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Floating offshore wind turbines (FOWT) are considered the economically viable
solution for installing wind turbines in waters greater than 60m deep. The barge is one
of the floating structures developed for the FOWT. It has the simplest design,
fabrication and installation in comparison to other FOWT like the semi-submersibles,
Tension Leg Platforms and Spar buoys. In order to reduce the cost of FOWT, concrete
has been utilized to reduce the capital and operational expenditure of steel. However,
there are limiting factors to the construction of concrete FOWT, which form the basis
of this project. Concrete has low tensile strength and susceptible to chemical attack and
freezing temperatures. As a result, a larger wall section is required to combat the
environmental conditions of the sea which results in higher energy consumption, large
volume of construction materials, a weightier structure and more difficulty in massive
production.

Hence in this study, ultra high performance fiber reinforced concrete (UHPFRC) is
used to develop a barge FOWT to support a 5MW wind turbine for a site at the Atlantic
and Northern North Sea region offshore Scotland. According to extensive review of the
literature conducted, UHPFRC material has shown better mechanical properties and
more resistance to marine conditions in comparison to conventional reinforced cement
concrete (RCC). Also, due to high strength of UHPFRC material, the thickness of
structural element can be reduced which leads to less material consumption and easy
manufacturing. Therefore, UHPFRC barge is developed and investigated in this study
to support a FOWT.

The considered Barge is square shaped (40m x 40m) with a moon pool at the center
(10m x 10m). Analysis had been conducted using a finite element method to evaluate
hydrodynamic motions and structural strength of the UHPFRC barge under different
loading conditions and the results were compared to a conventional reinforced cement
concrete barge. Also, experimental tests were performed to measure the stability of the
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UHPFRC barge small sized prototype subjected to water waves in the wave flume and 
compared with RCC barge small sized prototype.

The hydrodynamic analysis results from the finite element analysis showed less pitch 
motions in the UHPFRC barge than the RCC barge in 7 out of the 12 design load cases 
(DLCs) considered. The roll motions were less than 50 in both barges with insignificant 
difference between them and the UHPFRC barge experienced 10% to 20% less heave 
motions than the RCC barge in all 12 DLCs. In the structural analysis, the UHPFRC 
barge experienced a maximum deformation of 14mm under the applied loads. From the 
experimental tests conducted on the UHPFRC and RCC barge small sized prototypes, 
the RCC barge had lower heel compared to the UHPFRC barge with a percentage 
difference of 10% - 70%. However, the RCC barge experienced severe green water 
load which could cause it to capsize. In overall, the UHPFRC barge proved to be more 
effective in achieving better hydrodynamic motions and stability for the barge FOWT 
in comparison to the RCC barge and should be considered as alternative to the RCC 
material.
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PEMBANGUNAN KONKRIT BERTETULANG GENTIAN BERPRESTASI
ULTRA TINGGI UNTUK TURBIN ANGIN

Oleh

GYANG LAZARUS DACHOLLOM

Februari 2022

Pengerusi : Farzad Hejazi, PhD
Fakulti : Kejuruteraan

Turbin angin luar pesisir terapung (FOWT) dianggap sebagai penyelesaian yang
berdaya maju dari segi ekonomi untuk situasi memasang turbin angin di perairan yang
lebih dalam daripada 60 meter. Tongkang adalah salah satu struktur terapung yang
dibangunkan untuk FOWT. Ia mempunyai reka bentuk, fabrikasi dan pemasangan yang
paling mudah berbanding dengan FOWT yang lain seperti FOWT jenis separa
tenggelam, jenis Pelantar Kaki Ketegangan dan jenis Spar buoys. Bagi mengurangkan
kos FOWT, konkrit telah digunakan untuk mengurangkan modal dan perbelanjaan
keluli. Walau bagaimanapun, terdapat beberapa faktor yang mengehadkan pembinaan
FOWT konkrit. Faktor-faktor tersebut adalah asas projek ini. Konkrit mempunyai
kekuatan tegangan yang rendah dan terdedah kepada ancaman serangan kimia dan suhu
beku. Akibatnya, dinding yang lebih besar diperlukan untuk menghadapi persekitaran
laut. Hal ini meningkatkan penggunaan tenaga, menambahkan jumlah bahan binaan,
menghasilkan struktur yang lebih berat dan menyukarkan pengeluaran secara besar-
besaran.

Oleh itu, dalam kajian ini, konkrit bertetulang gentian berprestasi ultra tinggi
(UHPFRC) digunakan untuk menghasilkan baj FOWT untuk menyokong satu turbin
angin 5MW yang berada di rantau Atlantik dan utara kepada Laut Utara luar pesisir
Scotland. Menurut tinjauan literatur yang dijalankans secara meluas, bahan UHPFRC
telah menunjukkan sifat mekanikal yang lebih baik dan lebih tahan terhadap keadaan
laut berbanding dengan konkrit bertetulang simen konvensional (RCC). Selain itu,
disebabkan kekuatan bahan UHPFRC yang tinggi, ketebalan elemen struktur boleh
dikurangkan. Hal ini akan mengurangkan penggunaan bahan dan memudahkan
pembuatan bahan. Oleh itu, tongkang UHPFRC dibangunkan dan disiasat dalam kajian
ini untuk menyokong FOWT.

Baj yang dipertimbangkan adalah berbentuk empat segi (40m x 40m) dengan satu
kolam bulan di tengah (10m x 10m). Analisis telah dijalankan menggunakan kaedah
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unsur terhingga untuk menilai gerakan hidrodinamik dan kekuatan struktur baj
UHPFRC di bawah keadaan pemuatan yang berbeza dan datanya dibandingkan dengan
baj RCC. Selain daripada itu, ujian eksperimen telah dilakukan untuk mengukur
kestabilan prototaip baj UHPFRC bersaiz kecil yang tertakluk kepada gelombang air
dalam flum gelombang dan dibandingkan dengan prototaip bersaiz kecil tongkang
RCC.

Hasil analisis hidrodinamik daripada analisis unsur terhingga menunjukkan kurang
prestasi pic dalam baj UHPFRC berbanding dengan baj RCC dalam 7 daripada 12 kes
beban reka bentuk (DLC) yang dipertimbangkan. Pergerakan guling adalah kurang
daripada 5o dalam kedua-dua baj dengan perbezaan yang tidak ketara antara mereka
dan baj UHPFRC mengalami 10% hingga 20% kurang gerakan limbung berbanding baj
RCC dalam kesemua 12 DLC. Dalam analisis struktur, baj UHPFRC mengalami ubah
bentuk maksimum 14mm di bawah beban yang dikenakan. Daripada ujian eksperimen
yang dijalankan ke atas UHPFRC dan atas prototaip baj RCC bersaiz kecil, baj RCC
mempunyai tumit yang lebih rendah berbanding baj UHPFRC dengan perbezaan
peratusan 10% - 70%. Bagaimanapun, baj RCC mengalami beban “green water load”
yang teruk yang boleh menyebabkannya terbalik. Secara keseluruhan, baj UHPFRC
terbukti lebih berkesan untul mencapai pergerakan hidrodinamik dan mempunyai
kestabilan yang lebih tinggi untuk baj FOWT berbanding dengan baj RCC dan boleh
dianggap sebagai satu alternatif kepada bahan RCC.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Floating Offshore Wind Turbines (FOWT) are wind turbines which are mounted on
floating structures that allows the turbine to generate electricity in water depths not
feasible for fixed- foundation turbines. They are considered the economically viable
solution for installing wind turbine in waters greater than 60m deep. The average water
depth and distance from shore for installing offshore wind turbines have been on the
increase over time. The increase in distance from the shore correspond to higher mean
speed and increased capacity factors ((Rodrigues et al., 2015).

Several floating structures have been developed to support the FOWT. These include
semi-submersibles, spar buoys, Tension Leg Platforms (TLP), tri- floaters, barges and
hybrid platforms (combination of two or more of the floating structure concepts
mentioned). The Barge is one of the floating structures developed for the FOWT. It has
the simplest design, fabrication and installation in comparison to other floating
platforms like the semi-submersibles, Tension Leg Platforms and Spar buoys (Jonkman
and Buhl, 2007). It is generally square shaped with a square moon pool at the center
which has several functions including, extracting wave energy from the sea, providing
damping for the barge and reducing its heave motions. It is ballasted in order to achieve
a reasonable draft and to avoid wave slamming (Vijay et al., 2016). Stability of the
barge is achieved through distributed buoyancy and the weighted water plane area for
righting moment.

Figure 1.1 : FLOATGEN damping pool®
(Source : Ideol, 2016)
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1.2 Background and Earlier Work

Offshore wind turbines (fixed-bottom turbines in shallow waters and FOWT) are
rapidly growing in Europe with more than 8GW already installed (Nuno and Margarida,
2019). The UK offshore wind is the front runner with over 20.8TWh installed in 2017
which supplied 6.2% of the UK’s total estimated electricity generation (The Crown
Estate, 2017). Yibo et al. (2021) highlighted that this development has reduced the
UK’s CO2 generation to 8.6 million tonnes. The European Wind Energy Association
suggested that 150GW capacity be achieved by 2030 to meet 14% of the EU’s final
electricity consumption (EWEA, 2018). In Asia, China and Japan have already
installed over 1.5GW and 50MW respectively, while Korea and Taiwan have capacity
targets for the coming years (Nuno and Margarida 2019).

The average water depth and distance from shore for installing offshore wind turbines
have been on the increase over time. The farther the distance from the shore, the higher
the mean speeds and capacity factors (Rodrigues et al., 2015). FOWT makes it possible
to install offshore wind turbines at long distances from shore to harvest the vast wind
resources in those regions. However, increasing the distance from shore increases the
foundation and installation costs as well as the operational and maintenance costs. The
strong wind and waves experienced by FOWT makes them more fragile and increases
their rate of failure as well as the severity of failure consequences (He et al., 2021).
Preliminary analysis by Beiter et al. (2016) suggested that FOWT have the potential of
achieving lower cost of energy (LCOE) than fixed-bottom turbines. However,
Hundleby et al. (2017) performed a detailed modelling which showed that long term
cost reduction is most likely to come from a combination of complimentary
innovations rather than a single breakthrough innovation.

A concrete floating structure has been proposed by researchers as one of means of
reducing the cost of FOWT. Doman (2014) designed a concrete tri floater
semisubmersible and compared the cost to a steel Hywind Float. The comparison
showed a cost reduction of about $2 million by using concrete. There is also a cost
saving on the concrete structure over its service life due to reduction in maintenance
requirements. However, there are limiting factors to the construction of concrete
FOWT floating structures, which form the basis of this project. Concrete has low
tensile strength and susceptible to chemical attack and freezing temperatures. Also, a
larger wall section is often required to combat the environmental conditions of the sea
which then results in higher energy consumption, large volume of construction
materials and a weightier structure (Butterfield et al., 2005; Denis et al., 2017).

Ultra high performance fiber reinforced concrete (UHPFRC) is a new and
commercially available concrete unique for its high strength, ductile behaviour and
high stability (Richard & Cheyrezy, 1995). Its unique properties include faster concrete
production, less curing waiting time, reduced construction costs, early completion of
projects, less maintenance and increased service life. Its application has mainly been in
constructing bridges, building components such as sunshades, cladding and roof
components and repair/rehabilitation of existing concrete structures (Voo, 2017).
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Different studies have been performed to investigate the characteristics of UHPFRC in
marine environments. Abbas et al., (2015); Elfmarkova et al., (2015); Pyo et al., (2017)
investigated the chloride diffusion of UHPFRC matrix and compared it with
conventional normal strength concrete (NSC). The results showed a far less diffusion
of (1 - 10) x 10-14 m2/s in the UHPFRC and (1 - 10) x 10-12 m2/s in the NSC. Abbas et al.
(2015) experimented on a 10cm thick UHPFRC concrete member immersed in 10%
NaCl solution for six months and then evaluated for compressive and flexural behavior.
Although the surface fibers corroded due to the presence of the chloride ion, the
mechanical properties of the concrete remained intact. In the case of a collision,
UHPFRC has displayed superior qualities in absorbing impact energy. Fan et al. (2018)
studied a novel steel- UHPFRC composite fender for a bridge protection in vessel
collisions by testing it in a drop hammer impact system. The proposed fender
demonstrated capability of effectively decreasing impact forces and responses on the
bridge and impact vessel. Fan et al. (2020) investigated the dynamic response of bridge
piers strengthened with UHPFRC, under barge impact. Three different configurations
were considered and the columns with two ends strengthened with UHPFRC jackets
were found to be superior in terms of costs-benefit ratio.

1.3 Problem Statement

A disincentive for the adoption of a concrete FOWT barge is its size and weight, which
requires sufficient dry dock facilities and giant cranes for its construction. Ioannou et
al., (2018) highlighted that, although concrete-based floating structures appear to be
cheaper than the steel based structures, they tend to be larger and there are problems
with their massive production.

A second disincentive for a concrete FOWT barge is its permeability and surface
cracks from various sources of loading which promotes chlorine diffusion. Chlorine
induced diffusion has been found to be the primary cause of premature deterioration of
reinforced concrete exposed to marine environment (Nabavi et al., 2012). Post-
tensioning has been used to increase concrete structures’ ability to resist cracking
(Doman, 2014), which also reduces the size of the structure. However, the structure is
still large and requires greater reduction in size and weight to make massive production
more effective.

According to extensive review of the literature conducted, UHPFRC material has
shown better mechanical properties and more resistance to marine conditions in
comparison to conventional reinforced concrete. Also, due to high strength of
UHPFRC material, the thickness of structural element can be reduced which leads to
less material consumption and easy manufacturing. Therefore, UHPFRC barge is
designed and investigated in this study to overcome the challenges experienced by
concrete FOWT barge.
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1.4 Objectives of Study

The following are the objectives of this study:

1. To develop an appropriate design for an UHPFRC barge to support an NREL
5MW reference wind turbine. The design is deemed appropriate based on
compliance to set guidance/regulations for the FOWT.

2. To assess the hydrostatic, hydrodynamic and structural behaviour of the
UHPFRC barge using a FEM software.

3. To evaluate the performance of the proposed UHPFRC barge and an RCC
barge by constructing scaled models and conducting experimental test to
measure their stability at different sea states in a wave flume.

1.5 Scope and Limitation of Work

This project work focuses on the design and evaluation of the hydrostatic,
hydrodynamic and structural behaviour of a UHPFRC barge in wind and wave
conditions. The effect of the vibrations from the wind turbine on the barge structure
during operation was not evaluated due to limited simulation tools available. Also, the
analysis of the mooring lines for sea keeping was not covered in this project.

1.6 Layout of the Project/ Thesis

Chapter 1 introduces the research topic and a background study on the topic is outlined.
The problem statement and objectives for the study are also presented therein. Chapter
2 presents the review of literature related to floating offshore wind turbines, the barge
and ultra high performance fiber reinforced concrete. The procedure employed to
design the UHPFRC barge is outlined in chapter 3. The analysis procedure used are
also clearly shown. The materials, equipment and procedure used in carrying out the
experimental tests are presented. Chapter 4 contains the results obtained from the FEM
analysis and experimental tests. Discussions and comparisons of the obtained results
are presented with the aid of graphs, figures and tables. In chapter 5, a summary of the
project is presented, conclusions are drawn based on the objectives of the study and
recommendations are made for future study.
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