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Structural modifications of Cu/ZnO catalysts for methanol steam reforming (MSR) 

have been investigated as a function of precipitate aging in the catalyst preparation 

process. Freshly precipitated Cu,Zn-hydroxycarbonate precursor (HC) and Cu,Zn-

hydroxynitrate precursor (HN) were aged in their mother liquor for 120 min followed 

by washing, drying, calcination and reduction. The characteristics of the precursors 

before and after aging were determined by means of TG/MS, XRD, and SEM. 

Generally, more pronounced aging effect was observed for HC precursor (reference 

catalyst) while no significant effect of aging was observed for HN precursor.  

 

In order to determine the microstructural changes as a function of aging, the bulk 

structure of the Cu/ZnO catalysts was investigated by in-situ XRD, XAS, 63Cu NMR 

and HRTEM. The observed increase in the activity of the catalysts prepared by HC 

aging coincides with a decrease in copper crystallite size (i.e. an increase in Cu 

surface area) and an increase in the microstrain in the copper clusters presumably 

because of the improved interface between Cu and ZnO in comparison to the HN 
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prepared catalysts. Aging of the HN precursors results in large, separated and less 

strained Cu and ZnO particle with an inferior catalytic activity compared to aging of 

the HC precursors. 

 

An increase in catalytic activity of HN and HC was observed significantly after 

temporary addition of oxygen was done to the feed mixture. The higher catalytic 

activity does not correlate with an increase in copper surface area, microstrain or 

oxygen in copper cluster (Cu-EXAFS), but due to slight changes of the catalyst in the 

medium range order of Cu and ZnO in XAS analysis. Furthermore, the HRTEM and 

63Cu NMR investigations revealed that the copper particles get more sintered resulting 

in less interfacial contact of Cu to ZnO as was observed after the O2 pulse. Based on 

these comparative investigations, a structural model of the active catalyst as a 

function of aging was proposed for the HN preparative route. 
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Kajian ke atas modifikasi struktur mangkin Cu/ZnO bagi proses pembentukan semula 

stim metanol (MSR) telah dilakukan sebagai fungsi masa penuaan. Mendakan 

prekursor Cu,Zn-hidroksikarbonat (HC) dan Cu,Zn-hidroksinitrat (HN) telah 

dimatangkan di dalam cecair bahan tindakbalas selama 120 minit dan diikuti dengan 

proses pembasuhan, pengeringan, pengkalsinan dan penurunan. Teknik TG/MS, XRD 

dan SEM telah digunakan untuk mencirikan prekursor-prekursor sebelum dan selepas 

masa penuaan tersebut. Secara keseluruhannya, kesan penuaan yang ketara telah 

diperhatikan ke atas prekursor HC (mangkin rujukan) manakala tiada perubahan yang 

sangat ketara dapat diperhatikan dari prekursor HN. 

 

Bagi menentukan kesan modifikasi mikrostruktur sebagai fungsi masa penuaan, 

struktur pukal mangkin Cu/ZnO telah dikaji secara in-situ XRD, in-situ XAS, 63Cu 

NMR dan HRTEM. Hasil daripada kajian menunjukkan peningkatan di dalam aktiviti 

mangkin yang dihasilkan dari prekursor HC adalah sejajar dengan faktor penurunan 

saiz kristal kuprum (iaitu peningkatan luas permukaan kuprum) dan peningkatan daya 
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mikro regangan di dalam kekisi kuprum yang disebabkan oleh peningkatan antara 

muka Cu dan ZnO. Manakala penuaan prekursor HN menghasilkan prekursor yang 

bersaiz besar, terpisah dan kurang daya regangan antara partikel Cu dan ZnO. Ini 

menyebabkan kadar aktiviti yang lebih rendah bagi mangkin Cu/ZnO yang dihasilkan 

melalui proses penuaan prekursor HN berbanding  HC.  

 

Peningkatan yang ketara dalam aktiviti mangkin Cu/ZnO bagi HC dan HN dapat 

diperhatikan selepas penambahan sementara oksigen ke dalam bahan suapan. 

Peningkatan aktiviti yang tinggi ini didapati tidak berkaitan dengan peningkatan luas 

permukaan kuprum, daya mikro regangan atau oksigen yang terdapat di dalam 

susunan gabungan atom – atom kuprum (Cu-EXAFS), tetapi adalah disebabkan oleh 

sedikit perubahan yang berlaku di antara jarak pertengahan Cu dan ZnO seperti yang 

diperhatikan di dalam analysis XAS. Tambahan pula, kajian HRTEM dan 63Cu NMR 

menunjukan partikel kuprum menjadi semakin besar yang menyebabkan kurang 

interaksi antara muka Cu dan ZnO selepas penambahan sementara oksigen. Oleh itu, 

berdasarkan kajian ini, satu model struktur bahan mangkin aktif yang dihasilkan dari 

proses penuaan HN telah dicadangkan. 
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CHAPTER 1 

 

INTRODUCTION 

 

In general, this chapter represents some background of the well known Cu-based 

catalysts especially Cu/ZnO which is related to this study. Towards the end of this 

chapter, the application of the catalysts in hydrogen production particularly in 

Methanol Steam Reforming (MSR) reaction is described. 

 

1.1 Cu/ZnO Catalyst 

 

Copper catalysts are widely used for a variety of selective hydrogenation and 

dehydrogenation processes and it has been known at least since the 1920’s. For 

instance, Cu/ZnO catalyst formulation is well known for low-pressure methanol 

synthesis [1,2] and low-temperature water-gas shift reaction (WGS) [3]. Recently a 

lot of studies discussed its application for the production of hydrogen from methanol 

by steam reforming and/or partial oxidation reaction especially for fuel cell 

application [4,5]. Cu/ZnO catalysts also have been used in hydrogenation of carbon 

monoxide [6-8], carbon dioxide [9], unsaturated hydrocarbons and certain reactions of 

amines [10]. 

 

The performance of these catalysts is sensitive to the preparation methods, the choice 

of oxide phase used in them and the presence of small amounts of dopants such as 

alkali and alkaline earth compounds as well as of Group VIII metal. Most of the 

published studies reported the use of simple copper/zinc binary system as the 
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precursors of these catalysts rather than three or four components in one system. The 

implication of more components in one system makes the system much more 

complicated to understand and because of that, most of the extensive publications on 

these catalysts have concentrated on the simple copper/zinc oxide binary system. The 

incorporation of zinc oxide into the copper catalyst is of primary importance in 

making and maintaining a good dispersion of copper metal crystallites and also 

prevents the copper particles from sintering [1]. Moreover, the high activity of this 

particular system is believed to result from a strong interaction of the two phases 

(Cu/ZnO) leading to a specific quality of the active copper material which is a subject 

under discussion. In fact, this is widely documented in several reviews [10-13] which 

brought into evidences that controversial issues are yet lively. 

 

However, there are some controversies respective to the roles of Cu and ZnO that 

make this system interesting for investigations (i.e. the effects of structural and 

chemical promotion). Although the process (e.g. methanol synthesis) involving 

copper-based catalysts are well established industrially, debates still exist as to: 

 

i. the influence of the preparation method 

ii. the role of the reduced copper species on the surface of catalysts 

iii. the identification of the active sites  

iv. role of ZnO and Al2O3 in the catalytic process ( as Al2O3 is normally 

added to Cu/ZnO catalyst for industry) 

 

Cu-Zn-Al oxide catalysts have attracted great interest in the last decade after the the 

first paper was published by Klier [2]. Klier suggested that Cu is incorporated in the 
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ZnO phase on interstitial and substitutional sites, assuming three possible valence 

states Cu0, Cu+ and Cu2+. Klier’s proposals were made within the framework of bulk 

defect equilibria based on scanning transmission electron microscopy (STM), X-ray 

data and optical spectra [10]. He found that the defect structure and therefore the bulk 

of the catalyst determine the catalytic activity.  

 

The formation of Cu+ has also been reported by several authors [13,14]. In particular, 

Fujitani et al. [14] in their study on the interaction between support and metal catalyst 

suggested that the active component was not only Cu+ but also Cu0. Thus the support 

may play the role to control the Cu+/Cu0 ratio on which the catalytic activity depends. 

Other pronounces support effect was found by Bartley and Burch [15] when different 

copper catalysts are tested for the methanol synthesis from both CO/H2 and CO2/H2 

mixtures. In particular, Burch et al. [15,16] and Spencer [17] have proposed that the 

role of ZnO is to act as a reservoir for hydrogen and to promote the hydrogen spill-

over.  

 

In other point of view, the morphology effect, proposed by Yoshihara and Campbell 

[18], Ovesen et al. [19], Hadden et al. [20], and Topsøe and Topsøe [21], in which the 

morphology of copper particles on a ZnO support is responsible for the effect of ZnO 

upon the methanol synthesis, is also a controversial issue. The view, so far described, 

is further complicated by the fact that, depending on the experimental condition and 

on the catalyst preparation history, the formation of a Cu-Zn alloy may also occur 

[22,23]. As a result, this makes the system more complicated to understand, and hence 

point a great interest for further investigation. 
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Recent works carried out by Kniep et al. [24,25] and Günter et al. [26,27] show that 

the methanol synthesis and methanol steam reforming activity for binary Cu/ZnO 

catalysts can be related to the microstrain in copper particles.  Extensive in-situ XRD 

analysis, for determining the microstructural strain in both Cu and ZnO, clearly 

indicates that the specific Cu surface area of Cu/ZnO samples alone cannot 

unequivocally account for the observed methanol production rates of the systems. 

Structural defects of Cu resulting from presence of ZnO in Cu metal, incomplete 

reduction or epitaxial orientation to ZnO are believed to cause strain which modifies 

the Cu surface area and, thus, influence the catalytic activity.  

 

In contrast from the idea that ZnO also plays an important role in the catalytic activity 

of Cu/ZnO catalysts (i.e. methanol synthesis), a contradiction appeared when, 

Chinchen et al. [1,12] reported that the methanol synthesis reactions occur exclusively 

on the surface of metallic copper and ZnO acts as carrier to prevent sintering of the 

copper particles. Therefore, ZnO has no special role towards copper in the synthesis 

of methanol.  

 

In summary, the complexity in understanding the synergetic effect between copper 

and zinc oxide, the active states of copper and the effects of ZnO are still subjected to 

some debates, hence a great interest in research area. The origin for all of these issues 

are the knowledge-based of the relationships between catalytic activity, surface 

structure and bulk structure in order to come to a rational catalyst design. Therefore, a 

better understanding of the precursor phases is needed since precursor structure plays 

a unique role in determining the interdispersion and the activity of the final catalysts. 
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Different types of mechanism and conditions have been used in the preparation of 

catalyst precursor resulting in the formation of various types of crystalline phases.  

 

1.2 The Hydrogen Production From Methanol 

 

Hydrogen (H2) is used in vast quantities in the chemical industry for production of 

various bulk, fine and special chemicals, in food processing, for fuel production in 

refineries, in the steel industry and also directly as a fuel.  The largest portion of 

hydrogen in the world is manufactured at ammonia production units and consumed on 

site in the process. Other large consumers are the processes for methanol and 

hydrogen peroxide production. 

 

Hydrogen can be produced from both fossil and renewable sources. The largest 

quantities are manufactured from natural gas. However, in the future it can be 

produced by electrolysis of water using solar energy. In this case it can clearly be 

viewed as a sustainable source of energy. Hydrogen is the cleanest fuel available and 

ideally produces only water during combustion, which makes it an interesting 

alternative to decrease the anthropogenic emission of carbon dioxide (CO2). The most 

important driving force for using hydrogen in automotive applications is the potential 

of obtaining low emissions of hazardous compounds. Hydrogen can be used in 

internal combustion engines or in fuel cell engines.  

 

However, storing hydrogen on board a vehicle poses many concerns regarding safety 

and handling and can affect customer acceptance in a negative way. Hydrogen can be 

stored as a compressed gas at high pressures, as liquid at cryogenic temperature, in 


