates, mapping geology and hydrogeological 
properties, and measuring groundwater storage changes. Other methods 
applied in mapping geology and hydrological properties were further 
excluded. 

3.3. Limitations and future outlook 

Common challenges from the literature survey revealed includeS
patial and/or temporal resolution tradeoffs, complex data processing/ 
analysis, site-specific factors affecting accuracy, and high costs for some 
methods, The accelerating publication rates and citations indicating that 
remote sensing will continue to grow as an integral tool for groundwater 
assessment and modelling in the coming decade. New satellite missions, 
improving sensors, expanding computing power, enabling better data 
processing, and increasing collaboration across domains will further 
advance the remote sensing capabilities for groundwater studies. 

3.4. Types of remote sensing data 

This section discusses the different types of remote sensing data used 
to model the groundwater storage dynamics. These data include land 
surface elevation, vegetation cover, and gravity data. Land surface 
elevation, a type of remote sensing data obtained from satellite altim
etry, airborne laser scanning, and terrestrial laser scanning, can be used 
to measure changes in groundwater storage (Li et al., 2022; Liu et al., 
2019; Massoud et al., 2021; Rodell et al., 2009). Although these data can 
provide valuable information about land surface elevation changes, they 
may not capture the full complexity of groundwater dynamics, as other 
factors, such as subsidence and tectonic activity, can also influence land 
surface elevation (Janardhanan et al., 2023; Zipper et al., 2022). These 
techniques provide valuable information regarding the vertical move
ment of the land surface, and can be used to infer changes in ground
water storage. 

Vegetation cover is also a good indicator of groundwater availability, 
because plants rely on groundwater for growth and survival. Satellite 
imagery, airborne hyperspectral imagery, and ground-based measure
ments have been used to obtain vegetation-cover data (Jean et al., 
2016). By analysing changes in vegetation cover over time, researchers 
can gain insights into changes in groundwater recharge. However, 
vegetation cover is also influenced by factors other than groundwater 
availability, such as the climate and land management practices. 

Gravity data measure groundwater storage by detecting changes in 
the Earth’s gravity field. These gravity changes are directly related to 
changes in surface mass, as described by (Lee et al., 2019). These data 
were captured using gravity gradiometry, airborne gravity surveys, and 
recent GRACE and GRACE-FO satellite missions. GRACE is a unique 
satellite mission launched in 2002 to measure the Earth’s gravity field. 
This is the only satellite mission that is capable of accurately detecting 
changes in the gravitational field. This makes the GRACE data valuable 
for monitoring groundwater storage and other applications such as 
tracking ice sheet mass loss and climate change. Although gravity data 
alone may not provide detailed information regarding the spatial dis
tribution of groundwater storage changes, additional data sources, such 
as hydrological models and in situ measurements, may be required to 
complement gravity data and improve the accuracy of groundwater 
storage estimates (Lee et al., 2019; Magnoni et al., 2020; Massoud et al., 
2022a; Massoud et al., 2021; Massoud et al., 2018; Tolche, 2020). 

3.5. Remote sensing methods for groundwater studies 

This section discusses different methods that can be used to remotely 
sense groundwater, including ground-based, airborne, satellite-based, 
and gravity-based methods. 

RS technologies use sensors to measure the energy reflected or 
emitted from Earth’s surface (Sharad, 2021). This energy can take the 
form of visible light, infrared radiation, microwaves, or other wave
lengths used to create images or maps of the Earth’s surface from which 
geology, hydrology, and vegetation data are captured (Shandilya et al., 
2013). These data can be used to identify areas with potential ground
water resources by capturing or sensing locations with appropriate 
hydrogeological features that influence GW storage, such as cracked 
bedrock or loose sediments, such as fissure rocks. RS can also detect 
regions with heavy precipitation or snowfall that can serve as recharge 
sources for GW aquifers. Various RS techniques have been employed for 
GW exploration, such as multispectral and hyperspectral RS, LiDAR, 
InSAR, GPR, and the recent GRACE and GRACE-FO mission data. 
Numerous RS technologies have been used for multiple applications in 
many disciplines. Fig. 4 depicts a summary of these technologies that 
can be applied to groundwater modelling and studies. 

Fig. 3. Most relevant publication sources of the RS techniques applications on GWS in last decade (2013–2023).  
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3.6. Ground-based remote sensing 

Ground-based geophysical techniques such as electrical resistivity 
imaging (ERI), ground-penetrating radar (GPR), and time-domain 
reflectometry (TDR) offer subsurface imaging capabilities that can 
provide insights into the available moisture content and reveal potential 
indicators of groundwater resources. These methods provide high- 
resolution shallow subsurface characterisation without drilling or 
disturbance. However, care must be taken when interpreting subsurface 
signals from these techniques, as they may detect moisture in unsatu
rated soils above the water table, rather than directly measuring 
groundwater storage volumes or the water table surface. While the 
ground-based methods discussed in this section provide valuable sub
surface data related to GWS, it is important to note that some may 
measure soil moisture content in the vadose zone rather than directly 
detecting the water table or quantifying groundwater storage volumes. 
Therefore, signals from electrical resistivity, ground-penetrating radar, 
and time-domain reflectometry should be interpreted carefully to 
differentiate between moisture originating from soil and moisture from 
underlying groundwater reservoirs should be done cauciousely. Addi
tional data are required to confirm direct groundwater detection or 
quantification. 

3.6.1. Electrical resistivity imaging (ERI) 
Recent literature on the use of ERI in groundwater storage studies 

emphasises its potential for capturing temporal and spatial variations in 
moisture content, understanding solute transport, and detecting 
leakage. Sebastian et al. (2017) Discussed how ERI can be used to 
monitor moisture dynamics during landslip reactivation. It was found 
that the ERI has the potential to capture temporal variations in moisture 
content, although there is a need for an accurate interpretation and the 

possibility of missing deeper groundwater storage. Acharya et al., 
(2017) and Jon et al., (2022) used time-lapse ERI to study soil moisture 
dynamics in various vegetation types, and emphasised the significance 
of ERI in evaluating the influence of biological processes on ground
water recharge and solute transport. However, the focus of this study on 
specific vegetation types may limit the generalisability of the findings. 
Bongkoch et al. (2022) discussed the application of ERI surveys in open 
dumpsites as well as the limitations of other geophysical methods, 
highlighting the benefits of ERI over seismic, electromagnetic, and 
ground-penetrating radar techniques; however, it may limit the appli
cability of the findings to other groundwater storage contexts. These 
studies demonstrate the diverse and promising applications of ERI in 
groundwater storage. 

3.6.2. Ground-Penetrating radar (GPR) 
GPR is a versatile and effective ground-based remote sensing tech

nique that images the ground subsurface in various settings. It images 
subsurface features and detects changes in the properties of the ground 
materials using electromagnetic waves (Paz et al., 2017). High- 
resolution GPR images identify geological structures, soil layers, and 
groundwater levels (Paz et al., 2017). It is widely used in groundwater 
storage studies to map aquifer boundaries, detect sub-surface water flow 
patterns, and assess sediment layer thickness and properties (Alastair 
et al., 2012; Simon Damien et al., 2016). 

Recent studies have shown that GPR can be used to characterise 
geological structures in various contexts. Joseph et al. (2020) used GPR 
to characterize the geological structures in crystalline rock formations. 
They identified and modelled groundwater-affected geological features 
using GPR and other geophysical and geological surveys. Tao et al. 
(2021) investigated karst unsaturated zones and groundwater dynamics 
using GPR, highlighting the need for multiple geophysical techniques to 

Fig. 4. Summary of RS technologies that can be applied to GW studies.  
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accurately assess the irregular distributions of soils and underlying 
fractures and also demonstrated the effectiveness of mapping shallow 
subsurface features of the karst critical zone by combining the utility of 
GPR and Electrical Resistivity Tomography (ERT) (Yang & Yunling, 
2020). They used GPR to identify subsurface rock structures to under
stand geological formations and groundwater dynamics. 

GPR is useful in geological and structural investigations. Soil type, 
moisture content, and antenna frequency influence the resolution and 
penetration depth. Data interpretation is complex and requires expertise 
in identifying and characterising subsurface features. This is also helpful 
for investigating the geological structure of the groundwater. It non- 
destructively images subsurface features, revealing the geological 
characteristics that affect groundwater flow and storage. Researchers 
can better understand the subsurface and manage groundwater re
sources by combining GPR with other geophysical and geological 
techniques. Huisman et al. (2003) reported a comprehensive review of 
methods to measure soil water content using ground penetrating radar 
including methods that use the reflected wave velocity and surface 
reflection coefficient. 

3.6.3. Time domain reflectometry (TDR) 
TDR operates based on the principle that the dielectric constant of a 

material such as soil is related to its water content. It works by sending 
an electromagnetic pulse along a transmission line, typically a coaxial 
cable, and measuring the time it takes for the pulse to travel back after 
being reflected by the soil–water interface (Topp et al., 2010). It is 
widely used for the remote sensing of groundwater storage and contin
uously monitors vadose zone moisture changes over time. This allows 
for a complete understanding of the GWS and flow dynamics. 

TDR has been used in various studies to study water content, infil
tration, and groundwater recharge across different geographical re
gions, and it has been used to study the characteristics of enhanced 
ground-penetrating radar wave images in carbonate rock formations 
(Ibrahim, 2023). It has been applied in both laboratory and field settings 
to investigate the dynamics of groundwater in karst regions (Li et al., 
2023b). However, because TDR sensors are installed at shallow depths, 
they can miss groundwater storage in deeper layers, which could lead to 
the underestimation of groundwater storage (Yaara et al., 2007). 

3.7. Airborne remote sensing 

3.7.1. Airborne electromagnetic (AEM) methods 
Airborne electromagnetic (AEM) methods use electromagnetic in

duction to measure the electrical conductivity of subsurface materials, 
thereby providing valuable information regarding groundwater storage 
and hydrogeological properties (Auken & Christiansen, 2004). AEM 
surveys employ a transmitter coil to produce an electromagnetic field 
and a receiver coil to measure the induced electrical response of the 
subsurface by analysing variations in electrical conductivity, which can 
assist in identifying aquifer boundaries and estimating groundwater 
storage (Kenneth & Russo, 2013). However, the electrical conductivity 
response measured by the AEM may also detect moisture in unsaturated 
soils above the water table. Care should be taken to differentiate be
tween soil moisture and groundwater when interpreting AEM data. This 
technique has been successfully applied in several hydrogeological 
studies, including the mapping of saline intrusions, characterisation of 
aquifer properties, and assessment of GWS. 

3.7.2. Light detection and ranging (LiDAR) 
LiDAR measures the Earth’s surface distance with laser pulses; objects 

reflect LiDAR sensor laser pulses back to the sensor and calculate the 
distance by timing the laser pulses to and from the objects (Lefsky et al., 
2002). LiDAR data can be used to create detailed three-dimensional 
landscape models. These models can identify buildings, trees, faults, 
fractures, and aquifers, which are valuable for groundwater exploration 
studies (Maja & Jacek, 2021). The use of LiDAR for groundwater mapping 

is a relatively new field, but it has the potential to revolutionise our un
derstanding and management of groundwater resources. Digital
Elevation Models (DEMs) derived from LiDAR technology exhibit super
ior resolution and vertical accuracy, than the LiDAR itself, thereby 
enabling a more dependable depiction of depressions and their 
hydrological importance (Saksena, 2015). 

Although LiDAR models can identify potential aquifers, the tech
nology itself only measures surface elevations and does not directly 
detect groundwater. Supplementary data may be needed to confirm the 
presence and depth of the groundwater resources. 

3.7.3. Airborne hyperspectral imaging 
Airborne Hyperspectral Imaging uses high-resolution images across a 

wide range of spectral bands to identify and characterise surface mate
rials based on their unique spectral signatures (Jing et al., 2023). 
Hyperspectral imaging can reveal vegetation cover, soil moisture con
tent, and mineralogy, which are important for groundwater storage and 
hydrogeological modelling (Jingjing et al., 2018; Pedram et al., 2017). 
This method has been used to map land cover, detect changes in vege
tation health, and assess the impact of land use on groundwater re
sources (Pedram et al., 2017). Vegetation and soil moisture content 
revealed through hyperspectral imaging may indicate areas favourable 
for groundwater recharge but do not confirm the underlying ground
water resources. Additional hydrogeological data validation is advised 
when inferring groundwater from hyperspectral data, which may be 
further explored for groundwater dynamics studies. 

3.8. Satellite-Based remote sensing 

3.8.1. Multi-spectral and hyper-spectral imaging 
Multispectral and hyperspectral imaging have been used to identify 

soil and rock types, vegetation cover, and other land features, all of 
which can be direct or indirect indicators of groundwater potential on 
Earth’s surface. A research in India for instance, revealed that vegeta
tion indices obtained from multi-spectral satellite images, might
be utilised to forecast groundwater potential (Kumar et al., 2022). 

In Iran, Khodaei and Nassery (2013) used Landsat ETM, IRS (pan), 
SPOT data, and a Digital Elevation Model (DEM) to define the 
Groundwater Potential Index (GWPI), which was used for zoning and 
preparing the GWPI map of the region. They found that areas with high 
rates of groundwater depletion were characterised by low vegetation 
cover, high soil salinity, and high evapotranspiration rates. 

Azimi et al. (2020) used data from the Soil Moisture Active and 
Passive satellite (SMAP) to map soil moisture. They found that soil water 
content can be used as a good indicator of groundwater potential and to 
map areas of high and low potential. This study was limited by the fact 
that the SMAP data were only available for 2015. However, they cannot 
be used to map earlier groundwater potential. Many researchers have 
used multispectral satellite images to identify areas of groundwater 
depletion across regions such as China (Akhter et al., 2021), Mexico 
(Olivares et al., 2019), and Nigeria (Epuh et al., 2020; Ogungbade et al., 
2022). 

In contrast, hyperspectral remote sensing offers more in-depth data 
on vegetation, soil, and rock types than does multispectral imaging. The 
key difference between the hyper and multi spectral is that Multispectral 
images typically have 3 to 15 spectral bands, whereas hyperspectral 
images have hundreds or even thousands of spectral bands (Chakra
vortty & Subramaniam, 2014). Hyperspectral imagery can also help 
identify minerals associated with groundwater sources (Peighambari & 
Zhang, 2021). Several studies have demonstrated the utility of hyper
spectral imagery in identifying mineral deposits that are often associated 
with groundwater (Zheng et al., 2021). 

Hyperspectral and multispectral data are often integrated in 
groundwater studies and have been extensively used for groundwater 
storage and exploration (Peighambari & Zhang, 2021; Zheng et al., 
2021). However, there are many constraints to overcome, including the 
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availability of data and costs associated with data collection and pro
cessing. Other multispectral technologies include the Visible and 
Infrared Imaging Radiometer Suite (VIIRS). 

3.8.2. Synthetic Aperture radar (SAR) 
Synthetic aperture radar (SAR) is an active remote sensing technol

ogy that utilises radar signals to generate high-resolution images of 
Earth’s surface. It operates by transmitting radar signals from antennas 
mounted on moving platforms such as satellites, receiving reflected 
signals, and analysing properties such as intensity, phase, and polar
isation to gather terrain information (Science., S. G., 2019).Specialised 
processing algorithms were then employed to enhance the image reso
lution beyond the antenna aperture limitations. Additionally, interfer
ometric SAR (InSAR) involves the use of multiple SAR images to produce 
maps of surface deformation or digital elevation, enabling the moni
toring of changes on the Earth’s surface over time (Huizhang et al., 
2021). Several studies have suggested the application of SAR to 
groundwater storage management. Engman (1994) highlighted the po
tential of SAR for groundwater studies because of its response to vari
ations in soil moisture and snow properties, and its excellent spatial 
resolution. Amitrano et al. (2014) presented a pilot project in Burkina 
Faso that successfully used SAR to estimate the soil sedimentation rate 
and monitor water intake volume in small reservoirs. Jang et al. (2011) 
discusses the applicability of SAR for estimating reservoir storage, 
highlighting the limitations of SAR data and the need for alternative 
approaches to improve accuracy. 

Recently, several studies have revealed how SAR datasets from the 
Sentinel-1 satellite estimate soil moisture content and monitor changes 
in groundwater storage; for example, Shashikant et al. (2023) predicted 
soil moisture content directly using PALSAR-2 (Phased Array type L- 
band Synthetic Aperture Radar-2) images of oil palm estate, and Liu 
et al. (2023) showed the potential of SAR for estimating reservoir stor
age and soil sedimentation rates related to groundwater. These studies 
have demonstrated the utility of SAR in retrieving soil moisture. Despite 
the potential of SAR in groundwater storage studies, its use in this field 
has been hampered by limitations, suggesting the need for further 
research and development in this area. Awasthi et al. (2022) used time- 
series Sentinel-1 data and InSAR measurements to analyse the impacts of 
urbanisation on groundwater stress and land deformation. 

While SAR has shown promise for groundwater applications, studies 
have noted limitations related to accuracy and resolution. Further 
research and integration with other datasets can address these 
limitations. 

3.8.3. Landsat and Moderate resolution imaging Spectroradiometer 
(MODIS) 

Numerous groundwater studies have used Landsat and MODIS data 
(Muhammad Atiq Ur Rehman et al., 2022). Their benefits and draw
backs render them as complementary tools for this application. Landsat 
can map smaller features, such as individual wells and irrigation canals, 
owing to its higher spatial resolution (30 m), as well as soil moisture, 
vegetation health, and surface water extent, owing to its wider spectral 
range than MODIS (Joseph et al., 2013). However, MODIS data can track 
groundwater variables over time because they have a higher temporal 
resolution (1–2 days) than Landsat (16–18 days) and global coverage, 
which enables regional and global groundwater resource studies (Pinhas 
et al., 2012). 

3.9. Gravity-based groundwater measurement 

Gravity-based groundwater measurement is an emerging technology 
that offers a cost-effective and efficient method for measuring ground
water. This technique relies on the principle that Earth’s gravity field is 
affected by the underground mass of water. Changes in groundwater 
storage can be estimated by measuring changes in the Earth’s gravity 
field. The most well-known gravity-based groundwater measurement 

mission is the Gravity Recovery and Climate Experiment (GRACE) 
launched in 2002. GRACE measures changes in Earth’s gravity field with 
high accuracy and has been used to study groundwater storage changes 
in a variety of regions around the world. GRACE data have been suc
cessfully used in several studies worldwide (Liu et al., 2019), South 
Africa (Oke et al., 2019), Saudi Arabia (Algaydi et al., 2019; Mohammed 
et al., 2022), Pakistan (Ahmad et al., 2021; Mistry et al., 2019), China 
(Liu et al., 2020; Wang et al., 2020; Yin et al., 2021), India (Bhakar et al., 
2021; Kalura et al., 2021; Swanand & Manjunatha, 2021; Verma & Patel, 
2021; Wable et al., 2021), Morrocco (Al-Djazouli et al., 2020), Australia 
(Jasmine et al., 2021; Yin et al., 2020), Lebanon (Massoud et al., 2021), 
the Amazon (Massoud et al., 2022b), and many other regions. For 
example, Kaushik et al. (2021) used gravity-based methods to map 
groundwater storage changes in the Great Ark Basin. The study found 
that gravity-based methods can accurately map groundwater storage 
changes, even in areas with complex geology. 

Gravity-based groundwater measurement is a promising new tech
nology that has the potential to revolutionise the way groundwater is 
measured. Although this technology is still under development, it can 
provide a more accurate and cost-effective method for monitoring 
groundwater resources. 

3.9.1. Gravity Recovery and climate Experiment (GRACE) satellite mission 
remote sensing 

The Gravity Recovery and Climate Experiment (GRACE) satellite 
mission measures changes in the Earth’s gravity field, which correspond 
to variations in the total Terrestrial Water Storage (TWS). TWS refers to 
the summation of all water resources on and beneath the land surface, 
including surface water, soil moisture, snow/ice, and groundwater 
(Famiglietti et al., 2011a). By observing changes in Earth’s gravity field, 
GRACE provides the first opportunity to directly estimate GWS changes 
from space (Frappart & Ramillien, 2018; Rodell & Famiglietti, 2002). 
However, GRACE does not directly measure GWS changes. To estimate 
GWS changes from GRACE, TWS measurements must be combined with 
auxiliary data on other water budget components obtained from land 
surface models, remote sensing platforms, and ground-based observa
tions (Long et al., 2015; E. Massoud et al., 2022; Massoud et al., 2021). 
Once these other components have been quantified, they can be sub
tracted from the TWS change to estimate the groundwater storage 
change. 

Multiple studies have demonstrated a good correlation between 
GRACE-derived and in-situ observed groundwater storage changes when 
appropriate data integration is performed (Adams et al., 2022). How
ever, data availability and processing can be challenging; therefore, 
validation of directly measured groundwater is still important (NASA, 
2023). 

ΔTWS(t) = ΔSW(t) + ΔSM(t) + ΔSWE(t) + ΔGW(t) (1)  

Where: 
ΔTWS is the change in total water storage from GRACE, ΔSW is the 

change in surface water storage, ΔSM is the change in soil moisture 
storage, ΔSWE is the change in the snow water equivalent, and ΔGW is 
the change in groundwater storage. 

By rearranging this equation and having data on the other terms, 
ΔGW can be estimated as 

ΔGW(t) = ΔTWS(t) − ΔSW(t) − ΔSM(t) − ΔSWE(t) (2)  

Therefore, although GRACE provides unprecedented temporal resolu
tion of TWS changes, its full value for groundwater assessment relies on 
its integration with other hydrological data sources (Alshehri & 
Mohamed, 2023; Liu et al., 2019; Long et al., 2015; Massoud et al., 
2022b; Massoud et al., 2021; Massoud et al., 2018). 

The GRACE mission is a joint project between NASA and the German 
Aerospace Center (DLR). The mission involves a pair of low-flying sat
ellites orbiting the Earth in tandem and measuring the distance between 
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them with high precision (NASA, 2018). These measurements are used 
to determine variations in the gravitational pull of Earth, which are 
caused by changes in the distribution of mass on and within the planet 
(Wang et al., 2020; Yan et al., 2022). 

The GRACE mission was the first attempt to provide a novel remote- 
sensing dataset that provides temporal variations in terrestrial water 
storage (summation of water masses in the soil column and consists of 
surface water, soil moisture, snow, and groundwater) (Frappart & 
Ramillien, 2018). These masses can be easily used to determine the 
water stored beneath the Earth. 

GRACE and GRACE Follow on (GRACE-FO) (the second mission to 
continue the project in 2018 after GRACE, known as the follow-on 
mission) revolutionised our view of groundwater dynamics and its 
storage variability on Earth, and eventually opened a new opportunity 
for many researchers. GRACE data offers opportunities to study 
groundwater anomalies unprecedentedly at global and regional scales, 
even in areas with little or no observed data. 

The GRACE mission involves two identical satellites at an orbital 
altitude of approximately 450 km, separated by a distance of 220 km. 
The separation distance changes owing to the attraction of masses on 
and inside Earth’s surface (NASA, 2023). 

Groundwater storage dynamics have been extensively studied using 
gravity recovery and climate experiments (GRACE) and GRACE-FO 
(GRACE) technologies. Table 1 summarises the selected studies con
ducted using GRACE data. 

4. Methodologies for modelling groundwater storage dynamics 

4.1. Data preprocessing and calibration 

Groundwater storage dynamics modelling involves several methods 
of data pre-processing and calibration. Atmospheric and topographic 
corrections are important in this regard. Atmospheric correction in
volves removing the effects of atmospheric interference from data to 
obtain accurate measurements of terrestrial (groundwater) storage. This 
correction is necessary because atmospheric conditions can affect the 
measurements of groundwater storage obtained from remote sensing 
satellites such as GRACE. Topographic correction involves correcting for 
the effects of topography. Topography can influence the distribution and 
movement of groundwater; therefore, it is essential to account for these 
effects in the modelling process (Troch et al., 2003). 

Radiometric calibration ensures the accuracy and consistency of 
measurements obtained from remote sensing instruments. This involves 
calibrating the measurements to a known reference standard to elimi
nate systematic errors or biases (Christian et al., 2015). 

4.2. Modeling approaches 

Various modelling approaches have been used to simulate ground
water storage dynamics. These include empirical, analytical, numerical, 
statistical, and data-assimilation techniques. 

Empirical models are based on observed data and relationships be
tween variables (Massoud et al., 2018; Saeedpanah and Azar, 2023b). 
Although they are simple and quick to execute, they may need to be 
capable of adequately capturing complex processes (Sarkar et al., 2021). 

Analytical models are based on mathematical equations that describe 
the physical processes governing groundwater storage dynamics 
(Christian et al., 2015). These models often involve simplifying as
sumptions and can provide insights into the fundamental mechanisms 
that control GWS. This can be derived from the principles of fluid me
chanics and hydrogeology (Troch et al., 2003). 

Numerical models: Numerical models are based on discretising the 
study area into a grid and solving the governing equations for the 
groundwater flow and storage in each grid cell. These models can 
simulate complex processes and interactions but require detailed input 
data and computational resources. Numerical models for groundwater 

storage dynamics can be developed using finite difference or finite 
element methods (Margaret & Brian, 2017). These models exploit high- 
resolution remote sensing data to delineate aquifer properties, thereby 
enriching our understanding of the spatial heterogeneity. 

Statistical: Statistical methodologies provide a versatile lens for 
comprehending groundwater storage variations. Time-series analysis, 
spatio-temporal kriging, and machine-learning techniques have cast 
light on intricate temporal patterns and spatial trends. These methods 
exploit multidimensional RS data and reveal latent patterns that may 
elicit conventional interpretations (Sarkar et al., 2021). 

Machine-learning (ML) approaches have gained popularity in recent 
years. ML algorithms learn patterns and relationships from data to make 
predictions or classifications. ML models for groundwater storage dy
namics can be developed using techniques such as Artificial Neural 
Networks (ANN), Support Vector Machines (SVM), Random Forests 
(RF), and Extreme Gradient Boosting (XGBoost) among others (Saskia, 
2015). This approach has advantages over traditional methods, such as 
its ability to learn complex relationships, handle noisy data, and its 
applicability in various settings. However, it is prone to overfitting and 
requires a large dataset in addition to its inherent black-box nature. 

Data Assimilation Techniques: The synergy between remote sensing 
observations and hydrological models is orchestrated using data 
assimilation techniques. Approaches such as Kalman filtering and 
Ensemble Kalman filters assimilate heterogeneous data, bridging the gap 
between the model predictions and actual observations. These meth
odologies not only enrich the accuracy of groundwater storage estimates 
but also mitigate the uncertainties inherent in both models and mea
surements (Gerlach et al., 2021). 

Various modelling approaches have been used to simulate ground
water storage dynamics, each with its own strengths and weaknesses. 
Empirical models are simple and quick to execute; however, they may 
not adequately capture complex processes. Analytical models can pro
vide insights into the fundamental mechanisms that control ground
water storage; however, they often involve simplified assumptions. 
Although numerical models can simulate complex processes and in
teractions, they require detailed input data and computational re
sources. Statistical approaches can be used to understand temporal 
patterns and spatial trends in groundwater storage, whereas machine 
learning approaches can learn complex relationships from data to make 
predictions. Data assimilation techniques can be used to combine RS 
observations with hydrological models to improve the accuracy of the 
GWS estimates. 

The choice of the modeling approach depends on the specific prob
lem being addressed. For example, empirical models may be sufficient 
for simple applications, whereas numerical models may be required for 
complex ones. Statistical and machine learning approaches can be used 
to complement numerical models by providing insights into the data and 
improving prediction accuracy. Data assimilation techniques can be 
used to improve the accuracy of groundwater storage estimates by 
combining the data from multiple sources. 

It is promising that the future of GWS modelling lies in the use of 
integrated approaches that combine multiple modelling techniques. By 
combining the strengths of the different approaches, we can develop 
more accurate and reliable models that can be used to make informed 
decisions regarding the management of groundwater resources. 

5. Strengths and limitations of remote-sensing technologies 

Table 2 compares various remote sensing techniques and their 
strengths, weaknesses, and recommendations for the best application. 
Furthermore, spatial and temporal coverage, accuracy, uncertainty, and 
cost-effectiveness are discussed (section 5.1 to 5.3). The table shows 
opportunities to combine the strengths of multiple technologies for 
groundwater exploration. For example, GPR can be used to image the 
subsurface in areas where other remote sensing techniques are ineffec
tive, and SAR data can be used to detect changes on the Earth’s surface. 
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Table 1 
Summary of the selected GRACE-based groundwater storage case studies.  

SN Paper Title & Author Objective Methodology Key Findings Recommendation Comment 

1. “Development of a simple 
groundwater model for 
use in climate models and 
evaluation with Gravity 
Recovery and Climate 
Experiment data,” 
(Niu et al., 2007) 

To develop a simple 
groundwater model 
(SIMGM) for use in 
climate models and 
evaluate its performance 
using Gravity Recovery 
and Climate Experiment 
(GRACE) data. 

The study develops the 
SIMGM by representing 
recharge and discharge 
processes of water storage 
in an unconfined aquifer. 
The model is added as a 
single integration element 
below the soil of a land 
surface model. 
The SIMGM is evaluated 
against GRACE terrestrial 
water storage change 
(DS) data. 

The study found that the 
SIMGM, when evaluated 
against GRACE DS data, 
shows good agreement 
with the observed 
groundwater storage 
changes. 
The model successfully 
captures the temporal 
variations in groundwater 
storage and demonstrates 
the potential for 
incorporating 
groundwater dynamics 
into climate models. 

The authors recommend 
further research to 
validate the SIMGM 
using additional 
independent data 
sources and in different 
hydrogeological 
settings. 
They also suggest 
exploring the potential 
of incorporating the 
SIMGM into climate 
models to improve the 
representation of 
groundwater dynamics. 

This work addresses the 
important issue of 
incorporating 
groundwater dynamics 
into climate models. The 
development of the 
SIMGM provides a 
valuable tool for 
representing groundwater 
storage changes in 
climate models. The 
evaluation of the model 
using GRACE data 
demonstrates its potential 
for capturing 
groundwater dynamics. 
However, further 
research is needed to 
validate the model using 
additional data sources 
and in different 
hydrogeological settings. 
The incorporation of 
groundwater dynamics 
into climate models is 
crucial for improving the 
accuracy of water 
resource assessments and 
climate change impact 
studies 

2. “Global-scale modeling of 
groundwater recharge,” 
(Petra & Kristina, 2008) 

To develop a global-scale 
model for estimating 
groundwater recharge. 

The study uses a global 
hydrological model, 
WaterGAP, to simulate 
GW recharge at global 
scale. 
The authors incorporate 
various data sources, 
including climate data, 
soil data, and land cover 
data, into the model to 
estimate groundwater 
recharge. 
They validate the model 
results using available 
groundwater recharge 
observations and evaluate 
the spatial patterns and 
temporal variability of 
groundwater recharge. 

The study provides 
estimates of global-scale 
groundwater recharge 
and highlights the spatial 
patterns and temporal 
variability of recharge. 
The authors find 
significant spatial 
variability in 
groundwater recharge, 
with higher recharge 
rates in humid regions 
and lower recharge rates 
in arid and semi-arid 
regions. 

The authors 
recommend: 
further research on 
improving the accuracy 
of global-scale 
groundwater recharge 
estimates. 
They suggest 
incorporating more 
ground-based 
observations to validate 
and refine the model 
results. 
The authors also 
emphasize the need for 
considering climate 
change impacts on 
groundwater recharge 
and the development of 
sustainable water 
management strategies. 

The study contributes to 
our understanding of 
global-scale groundwater 
recharge. The use of the 
WaterGAP model allows 
for the estimation of 
groundwater recharge at 
a global scale and 
provides insights into the 
spatial patterns and 
temporal variability of 
recharge. The findings 
highlight the significant 
spatial variability in 
groundwater recharge 
and emphasize the 
importance of 
considering climate 
change impacts. However 
the study has limitations 
such as the reliance on 
model-based estimates 
without extensive 
validation with ground- 
based observations. 

3. “Drought indicators based 
on model-assimilated 
Gravity Recovery and 
Climate Experiment 
(GRACE) terrestrial water 
storage observations” 
(Ibrahim et al., 2012) 

To develop drought 
indicators based on 
model-assimilated 
Gravity Recovery and 
Climate Experiment 
(GRACE) terrestrial 
water storage (TWS) 
observations. 

The study utilizes a data 
assimilation framework 
to assimilate GRACE TWS 
observations into a land 
surface model. The 
authors use the 
assimilated TWS data to 
develop drought 
indicators, including the 
Standardized 
Precipitation 
Evapotranspiration Index 
(SPEI) and the 
Standardized Soil 
Moisture Index (SSI). 
The drought indicators 
are validated against 
observed drought events 

The study found that the 
assimilated GRACE TWS 
data improves the 
accuracy of drought 
indicators compared to 
using precipitation and 
temperature data alone. 
The developed drought 
indicators, SPEI and SSI, 
show good agreement 
with observed drought 
events and perform well 
in capturing the spatial 
and temporal variability 
of drought conditions. 
The findings highlight the 
potential of GRACE TWS 
data assimilation for 

The study made 
following 
recommendations: 
To explore the 
uncertainties associated 
with GRACE 
measurements and data 
processing techniques in 
the context of drought 
monitoring. 
Incorporating error 
estimates into the 
assimilation framework 
to account for the 
uncertainties in the 
GRACE TWS data. 

The study addresses the 
important issue of 
developing drought 
indicators based on 
model-assimilated 
GRACE TWS 
observations. The 
assimilation of GRACE 
data into the land surface 
model improves the 
accuracy of drought 
indicators, enhancing the 
representation of water 
storage dynamics. The 
validation of the drought 
indicators against 
observed drought events 
adds confidence to the 
accuracy of the results. 

(continued on next page) 
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Table 1 (continued ) 

SN Paper Title & Author Objective Methodology Key Findings Recommendation Comment 

and compared with other 
drought indices. 

drought monitoring and 
assessment. 

However, it is important 
to acknowledge the 
limitations of the study, 
such as the focus on 
model-assimilated 
GRACE TWS data without 
considering the 
uncertainties associated 
with the GRACE 
measurements 
themselves. Future 
research should explore 
the impact of GRACE 
measurement errors and 
data processing 
techniques on the 
accuracy of drought 
indicators. 

4. “Groundwater depletion 
in the Middle East from 
GRACE with implications 
for transboundary water 
management in the Tigris- 
Euphrates-Western Iran 
region” 
(Voss et al., 2013) 

The main goal of the 
study is to assess 
groundwater depletion in 
the Middle East using 
GRACE satellite data and 
to evaluate its 
implications for 
transboundary water 
management in the 
Tigris-Euphrates- 
Western Iran region 

The authors analyze the 
GRACE data to assess the 
magnitude and spatial 
patterns of groundwater 
depletion in the region. 
They also examine the 
implications of 
groundwater depletion 
for transboundary water 
management in the 
Tigris-Euphrates-Western 
Iran region. 

The study shows a 
significant groundwater 
depletion in the Middle 
East, particularly in the 
Tigris-Euphrates-Western 
Iran region. 
They pointed out the 
implications of 
groundwater depletion 
for transboundary water 
management, including 
the potential for conflicts 
over water resources. 

Further research on the 
impacts of groundwater 
depletion on 
transboundary water 
management in the 
Middle East. 
The need for improved 
monitoring and 
management of 
groundwater resources, 
as well as international 
cooperation to address 
the challenges of 
groundwater depletion 
is needed. 

The findings highlight the 
challenges of 
groundwater depletion in 
the Tigris-Euphrates- 
Western Iran region and 
emphasize the need for 
sustainable water 
management strategies 
and international 
cooperation. However, 
the study rely on satellite 
data without extensive 
validation with ground- 
based observations, 
thereby poses some 
limitations. 

5. Global-scale assessment of 
groundwater depletion 
and related groundwater 
abstractions: Combining 
hydrological modeling 
with information from 
well observations and 
GRACE satellites“ 
(Döll et al., 2014) 

The study aims to 
improve the 
understanding of 
groundwater depletion 
and its causes, and to 
distinguish between 
groundwater depletion 
due to climatic reasons 
and human water 
abstractions. 

Combines hydrological 
modeling with 
information from well 
observations and GRACE 
satellites. 
They also incorporate 
information from well 
observations to validate 
the model results. 
they utilize GRACE 
satellite data to assess 
groundwater storage 
changes at a global scale. 
The GRACE data is 
combined with model- 
based estimates of soil 
and snow storage to 
derive groundwater 
depletion. 

GRACE data can 
contribute to a better 
understanding of 
groundwater depletion 
and its causes. 
The ability of GRACE data 
to distinguish between 
groundwater depletion 
due to climatic reasons 
and human water 
abstractions as 
highlighted. and 
The study emphasizes the 
usefulness of GRACE data 
in monitoring 
groundwater depletion, 
particularly in regions 
where groundwater and 
surface water 
withdrawals are high and 
not well monitored. 

The study suggests 
exploring alternative 
methods to derive 
groundwater depletion 
from GRACE data, such 
as incorporating 
additional data sources 
or refining the modeling 
approaches. 
The authors also 
emphasize the need for 
more localized studies to 
capture the spatial 
variability of 
groundwater dynamics. 
Future research could 
focus on specific regions 
or aquifer systems to 
provide more detailed 
insights into 
groundwater depletion 
processes 

A strength of the study is 
the integration of 
multiple data sources and 
modeling approaches to 
assess groundwater 
depletion. The 
combination of 
hydrological modeling, 
well observations, and 
GRACE satellite data 
provides a comprehensive 
understanding of 
groundwater dynamics. 
The study also highlights 
the importance of 
distinguishing between 
climatic reasons for 
groundwater storage 
decreases and 
groundwater depletion 
due to human water 
abstractions. This 
distinction is crucial for 
effective groundwater 
management and 
sustainable water 
resource planning Döll 
et al. (2014). However, 
the study relied on model- 
based estimates of soil 
and snow storage to 
derive groundwater 
depletion from GRACE 
data. Nevertheless, the 
author acknowledged 
that the approach has 
been used in most studies 
but may introduce 
uncertainties in the 
estimation of 
groundwater depletion. 

(continued on next page) 
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Table 1 (continued ) 

SN Paper Title & Author Objective Methodology Key Findings Recommendation Comment 

6. “Monitoring groundwater 
storage changes in 
complex basement 
aquifers: An evaluation of 
the GRACE satellites over 
East Africa” 
(Nanteza et al., 2016) 

The focused on 
evaluating the suitability 
of GRACE data for 
monitoring groundwater 
storage changes in areas 
where traditional 
monitoring methods may 
be limited. 

the study utilizes 
carefully processed data 
sets, including GRACE 
data, lake altimetry, and 
model soil moisture, to 
evaluate groundwater 
storage changes in East 
Africa. 
They employed a 
combination of these data 
sources to reduce scaling 
factor bias and compare 
the GRACE-derived 
groundwater storage 
changes with in situ 
groundwater 
observations. They also 
consider the impact of 
surface water storage on 
the accuracy of the 
GRACE data and evaluate 
the correlation between 
GRACE-derived 
groundwater storage 
changes and in situ 
measurements 

The work highlights the 
importance of 
considering the impact of 
surface water storage on 
the accuracy of the 
GRACE data and 
emphasize the need for 
cautious processing 
techniques. The study 
demonstrates a strong 
correlation between 
GRACE-derived 
groundwater storage 
changes and in situ 
groundwater 
observations, indicating 
the potential of GRACE 
data for monitoring 
groundwater dynamics in 
complex basement 
aquifers 

the authors recommend 
further research on the 
application of GRACE 
data for monitoring 
groundwater storage 
changes in other regions 
and aquifer systems. 
They suggest expanding 
the evaluation to 
different 
hydrogeological settings 
to assess the 
generalizability of the 
findings. 

The findings have 
implications for water 
resources management in 
areas where traditional 
monitoring methods may 
be limited. However, 
future studies are needed 
to expand the evaluation 
to other regions and 
aquifer systems, and to 
explore the potential 
limitations or 
uncertainties associated 
with the GRACE data 
itself. 

7. Relative contribution of 
monsoon precipitation 
and pumping to changes 
in groundwater storage in 
India 
(Akarsh et al., 2017) 

The main goal of the 
study is to assess the 
relative contributions of 
monsoon precipitation 
and pumping to changes 
in groundwater storage 
in India 

The authors analyze the 
GRACE data to assess the 
spatial and temporal 
patterns of groundwater 
storage changes. They 
also examine the 
relationship between 
groundwater storage 
changes and monsoon 
precipitation, as well as 
the impact of pumping on 
groundwater depletion. 

The study made the 
following findings: 
Both monsoon 
precipitation and 
pumping contribute to 
changes in groundwater 
storage in India. 
Observed a strong 
correlation between 
monsoon precipitation 
and groundwater storage 
replenishment, indicating 
the importance of 
monsoon rainfall for 
groundwater recharge. 
That pumping for 
irrigation and other 
purposes leads to 
significant groundwater 
depletion, particularly in 
regions with high 
pumping rates. 

The study recommends 
further research on the 
impacts of monsoon 
variability and pumping 
on groundwater storage 
in India. 
Suggest the need for 
improved monitoring 
and management of 
groundwater resources, 
as well as the 
implementation of 
sustainable irrigation 
practices to reduce 
excessive pumping. The 
authors also 
Emphasized the 
importance of 
integrating satellite data 
with ground-based 
observations to improve 
the accuracy of 
groundwater storage 
assessments. 

The findings highlight the 
importance of 
considering both natural 
factors and human 
activities in 
understanding 
groundwater dynamics. 
However, it is important 
to acknowledge the 
limitations of the study, 
such as the reliance on 
satellite data without 
extensive validation with 
ground-based 
observations. Future 
research should focus on 
incorporating more 
ground-based data to 
enhance the accuracy of 
groundwater storage 
estimates and to 
understand better the 
complex interactions 
between climate, 
pumping, and 
groundwater resources in 
India. 

8. “Evapotranspiration 
depletes groundwater 
under warming over the 
contiguous United States,” 
(Laura et al., 2020) 

To investigate the impact 
of warming on 
groundwater depletion 
through changes in 
evapotranspiration over 
the contiguous United 
States 

The study combines 
satellite observations, 
climate model 
simulations, and 
groundwater model 
simulations to assess the 
relationship between 
warming, 
evapotranspiration, and 
groundwater depletion. 
The authors use GRACE 
satellite data to estimate 
changes in total water 
storage, including 
groundwater storage, and 
validate the results with 
in situ groundwater 
observations. 

IT is revealed that 
warming leads to 
increased 
evapotranspiration, 
which depletes 
groundwater storage. 
The authors observed a 
significant increase in 
groundwater depletion 
over the contiguous 
United States due to 
warming-induced 
changes in 
evapotranspiration. 

Recommend further 
research to assess the 
impact of warming on 
groundwater depletion 
in other regions and to 
explore the potential of 
incorporating climate 
change projections into 
groundwater models. 
They also suggest the 
need for improved 
monitoring and 
management of 
groundwater resources 
in the face of climate 
change. 

This study addresses an 
important aspect of the 
impact of warming on 
groundwater depletion 
through changes in 
evapotranspiration. The 
integration of satellite 
observations, climate 
model simulations, and 
groundwater model 
simulations provides a 
comprehensive 
understanding of the 
relationship between 
warming, 
evapotranspiration, and 
groundwater depletion. 
The findings highlight the 
need for sustainable 
water management 
strategies to mitigate the 
impacts of climate change 
on groundwater 

(continued on next page) 
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Table 1 (continued ) 

SN Paper Title & Author Objective Methodology Key Findings Recommendation Comment 

resources. However, it is 
important to consider the 
regional variability in 
groundwater dynamics 
and to expand the 
research to other regions 
to obtain a more 
comprehensive 
understanding of the 
impacts of warming on 
groundwater depletion. 

9. “Estimating the 
Spatiotemporal of 
GRACE/GRACE-FO 
derived groundwater 
storage and depletion and 
validation with in-situ 
measurements of water 
level and quality (Yazd 
Province, Central Iran),” 
(Amiri et al., 2023) 

To estimate the 
spatiotemporal 
variations of 
groundwater storage and 
depletion in Yazd 
Province, Iran, using 
GRACE/GRACE-FO data 
and to validate the 
results with in-situ 
measurements. 

The study used GRACE/ 
GRACE-FO data to 
estimate the 
spatiotemporal variations 
of groundwater storage in 
Yazd Province from 2003 
to 2020. The results were 
then validated with in- 
situ measurements of 
water level and quality. 

The study found that 
groundwater storage in 
Yazd Province has been 
decreasing since 2003. 
The depletion is most 
pronounced in the central 
and southern parts of the 
province. The results 
were validated with in- 
situ measurements, which 
showed good agreement 
with the GRACE/GRACE- 
FO data. 

Recommend further 
research to investigate 
the causes of 
groundwater depletion 
in Yazd Province. 

The study provides 
valuable insights into the 
spatiotemporal variations 
of groundwater storage in 
Yazd Province. 

10 “Groundwater recharge 
and water table levels 
modelling using remotely 
sensed data and cloud- 
computing” 
(Magnoni et al., 2020) 

To assess the suitability 
of using remotely sensed 
data to estimate monthly 
groundwater recharge 
(GWR) and water table 
depths (WTD) in a 
representative area of the 
Guarani Aquifer System. 

Used actual 
evapotranpiration, 
surface runoff, and 
precipitation data from 
the FLDAS drought 
monitor extracted using 
Google Earth Engine. 
Models GWR using a 
water budget equation 
and WTD using an 
adapted Water 
Table Fluctuation 
method. 

Good agreement found 
between FLDAS 
precipitation data and 
rain gauge 
measurements. 
Accounting for recharge 
delay improves 
correlation of modeled 
GWR with reference GWR 
WTD model shows better 
performance for shallow 
wells. 

Recommends exploring 
incorporation of 
remotely sensed data 
into groundwater 
models in data scarce 
regions using cloud 
computing tools like 
Google Earth Engine. 
Suggests using the 
uncertainty analysis 
framework for decision 
making where 
validation data is not 
available. 

This study demonstrates 
the potential for using 
remotely sensed data and 
cloud computing tools to 
model groundwater 
parameters. The 
uncertainty analysis 
provides a means to 
evaluate model utility 
even when validation 
data is scarce. Findings 
are promising for 
expanding groundwater 
modeling to data deficient 
regions. 

11 “Information content of 
soil hydrology in a west 
Amazon watershed as 
informed by GRACE” 
(E. C. Massoud et al., 
2022) 

To quantify the 
capability of GRACE 
terrestrial water storage 
(TWS) data to inform and 
constrain key soil 
hydrologic processes like 
soil moisture, plant 
available water, root 
depth, and groundwater 
recharge. 

Uses a reduced- 
complexity physically 
based hydrologic model 
calibrated using Bayesian 
inference against GRACE 
TWS data over the 
Amazon. Quantifies 
information gain on 
model parameters and 
water cycle components 
based on prior and 
posterior distributions. 

Data-constrained model 
captures basic hydrologic 
cycle physics and TWS 
variability over study 
period. 
Shows 2–85 % reduction 
in uncertainty across key 
process parameters. 
Accurately simulates 
impacts of major droughts 
on TWS. 

Results demonstrate 
potential of using 
GRACE data to identify 
and constrain uncertain 
parameters related to 
soil hydrology. 
Can lead to improved 
representation of 
terrestrial water 
dynamics in models. 

Leverages GRACE 
observations to reduce 
parametric uncertainties 
in hydrologic modeling. 
Well constrained models 
can better simulate water 
storage changes and 
inform water resource 
management. 

12 Groundwater Depletion 
Signals in the Beqaa Plain, 
Lebanon: Evidence from 
GRACE and Sentinel-1 
Data“ 
(Massoud et al., 2021) 

To quantify groundwater 
storage changes and 
depletion rates in the 
Beqaa Plain, Lebanon 
using multiple data 
sources. 

Combines GRACE TWS 
data with hydrologic 
components from GLDAS 
and reservoir data to 
estimate groundwater 
storage changes. 
Validates using Sentinel-1 
subsidence rates and 
ground measurements. 

Results show 
groundwater depletion 
rates ranging from − 1.10 
to + 0.08 cm/year across 
different districts. 
Sentinel-1 and wells 
confirm strong depletion 
signals in areas of heavy 
pumping. 

Recommends combining 
remote sensing and 
ground data for 
monitoring groundwater 
resources. 
Further integration of 
data sources can provide 
higher resolution 
depletion estimates. 

Study provides robust 
evidence of unsustainable 
groundwater usage in the 
Beqaa Plain from multiple 
data streams. Framework 
demonstrated has value 
for water management in 
data scarce regions. 

13 “Projecting Groundwater 
Storage Changes in 
California’s Central 
Valley” 
(Massoud et al., 2018) 

To develop an 
aggregated groundwater 
storage model for 
California’s Central 
Valley to estimate past 
and project future 
changes. 

Uses annual water 
supply/demand data and 
precipitation to build 
empirical relationships 
and water balance model 
Calibrates model against 
USGS and GRACE 
groundwater storage 
change estimates from 
1981 to 2014. 

Model matches historic 
groundwater depletion 
trends reasonably well 
(RMSE = 6.8 km3). 
Projects continued future 
groundwater declines 
without changes in water 
management. 

Model provides a useful 
tool for assessing 
impacts of climate 
variability and water 
management decisions 
on groundwater 
resources. 

Study demonstrates 
potential value of 
parsimonious models that 
integrate multiple data 
sources for providing 
insights on water resource 
systems. 

14 “Monitoring Groundwater 
Change in California’s 
Central Valley Using 
Sentinel-1 and GRACE 
Observations” 
(Liu et al., 2019) 

To use Sentinel-1 InSAR 
and GRACE data to 
analyze spatiotemporal 
groundwater variability 
and land subsidence in 

Processes Sentinel-1 
interferograms to 
generate high resolution 
ground deformation maps 
and time series. 
Combines GRACE TWS 

InSAR shows land 
subsidence up to ~ 25 
cm/year during recent 
drought, higher than 
previous drought. 
Strong correlation found 

Recommends 
integrating InSAR 
deformation mapping 
and GRACE water 
storage data for 
improved 

Study demonstrates how 
satellite datasets can 
provide complementary 
information to 
characterize groundwater 
system dynamics over a 

(continued on next page) 
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This combination of technologies can provide a more comprehensive 
picture of the subsurface and help to identify areas of groundwater po
tential. In addition to combining multiple technologies, it is also 
important to use data from multiple sources. For example, ground-based 
data can be used to validate remote sensing data. 

The integration of GRACE and InSAR technologies with data from in 
situ wells has garnered significant attention from researchers owing to 
its potential to enhance the understanding of subsurface processes. Liu 
et al. (2019) and Massoud et al. (2021) have specifically delved into the 
exploration of combining these technologies to enable comprehensive 
monitoring of groundwater levels and land surface deformation. This 
integrated approach provides valuable insights into hydrological pro
cesses and subsurface dynamics, ultimately contributing to improved 
accuracy of GWS exploration. By leveraging the strengths of multiple 

technologies and integrating data from various sources, it is feasible to 
identify areas of groundwater potential that would otherwise be chal
lenging to detect. Studies by Liu et al. (2019) and Massoud et al. (2021) 
underscore the significance of data fusion in achieving enhanced accu
racy and reliability in groundwater exploration, emphasising the pivotal 
role of integrated technologies in advancing our understanding of sub
surface dynamics. 

5.1. Spatial and temporal coverage 

Remote sensing provides extensive spatial and temporal coverage in 
various applications. For example, the GRACE satellite mission was used 
to estimate the mass trends over Antarctica (Jianli et al., 2006). The 
mission covers the entire continent and provides a comprehensive image 

Table 1 (continued ) 

SN Paper Title & Author Objective Methodology Key Findings Recommendation Comment 

California’s Central 
Valley. 

anomalies with 
hydrologic components to 
isolate groundwater 
signals. 

between GRACE 
groundwater depletion 
and InSAR subsidence 
trends. 

spatiotemporal 
groundwater 
monitoring. 

range of spatial and 
temporal scales. 

15 “Cascading Dynamics of 
the Hydrologic Cycle in 
California Explored 
through Observations and 
Model Simulations“ 
(Massoud et al., 2020) 

To explore the temporal 
co-evolution of 
components of 
California’s hydrologic 
cycle from 2002 to 2018 
using satellite, model, 
and observational data. 

Combines GRACE total 
water storage data with 
NLDAS outputs and 
reservoir storage records 
to analyze soil moisture, 
snowpack, reservoir 
levels, and groundwater. 

Majority of total water 
storage loss attributed to 
groundwater depletion, 
especially during 
droughts 
Snowpack and soil 
moisture impacted earlier 
and recover faster than 
surface and groundwater 
reserves 
Clear cascading effect 
occurs over 8–16 month 
period. 

Quantifying lag times 
and linkages between 
hydrologic components 
can improve drought 
characterization and 
water management. 
Further analysis of 
process 
interdependencies could 
provide additional 
insights. 

Leverages multiple data 
streams to demonstrate 
and quantify the 
cascading nature of 
California’s hydrologic 
cycle across wet periods 
and droughts.  

Table 2 
Comparison of various remote sensing techniques, strengths, weaknesses, and recommendations for the best application.  

Remote Sensing Technologies Strength Weaknesses Recommendation Reference 

Ground-based remote sensing: 
Ground-penetrating radar 

(GPR) 
GPR Images ground subsurface can be 
used to identify groundwater features, 
such as aquifers and fractures. 

It is limited by the depth of 
ground penetration. 

Use GPR to image the subsurface in areas where 
other remote sensing techniques are not effective. 

(Francisco et al., 
2021) 

Time domain reflectometry 
(TDR) 

TDR measure the electrical properties 
of the subsurface, which can be used to 
identify groundwater features. 

TDR can be affected by soil 
moisture and other factors. 

Use TDR to measure the electrical properties of 
the subsurface in areas where groundwater 
exploration is warranted. 

(Yaara et al., 
2007) 

Electrical resistivity imaging 
(ERI) 

ERI map the electrical resistivity of the 
subsurface, which can be used to 
identify groundwater features. 

Can be affected by soil 
moisture and other factors. 

Use ERI to map the electrical resistivity of the 
subsurface in areas where groundwater 
exploration is warranted. 

(Sebastian et al., 
2017) 

Airborne remote sensing: 
Airborne electromagnetic 

(AEM) methods 
Map the electrical conductivity of the 
subsurface, which can be used to 
identify groundwater features. 

Expensive to acquire and 
process. 

Use AEM methods to map the electrical 
conductivity of the subsurface in areas where 
groundwater exploration is warranted. 

(Kenneth & 
Russo, 2013) 

Light detection and ranging 
(LiDAR) 

LiDAR create detailed three- 
dimensional models of the landscape, 
which can be used to identify 
groundwater features. 

Expensive to acquire and 
process. 

Use LiDAR data to create detailed maps of the 
landscape, which can be used to identify 
groundwater features. 

(Maja & Jacek, 
2021) 

Satellite-based remote sensing: 
Multispectral and 

hyperspectral imaging 
Can be used to identify vegetation, 
soil, and rock types, all of which can be 
indicators of groundwater potential. 

Can be affected by 
atmospheric conditions, such 
as cloud cover and haze. 

Use multiple sensors to collect data in different 
spectral bands. 

(Peighambari & 
Zhang, 2021) 

Synthetic aperture radar (SAR) Can be used to detect changes in the 
Earth’s surface, which can be used to 
identify areas of groundwater storage 
and recharge. 

Can be affected by 
atmospheric conditions, such 
as cloud cover and haze. 

Use SAR data to identify areas of groundwater 
storage and recharge. 

(Jang et al., 
2011) 

Landsat and Moderate 
Resolution Imaging 
Spectroradiometer (MODIS) 

Can be used to identify vegetation, 
soil, and rock types, all of which can be 
indicators of groundwater potential. 

Can be affected by 
atmospheric conditions, such 
as cloud cover and haze. 

Use Landsat and MODIS data to identify 
vegetation, soil, and rock types, which can be 
used to identify groundwater potential. 

(Rehman at al., 
2022) 

Gravity-based groundwater measurement: 
Gravity Recovery and Climate 

Experiment (GRACE) 
It can be used to measure changes in 
groundwater storage over time. 

It can be affected by other 
factors, such as changes in 
precipitation and 
evaporation. 

Use GRACE data to identify areas where 
groundwater storage is changing, which can be 
used to identify areas where groundwater 
exploration may be warranted. 

(Rodell, 2013)  
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of surface mass trends, which allows for the exploration of prominent 
features such as regions of mass loss and accumulation. Moreover, sat
ellite remote sensing, including sensors onboard aircrafts and space- 
based platforms such as Landsat, offers large spatial and frequent tem
poral coverage (Belachew et al., 2016). These technologies provide 
valuable data for monitoring and managing various environmental 
phenomena including forest health (Marion et al., 2016), drought (West 
et al., 2019), and agricultural processes (Valentina et al., 2019). 

5.2. Data resolution and accuracy 

The resolution and accuracy of remote sensing data vary with data 
resolution and accuracy, thereby enabling a variety of applications. 
Resolution is a key factor influencing the accuracy of remote sensing 
data. Higher spatial resolution data provide more detailed information 
about Earth’s surface, allowing for better classification and analysis. For 
example, high-resolution remote sensing data classification methods 
based on spectrum sharing have been shown to improve the accuracy of 
data classification and image fusion (Duan & Duan, 2021). The 
improved resolution allows for better differentiation of features, 
increased texture, and prominent edges, which are critical for accurate 
classification. However, the classification accuracy of traditional pixel- 
based methods may be limited because of the large amount of data 
and inability to meet the requirements of high-resolution images (Guan 
et al., 2022). To overcome this limitation, many researchers have 
embraced machine learning and deep learning techniques, such as 
Convolutional Neural Networks (CNNs), which have shown powerful 
feature extraction and expression capabilities that do not rely on 
multidomain expert knowledge and can achieve high model accuracy 
(Cao et al., 2022). For example, the use of CNNs for multilevel cloud 
detection in high-resolution RS imagery improves accuracy (Chen et al., 
2018). 

In addition to data resolution, data accuracy is another important 
aspect of RS technology. Accurate classification and detection of fea
tures, such as clouds and wetlands, are critical for various applications, 
including resource surveying and groundwater monitoring (Guan et al., 
2022). However, achieving high accuracy in remote sensing data pro
cessing remains challenging, particularly when dealing with multilevel 
cloud detection using satellite imagery that contains only visible and 
near-infrared spectral bands (Chen et al., 2018). Nevertheless, ad
vancements in RS technologies, such as the use of multiple CNNs and 
attention mechanisms, have shown promise in improving the accuracy 
of scene data augmentation and feature extraction (Cao et al., 2022). 

5.3. Cost-Effectiveness 

The cost-effectiveness of RS technologies in groundwater studies is a 
topic of significant interest and debate in the scientific community. 
While it is true that RS missions such as GRACE involve substantial costs 
and long planning periods, it is essential to consider the broader context 
in which remote sensing technologies are deemed cost-effective. 

RS techniques, including satellite imagery and signals, offer distinct 
advantages over traditional ground-based methods (Tracey et al., 2018). 
Despite the substantial initial investment in satellite missions, the ability 
to collect data over large and often inaccessible areas provides a cost- 
effective solution for monitoring and evaluating various environ
mental phenomena (West et al., 2019). This is particularly valuable in 
regions where obtaining field measurements and allometric models is 
challenging owing to geographical remoteness, lack of capacity, data 
paucity, or armed conflicts, as noted by Rodriguez-Veiga et al. (2017) 
and West et al. (2019). 

It is important to acknowledge that the cost-effectiveness of remote 
sensing technologies should be evaluated in the context of their ability to 
provide comprehensive and continuous data collection over vast and 
often challenging terrains. While the initial investment in satellite mis
sions is substantial, its global applicability and long-term benefits of 

continuous data acquisition, especially in regions where ground-based 
observations are impractical, may pose a RS technology a cost-effective 
solution for acquiring essential data, particularly in the academic 
research community, as highlighted by (Rodriguez-Veiga et al., 2017). 

Therefore, the cost-effectiveness of remote sensing technologies in 
groundwater studies should be viewed from a holistic perspective, 
considering the long-term benefits of continuous data acquisition over 
large and inaccessible areas, global applicability, data access costs, and 
challenges associated with traditional ground-based methods. 

5.4. Integration with Ground-Based observations 

Integrating Remotely sensed data with ground-based observations 
improves data accuracy and reliability (Congalton, 1991). Ground-based 
observations provide valuable data that can help constrain and validate 
the estimations derived from remote sensing data (Janardhanan et al., 
2023). Eddy covariance measurements, physically based model simu
lations, meteorological forcings, and remote sensing datasets can 
improve evapotranspiration and ecosystem respiration estimations 
(Chen et al., 2021). 

Several studies have highlighted the importance of combining 
remote sensing data with ground-based observations to comprehen
sively investigate and account for the dynamics of groundwater storage 
in regional aquifer systems (Chen et al., 2021; Janardhanan et al., 2023; 
Marion et al., 2016). The integration of remote sensing with ground- 
based observations has several advantages. 

First, it provides a more comprehensive understanding of ground
water storage dynamics by combining data from different sources and at 
different scales (Hoff et al., 2019). RS provides a broad-scale view of the 
Earth’s surface, whereas ground-based observations offer detailed in
formation at specific locations, allowing us to obtain a more complete 
picture of groundwater storage changes and gain a better understanding 
of the underlying processes (McStraw et al., 2021). 

Second, the integration of RS and ground-based observations can 
help improve the accuracy and reliability of GWS estimation. RS data 
such as satellite imagery and radar measurements can provide spatially 
extensive coverage; however, they may need to be improved in terms of 
their resolution and accuracy (Wang et al., 2022). However, ground- 
based observations provide high-resolution data, which are often used 
to validate and calibrate RS estimations. This provides an opportunity to 
reduce the uncertainties and improve the overall accuracy of ground
water storage models when these two data sources are integrated. 
However, the integration of remote sensing and ground-based obser
vations has been limited. One limitation is the spatial and temporal 
mismatch between the two types of data. RS data are typically collected 
at regular intervals and cover large areas, whereas ground-based ob
servations are often limited to specific locations and may have irregular 
sampling intervals (Wang et al., 2022). This mismatch can make it 
challenging to integrate the data and derive consistent estimations of 
GWS changes. 

Another limitation is the need for careful calibration and validation 
of the remote sensing data using ground-based observations. Remote 
sensing data may require correction and calibration to account for at
mospheric effects, sensor characteristics, and other sources of errors. 
Ground-based observations can provide reference data for this calibra
tion process; however, they require careful analysis and validation to 
ensure the accuracy and reliability of integrated data (Nansen et al., 
2023b). 

Hence, integrating remote sensing and ground-based observations is 
essential for modelling groundwater storage dynamics. This allows for a 
more comprehensive understanding of groundwater systems and im
proves the accuracy and reliability of estimations. Despite the challenges 
associated with integration, future research should focus on addressing 
these challenges and developing robust methods for integrating remote 
sensing and ground-based observations to improve our understanding of 
groundwater resources. 
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5.5. Limitations and uncertainties 

One of the main limitations of satellite-based remote sensing tech
nologies like GRACE in groundwater monitoring and modelling is their 
relatively coarse spatial resolution, which hampers their accuracy in 
smaller study areas (Yilmaz & Murat, 2016). However, InSAR has 
emerged as a valuable complementary technology in this regard, offer
ing very high spatial resolution ground displacement information that 
can be used to infer localised changes in groundwater storage (Massoud 
et al., 2021). By integrating InSAR-derived ground motion data with 
large-scale GRACE measurements, recent studies have achieved 
improved characterisation of groundwater dynamics, even in regions 
smaller than the native resolution of GRACE (Massoud et al., 2021). 

Another challenge, although not exclusive to groundwater storage 
studies, is the estimation of deep subsurface moisture dynamics using 
spaceborne methods limited to surface observations. However, recent 
advances in parsimonious hydrological modelling using GRACE have 
shown promise in constraining root zone moisture and vegetation water 
availability in deeper soil layers in the vadose zone (Massoud et al., 
2022a). Such data assimilation techniques can help to extend the reach 
of remote sensing to deeper vadose zone moisture monitoring. More
over, ground-based geophysical techniques, such as electrical resistivity 
tomography (ERT), can directly image deeper vadose zone moisture 
distributions through field surveys (Acharya et al., 2017). 

There are also inherent uncertainties associated with remote sensing 
retrievals and their integration into hydrological models. Key sources 
include measurement calibration limitations, fusion of multi-source 
datasets, and structural deficiencies in the models themselves (Dab
boor & Brisco, 2019; Ruggieri et al., 2021). However, recent studies 
have formulated rigorous uncertainty analysis frameworks to quantify 
errors from individual sources and propogate them through modelling 
sequences (Massoud et al., 2020). Such efforts towards transparent 
quantification and reporting of uncertainties can significantly improve 
the reliability of RS products in hydrological studies. 

It is noteworthy that advances in multimodal data fusion and un
certainty analysis are helping address some of the key limitations of 
remote sensing for groundwater applications. However, meticulous pre- 
processing, validation against in situ data, and interpretation by domain 
experts remain vital for generating actionable information (John et al., 
2016). The unique strengths and weaknesses of different RS technolo
gies (Table 2) highlight the need for a tailored, fit-for-purpose approach 
in applying them for GWS monitoring and modelling. 

6. Factors influencing groundwater storage dynamic models 

In this section, the factors influencing the GWS dynamics are dis
cussed. Climatic variations, geology, anthropogenic activities, water 
allocation, and land use are the main factors influencing groundwater 
storage (Asoka & Mishra, 2020; Jin et al., 2021; Kevin et al., 2019; 
Lähivaara et al., 2019; Massoud et al., 2018; Thomas & Famiglietti, 
2019). 

6.1. Climate change 

Climate changes, such as precipitation and temperature variations, 
significantly impact groundwater storage dynamics (Famiglietti, 2014; 
Famiglietti et al., 2011b). Climate-driven alterations in recharge pat
terns and evapotranspiration rates lead to fluctuations in groundwater 
storage levels and overall aquifer response to external factors. For 
example, groundwater storage levels are typically high in areas with 
high rainfall and typically low in areas with low rainfall. Asoka et al. 
(2017) observed that climate variability directly affects groundwater 
through changes in recharge and abstraction during droughts. Changes 
in surface water storage, such as lakes and reservoirs, and soil moisture 
also affect terrestrial water storage, including groundwater (Zhang et al., 
2023a). Akarsh and Vimal (2020) studied the influence of climate 

change and agricultural expansion on groundwater storage in the Amur 
River Basin, and found that changes in climate and land use have sig
nificant impacts on groundwater storage. 

6.2. Geology and lithology 

Aquifer geology can also significantly impact groundwater storage. 
The rock type, porosity, and permeability of an aquifer affect the amount 
of water that can be stored and the ease of movement through the 
aquifer(José et al., 2013). For example, sandstone aquifers are typically 
more permeable than limestone aquifers; therefore, they can store and 
transmit more water (Yin et al., 2021). Understanding geology is 
essential for accurately estimating groundwater storage changes using 
remote sensing techniques such as GRACE-based. However, the inter
pretation of GRACE-based estimates of groundwater depletion is specific 
to the geological characteristics of the study area. This is because the 
geological heterogeneity of aquifers can affect the hydraulic connection 
between groundwater and streams, leading to discrepancies between 
recession-based approaches and GRACE-derived groundwater estimates 
(Frédéric and Guillaume, 2018; Sun et al., 2020). 

Similarly, the lithology of an area influences the groundwater 
recharge and discharge (Frappart & Ramillien, 2018). This is a key 
factor in GRACE-based groundwater storage estimates (Wang et al., 
2023). For example, permeable rocks, such as sand and gravel, are more 
likely to store groundwater than impermeable rocks, such as shale. 
Vegetation can also influence the groundwater storage by increasing 
infiltration and reducing evaporation. In addition to lithology, land 
cover, and structure, other geological features such as lineaments and 
drainage patterns can also influence groundwater storage. Lineaments 
are linear subsurface features caused by faults, fractures, or other 
geological processes (Sander, 2007). 

Overall, geology and lithology influence groundwater storage mea
surements. For example, gravity-based measurements affect the local 
mass distribution and the resulting variations in the gravitational force, 
which are detected by GRACE satellites. By analysing GRACE data in 
conjunction with geological information, researchers can gain valuable 
insights into groundwater dynamics and their relationship with geologic 
settings, providing essential information for water resource manage
ment and geological studies. 

6.3. Aquifer properties and structure 

The physical characteristics of aquifers play a significant role in the 
groundwater storage dynamics. Porosity, hydraulic conductivity, and 
storage coefficient directly influence the rate of groundwater flow and 
the amount of water that the aquifer can store (Bonì et al., 2016); 
(McMahon & Peterson, 1992). These properties are fundamental in 
determining the response of an aquifer to external stresses and changes 
in groundwater levels. Hydraulic properties are used to estimate the 
transmissivity and storage coefficient of an aquifer and are parameters 
that describe how easily water can flow through and be stored in an 
aquifer. These parameters were used to improve the accuracy of GRACE- 
based groundwater storage estimates by accounting for the spatial dis
tribution of groundwater storage within an aquifer. Hydrogeological 
information was used to develop a model of groundwater flow in an 
aquifer in the Nubian Sandstone of African Sahara (Egypt, northern 
Sudan, and eastern Libya), which was then used to interpret GRACE data 
(Gossel et al., 2004). 

However, the aquifer structure significantly influences groundwater 
flow and storage (Pinder and Celia, 2006). An aquifer with a 
well-developed network of fractures is more permeable than an aquifer 
with more uniform aquifer structures that act as preferential flow paths 
or barriers, thereby affecting the overall storage behaviour (Renard & 
Allard, 2013). 
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6.4. Topography 

The topography of the land surface strongly influences groundwater 
flow paths and storage patterns. Groundwater tends to flow from areas 
of higher elevation to lower elevations following the hydraulic gradient. 
Topographic data, often derived from digital elevation models (DEMs) 
obtained through remote sensing techniques, are critical inputs for dy
namic groundwater storage models. 

6.5. Land Use, land cover (LULC) and groundwater pumping 

Human anthropogenic activities, such as urbanisation, agriculture, 
and deforestation, can alter groundwater storage dynamics (Scanlon 
et al., 2005). Changes in land use and land cover can affect the amount 
and rate of recharge, as well as the availability of natural discharge 
areas, thereby impacting groundwater storage patterns. Excessive 
groundwater abstraction through pumping can lead to a decline in the 
groundwater level and reduced storage capacity (Groundwater, 2021) 
the pumping rate and sustainable yield of an aquifer are critical con
siderations for understanding the dynamics of groundwater storage 
(Massoud et al., 2018). 

6.6. Recharge and discharge rates 

Groundwater recharge and discharge rates are key factors shaping 
the dynamics of groundwater storage. Recharge processes, such as 
rainfall infiltration and surface water seepage, replenish aquifers 
(Sophocleous, 2002). Discharges include groundwater pumping and 
natural outflow to rivers and lakes (Wang and Du, 2016). Understanding 
these processes is vital for accurate modelling of groundwater storage 
variations (Massoud et al., 2018). 

The groundwater recharge and discharge can be estimated using 
various methods and models. One common approach is to use a soil–
water model, such as the Soil Conservation Service (SCS) model or Soil 
and Water Assessment Tool (SWAT) model. These models use a variety 
of factors such as rainfall, soil type, and vegetation to estimate the 
amount of water that infiltrates the ground (Mohsenifard et al., 2023). 
SCS method, also known as the Curve Number (CN) method, is a 
commonly used empirical approach for estimating the surface runoff 
that indirectly contributes to groundwater recharge. Although the SCS 
method primarily focuses on surface runoff estimation, it can be used to 
infer groundwater recharge and discharge patterns to some extent (Karki 
et al., 2021). However, it is less comprehensive than hydrological 
models such as SWAT in explicitly estimating groundwater processes. 
SWAT considers land use changes, soil properties, and other factors to 
estimate the recharge content. 

Researchers have demonstrated several methods that successfully 
estimate groundwater recharge and discharge (Liao et al., 2023; 
Mohammed et al., 2022; Nansen et al., 2023a; Nolte et al., 2021; Zhu 
et al., 2021) for example, the WetSpass (Water and Energy Transfer 
between Soil, Plants, and Atmosphere under Steady-State Conditions) 
model which considers factors such as soil texture, land use, slope, and 
meteorological variables to estimate groundwater recharge accurately 
(Albadry & Shamkhi, 2021). These models integrate surface runoff 
models with soil moisture and evaporation models to obtain sequential 
estimates of direct groundwater recharge from meteorological data 
(Mohammed et al., 2022). 

Overall, the estimation of groundwater recharge and discharge in
volves the use of models such as SWAT and WetSpass as well as water 
balance models and tracer techniques. These models consider factors 
such as land use, soil properties, meteorological data, and groundwater- 
surface water interactions to provide estimates of groundwater recharge 
and discharge. However, further research is needed to improve the ac
curacy and reliability of these estimations, and to establish a consensus 
on the most effective methods for estimating groundwater recharge and 
discharge. 

6.7. Groundwater-Surface water interactions 

Interactions between groundwater and surface water bodies such as 
rivers and lakes influence both groundwater levels and surface water 
flow patterns (Chavoshi & Danesh-Yazdi, 2022; Massoud et al., 2022a). 
These interactions are essential for determining the overall water bal
ance and storage dynamics of aquifer systems. Mackay et al. (2014) 
highlighted the importance of understanding groundwater travel time 
distributions, which provided insights into the subsurface mixing 
behaviour and hydrological response of a groundwater system. Existing 
large-scale models often exclude or oversimplify GWS dynamics and 
their contribution to surface water availability (Condon et al., 2020). 
Therefore, it is important for future studies to consider these interactions 
to improve modelling accuracy. 

7. Future directions and challenges 

7.1. Improved data fusion and integration 

One of the most important directions for future groundwater model
ling is the development of improved data fusion and integration tech
niques. A number of studies stressed the need for data fusion (Dube et al., 
2023; Hosseini & Kerachian, 2019; Langevin & Panday, 2012; Massoud 
et al., 2018; Rehman et al., 2022; Porter et al., 2000; Zhang et al., 2023c). 
This is because groundwater systems are complex and involve a wide 
range of interacting processes that can be difficult to represent using a 
single remote-sensing data source. By fusing data from multiple sources, it 
is possible to improve the accuracy and reliability of groundwater storage 
modelling (Sutanudjaja et al., 2014). Su et al. (2022) proposed a 
groundwater-weighted fusion model (GWFM) based on an Extended 
Triple Collocation (ETC) method to increase the precision of groundwater 
storage estimates. The GWFM was evaluated using in-situ groundwater 
level measurements, and the outcomes demonstrated significant im
provements in the correlation coefficient (CC) and Nash-Sutcliffe effi
ciency coefficient (NSE) compared to the original outcomes. 

Several different data fusion and integration techniques can be used 
for groundwater modelling. A common approach is to use multivariate 
statistical analysis to combine the data from different sources. This in
volves identifying the relationships between different datasets, and then 
using these relationships to combine the data into a single, more 
comprehensive dataset. 

Another approach to data fusion involves the use of data assimilation 
techniques (Xiao et al., 2021). Data assimilation involves iteratively 
updating a groundwater model using new data. This can be achieved 
using a Kalman filter or particle filter to assimilate groundwater table 
depth measurements into a hydrological model using the Localized 
Ensemble Kalman Filter (LEnKF). The assimilation of groundwater data 
improves the performance of hydrological models and reduces errors in 
simulating groundwater dynamics (Li et al., 2023b). 

Assimilating GRACE data has been found to mitigates model de
ficiencies in groundwater simulations and leads to major improvements 
in storage estimations (Tian et al., 2017). However, the assimilation of 
TWS does not guarantee an accurate estimation of surface soil moisture 
and vice versa (Tian et al., 2017). Additionally, the benefits of GRACE 
data assimilation may vary depending on the region and the specific 
characteristics of the groundwater system (Girotto et al., 2017; Li et al., 
2019). 

7.2. Advancements in Machine learning algorithms 

In recent years, machine learning (ML) algorithms have increasingly 
been used in groundwater studies. ML algorithms analyse large amounts 
of data, identify patterns, and make predictions based on the relation
ships between different variables (Ed-Daoudi et al., 2023). Integrating 
ML algorithms with remote sensing data promises enhanced accuracy 
and efficiency of groundwater modelling (Haggerty et al., 2023). ML 
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algorithms are now used to extract information from remote sensing 
data, such as land surface temperature, vegetation index, and rainfall, to 
improve our understanding of groundwater storage dynamics (Ahmadi 
et al., 2022). For example, Ed-Daoudi (2023) investigated the potential 
of ML algorithms in improving crop yield predictions in Morocco (Ed- 
Daoudi et al., 2023). This study compared the performance of different 
ML algorithms, including Decision Trees, Random Forests, and Neural 
Networks, with that of traditional statistical models. The results 
demonstrated that ML algorithms outperformed statistical models in 
predicting crop yields (Ed-Daoudi et al., 2023). Similarly, Vito (2018) 
highlighted the use of multivariate ML analysis techniques for flood risk 
prevention (Vito, 2018). 

One of the most promising advances in ML algorithms for ground
water studies is the use of deep learning. Deep learning algorithms can 
learn the complex relationships between the input and output variables, 
which can be used to improve the accuracy of groundwater models. For 
example, Sahoo et al. (2017) used a deep learning algorithm to predict 
groundwater level changes in agricultural regions in the United States. 
The study found that the deep learning algorithm could predict 
groundwater levels with high accuracy, even in areas with limited data, 
whereas another promising advance in ML algorithms for groundwater 
studies is the use of ensemble methods. Ensemble methods combine the 
predictions of multiple ML algorithms to improve the overall accuracy of 
the predictions (Martínez-Santos & Renard, 2019). 

These studies indicate the potential of ML algorithms as a promising 
approach for improving the accuracy of future groundwater modelling 
and analysis. 

7.3. Enhanced spatial and temporal resolution 

Satellite gravimetry data from the GRACE mission provide invalu
able large-scale terrestrial water storage anomaly information, including 
groundwater storage changes. However, its coarse spatial resolution 
(~150,000 sq km) limits its utility for localised groundwater monitoring 
(Hilbich et al., 2022; Mohammed et al., 2022). 

On the other hand, satellite radar interferometry (InSAR) can map 
centimeter-scale ground surface displacements induced by subsurface 
water loss and recharge (Massoud et al., 2021). Though InSAR has 
limited penetration depth, by correlating measured subsidence rates to 
the governing hydrogeology, it can serve as a valuable proxy for highly 
localized groundwater storage variations (Massoud et al., 2021; Wang 
et al., 2023). 

Thus, integrating InSAR and GRACE through data fusion and 
downscaling techniques can overcome the limitations of both tech
niques (Agarwal et al., 2020; Liu et al., 2019; Massoud et al., 2022a; 
Massoud et al., 2021). The fusion enhances GRACE’s coarse resolution of 
GRACE by incorporating high-resolution subsurface information from 
InSAR. This produces downscaled GRACE GWS anomaly estimates at 
finer resolutions, which are more suitable for basin/aquifer-scale ana
lyses (Massoud et al., 2021). 

However, differences in measurement depth, spatial coverage, and 
the choice of suitable data integration approaches present additional 
research challenges. Therefore, further work is needed to develop robust 
frameworks and standardised methods for fusing multisensor data to 
fully harness the synergies between InSAR and GRACE (Elubid et al., 
2020). There is also a need for more in situ validation experiments to 
evaluate the accuracy of the downscaled GRACE products and their 
applicability across hydrogeological regimes (Chen et al., 2016). 
Addressing these research gaps would help cement the viability of joint 
InSAR-GRACE analysis for operational groundwater monitoring and 
modelling applications. 

7.4. Standardization of remote Sensing-Based groundwater monitoring 

The use of remote sensing to monitor groundwater storage has grown 
in recent years because of the availability of high-resolution satellite 

data, and the development of new remote sensing techniques and data, 
such as GRACE and GRACE-FO, has made it possible to map and monitor 
groundwater at a regional scale. However, to harness the full potential of 
remote sensing as a routine tool for groundwater monitoring, stand
ardisation of remote sensing methods is needed. Currently, there is no 
universally accepted method of using remote sensing to monitor 
groundwater storage. This makes it difficult to compare the results from 
different studies and to interpret the results from a single study. 

Several factors must be considered when standardising RS methods 
for groundwater monitoring. These include the type of remote sensing 
data used, the processing methods applied, and how the results are 
interpreted. The following two methods have been proposed to address 
this challenge.  

i. Developing a set of guidelines that could include recommendations 
based on these factors, among others, to use remote sensing to 
monitor groundwater storage.  

ii. Develop a set of standard data products. These data products are 
produced using a consistent set of methods, and are available to re
searchers and practitioners. 

The development of standardisation guidelines and data products 
would help improve the quality and comparability of remote sensing- 
based groundwater storage monitoring. This would make it possible to 
use remote sensing as a routine tool for groundwater monitoring, and it 
would also help improve our understanding of groundwater storage 
dynamics. 

8. Recommendations 

This study explored diverse RS tools for assessments of GWS qanti
fications. From these studies, it was found that remote sensing tech
nologies are increasingly advanced and have been applied extensively in 
groundwater storage studies, further identifying data scarcity, the need 
for robust modelling, and remote sensing data fusion as key challenges 
faced by many researchers (Ahamed et al., 2022; Akhter et al., 2021; 
Mohamed et al., 2022). 

Leveraging cloud platforms such as Google Earth Engine (GEE) and 
Planetary Computer from Microsoft can significantly enhance research 
capabilities (Magnoni et al., 2020). GEE, a cloud-based platform for 
planetary-scale geospatial analysis, harnesses Google’s massive 
computational capabilities for extensive data processing and analyses. 
Similarly, the Planetary Computer, a Microsoft initiative, offers a cloud- 
based approach for handling large-scale environmental data. 

Future research should explore the potential of these cloud 
computing platforms to address challenges identified in groundwater 
studies, such as data scarcity, robust modelling, and remote sensing data 
fusion. Researchers should consider integrating these cloud platforms to 
improve groundwater storage modelling accuracy by developing inno
vative methods for data integration and enhancing the precision of field 
data collection. This approach aligns with the evolving landscape of 
remote sensing technologies, ensuring accurate and reliable assessments 
in groundwater storage studies. 

9. Summary and conclusion 

This review thoroughly examines various RS technologies that model 
the groundwater storage dynamics. These technologies include satellite- 
based measurements like GRACE the Gravity Recovery and Climate 
Experiment (GRACE), Interferometric Synthetic Aperture Radar 
(InSAR), other geophysical methods, and land-based observations. The 
strength of remote sensing technologies lies in their ability to provide 
large-scale and continuous monitoring of groundwater storage changes, 
thereby offering insights into regional trends. However, limitations, 
such as spatial resolution and susceptibility to errors due to land cover 
changes and atmospheric conditions, must be considered. This review 
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delved into the methodologies employed for groundwater storage 
modelling using remote sensing data. These methodologies include nu
merical models, data-assimilation techniques, statistical and machine 
learning approaches. Various factors influencing groundwater storage 
dynamics, such as climate variability, land use changes, recharge and 
discharge rates, lithology, and geological and hydrogeological proper
ties, have been explored in relation to modelling accuracy. 

This review was synthesised from several case studies showing the 
application of remote sensing technologies in groundwater storage 
modelling. These cases demonstrate valuable insights gained in diverse 
hydrogeological settings, aiding in understanding regional variations in 
groundwater storage and the appropriate remote sensing tools used to 
achieve these goals. The review emphasised the potential of integrating 
remote sensing data with other sources, such as hydrological models, 
well measurements, and geological data. This integrated approach can 
enhance the accuracy and reliability of groundwater storage modelling, 
contributing to a more comprehensive understanding of groundwater 
dynamics. Future directions in this field were identified, including the 
need for improved data fusion techniques to effectively combine mul
tiple data sources. Enhanced spatial and temporal resolution of remote 
sensing data is critical for capturing finer-scale groundwater storage 
changes. Standardised monitoring protocols and data-sharing mecha
nisms are necessary for consistent and comparable assessment. By 
integrating remote sensing data with other information, there is a sig
nificant potential to advance the management of groundwater re
sources. This integration can aid policymakers and decision makers in 
making informed choices regarding sustainable groundwater manage
ment strategies. This review highlights specific research directions and 
recommendations. These suggestions were aimed at researchers, poli
cymakers, and decision-makers and provided guidance for further in
vestigations in sustainable groundwater management. The ultimate goal 
is to preserve and effectively utilise groundwater resources. This review 
provides a comprehensive overview of the role of remote sensing tech
nologies in groundwater storage dynamics, addressing the strengths, 
limitations, methodologies, case studies, integration prospects, chal
lenges, and future directions in the field. 
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Koussoubé, Y., 2014. Effectiveness of high-resolution SAR for water resource 
management in low-income semi-arid countries. Int. J. Remote Sens. 35 (1), 70–88. 
https://doi.org/10.1080/01431161.2013.862605. 

Asoka, A., Gleeson, T., Wada, Y., Mishra, V., 2017. Relative contribution of monsoon 
precipitation and pumping to changes in groundwater storage in India. Nat. Geosci. 
10 (2), 109–117. 

Asoka, A., Mishra, V., 2020. Anthropogenic and climate contributions on the changes in 
terrestrial water storage in India. J. Geophys. Res. Atmos. 125 (10) https://doi.org/ 
10.1029/2020jd032470. 

Atazadeh, E., Mahdavifard, M.H., 2021. Application of Remote Sensing in Natural 
Sciences. https://doi.org/10.5772/intechopen.94468. 

Auken, E., Christiansen, A.V., 2004. Layered and laterally constrained 2D inversion of 
resistivity data. Geophysics 69 (3), 752–761. https://doi.org/10.1190/1.1759461. 

Awasthi, S., Jain, K., Bhattacharjee, S., Gupta, V., Varade, D., Singh, H., Narayan, A.B., 
Budillon, A., 2022. Analyzing urbanization induced groundwater stress and land 
deformation using time-series Sentinel-1 datasets applying PSInSAR approach. Sci. 
Total Environ. 844, 157103 https://doi.org/10.1016/j.scitotenv.2022.157103. 

Azimi, S., Dariane, A.B., Modanesi, S., Bauer-Marschallinger, B., Bindlish, R., 
Wagner, W., Massari, C., 2020. Assimilation of Sentinel 1 and SMAP–based satellite 
soil moisture retrievals into SWAT hydrological model: the impact of satellite revisit 
time and product spatial resolution on flood simulations in small basins. J. Hydrol. 
581, 124367. 

A. Ibrahim et al.                                                                                                                                                                                                                                

https://doi.org/10.1038/s41598-017-01662-y
https://doi.org/10.1038/s41598-017-01662-y
https://doi.org/10.1029/2022wr032219
https://doi.org/10.3390/app10238599
https://doi.org/10.3390/app10238599
https://doi.org/10.1016/j.scitotenv.2021.150635
https://doi.org/10.1016/j.scitotenv.2021.150635
https://doi.org/10.1016/j.agwat.2020.106648
http://refhub.elsevier.com/S2589-9155(24)00005-1/h0035
http://refhub.elsevier.com/S2589-9155(24)00005-1/h0035
http://refhub.elsevier.com/S2589-9155(24)00005-1/h0035
https://doi.org/10.1038/ngeo2869
https://doi.org/10.1029/2020jd032470
https://doi.org/10.1029/2020jd032470
https://doi.org/10.3390/su13179686
http://refhub.elsevier.com/S2589-9155(24)00005-1/h0060
http://refhub.elsevier.com/S2589-9155(24)00005-1/h0060
http://refhub.elsevier.com/S2589-9155(24)00005-1/h0060
https://doi.org/10.31185/ejuow.vol9.iss2.228
https://doi.org/10.1007/s10708-020-10160-0
https://doi.org/10.1111/gwat.12870
https://doi.org/10.3390/w15020282
https://doi.org/10.1016/j.jhydrol.2023.129416
https://doi.org/10.1080/01431161.2013.862605
http://refhub.elsevier.com/S2589-9155(24)00005-1/h0095
http://refhub.elsevier.com/S2589-9155(24)00005-1/h0095
http://refhub.elsevier.com/S2589-9155(24)00005-1/h0095
https://doi.org/10.1029/2020jd032470
https://doi.org/10.1029/2020jd032470
https://doi.org/10.5772/intechopen.94468
https://doi.org/10.1190/1.1759461
https://doi.org/10.1016/j.scitotenv.2022.157103
http://refhub.elsevier.com/S2589-9155(24)00005-1/h0120
http://refhub.elsevier.com/S2589-9155(24)00005-1/h0120
http://refhub.elsevier.com/S2589-9155(24)00005-1/h0120
http://refhub.elsevier.com/S2589-9155(24)00005-1/h0120
http://refhub.elsevier.com/S2589-9155(24)00005-1/h0120


Journal of Hydrology X 23 (2024) 100175

19

Bailing, L., Matthew, R., Sujay, V. K., Hiroko Kato, B., Augusto, G., Benjamin, F. Z., 
Goncalves, L. G. G. d., Camila, C., Soumendra, N. B., Abhijit, M., Siyuan, T., 
Natthachet, T., Di, L., Jamiat, N., Je-Jung, L., Frederick, P., Ibrahim Baba, G., Djoret, 
D., Mohammed, B., ... Srinivas, B. (2019). Global GRACE Data Assimilation for 
Groundwater and Drought Monitoring: Advances and Challenges. Water Resources 
Research, 55(9), 7564-7586. https://doi.org/10.1029/2018wr024618. 

Belachew, G., Svein, S., Erik, N., Terje, G., Johannes, B., Eliakimu, Z., Ernest William, M., 
2016. Mapping and Estimating the Total Living Biomass and Carbon in Low-Biomass 
Woodlands Using Landsat 8 CDR Data. Carbon Balance Manag. 11 (1), 13. https:// 
doi.org/10.1186/s13021-016-0055-8. 

Bennett, G., 2024. Analysis of methods used to validate remote sensing and GIS-based 
groundwater potential maps in the last two decades: A review [Review]. Geosyst. 
Geoenviron. 3(1), Article 100245. https://doi.org/10.1016/j.geogeo.2023.100245. 

Bhakar, P., Singh, A.P., Mittal, R.K., 2021. Assessment of groundwater suitability using 
remote sensing and GIS: a case study of Western Rajasthan. India. Arabian Journal of 
Geosciences 15 (1), 1–18. https://doi.org/10.1007/s12517-021-09272-9. 

Bongkoch, C., Soydoa, V., Komsilp, W., 2022. Evaluation of the Proper Electrode Spacing 
For ERI Surveys in Open Dumpsites Using Forward Modeling. Pol. J. Environ. Stud. 
32 (1), 535–545. https://doi.org/10.15244/pjoes/155969. 

Bonì, R., Cigna, F., Bricker, S., Meisina, C., McCormack, H., 2016. Characterisation of 
Hydraulic Head Changes and Aquifer Properties in the London Basin Using Persistent 
Scatterer Interferometry Ground Motion Data. J. Hydrol. 540, 835–849. https://doi. 
org/10.1016/j.jhydrol.2016.06.068. 

Cao, Y., Sui, B., Zhang, W., 2022. REL-SAGAN: Relative Generation Adversarial Network 
Integrated With Attention Mechanism for Scene Data Augmentation of Remote 
Sensing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 15, 3107–3119. https://doi. 
org/10.1109/jstars.2022.3166927. 

Chakravortty, S., & Subramaniam, P. (2014). Fusion of Hyperspectral and Multispectral 
Image Data for Enhancement o f Spectral and Spatial Resolution. The International 
Archives of the Photogrammetry, Remote Sensing and S patial Information Sciences, XL-8, 
1099-1103. https://doi.org/10.5194/isprsarchives-xl-8-1099-2014. 

Chavoshi, A., Danesh-Yazdi, M., 2022. Quantifying the uncertainty of lake-groundwater 
interaction using the forward uncertainty propagation framework: The case of Lake 
Urmia. J. Hydrol. 610 (January), 127878. https://doi.org/10.1016/j. 
jhydrol.2022.127878. 

Chen, J., Famigliett, J.S., Scanlon, B.R., Rodell, M., 2016. Groundwater Storage Changes: 
Present Status from GRACE Observations. Surv. Geophys. 37 (2), 397–417. https:// 
doi.org/10.1007/s10712-015-9332-4. 

Chen, Y., Fan, R., Bilal, M., Yang, X., Wang, J., Li, W., 2018. Multilevel Cloud Detection 
for High-Resolution Remote Sensing Imagery Using Multiple Convolutional Neural 
Networks. ISPRS Int. J. Geo Inf. 7 (5) https://doi.org/10.3390/ijgi7050181. 

Chen, Z., Zheng, W., Yin, W., Li, X., Zhang, G., Zhang, J., 2021. Improving the spatial 
resolution of grace-derived terrestrial water storage changes in small areas using the 
machine learning spatial downscaling method. Remote Sens. (Basel) 13 (23). 
https://doi.org/10.3390/rs13234760. 

Chi, G., Su, X., Lyu, H., Li, H., Xu, G., Zhang, Y., 2022. Prediction and evaluation of 
groundwater level changes in an over-exploited area of the Baiyangdian Lake Basin, 
China under the combined influence of climate change and ecological water 
recharge. Environ. Res. 212 (Pt A), 113104 https://doi.org/10.1016/j. 
envres.2022.113104. 

Christian, B., Chris, S., Doerthe, T., 2015. Conceptual Modelling to Assess How the 
Interplay of Hydrological Connectivity, Catchment Storage and Tracer Dynamics 
Controls Nonstationary Water Age Estimates. Hydrol. Process. 29 (13), 2956–2969. 
https://doi.org/10.1002/hyp.10414. 

Condon, L.E., Atchley, A.L., Maxwell, R.M., 2020. Evapotranspiration Depletes 
Groundwater Under Warming Over the Contiguous United States. Nat. Commun. 11 
(1), 873. https://doi.org/10.1038/s41467-020-14688-0. 

Congalton, R.G., 1991. A review of assessing the accuracy of classifications of remotely 
sensed data. Remote Sens. Environ. 37, 35–46. 

Cornero, C., Pereira, A., Matos, A.C.O.C., Pacino, M.C., Blitzkow, D., 2021. Monitoring 
water storage changes in middle and low paraná river basin using GRACE, GRACE 
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