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By 
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January 2022 

Chairman :   Noorfaizal bin Yidris, PhD 
Faculty :   Engineering 

Buckling occurs when composite laminated plates are forced into shear or 
compression. Composite materials combine two or more components to 
minimize weight while preserving strength and less attention has been paid to 
composite plate buckling. In order to develop more efficient and lighter 
structures, holes are frequently required. Also, to improve reliability and 
performance, these structural components must be analysed with various hole 
shapes under in-plane loads such as shear. Although research has been done 
on the effect of cutouts on plate structure, little is known about shear loading on 
symmetrical angle plied square plates with center cutouts. As a result, the 
current study used a circular hole in the center of the plate with angle ply stacking 
and shear loading as well as to evaluate the influence of shear load directions 
on the behavior of symmetric angle ply CFRP laminates. 

To achieve the study's objectives, an understanding of laminated square plate 
buckling is required, particularly under shear loads. The current work analysis is 
completely numerical, using FEA software. This method has been studied for 
use in the current study since it can save time and cost. Since the current study 
uses ABAQUS to complete the analysis, the method for using the software is 
obtained.  

The results of the numerical analysis are compared to previously available 
theoretical data gathered through a literature study. The percentage difference 
used in this study must be less than 10% to be legitimate and accepted. Carbon-
fiber reinforced polymers (CFRP) were chosen for the current investigation due 
to their material properties and common application in aerospace. This work's 
basic model geometry is a 200mm x 200mm square plate with no cutout. The 
model's central section is removed to further investigate shear buckling behavior 
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of laminated square plates. The type of hole analysed is circular to guarantee 
consistency.  
 
 
The hole diameter/width ratio, d/b on perforated plates can affect the shear 
buckling behavior of square perforated plates. As the hole ratio d/b increases, 
the plate's strength decreases. The study's findings showed that composite 
structural parts with plate holes require special consideration. They have 
variable buckling capabilities depending on the shear stress and the holes. The 
perforated plate with a hole d/b of 0.5 exhibits the greatest decrease in critical 
buckling stresses, whereas the perforated plate with a hole d/b of 0.1 exhibits 
the least reduction in critical buckling stresses.  
 
 
Additionally, the results of the analysis of plates with cutouts subjected to shear 
loadings can be used to guide researchers and engineers in determining the size 
of the hole that can be generated in their plate structure designs, notably in finite 
element analysis. 
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LENGKOKAN KE ATAS PLAT KOMPOSIT POLIMER BERTETULANG 
SERAT KARBON YANG BERLUBANG DAN DIBEBANI OLEH DAYA RICIH 

SESATAH 

Oleh 

IMAN SYAHIRAH BINTI OSMAN 

Januari 2022 

Pengerusi :   Noorfaizal bin Yidris, PhD 
Fakulti :   Kejuruteraan 

Lengkokan berlaku apabila plat berlapis komposit dipaksa mengalami ricih atau 
mampatan. Bahan komposit menggabungkan dua atau lebih komponen untuk 
meminimumkan berat sambil mengekalkan kekuatan dan kurang perhatian 
diberi terhadap tekuk plat komposit. Untuk membangun struktur yang lebih 
cekap dan lebih ringan, lubang diperlukan. Juga, untuk meningkatkan 
kebolehpercayaan dan prestasi, komponen struktur ini mesti dianalisis dengan 
pelbagai bentuk lubang di bawah beban dalam pesawat seperti ricih. Walaupun 
telah dilakukan penyelidikan mengenai kesan potongan pada struktur plat, tidak 
banyak yang diketahui mengenai pembebanan ricih pada plat segi empat 
bersudut simetri dengan potongan tengah. Akibatnya, kajian semasa 
menggunakan lubang bulat di tengah-tengah plat dengan susunan lapisan sudut 
dan pembebanan ricih sesatah serta menilai pengaruh arah beban ricih sesatah 
ke atas tingkah laku laminat CFRP lapis sudut simetri.   

Untuk mencapai objektif kajian, diperlukan pemahaman mengenai tekuk plat 
persegi berlapis, terutama di bawah beban ricih. Analisis kajian semasa 
dijalankan sepenuhnya secara berangka, menggunakan perisian FEA. Kaedah 
ini dikaji untuk digunakan dalam kajian semasa kerana dapat menjimatkan masa 
dan kos. Oleh kerana kajian semasa menggunakan ABAQUS untuk 
menyelesaikan analisis, kaedah untuk menggunakan perisian diperolehi.  

Hasil analisis berangka dibandingkan dengan data sedia ada dari kajian literatur. 
Perbezaan peratusan yang digunakan dalam kajian ini mestilah kurang dari 10% 
untuk menjadi sah dan diterima. Polimer bertetulang serat karbon (CFRP) dipilih 
untuk kajian semasa kerana sifat material dan aplikasi biasa dalam 
aeroangkasa. Geometri model asas ini adalah plat segi empat sama 200mm x 
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200mm tanpa potongan. Bahagian pusat model dikeluarkan untuk menyiasat 
dengan lebih lanjut tingkah laku tekuk ricih dari plat persegi berlapis. Jenis 
lubang yang dianalisis adalah bulat untuk menjamin konsistensi.  
 
 
Nisbah diameter lubang/lebar, d/b pada plat berlubang boleh mempengaruhi 
tingkah laku lengkungan ricih pada plat berlubang persegi. Apabila nisbah 
lubang d/b meningkat, kekuatan plat menurun. Hasil kajian menunjukkan 
bahawa bahagian struktur komposit dengan lubang plat memerlukan 
pertimbangan khas. Mereka mempunyai keupayaan tekuk berubah-ubah 
bergantung pada tegangan ricih dan lubang. Plat berlubang dengan lubang d/b 
sebanyak 0.5 mempamerkan penurunan paling besar dalam tegasan tekuk 
kritikal, manakala plat berlubang dengan lubang d/b sebanyak 0.1 
mempamerkan pengurangan paling sedikit dalam tegasan tekuk kritikal. 
 
 
Selain itu, hasil analisis plat dengan lubang yang tertakluk kepada beban ricih 
boleh digunakan untuk membimbing penyelidik dan jurutera dalam menentukan 
saiz lubang yang boleh dijana dalam reka bentuk struktur plat mereka, 
terutamanya dalam analisis unsur terhingga. 
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CHAPTER 1 

1 INTRODUCTION  

1.1 Introduction 

This chapter summarizes the study undertaken, including the research overview, 
research background, issue problem statements, research objectives, research 
scopes, and thesis layout.  

1.2 Research Overview  

Composites have become significant materials due to their light weight, high 
specific strength, high specific stiffness, superior corrosion resistance, and great 
fatigue resistance, when compared to the majority of commonly used metallic 
alloys, such as steel and aluminium alloys.  

Composite materials are also widely employed in a variety of applications, 
including the aircraft and aerospace industry, the automotive sector, and civil 
engineering (Atas et al., 2009).  

The advantages and benefits of lightweight structures in areas such as 
aerospace and automotive have prompted engineers to work with new materials. 
The behavior of these materials requires extensive testing, achieved through the 
development of appropriate design, analysis, fabrication, and production 
processes. Composite materials are just one of a growing number of innovative 
man-made materials that may be adapted for specific applications. However, 
certain additional material imperfections may be observed when composite 
materials are used. The cutout/hole is one of these imperfections (Damghani, 
2009).  

The selection of materials is critical during the design cycles of aerospace 
components and systems. It has a significant impact on a variety of aspects of 
aircraft performance, from design to disposal, including structural efficiency, 
safety and reliability, flight performance, payload, energy consumption, 
disposability, recyclability, and lifecycle cost (Mouritz, 2012).  

Reliability helps to mitigate the risk of threatening and unexpected failures. 
Numerous forces and structural stresses act on an aircraft both in flight and in 
stationary mode. When the aircraft is stationary, the pull of gravity produces 
weight, which the landing gear supports. During takeoffs and landings, the 
landing gear absorbs the forces applied to the aircraft fuselage. Any manoeuvre 
that results in acceleration or deceleration increases the forces and stresses 
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acting on the wings and fuselage during flight. Compression, shear, tension, 
bending, and torsion are all stresses that an aircraft's fuselage, wings, and 
landing gear must withstand. Each component of the wing structure absorbs 
these stresses and transmits them to the fuselage structure. The empennage 
(tail section) absorbs and transmits the same stresses to the fuselage. These 
stresses are referred to as loads, and the analysis of loads is referred to as a 
stress analysis (Vasudevan et al., 2016). Figure 1.1 illustrates the stresses 
acting on an aircraft (Federal Aviation Authority, 2012).  

Figure 1.1 : The stresses acting on an aircraft (Federal Aviation Authority, 
2012) 

Therefore, the critical requirements for aerospace structural materials include 
physical, mechanical, and chemical properties such as high stiffness, high 
strength, damage tolerance and fatigue durability, high thermal stability, low 
density, and high resistance to oxidation and corrosion, along with commercial 
requirements such as cost, servicing, and manufacturability (Flower, 2012).  

Practical considerations often necessitate the inclusion of a cutout in an aircraft 
subcomponent. Cutouts in the cover panels and wing spars of military fighter 
wings and commercial transport wings, for example, are required to allow for 
damage inspection and hydraulic line access. In certain circumstances, these 
structural elements are required primarily to withstand buckling.  As a result, 
understanding buckling behavior is required in order to design them effectively 
(Nemeth, 1995).  

1.3 Research Background 

The phrase composite material means that two or several materials are 
combined to generate a useful third substance on a macroscopic scale. 
Composite materials fiber-reinforced with high stiffness-to-weight and strength-
to-weight ratios have become essential in weight-sensitive applications (Jones, 
1999).  
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A typical sheet of composite material is a "lamina" or "ply." It is an essential 
building block. A fiber-reinforced lamina is made up of numerous fibers in a 
matrix (Reddy, 2004). The use of epoxy-resin, polyester-resin, vinyl-resin as 
matrix in many engineering and civilian applications has increased, from aircraft 
fuselages to tennis racket frames. The matrix material in a composite holds the 
fibers together, protects them from the environment, and carries interlaminar 
shear. It increases a component's impact and fracture resistance (Chaudhary et 
al., 2020).   

A "laminate" is a lamina collection layered to create the desired thickness and 
stiffness.  For example, a unidirectional fiber-reinforced lamina can be layered 
to allow fibers in each lamina to be orientated in the same or other directions 
(Reddy, 2004).   

Figure 1.2 illustrates a laminate consisting of a lamina with various fiber 
orientations. The stacking sequence refers to the sequence of numerous 
orientations of a fiber-reinforced composite layer within a laminate (Tawfik et al., 
2016). Figure 1.3 illustrates fundamental building components made of fiber-
reinforced composites.  

Figure 1.2 : A laminate constructed from lamina with varying fiber 
orientations (Reddy, 2004)  
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Figure 1.3 : Fundamental building components made of fiber-reinforced 
composites (Mallick, 2007) 
 
 
As seen in Figure 1.4, a standard laminate orientation code is employed to 
assure industry standards.  

 

Figure 1.4 : A standard laminate orientation code (Luca, 2017)  
 
 
Fiber-composite laminate materials have become increasingly popular due to 
their light weight and high strength. Compressive forces typically cause buckling 
of composite laminate plates in service. As a result, structural instability is a 



© C
OPYRIG

HT U
PM

 

 
5 

fundamental consideration in the design of composite plates. Most investigations 
on the stability of fiber-composite laminate plates have used rectangular plates 
(Pascal, 1978), (Hirano, 1979), (Rhodes et al., 1984), (Leissa, 1985), (Muc, 
1988), (Nemeth, 1988), (Hu & Lin, 1995) and (Vellaichamy et al., 1990). 
According to the previous studies, there are numerous studies on the buckling 
analysis of fiber reinforced composites subjected to compression loading that 
used rectangular plates. Also, less attention has been dedicated to shear-loaded 
square plates.  

Since 1969, when boron fiber-reinforced epoxy skins for F-14 horizontal 
stabilizers were introduced, the use of fiber-reinforced polymers has steadily 
increased. Carbon fiber-reinforced epoxy has become the dominant material in 
many fuselage, wing, and empennage components since the 1970s. Table 1.1 
shows an early use in military aircraft of fiber-reinforced polymers (Riggs, 1984).  

Table 1.1 : Early use in military aircraft of fiber-reinforced polymers  
 

Types of  
Aircraft  

Components of  
Aircraft  

Material Used  Weight Savings  
Compared to 

Metal 
Components (%)  

F-11  Wing fairings  Carbon fiber-epoxy  19 
F-14  Horizontal stabilizer box  Boron fiber-epoxy  19 
F-16  Fin leading edge and ertical 

fin box  
Carbon fiber-epoxy  23 

F-15  Rudder, fin, and stabilizer  Boron fiber-epoxy  25 
AV-8B  Fuselage, flaps, ailerons 

and wing skins  
Carbon fiber-epoxy  25 

F/A-18  Tail boxes, wing skins  Carbon fiber-epoxy  35 
(Riggs, 1984) 
 
 
Based on the table given, the combination of carbon-fiber epoxy reduces the 
weight of the aircraft compared to metal components.  

The composite usage on commercial aircraft started with some selective, 
secondary structural components constructed of high-strength carbon fiber 
reinforced epoxy. The Airbus A320, which was launched in 1988, was the first 
commercial aircraft to operate with an all-composite tail, including a vertical 
stabilizer, horizontal stabilizer, and tail cone. The composite used in the Airbus 
A380, which debuted in 2006, is shown schematically in Figure 1.5. 
Approximately 25% of its weight is made up of composites.   
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Figure 1.5 : The Airbus A380 incorporates fiber-reinforced composites 
(Mallick, 2007)  
 
 
Two concerns are considered when designing structures: first, the structure's 
strength, which is defined as its capacity to support a specified load without 
exceeding allowable stress; and second, the structure's capacity to support a 
specified load without undergoing unacceptable excess deformations. Due to 
the complexity of the structures of isotropic materials, these procedures are 
considerably simpler than those for anisotropic materials. Due to features like 
high specific stiffness and strength, anisotropic composites are critical in the 
design and construction of spacecraft, maritime vehicles, and sporting items. 
With the growing demand for lighter and stronger buildings, the search for ways 
to fully utilize the features of advanced composite materials has continued 
(Akbulut et al., 2010).  

Numerous challenges and concerns with the use of composite require attention. 
Prediction of buckling loads is a critical topic. Numerous research articles on 
plate buckling analysis can be found in the literature.   

By virtue of mid-plane symmetry, symmetrically laminated angle ply composite 
plates prevent strength reducing bending-stretching effects. In-plane loads 
frequently cause buckling of these plates. (Walker, 2010).  

Due to the high cost of fuel and materials, reducing excessive weight is a major 
design goal in both the space and aircraft industries. Eliminating weights made 
components lighter while maintaining structural integrity. Making holes and 
cutouts is a common way to reduce unnecessary weight (Yeh et al., 2007).  
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The basic geometries used in this study to investigate the buckling performance 
of the square plate are depicted in Figure 1.6. Throughout the study, the 
thickness of each ply is kept constant at 0.125 mm. The geometry is then 
transformed into a perforated plate design by removing the circular center 
portion of the plates. Then, the size of the square plate's centrally circular cutout 
is varied according to the aspect ratio d/b of 0.1, 0.2, 0.3, 0.4, and 0.5.  

 

Figure 1.6 : Basic geometries of square plate with cutout  
 
 
A set of simulations was conducted using fourteen different material 
configurations:   
 
[0°]4, [0°]8, [(15°/−15°)]𝑠, [(15°/−15°)2]𝑠, [(30°/−30°)]𝑠, [(30°/−30°)2]𝑠, [(45°/−45°)]𝑠, 
[(45°/−45°)2]𝑠, [(60°/−60°)]𝑠, [(60°/−60°)2]𝑠, [(75°/−75°)]𝑠, [(75°/−75°)2]𝑠, 
[(90°/−90°)]𝑠, [(90°/−90°)2]𝑠 laminated composite plates with cutout.   

This study takes account of the influence of circular cutouts on the buckling 
performance of composite plates in angle-ply laminates. Also, in this study, the 
effects of the circular cutout size on the buckling behavior of carbon-epoxy 
laminated composite plates are also included in different aspect ratios. 
Additionally, a finite element analysis was used to determine the influence of 
cutout on the buckling behavior of these plates. The present model is being 
verified and validated by comparing the obtained findings to those obtained from 
the reference (Loughlan, 2019) using the same geometrical parameters and 
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material parameters as in the references. The boundary conditions are also as 
given (Loughlan, 2019). The laminated plates are constructed from high-strength 
carbon-epoxy ply sheets with a ply thickness of 0.125mm. The properties of the 
ply material applied in the calculations are as follows: 𝐸1 = 140.0 𝑘𝑁/𝑚𝑚2, 𝐸2 = 
10.0 𝑘𝑁/𝑚𝑚2, and 𝐺12 = 5.0 𝑘𝑁/𝑚𝑚2 (Loughlan, 2019).   

1.4 Problem Statements  

Composite materials are widely employed in a variety of industries, including 
aerospace, marine, automotive, civil, and commercial equipment, as well as 
medical and recreational equipment. The growing use of composite materials is 
a result of their advanced material properties. Numerous studies have been 
conducted to identify the properties of a composite material; nonetheless, there 
are some areas that remain unexplored, particularly those involving the 
material's behavior. Another method for reducing weight, while also increasing 
stability, reliability, and accessibility, is to incorporate cutout/hole structures in 
the development of a product. During their use, these structures will be subjected 
to tensile and compressive loading, and it is critical for the engineer to identify 
the material's safe operating design and condition. It is also critical to determine 
the cause of a failure or fracture in a composite material. (Zahari et al., 2012)  

 Leonhard Euler investigated the column buckling problem for the first time in 
1757. Numerous efforts have been undertaken since then to improve the 
buckling capacity of thin columns, owing to their relevance in aeronautical, 
structural, mechanical, and a variety of other sectors of engineering. When it 
comes to safety engineering design, buckling analysis has become a key factor 
since the real stress at the site of failure is considerably lower than the material's 
ability to sustain imposed loads (Goel et al., 2021). A study of buckling resistance 
is required since buckling is frequently a critical factor in column design (Nugroho 
& Bahtiar, 2021).   

In composite structures, cutouts are frequently used. These are incorporated 
into structural components to allow for ventilation and, on occasion, to help 
lighten the structure. Cutouts are required in aircraft components (such as the 
wing spar and ribs) for access, electric and fuel lines, inspection, or to decrease 
the total weight of the aircraft. The panels are subjected to a variety of stresses 
and stress combinations as a result of the structure's various loads.   

Excessive in-plane loads can cause panels to buckle, and in these cases, the 
buckling strength of the panels is used as the strength criterion. To create lighter, 
more efficient structures, however, the reserve strength of panels beyond 
buckling must be utilized. Thus, in order to design laminated panels efficiently, it 
is desirable to have a complete understanding of their buckling, postbuckling, 
failure characteristics, and overall strength (Jain & Kumar, 2004).  
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For numerical analysis of the structure, the finite element method has been 
applied. FEM is a computational method for solving linear and nonlinear 
transient engineering challenges (Moaveni, 2011). Additionally, FEM may be 
used to forecast the failure and behavior of physical systems in a virtual domain 
(Maropoulos & Ceglarek, 2010).  

According to the above mentioned literature study, sufficient research exists to 
demonstrate the effect of cutout on the buckling response of laminated 
composite plates. The majority of researchers use FEM since it is one of the best 
tools for dealing with complex geometry. The FEM has been effectively used for 
a wide variety of problems, including fluid–structure interaction, thermochemical, 
thermomechanical, thermo-chemomechanical, biomedical engineering, 
ferroelectric, piezoelectric, and electromagnetics (Baccouch, 2021).  

Additionally, the research on the effect of hole plates under shear loads was 
chosen due to the lack of information found in the literature about the influence 
of symmetrically laminated angle ply composite plates with cutout under shear 
force. This demonstrates that the shear buckling of fiber reinforced composites 
with cutouts has received little consideration. As a result, this study decides to 
investigate the effects of symmetrically laminated angle ply composite plates 
with cutout subjected to shear loads using the FEM approach. 

1.5 Objectives of the Research  

The primary goal of this research is to determine the effect of hole/cutout 
diameter and fiber orientation on the buckling behavior of carbon-epoxy 
laminated composite square plates under simple-supported boundary conditions 
with circular holes when subjected to in-plane shear loading. Apart from the 
primary objective, numerous secondary objectives are associated with the 
primary objective of this research, such as:  
 

1) To analyze the buckling behavior of a symmetrically laminated angle ply 
composite plate with a circular hole and without a circular hole under 
shear loading.  

2) To evaluate the influence of shear load directions on the behavior of 
symmetric angle ply CFRP laminates. 

3) To investigate the effects of hole in different sizes on the shear buckling 
behavior of symmetric angle ply CFRP laminates. 

 
 
1.6 Research Scopes  

To accomplish the study's aims, an understanding of the fundamental buckling 
concept of laminated square plates is done, particularly when subjected to shear 
loadings. The current work analysis uses solely a numerical method, namely 
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finite element analysis (FEA) software. This strategy is being investigated for 
use in the current study since it can expedite the process of obtaining data and 
save cost. Due to the fact that the current study employs finite element analysis 
(FEA) software, namely ABAQUS, to perform the analysis, the method for using 
the software is acquired since the software that has been used by previous work, 
Loughlan (2019) was finite strip method. 

To determine the most appropriate material for the present study, a literature 
search is undertaken on the contents which will be used throughout the study. 
The study's materials were chosen based on their qualities and their widespread 
use in modern industries. The features of materials that are in demand in today's 
sectors include light weight and high strength. As a result, the optimum material 
for the current study has been chosen to be carbon-fiber reinforced polymers 
(CFRP) due to its material qualities and common application in the aerospace 
industry.  

Additionally, the square plate with no cutout is used as the basic model geometry 
in this work. The square plate is 200mm x 200mm in size without perforations. 
The shear buckling study is performed on a square plate with no cutout using 
the finite element tool, ABAQUS. The numerical analysis results are verified and 
validated by comparing them to previously published theoretical data collected 
through a literature study. To ensure that the analysis's results are valid and 
acceptable, the percentage difference used in this study must be less than 10%.  

Meanwhile, the detailed investigation of the shear buckling behavior of laminated 
square plates is continued by eliminating the model's center section. To ensure 
consistency throughout the investigation, the type of hole analysed is circular in 
shape. The current study considers five different hole sizes, namely hole ratios 
d/b of 0.1, 0.2, 0.3, 0.4, and 0.5.  

Finally, the findings from all of the investigations undertaken for this study are 
reviewed and discussed in order to better understand the buckling behavior of 
laminated square plates with circular holes under shear loadings.  Lastly, the 
study's findings are summarized and recommendations for further research are 
made.  

1.7 Thesis Layout  

This thesis is divided into five chapters, the contents of which are as follows:  
 

• Chapter 1: Introduction  

This chapter reviewed the study on the buckling of composite perforated plates 
under shear loading in general.  
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• Chapter 2: Literature Review  

This chapter provides a literature review that was conducted based on a 
previous study and published paper on the shear buckling of laminated plates 
with and without cutouts.  

• Chapter 3: Methodology  

This chapter describes the methods used in the research, which included the 
use of Finite Element Analysis software.  

• Chapter 4: Results and Discussions  

This chapter discusses the findings of research on the shear buckling 
performance of laminated plates with and without cutouts, as well as the 
verification and validation of numerical data produced. 

 Chapter 5: Conclusions and Recommendations  

This chapter concludes the study with a complete conclusion based on the 
research findings and some recommendations for future work.  
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