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Abstract

Combined Energy and Attitude Control System (CEACS) reduces the size and mass budgets of typical satellites and consequently,
increases their payload capacity. CEACS uses flywheels for a dual purpose, i.e., as both energy storage and attitude control device. This
maiden work attempts to introduce a novel Deep-Learning capability of the fuzzy-Model Predictive Control (FMPC) controller for
CEACS. The design approach for the fuzzy-MPC controller uses the Takagi-Sugeno (T-S) fuzzy model of satellite attitudes and com-
putes the control torque through a parallel distribution compensation (PDC) approach. However, the MPC controller offers a high com-
putational burden, and it becomes a significant problem for smaller satellites having limited computational power. Therefore, in this
research work, a novel Deep-Learning-based fuzzy-MPC controller (D-FMPC) is designed for the CEACS attitude regulation subject
to higher initial angles, actuator constraints, parametric uncertainties, and external disturbance torques. Here, the deep-layer neural net-
work is trained offline with the MPC controller data to replicate the FMPC controller, thus ensuring its controllability. Numerical results
validate that the D-FMPC controller successfully mimics the FMPC controller and produces the desired pointing accuracy effectively
with smooth transient response and without violating the attitude control actuator constraints. The results also validate that the D-
FMPC controller offers significantly reduced computational burden than the FMPC controller. Therefore, the novel Deep-Learning
solution provides a feasible platform for applying more complicated and sophisticated attitude control techniques for the CEACS atti-
tude regulation in small satellites as an example.
� 2024 COSPAR. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The use of small satellites for deep space missions has
increased due to the number of advantages such as lower
development and deployment cost, shorter development
time, and better feasibility than conventional satellites to
perform specific operations, i.e., in-situ measurement,
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List of symbols

Xc Angular speed issued by attitude controller
Xw Actual angular speed
Kw Proportional speed controller
km Motor torque constant
Tw Flywheel torque
Iw Flywheel inertia
sw Flywheel time constant
T c Commanded torque produced by the controller
Xv Commanded angular speed to the flywheel
XE Angular speed governed by the energy control

part
z1; z2 fuzzy variables
xðtÞ State vector
uðtÞ Input vector
Ai System matrix for ith T–S fuzzy rule
Bi Input matrix for ith T–S fuzzy rule
yðtÞ Output vector
Ci Output matrix
q Input to the NN
W m Weight of layer m
rm Activation function of hidden layer m
d A vector containing all biases and vectors
s Laplace variable
Tw sð Þ Flywheel torque in Laplace form
x tð Þ Continuous time state vector
_x Derivative of state vector
Fb Fixed body frame
/ Roll angle
w Yaw angle
N Negative Membership function
/d ; hd ;wd Desired attitude angles
Np Prediction horizon
R
�

Cost matrix
DuðkÞ Rate of change of control variable
R Correlation coefficient
aiðtÞ Normalized weight for the ith fuzzy rule
Mijðzj tð ÞÞ Membership degree of fuzzy variable

/; h;w Roll, Pitch and Yaw angles
xx;xy ;xz Angular velocities
Ix, Iy ; Iz Principal moments of inertia
Twx; T wy ; T wz Control torques about each axis of the

satellite
T dx; T dy ; T dz Disturbance torques along each axis
Adi Discrete-time system matrix
T s Sampling instant
uMPC
i kð Þ Control signal generated by the MPC con-

troller
T c Control torque governed by the FMPC/D-

FMPC controller
Np Prediction horizon
Nc Control horizon
Ag;Bg;Cg Augmented state-space matrices
Mk Set of membership functions
Rs Reference trajectory
am Output of layer m
bm Biases of layer m
Sm Number of neurons in layer m
g Vector containing Q error vectors
T s=w, Tw=s Projection matrices from satellite to flywheel

and flywheel to satellite respectively
mM

n Set of membership functions
yðtÞ Output vector
li Z tð Þð Þ Product of functions mijðzj tð ÞÞ
FI Fixed inertial frame
h Pitch angle
P Positive membership function
ex; ey ; ez Error signals
uðkÞ Control variable of MPC controller
r kð Þ Set point
rw MPC tuning parameter
J Cost function
Nc Predicted control moves
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larger satellites in-orbit inspection, earth observation con-
stellation, and communication constellation. Therefore,
the rapid development of these satellites has been recorded
in recent years (He et al., 2021), and satellite engineers put
great attention to mass and size optimization of a satellite
along with ensuring a successful completion of satellite mis-
sions (Eshghi and Varatharajoo, 2017). One of the mass
and size optimization approaches is to combine various
satellite subsystems known as synergism. The two most
crucial components within a satellite are the attitude con-
trol and power storage subsystems, and they together share
a larger portion of the total mass of a satellite. The notion
of merging these subsystems into a single entity was ini-
tially introduced for larger satellites in the 1960s but gained
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widespread recognition during the 1980s, coined as the
Integrated Power and Attitude Control System (IPAC)
(O’Dea et al., 1985; Flatley, 1985). Roithmayr used this
integrated approach for the International Space Station
(ISS) and provided an extensive report (Roithmayr,
1999). Similarly, this approach was evaluated in various
studies and researchers observed significant performance
enhancements. However, the investigations were predomi-
nantly focused on larger satellites (Richie et al., 2001;
Yoon and Tsiotras, 2002; Tsiotras et al., 2001).

Varatharajoo applied this synergistic Combined Energy
and Attitude Control System (CEACS) approach to the
smaller satellites for the first time and examined it through
a series of research works (Varatharajoo et al., 2011;
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Varatharajoo, 2006a,b, 2004; Ban and Varatharajoo, 2013;
Ban et al., 2012; Varatharajoo and Fasoulas, 2002). These
studies provide comprehensive details on the complete sys-
tem design of CEACS and its numerical validations. It is
worthwhile to note that the energy storage function of
CEACS has already been optimized and presented
(Varatharajoo, 2006b). It is also important to note that
that the CEACS attitude control and energy storage tasks
are decoupled in their operation frequency domains. Over
the last decade, the attitude-controlling perspective of
CEACS has got remarkable attention from researchers
and various linear and nonlinear control techniques have
been evaluated (Ismail and Varatharajoo, 2020; Rouyan
et al., 2019; Eshghi and Varatharajoo, 2017;
Varatharajoo et al., 2011) and the primary focus of these
investigations was to introduce an efficient control method
for regulating CEACS attitude in the presence of environ-
mental disturbance torques. The Proportional-Integral-De
rivative (PID) controller was integrated with Active Force
Control (AFC) to enhance CEACS attitude pointing accu-
racy. However, AFC needs in-situ measurements, which
are not consistently accessible (Varatharajoo et al., 2011).
Similarly, optimal controllers, i.e., H2 and H1 have been
used for CEACS attitude pointing accuracy enhancements
(Ban and Varatharajoo, 2013; Ban et al., 2012); however,
the small angle approximations used to simplify the satel-
lite attitude model affect the accuracy of results in the
aforesaid research. Therefore, Eshghi and Varatharajoo
employed a nonlinear controller, i.e., Sliding Mode Con-
trol (SMC) technique to handle system nonlinearities and
attain a satisfactory CEACS pointing precision (Eshghi
and Varatharajoo, 2014). However, the onboard errors
and high-frequency chattering problems degraded the atti-
tude control performances. To eradicate this problem, Esh-
ghi and Varatharajoo implemented a singularity-free
integral augmented SMC controller (Eshghi and
Varatharajoo, 2017).

fuzzy Logic Control (FLC) is one of the most famous
controllers capable of handling nonlinearities and uncer-
tainties of dynamic systems. Therefore, it has been widely
used in aerospace applications (Chak and Varatharajoo,
2014; Giron-Sierra and Ortega, 2002; Ismail and
Varatharajoo, 2020). Chak and Varatharajoo conducted
an extensive investigation of the FLC controller’s perfor-
mance within the context of the synergistic approach
known as the Combined Attitude and Sun Tracking Sys-
tem (CASTS). Their investigation included a spectrum of
control strategies, ranging from the versatile fuzzy Propor-
tional Derivative (PD) controller to the fuzzy gain sched-
uler, along with an adaptive fuzzy system aimed at
mitigating external disturbance torques (Chak et al.,
2021; Chak and Varatharajoo, 2017; Chak and
Varatharajoo, 2015). In a separate study, Aslam et al.
(2022) employed the fuzzy PD controller to improve the
accuracy of attitude pointing in the CEACS while concur-
rently reducing the energy consumption of the actuators
required to achieve the desired pointing accuracy. How-
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ever, none of the previous works on CEACS addressed
the issue of CEACS operational constraints. It is a well-
known fact that the attitude actuators are capable of pro-
ducing limited control torque and they may reach satura-
tion due to attitude regulation with large initial angles or
external disturbance torques consequently; however, it
may end up with a satellite de-stabilization condition as
well. Model Predictive Control (MPC) is a well-known
optimal control technique for handling both input and out-
put constraints systematically (Ashraf et al., 2020). How-
ever, performance of linear MPC controller gets degraded
due to nonlinear dynamics of satellite, particularly at larger
slew angles. Therefore, Aslam et al. (2023) designed the
fuzzy MPC (FMPC) controller to achieve the desired satel-
lite CEACS attitude pointing accuracy subject to actuator
constraints, external disturbance torques, and larger initial
angles. In this methodology, a non-linear system is trans-
formed into several linear local subsystems by using the
Takagi-Sugeno (T-S) fuzzy approach. Thus, subsequently,
an MPC controller is individually tailored for each of these
local subsystems. The final controller’s output is attained
by integrating the local outputs through a fuzzy-weighted
scheme (Nova et al., 2022; Kuo and Resmi, 2019). T-S
fuzzy modelling is a powerful tool to model a nonlinear
system having various complexities, i.e., time delays, para-
metric uncertainties, faults, dead zone, saturation. There-
fore, T-S fuzzy system provides a strong foundation for
designing linear controllers for a highly nonlinear complex
system (Wang et al., 2021).

The bottleneck in the MPC implementation for fast
dynamic systems is its higher computational burden in
comparison to the other linear controllers (Sarwar et al.,
2019). This problem becomes significant in the FMPC con-
troller design approach as multiple MPC controllers have
been designed for the T-S fuzzy model of satellite attitudes
and consequently it multiplies the overall computational
burden. This limitation is critical for its implementation
in smaller satellites due to their limited onboard computa-
tional power (George and Wilson, 2018). The problem that
exists in already developed powerful processors used in
computers and mobile phones is their vulnerability to space
radiations and these cosmic radiations can interfere with
the satellite computing operations. Therefore, expensive
radiation-hardened processing devices for space missions
are available but they offer extremely limited computa-
tional power.

Artificial Neural Networks (ANNs) exhibit an adaptive
or learning nature, involving the adjustment of connection
weights between interconnected processing units (neurons)
in different layers. This tuning process aims to meet speci-
fic criteria set for the networks. Once the tuning is com-
pleted, either offline or online, the networks can
effectively map the input and output relationship of a sys-
tem, even without knowledge of its internal structure. The
capability of learning complex patterns signifies the appli-
cation of ANNs in satellite attitude control systems. In the
literature, neural networks (NN) have been employed to
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enhance satellite attitude pointing accuracy in various
ways. Primarily, NNs serve two roles: firstly, as an estima-
tor to determine uncertain parameters or functions,
enhancing robustness and adaptability in attitude con-
trollers; secondly, as an attitude controller approximator
to replicate computationally intensive attitude controllers.
Previous studies (Biggs and Fournier, 2019; Sivaprakash
and Shanmugam, 2005; Kim et al., 2016) have utilized
NNs to approximate the satellite’s attitude controller.
The use of NN to replicate computationally intensive opti-
mal attitude control, employing four reaction thrusters for
attitude regulation to minimize fuel consumption, has been
explored in previous research (Biggs and Fournier, 2019).
In this context, NN is trained offline using optimal data
obtained from numerical simulations of the designed opti-
mal controller. Additionally, NN has been applied to
achieve three-axis stabilization for satellites using magnetic
torquers in the presence of external disturbance torques
and parametric uncertainty, as demonstrated by
Sivaprakash and Shanmugam (2005). In this scenario,
NN is trained using an input–output dataset obtained
from simulated PD controllers for the satellite’s attitude
regulation problem. Similarly, the Neuro-fuzzy Controller
(NFC) has been proposed for satellite attitude control with
the aim of alleviating the high computational burden asso-
ciated with the standard State-Dependent Riccati Equa-
tion (SDRE) controller (Kim et al., 2016). In this
approach, a neuro-fuzzy inference system is trained offline
using the dataset obtained from the simulated SDRE con-
troller to approximate its behavior. The results demon-
strate that the NFC controller not only outperforms the
SDRE controller in the presence of parametric uncertainty
but also exhibits a shorter execution time in computing the
optimal control signal.

The objective of this work is to design a computationally
efficient Deep Learning-based fuzzy MPC (D-FMPC) con-
troller for regulating the attitude control of the CEACS
with a desired pointing accuracy. This includes addressing
challenges such as a nonlinear satellite, large initial angles,
external disturbance torques, actuator constraints, and
parametric uncertainty.

Here, the D-FMPC controller is designed in a two-step
process. In the first step, FMPC controller is designed, cap-
able of performing CEACS attitude regulation in the pres-
ence of external disturbance torques and CEACS actuator
constraints. In the second step, the deep learning approach
is used to train multilayer perception offline with the
FMPC numerical data to replicate the computationally
intensive attitude controller with the computationally effi-
cient metamodel. It is important to note that the optimiza-
tion of CEACS’s energy storage function has been
previously addressed and documented by Varatharajoo
(2006a,b). Consequently, the D-FMPC controller has been
exclusively designed and investigated for the purpose of
regulating CEACS attitude.

The contributions of this research work are threefold as
follows:
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1. Replica of FMPC Controller: The first contribution of
the proposed research is to design a deep learning based
CEACS attitude controller that replicates the sophisti-
cated fuzzy MPC controller, capable of performing the
CEACS attitude regulation in the presence of higher ini-
tial angles, CEACS parametric uncertainty, and actua-
tor constraints.

2. Computationally Efficient Controller: The second contri-
bution is validating the computational efficiency of the
proposed D-FMPC controller compared to the FMPC
controller, making it viable for future space missions
in general, and specifically for satellites with a limited
computational power.

3. Stability Demonstration: The final contribution is to
demonstrate the stability of the designed D-FMPC con-
troller through Monte Carlo simulations as none of the
previous works investigated the stability of a solely deep
learning based attitude controller.

The structure of this paper is outlined as follows: Sec-
tion 2 and Section 3 provide an explanation of the CEACS
architecture, and the T-S fuzzy model employed for the
rigid satellite. Section 4 provides the design details of
FMPC and D-FMPC controllers. Section 5 presents the
numerical findings of both controllers. Demonstrations of
stability through Monte Carlo simulations are illustrated
in Section 6. Finally, Section 7 concludes the paper and
offers insights into future research directions.

2. CEACS architecture

The CEACS attitude control architecture employs a pair
of high-speed counter-rotating flywheels mounted along
the satellite axis. These flywheels are controllable in both
speed and torque modes. However, speed mode is less sen-
sitive to steady-state torque errors (Varatharajoo, 2006a)
and it is used in this work as shown in Fig. 1.

where Kw, Xv, km, T w, Iw, and Xw, represent speed con-
trol loop gain, desired angular speed, motor torque con-
stant, flywheel torque, flywheel inertia, and actual
angular speed. In this context, Xv represents the total
speed, which is the sum of the speed set by the attitude con-
troller (Xc) and the speed instructed by the energy control
component (XE) as shown in Eq. (1). The energy control
component manages additional power generated by the
solar panels, either by storing it in flywheels in the solar
phase or acquiring it from them in the eclipse phase. The
term 1

Iws
is a speed controller as it converts the torque into

equivalent speed that governs the flywheel to achieve
desired torque for satellite attitude regulation.

Xv ¼ Xc þ XE ð1Þ
The analytical relation between Xv and Xw for Fig. 1 is

obtained after performing closed loop simplification

Xw sð Þ ¼ 1
Iw

Kwkm
sþ 1

 !
Xv; ð2Þ



Fig. 1. Speed control mode of the flywheel.
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Eq. (2) represents a first order delay, as given below

Xw sð Þ ¼ 1

swsþ 1

� �
Xv; ð3Þ

where sw ¼ Iw
Kw km

.

The analytical relation between the angular velocity and
torque of a flywheel in the Laplace domain is given by

T w sð Þ ¼ IwXws: ð4Þ
By substituting the value of Xw from Eq. (4) in Eq. (3),

the flywheel torque T w becomes

T w sð Þ ¼ 1

swsþ 1

� �
IwXvs: ð5Þ

Based on the counter-rotating flywheels configuration,
the satellite attitude control through the CEACS mecha-
nism is shown in Fig. 2. The net flywheel torque T w at
the output of CEACS is produced according to the desired
control torque T c requested by the attitude controller to
Fig. 2. CEACS architectur
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achieve the desired attitude
href
_href

� �
. The CEACS torque

T w is realized by accelerating and decelerating the first
and second flywheels respectively at specified required
speeds. The resultant of this torque and the environmental
disturbance torque T d represented by T s governs the satel-

lite attitude. The measurements of satellite attitude
h
_h

� �
are

provided as feedback to the attitude controller. The
CEACS architecture has been enclosed by a red dotted line
in Fig. 2 and its analytical derivations have been presented
in this section and the details about other blocks outside
the dotted line are explained in the following subsections.

In Fig. 2, T s=w and T w=s are the projection matrices from
the satellite to the flywheel and vice-versa. They are essen-
tial for transforming control signals and torques between
the satellite’s center of mass and flywheel’s frame of refer-
ence. These transformations enable accurate control of the
satellite’s attitude by accounting for the physical locations
e (Varatharajoo, 2004).
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and orientations of the flywheels, ensuring the torques are
correctly applied to the satellite’s dynamics. For simplicity,
it has been assumed that the torques produced by the fly-
wheels are acting on the center of mass of the satellite,
therefore, projection matrices have been assumed to be
unity. Thus, according to projections, the control signals
T c1 and T c2 are equal in magnitude to the control torque
T c but opposite in polarity as shown below

T c1 ¼ T c; ð6Þ
T c2 ¼ �T c: ð7Þ

Thus, both the flywheel speed controllers shown in
Fig. 2 are governed by equal control torques with opposite
polarity. Consequently, these control signals govern the
speeds Xc1 and Xc2 for both flywheels

Xc1 sð Þ ¼ 1

2Iws

� �
T c1; ð8Þ

Xc2 sð Þ ¼ 1

2Iws

� �
T c2; ð9Þ

However, it is assumed that the counter-rotating fly-
wheels must be alike in practice such that they possess
the same inertia Iw.

The overall commanded speed for these flywheels is
shown below

Xv1 ¼ Xc1 þ XE; ð10Þ
Xv2 ¼ Xc2 þ XE: ð11Þ

The torques produced by the counter-rotating flywheels
are shown below

T w1 sð Þ ¼ Iws
ssþ 1

� �
Xv1; ð12Þ

T w2 sð Þ ¼ Iws
ssþ 1

� �
Xv2: ð13Þ

The resultant control torque produced by the CEACS
configuration is calculated as

T w sð Þ ¼ T w1 sð Þ � T w2 sð Þ; ð14Þ
A series of substitutions from Eqs. (8)–(13), modifies the

Eq. (14) as follows

T w sð Þ ¼ Iws
ssþ 1

� �
T c1

2Iws
þ XE � T c2

2Iws
þ XE

� �� �
; ð15Þ

Eq. (15) is further deduced to

T w sð Þ ¼ 1

ssþ 1

� �
T c1 � T c2

2

� �
; ð16Þ

Eq. (16) validates the operation of attitude control task
is independent of the speed XE requested by the energy con-
trol module.

From Eqs. (6) and (7), Eq. (16) can be simplified to

T w sð Þ ¼ 1

ssþ 1

� �
T c: ð17Þ
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This expression illustrates that the CEACS has the abil-
ity to generate the required torque, as seen in the case of a
single flywheel, while also effectively handles the necessary
energy management tasks concurrently.

3. Takagi–Sugeno fuzzy modelling of satellite attitude

T–S fuzzy model of satellite attitude is derived in this
section.
3.1. Takagi–Sugeno fuzzy approach

In this approach, the if-then rules are used to character-
ize local linear dynamics of a nonlinear process in the form
of a state space model, as given below (Chak and
Varatharajoo, 2018).

Ri IF z1ðtÞ is mK
1 ^ z2 tð Þ is mL

2 ^ � � � : ^ znðtÞ is mM
n

THEN _xi ¼ Aixþ Biu; yi ¼ Cix

ð18Þ
where Ri represents the ith rule within the set of R rules,
znðtÞ serves as the premise variable, and it can be a function
of the continuous-time state vector x tð Þ 2 Rn. Here,
uðtÞ 2 Rm and yðtÞ 2 Rp, and mM

n represent the input vector,
output vector, and set of membership functions respec-
tively. Similarly, Ai 2 Rn�n, Bi 2 Rn�m, and Ci 2 Rp�n repre-
sent system matrix, input matrix, output matrix
respectively. Here, the consequent part of the rule repre-
sents the linear state-space model and is referred as subsys-
tem. Following the defuzzification process, the entire fuzzy
system’s output is obtained

_x ¼Pn
i¼1aiðtÞ½Aixþ Biu�

y ¼Pn
i¼1aiðtÞCix;

ð19Þ

where

ai tð Þ ¼ liðZ tð ÞÞPn
i¼1liðZ tð ÞÞ ; i ¼ 1; 2; � � � ; n

z tð Þ ¼ z1 tð Þ z2 tð Þ � � � zn tð Þ½ �;

li Z tð Þð Þ ¼
Yn
j¼1

mijðzj tð ÞÞ

The term mijðzj tð Þ) is the membership value of zj tð Þ for
the membership function mij. The index i represents the
rule number.
3.2. Satellite attitude fuzzy model

The satellite attitude model is represented by kinematic
and dynamic equations of motion. The attitude kinematics
of a satellite with a fixed body frame Fb relative to a fixed
inertial frame FI are represented in the ZYX Euler
sequence as follows
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_/
_h
_w

2
64

3
75 ¼

1 sð/ÞtðhÞ c /ð ÞtðhÞ
0 cð/Þ �sð/Þ
0 sð/ÞscðhÞ cð/ÞscðhÞ

2
64

3
75 xx

xy

xz

2
64

3
75 ð20Þ

where /; h;wf g is the set of Euler angles roll, pitch, and
yaw respectively. Similarly, s, c; t, and sc represent sin,
cos, tan, and sec respectively. The satellite’s angular veloc-
ities with respect to the frame FI are represented as

xx;xy ;xz

� �
. Based on the Euler’s angles and angular rates,

the satellite’s dynamic equations are given by

_xx

_xy

_xz

2
64

3
75 ¼

Iy�Iz
Ix

� 	
xyxz

Iz�Ix
Iy

� 	
xzxx

Ix�Iy
Iz

� 	
xxxy

2
66664

3
77775þ

T sx
Ix
T sy

Iy

T z
Iz

2
664

3
775;

_xx

_xy

_xz

2
64

3
75 ¼

Iy�Iz
Ix

� 	
xyxz

Iz�Ix
Iy

� 	
xzxx

Ix�Iy
Iz

� 	
xxxy

2
66664

3
77775þ

TwxþT dx
Ix

T wyþT dy

Iy

T wzþT dz
Iz

2
664

3
775;

ð21Þ

where, Ix; Iy ; Iz
� �

are the principal moments of inertia, and

T sx; T sy ; T sz

� �
are the torques applied to the satellite. The

satellite torques are the sum of the flywheel torques

T wx; T wy ; T wz

� �
produced by the CEACS actuation system

for the satellite attitude regulation and the accumulative

external disturbance torques T dx; T dy ; T dz

� �
about each

axis.
The research presented herein is well-suited for the task

of stabilizing satellite attitude within an inertial space con-
text, as might be the case with a space telescope. To achieve
this, the differential attitude kinematic equations presented
in Eq. (2) are simplified through the application of lin-
earization approximations with reference to the FI frame.
Furthermore, a cuboid-shaped satellite with a symmetric
inertia tensor Ix ¼ Iz is assumed which results in a system-
atic reduction in the required number of fuzzy rules to
develop satellite’s T-S fuzzy model. These simplifications
collectively yield a quasilinear model for our investigation.
Fig. 3. Membership functi

3240
_/
_h
_w

_xx

_xy

_xz

2
6666666664

3
7777777775
¼

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0
Iy�Iz
Ix

� 	
xy

0 0 0 0 0 0

0 0 0 0
Ix�Iy
Iz

� 	
xx 0

2
6666666664

3
7777777775

/

h

w

xx

xy

xz

2
666666664

3
777777775

þ

0 0 0

0 0 0

0 0 0
1
Ix

0 0

0 1
Iy

0

0 0 1
Iz

2
6666666664

3
7777777775

Twx þ T dx

T wy þ T dy

T wz þ T dz

2
64

3
75:

ð22Þ

The first step towards implementation of T-S fuzzy
model from Eq. (22) is the selection of fuzzy premise vari-

ables i.e., z1 ¼ � Iy�Iz
Ix

� 	
xy and z2 ¼ Ix�Iy

Iz

� 	
xx. The next step

is to assign fuzzy membership functions by calculating the
minimum and maximum values of the fuzzy variables
[min z1ð Þ;max z1ð Þ�, and [min z2ð Þ;max z2ð Þ�. For this purpose,
the values of xx and xy are restricted within specified limits,

i.e., min xxð Þ;max xxð Þ½ � and min xy


 �
;max xy


 �� 
. This

approach is justified since the variables in physical systems
are always confined within certain limits. Here, the universe
of fuzzy variables comprises two triangular membership
functions i.e., Negative ðNÞ and Positive ðP Þ and their
membership values are calculated by
P z1ð Þ ¼ z1�min z1ð Þ
max z1ð Þ�min z1ð Þ & N z1ð Þ ¼ max z1ð Þ � z1

max z1ð Þ �min z1ð Þ
ð23Þ

P z2ð Þ ¼ z2�min z2ð Þ
max z2ð Þ�min z2ð Þ & N z2ð Þ ¼ max z2ð Þ � z2

max z2ð Þ �min z2ð Þ
ð24Þ

whereas minimum and maximum values of z1 and z2 are
calculated by using the minimum and maximum values of
xx and xy . Their membership plots are illustrated in Fig. 3.
ons of fuzzy variables.
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In this work, the controller’s design relies on the
discrete-time fuzzy model of the satellite. Therefore, the
discrete-time fuzzy rules are given by

I. R1 : If z1ðkÞ is P and z2ðkÞ is P , Then
x1 k þ 1ð Þ ¼ A1dx kð Þ þ Bu kð Þ; y kð Þ ¼ Cx kð Þ ð25Þ

II. R2 : If z1ðkÞ is P and z2ðkÞ is N , Then

x2ðk þ 1Þ ¼ A2dxðkÞ þ BuðkÞ; yðkÞ ¼ CxðkÞ ð26Þ
III. R3 : If z1ðkÞ is N and z2ðkÞ is P , Then

x3ðk þ 1Þ ¼ A3dxðkÞ þ BuðkÞ; yðkÞ ¼ CxðkÞ ð27Þ
IV. R4 : If z1ðkÞ is N and z2ðkÞ is N , Then

x4ðk þ 1Þ ¼ A4dxðkÞ þ BuðkÞ; yðkÞ ¼ CxðkÞ ð28Þ
Here, the fuzzy variables and membership functions are

directly related in the system matrix i.e., N in fuzzy rule
gives min zið Þ and P gives max zið Þ as shown below

A1 ¼

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 �max z1 kð Þð Þ
0 0 0 0 0 0

0 0 0 0 max z2 kð Þð Þ 0

2
666666664

3
777777775
;

A2 ¼

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 �max z1 kð Þð Þ
0 0 0 0 0 0

0 0 0 0 min z2 kð Þð Þ 0

2
666666664

3
777777775
;

A3 ¼

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 �min z1 kð Þð Þ
0 0 0 0 0 0

0 0 0 0 max z2 kð Þð Þ 0

2
666666664

3
777777775
;

A4 ¼

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 �min z1 kð Þð Þ
0 0 0 0 0 0

0 0 0 0 min z2 kð Þð Þ 0

2
666666664

3
777777775
:

ð29Þ

The conversion from continuous time-matrices to
discrete-time matrices is done through Zero Order Hold
(ZOH) approach (Toth et al., 2008).

Adi ¼ eAiT s ; ð30Þ
where T s represents the discretization sampling interval.
This discretized T-S fuzzy model corresponds to the
3241
continuous nonlinear system depicted in Eq. (22) over the
interval min xð Þ;max xð Þ½ �.

4. Control design

The design approach of the D-FMPC controller
includes three steps, the first step is the design of the FMPC
controller for the satellite T-S fuzzy model. The second step
includes the training of a deep-layer NN with the obtained
meta data of the MPC controllers for each linear subsystem
to replace the MPC controller with a computationally effi-
cient controller. The final step is to compute a single con-
trol output from multiple NN-based trained controllers
by using the parallel distribution compensation (PDC)
approach.

4.1. FMPC controller design

The design of FMPC controller for the derived satellite’s
T-S fuzzy model is based on the PDC approach as pre-
sented below.

4.1.1. Parallel distribution compensation

The PDC approach is used here to design linear con-
trollers for each subsystem by using T-S fuzzy framework,
for a set of R rules it is given by

Ri IF z1ðtÞ is mK
1 ^ z2 tð Þ is mL

2 ^ � � � : ^ znðtÞ is mM
n

THEN uMPC
i kð Þ;

ð31Þ
where uMPC

i kð Þ is the control vector governed by the MPC

controller for the ith T-S fuzzy rule. The global control vec-
tor is obtained after the defuzzification process (Aslam
et al., 2023).

T c ¼
XR
i¼1

ai tð Þ � uMPC
i kð Þ: ð32Þ

The FMPC implementation for the satellite CAECS
attitude regulation is shown in Fig. 4. Here, f/d ; hd ;wdg
represent desired attitude angles and {ex; ey ; ezg represent
the error signals.

4.1.2. MPC controller design

The MPC is a model-based control technique and here,
the state-space-model is used in design of the controller.
Consider a discrete-time LTI system
xðk þ 1Þ ¼ AxðkÞ þ BuðkÞ;
y kð Þ ¼ Cx kð Þ: ð33Þ

The MPC controller performance is directly related to the
perfection of the mathematical model, and any model-pant
mismatch degrades the controller performance. To handle
this issue, a velocity model is used (Wang, 2004; Sarwar



Fig. 5. Illustration of feedforward NN.

Fig. 6. Illustration of NN operation (Biggs and Fournier, 2019).

Fig. 4. FMPC controller for satellite CEACS.
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Fig. 7. Regression plots of NN for MPC controllers.
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et al., 2019). In this model, the control variable uðkÞ is sub-
stituted with its rate of change DuðkÞ and the state variable
x kð Þ is substituted with a pair of state variables

x kð Þ ¼ Dx kð Þy kð Þ½ � T .
Dx k þ 1ð Þ
y k þ 1ð Þ

� �
¼ A Op�n

T

CA Ip�p

" #
Dx kð Þ
yðkÞ

� �
þ B

CB

� �
Du kð Þ;

y kð Þ ¼ OIp�p

�  Dx kð Þ
yðkÞ

� �
;

ð34Þ
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where
A Op�n

T

CA Ip�p

� �
is the augmented state matrix

denoted by Ag,
B

CB

� �
is the augmented input matrix Bg,

and OIp�p

� 
is the augmented output matrix Cg. The

obtained augmented model is presented as

yðkÞ ¼ CgxðkÞ: ð35Þ
By using the augmented model ðAg;Bg;CgÞ, the MPC

controller predicts the output given by (Wang, 2009)



Table 1
Information about the NN process for MPC controller estimation.

Category Information

Dataset Acquisition Range of Initial Angles for Simulations: �78� to +78�
Difference between successive initial angles: 3�
Number of Simulations: 52
Number of Iterations: 6000
Number of Input Dataset Variables: 9
Number of Output Dataset Variables: 3
Size of dataset: 312000� 12

Dataset Division Training: 70 % Dataset
Testing: 15 % Dataset
Validation: 15 % Dataset

NN Information NN Configuration: Feedforward Configuration
Training algorithm: Levenberg Marquardt method
Number of hidden layers: 18

Fig. 8. D-FMPC implementation for CEACS attitude regulation.
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y ¼ Fx kð Þ þ CDu; ð36Þ
where

F ¼

CgAg

CgA
2
g

..

.

CgA
NP
g

2
666664

3
777775;

C ¼

CgBg 0 0 � � � 0

CgAgBg CgBg 0 � � � 0

..

. ..
. ..

. ..
. ..

.

CgA
Np�1
g Bg CgA

Np�2
g Bg CgA

Np�3
g Bg � � � CgA

Np�Nc
g Bg

2
666664

3
777775;

and

y ¼ y k þ 1jkð Þ y k þ 2jkð Þ y k þ 3jkð Þ � � � y k þ Npjk

 �� T

:

Here, Nc denotes the number of predicted control moves
needed to achieve target output, while Np signifies the size
of the prediction horizon. The primary aim of MPC is to
minimize the difference between the predicted output and
3244
required output. To attain this goal, an objective function
is formulated to determine an optimized control vector
Du, as presented by Wang (2009).
O ¼ rsr kð Þ � yð ÞT rsr kð Þ � yð Þ þ DuT R
�
Du; ð37Þ

While constraints are represented as

Dumin � DuðkÞ � Dumax;

umin � uðkÞ � umax;

where r kð Þ is the set-point, rTs ¼ 1; 1; :::; 1
zfflfflfflfflffl}|fflfflfflfflffl{NP
2
4

3
5 is a unity vec-

tor, R
�
¼ rwINc�Nc is a cost matrix, and rw � 0 is a user-

defined variable that provides a check on the closed-loop
performance. By substituting Eq. (36) in Eq. (37), and ful-
filling the condition @J

DU ¼ 0, the optimized control vector is

given by

Du ¼ CTCþ R
�� 	�1

CT rsr kð Þ � CTFx kð Þ
 �
: ð38Þ



Table 3
Simulation parameters used in CEACS attitude control system.

Parameter Value(s)

Satellite’s Mass 127:632 kg
Altitude 500 km
Orbital Period,T o 5; 667 seconds
Flywheel’s inertia Iw ¼ 0:0013 kg-m2

Satellite’s Inertia Tensor Ix
Iy
Iz

2
4

3
5 ¼

4:6
4:2
4:6

2
4

3
5 kg-m2

Flywheel’s time constant Scenario 1

s ¼ 0:5 s
Scenario 2–3
s1 ¼ 1:0 s
s2 ¼ 2:5 s

Disturbance torques T dx

T dy

T dz

2
4

3
5 ¼

3:34þ 7:68 cos xtð Þ
3:34þ 7:68 sin xtð Þ
3:34� 7:68 cos xtð Þ

2
4

3
5� 10�5

Nm
Desired attitude pointing

accuracy
/j j � 0:1o

hj j � 0:1o

wj j � 0:1o

Actuator’s constraints T aj j � 0:038 Nm
Initial Conditions Scenarios 1–3

£ 0ð Þ ¼ 70o

h 0ð Þ ¼ 68o

w 0ð Þ ¼ 65o

xx 0ð Þ ¼ 0o=sec
xy 0ð Þ ¼ 0o=sec
xz 0ð Þ ¼ 0o=sec
Monte Carlo Settings (Stability Analysis)

h1 0ð Þ
h2 0ð Þ
h3 0ð Þ
h4 0ð Þ
h5 0ð Þ
h6 0ð Þ

2
6666664

3
7777775 ¼

78o

50o

30o

�78o

�50o

�30o

2
6666664

3
7777775

MPC Settings:

Prediction horizon Np ¼ 20
Control horizon Nc ¼ 10
Sampling time T s ¼ 2 sec
Tuning parameter rw ¼ 100
Number of hidden layers N ¼ 18
Angular velocities limits �0:00174 � xx � 0:00174 rad/sec

�0:00174 � xy � 0:00174 rad/sec

Table 2
Simulation scenarios for performance comparison between D-FMPC and FMPC controllers.

Scenario Description

1 The D-FMPC controller is designed to achieve the targeted CEACS attitude-pointing accuracy, and the results are compared with those
obtained using the FMPC controller.

2 The previously designed D-FMPC controller from Scenario 1 is implemented to regulate the CEACS attitude while accounting for
parametric uncertainty. This uncertainty stems from the flywheel motors, simulating the impact of internal frictional torque on the
flywheels. The numerical validations are then compared with those of the FMPC controller.

3 A computational comparison between the FMPC and D-FMPC controllers has been conducted in terms of both execution time and
memory usage. The simulation conditions for this case are consistent with those of scenario 2.
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At last, the control vector u kð Þ produced by the MPC
controller is calculated as

u kð Þ ¼ u k � 1ð Þ þ Du kð Þ: ð39Þ
4.2. Deep layer neural network

A NN is an information processing model, that closely
follows the biological nervous system such as the brain pro-
cess information. The basic processing element of NN is
the neuron, which works in a group with other Neurons
in the form of a network to solve specific problems. A net-
work is the interconnection of these processing units,
whereas each unit has its I/O features and performs local
computing. The numerical output of any neuron mainly
depends on the I/O characteristics, interconnection to
other units and external inputs. In literature, various
NN-based configurations have been available however,
the feedforward NN model is mostly used in industrial
applications as shown in Fig. 5 (Biggs and Fournier,
2019). In this approach, the input layer of neurons is linked
to the output layer of neurons through one or more inter-
mediate layers, and these intermediate layers are famously
known as hidden layer(s). The multilayer NN is generally
known by various names such as deep-layer NN, and
multi-layer perceptions. However, this multi-layer NN is
classified as a deep learning technique as shown in Fig. 6
(Biggs and Fournier, 2019). The output of a layer is given
by

a1 ¼ r1 W 1qþ b1

 � ð40Þ

amþ1 ¼ rmþ1ðW mþ1am þ bmþ1Þ for m ¼ 2; ::;M � 1 ð41Þ
where q 2 RS0�1 is the input, am is the output of layer m,

W m 2 RSm�Sm�1

and bm 2 RSm�1 are the weights and biases
of layer m, rm is the activation function of layer m, and
Sm represents the number of neurons in the layer m.

Here, identity function is used by the output layer, while
the hidden layer uses log-sigmoid function as the activation
function



Fig. 9. Scenario 1: FMPC and D-FMPC roll angle results.
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rðnÞ ¼ 1

1þ e�n
ð42Þ

where e is the Euler’s number. The output of the sigmoid
function lies between 0 and 1. As the input n becomes very
large, the output approaches 1, and as n becomes very low,
the output approaches 0.

Training a NN is done by providing a data set of target
input–output pair and tuning the weights and biases to
ensure the predicted output of the NN closely resembles
the targeted output for the same inputs. The core objective
is not interpolation, but to generalize the trained NN
model for any new input that exists between the range of
training sets. For a given input–output data set
qq; tqð Þq¼1;2;::;Q for Q training dataset, the following objective

function is used by the NN for training purpose (Biggs and
Fournier, 2019)

Objtr dð Þ ¼ 1

Q

XQ
q¼1

tq � aq dð Þð ÞT tq � aq dð Þð Þ ð43Þ

Here, d 2 R
PM�1

m¼0
Smþ1ð ÞSmþ1

represents a vector that
includes all biases and weights of the NN. The above cost
function can be simplified as
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Objtr dð Þ ¼ g dð ÞTg dð Þ ð44Þ
where g is the vector containing Q error vectors. The objec-
tive function is minimized by using the Levenberg Mar-
quardt algorithm and the updated d at every iteration is
given by

dkþ1 ¼ dk � JT dkð ÞJ dkð Þ þ ck
� �1

JT dkð Þg dkð Þ ð45Þ
where, ck is directly related with the minimization of the
objective function, as the updated weight reduces the objec-
tive function Obj, ck also gets reduced and vice-versa. A
continuous decrease in ck converges the predicted output
to the target output. Here, J is the cost Jacobian matrix
represented by

J ¼ @g

@d
2 R

smQð Þ�
PM�1

m¼0
ðsmþ1Þsmþ1


 �
ð46Þ

Here, J is obtained by the back propagation algorithm
as derived in (Battipede, et al., 2003).

4.2.1. Training of neural network

In this work, the dataset necessary for training, testing,
and validating the neural network model is acquired
through simulations of the FMPC for satellite CEACS atti-



Fig. 10. Scenario1: FMPC and D-FMPC pitch angle results.
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tude control. Simulated data is employed due to the
absence of real-time data for FMPC-based CEACS atti-
tude control. Nevertheless, the methodology for training
the neural network mirrors that employed for real-time
data, as documented in previous studies (Biggs and
Fournier, 2019; Sivaprakash and Shanmugam, 2005; Kim
et al., 2016).

The input–output dataset encompasses the error

ex; ey ; ez
� �

, change in error _ex; _ey ; _ez
� �

, and current output

values /; h;wf g of the satellite attitude as input, with the

control torques T cx; T cy ; T cz

� �
produced by the MPC con-

troller serving as the target output. The quality of the train-
ing process is directly related to the quality and size of the
dataset. To ensure robust training, simulations of the
FMPC controller have been conducted for a large number
of initial conditions, spanning a range from �78� to þ78�.
These simulations account for external disturbance tor-
ques, actuator constraints, and CEACS parametric uncer-
tainty. Furthermore, to effectively approximate the
performance of the FMPC controller, the difference
3247
between initial conditions for two simulations is set to 3�,
resulting in a total of 52 simulations.

In each simulation, 6000 iterations were conducted,
resulting in the acquisition of an input–output dataset con-
taining 312,000 values. This complete dataset is partitioned
into three segments: 70 % for training, 15 % for testing, and
15 % for validation purposes. Furthermore, the NN
employs eighteen hidden layers, selected through tuning,
to successfully replicate the computationally intensive
FMPC controller. The regression plots of the trained NN
are depicted in Fig. 7. A NN with a substantial number
of hidden layers is commonly referred to as deep learning
or a deep NN.

From Fig. 7, it is evident that the deep-layer NN has
been effectively trained using the simulated data derived
from the implemented FMPC controller for the attitude
regulation of CEACS. It is seen in the regression plot for
each MPC controller, the fitted model overlaps the ideal
perfect fit represented by the dash line. Thus, it shows that
model provides an excellent fit to the data, with the pre-



Fig. 11. Scenario 1: FMPC and D-FMPC yaw angle results.
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dicted outputs nearly perfectly matching the actual target
values. The correlation coefficient (R) almost approaches
unity for each regression plot. The high correlation coeffi-
cient and the close alignment of the model fit line with
the ideal fit line both indicate that the regression model is
highly effective in capturing the relationship between the
inputs and outputs. These findings can be explicitly vali-
dated by witnessing a very few predicted values deviating
from the target values as shown in Fig. 7 as well. Thus, it
is assured that trained NN based controllers can replicate
the MPC controllers.

The brief overview of information about the training of
NN models for the approximation of MPC controllers has
been presented in Table 1.

4.3. D-FMPC controller implementation

The D-FMPC controller is implemented by replacing
the computationally intensive MPC controller with its
trained deep-layer NN model as shown in Fig. 8.
3248
5. Numerical results

The effectiveness of the D-FMPC controller is investi-
gated by performing the numerical treatments, which have
been presented in this section. For validation purposes,
the numerical results are compared with the FMPC con-
troller in terms of pointing accuracies, oscillatory response,
percentage overshoot, and actuator constraints violations.
The CEACS attitude control results have been analyzed
in three scenarios. In first scenario, the numerical results
of the D-FMPC controller are compared with the computa-
tionally intensive FMPC controller for the satellite CEACS
attitude regulation with larger initial angles, i.e., 	70�. The
initial angles are chosen largely to cover the entire earth in
triangulation at about 500 km altitude. In the second sce-
nario, the robustness of the D-FMPC controller is investi-
gated against the CEACS parametric uncertainty. The
CEACS parametric uncertainty includes the variation in
frictional torque of the counter-rotating flywheels. The fric-
tional torque is experienced by the flywheel due to friction



Fig. 12. Scenario 2: FMPC and D-FMPC roll angle results.
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between its moving parts, i.e., bearings and other mechani-
cal parts. Two flywheels may have the same frictional tor-
ques due to a number of reasons such as same materials
used, the design of the flywheel, the lubrication of its com-
ponents, and the speed at which it rotates. However, fric-
tional torque may vary over time due to wear and tear of
mechanical components and change in operating condi-
tions, i.e., variation in the speeds of counter-rotating fly-
wheels. Thus, the frictional torque variations contribute
to variation in the time constants of the counter-rotating
flywheels in the CEACS system. Similarly, the variation in
flywheel’s inertia of counter-rotating flywheels may also
contribute to change in time constants and consequently,
it adds a biased torque to the net torque produced by the
CEACS (Aslam et al., 2022). The results governed by the
proposed controller are compared with the FMPC con-
troller to validate the true replication of the FMPC con-
troller. In the third scenario, a computational comparison
between the FMPC and D-FMPC controllers is presented
to validate the computational efficiency-based superiority
3249
of the D-FMPC controller over the FMPC controller. This
comparison is expressed in terms of the execution time and
memory usage of the code, as discussed by Kim et al. (2016).

The environmental disturbance torques used here is the
joint contribution of all environmental disturbance tor-
ques. However, the gravitational and aerodynamic torques
are almost equal at altitude �450 km (Liop et al., 2019).
Here, the gravitational torque is included as a sinusoidal
wave in the disturbance torques. This disturbance torque

exhibit magnitudes typically ranging from 10�4 to 10�6

Nm LEO, as reported in (Zagorski, 2012). It is noteworthy
that satellites with reduced inertia tend to encounter smal-
ler disturbance torques.

A brief summary of the presented scenarios is given in
Table 2.

The details about the simulation settings and satellite
reference mission are given in Table 3. The numerical
results of all scenarios are shown in Figs. 9–16.

Scenario 1 provides the numerical results of the F-MPC
and D-FMPC controllers for the CEACS attitude regula-



Fig. 13. Scenario 2: FMPC and D-FMPC pitch angle results.
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tion in the presence of actuator constraints and external
disturbance torques.

From part (a) of Figs. 9–11, it can be seen that both
FMPC and D-FMPC controllers produce a smooth tran-
sient response of attitude angles. Both controllers effec-
tively regulate the CEACS attitude with a minimum
steady-state error in the presence of external disturbance
torques. However, the FMPC controller slightly produces
a better pointing accuracy than its replica D-FMPC con-
troller as shown in Figs. 9(b)–11(b). Both controllers keep
the control torques within the actuator’s operational lim-
its as shown in Figs. 9(c)–11(c). However, it is also
observed in Figs. 9–11 that the initial negative value of
the control torques occur as the satellite initiates its
motion from a state of rest, starting with positive initial
angles. This phenomenon is analogous to the restorative
torque effect observed in mass-spring-damper systems. In
order to evaluate a controller in terms of energy consump-
tion, integral of the squared control torque is used as a
quantitative metric represented by JU (performance index)
(Aslam et al., 2022). The parameter JU reflects the amount
of torque required to produce the desired pointing accu-
3250
racy. This performance index directly relates to the
onboard power consumed by the CEACS, as producing
the required torque requires speeding up one flywheel
and slowing down the counter flywheel. The speeding up
of a flywheel consumes more electrical power and simi-
larly slowing down the speed of flywheel decreases the
amount of energy stored in it. Thus, a larger JU correlates
with a higher power consumption by the CEACS system.
This can be further verified in Varatharajoo (2006b).
According to Figs. 9(d)–11(d), the values of JU for D-
FMPC controller are slightly smaller than the perfor-
mance index values of FMPC controller. Thus, D-
FMPC controller consumes comparatively less onboard
power than its counterpart. However, it is also seen that
the accumulating control torque is required to maintain
the desired pointing accuracies.

The overall results demonstrate that the proposed com-
putationally efficient Deep Learning-based D-FMPC con-
troller can achieve the desired CEACS attitude-pointing
accuracy while staying within the actuator limits for con-
trol torques, similar to the performance of the FMPC
controller.



Fig. 14. Scenario 2: FMPC and D-FMPC yaw angle results.

Fig. 15. Scenario 3: Computational comparison between the FMPC and D-FMPC controllers in terms of execution time.
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Fig. 16. Scenario 3: Computational comparison between the FMPC and
D-FMPC controllers in terms of memory usage.
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Scenario 2 provides the numerical validations of the
both controllers FMPC and D-FMPC in the presence of
parametric uncertainty.

From part (a) of Figs. 12–14, it can be observed that
both the controllers produce a smooth and slow transient
response of all attitude angles and successfully converge
them to the desired CEACS pointing accuracy as shown
in part (b) of Figs. 12–14. However, the transient response
governed by the D-FMPC slightly deviates from its com-
parative controller. It is also observed that the FMPC
offers slightly better pointing accuracy as compared to its
replica D-FMPC controller. Although, both controllers
ensure that the control torques remain within the torque
producing capabilities of the actuators to prevent actuator
saturation problem. But due to the flywheels frictional dif-
ferences, slight oscillations have been produced by the
CEACS actuation at the start as shown in Figs. 12(c)–14
(c). However, as time progresses, both the controllers suc-
cessfully counter the effect of biased torque governed by the
time constant difference in both flywheels by producing the
optimized control torques. Figs. 12(d)–14(d) show that the
presence of parametric uncertainty contributes to the slight
increase in the cost value of the D-FMPC controller.

Thus, it can be concluded that the proposed D-FMPC
controller performs almost similarly to the FMPC con-
Table 4
Numerical results of CEACS.

Scenario Controller Pointing Accuracy Osci

Roll Pitch Yaw Roll

1 FMPC 0:0021o 0:0023o 0:00050o

D-FMPC 0:0022o 0:0025o 0:00055o

2 FMPC 0:0021o 0:0023o 0:00050o

D-FMPC 0:0022o 0:0025o 0:00055o
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troller in both scenarios and shows robustness against the
parametric uncertainty. The performance results in terms
of attitude pointing accuracies, oscillatory transient, and
percentage overshoot are tabulated in Table 4.

Scenario 3 validates the outcome of approximating the
computationally intensive FMPC controller by a computa-
tionally efficient D-FMPC controller.

A computational comparison between the two con-
trollers is conducted, considering execution time and mem-
ory usage. The simulations are performed in MATLAB
R2018a, and the computer hardware specifications consist
of an Intel Core i7-1165G7 11th Generation quad-core
processor running at 2.8 GHz, 8 GB RAM, and a
256 GB SSD Hard disk. The operating system is Microsoft
Windows 10 Pro.

From Fig. 15(a), it is seen that the total execution time
of the FMPC controller is 9.54 s, and that of the D-
FMPC controller is only 1.226 s. The total execution time
includes 6000 iterations of the code. Similarly, the FMPC
controller takes on average 1.59 ms to complete one itera-
tion and on the other hand D-FMPC only takes 0.205 ms
on average to complete a single iteration as shown in
Fig. 15(b). The memory usage plot given in Fig. 16 shows
that the FMPC controller used 2.642 MB of memory for
storing the information in variables while, the D-FMPC
controller used 1.846 MB of memory to store its variables.
Thus, it validates that the D-FMPC controller offers a
smaller computational burden to the satellite compared
to the FMPC controller, while performing the CEACS atti-
tude regulation task equally well as its counterpart.

6. Stability demonstration

Stability analysis is a crucial aspect as it ensures the
closed-loop system operates predictably and reliably. In
conventional control systems, stability theorems are used
to investigate the stability of closed-loop systems. These
theorems are based on mathematical principles and models
that govern the system’s operation. However, a deep-layer
NN-based controller contains thousands of nodes and lay-
ers, making it impractical to prove the stability of each
node in the path using explicit mathematical equations.
Analyzing the stability of an NN-based controller becomes
more challenging when it fully replaces other controllers. A
feasible solution to this problem is a two-step process. The
first step involves rigorous training of the NN using a large,
llatory Transient (Yes/No) Percentage Overshoot (%)

Pitch Yaw Roll Pitch Yaw

No 2.11 7.57 0.88
No 2.11 7.57 0.88

No 2.11 7.57 0.88
No 2.11 7.57 0.88
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refined dataset, and the second step involves investigating
its performance under a high and wide range of initial con-
ditions. Therefore, to demonstrate the stability of the D-
FMPC controller a Monte Carlo simulation environment
has been implemented. Here, a wide range of both positive
and negative initial angles have been used. However, for
demonstration purposes, only pitch angle regulation has
been presented for six higher initial angles as an example.
The initial angles have been given in Table 2. The numeri-
cal results have been shown in Fig. 17.

From Fig. 17(a), it is seen that the CEACS attitude reg-
ulation with all the positive and negative initial angles suc-
cessfully converge within 400 s and at the steady-state, all
the pitch angle trajectories obtain the same pointing accu-
racy of 0:0025o as shown in Fig. 17(b). Thus, it shows that
the D-FMPC controller can successfully regulate the
CEACS attitude pointing for the entire range of 	78�.

7. Conclusions

This novel work contributes to the design of a computa-
tionally efficient D-FMPC attitude controller, whereby a
deep learning-based replicates a computationally complex
FMPC controller to regulate the CEACS attitude pointing.
For the performance investigation of the proposed con-
troller, numerical results have been presented in three sce-
narios. Scenario 1 demonstrates the performance of the
D-FMPC controller in comparison to the FMPC controller
for the CEACS attitude pointing in the presence of external
disturbance torques and actuator constraints. Scenario 2
investigates the robustness of both controllers against para-
metric uncertainty; here, the frictional torque difference
between the counter-rotating flywheels is considered. Sce-
nario 3 validates that the D-FMPC controller is more com-
putationally efficient than the FMPC controller, enhancing
its feasibility for regulating the satellite CEACS attitude.
The stability of the D-FMPC controller has been demon-
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strated through the Monte Carlo simulation environment
and the proposed controller successfully regulates the
CEACS attitude pointing within 	78�. The numerical
results have shown that the D-FMPC controller performs
equally well as the FMPC controller, by achieving the
desired pointing accuracy and maintaining the actuator
torques within the prescribed actuator constraints. More-
over, the proposed controller D-FMPC shows robustness
against frictional torque variations. Thus, it validates the
computationally efficient D-FMPC controller can easily
replace the computationally intensive FMPC controller,
and it can be considered a potential CEACS attitude con-
troller for smaller satellites.

The design approach of D-FMPC controller provides an
opportunity to replicate any computationally intensive
controller with a deep learning based computationally effi-
cient controller suitable for any smaller satellite with a lim-
ited computational capability. The results can be
considered as an example to design an independent deep
learning-based attitude controller in contrast to only using
this approach for estimation of unknown parameters to
integrate robustness in the base line controller. In addition,
the proposed deep-learning solution can serve as a poten-
tial precursor to other novel deep-learning based satellite
attitude controllers.

It is important to acknowledge certain limitations when
training the neural network with simulated data to approx-
imate a sophisticated control technique. Specifically, the
effectiveness of the D-FMPC controller may be constrained
within a specific altitude range and it may have limited tol-
erance for white noise in real-time scenarios. Consequently,
the implementation of the D-FMPC controller in real-
world scenarios may necessitate the incorporation of addi-
tional features such as self-learning algorithms or correc-
tive capabilities.

Future CEACS studies on the adaptive deep learning-
based attitude control techniques to handle the unknown
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external disturbance torques in addition to the CEACS
parametric uncertainties, and actuator constraints is highly
desirable.
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