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With the applications of small unmanned aerial vehicles (UAVs) getting much 
more diverse, the need for a system that is capable of high lift force augmentation 
is important for longer flight endurance while possessing the versatility to perform 
diverse flight missions. Coanda UAV is one of the options. To address the said 
need, the current study explored the influence of the curved surface inclination 
angle on the lift augmentation performance and the Coanda jet flow behavior 
since the potential effects of curved surface inclination angle to lift performance 
are yet to be fully studied. In this study, both experimental and numerical 
computation approaches were employed for the analysis involving two curved 
surfaces with the curvature ratios of 1 and 2 with a jet velocity of 10 m/s to 30 
m/s while the surface inclination angles varying in the range of 0° to 40° were 
analyzed through computational analysis. The experimentation used the static 
pressure measurement method measured through 13 static pressure tap holes 
to plot the static pressure distribution along the test models whereas the 
numerical computation utilized Computational Fluid Dynamic (CFD) method 
using the k-ω SST CC turbulence model to simulate the Coanda jet flow. Both 
analyses deal with the 2-dimensional (2D) Coanda jet flow. The experimental 
data gave an overview of the static pressure distribution along the curved surface 
on different surfaces with curvature and showed the total lift performance of 
curvature ratio 2 is 52% more than the curvature ratio 1. The result extracted 
from CFD analysis closely followed the experimental data with a percentage 
difference of 6%. Similar to the experiment data, the curvature ratio 2 produced 
32% more lift force. The lift force generated under the effect of surface inclination 
angles, however, showed a fluctuating pattern and the highest generated lift 
force is obtained at 0° surface inclination angles valued at 5.23 N and 7.1 N for 
the curvature ratio 1 and 2, respectively. Nevertheless, the Coanda jet flow is 
capable to remain attached to the end of the surface at all surface inclination 
angles, and a slight increase of jet thickness of at least three times the initial jet 
thickness is observed at the edge of the curved surface in all inclination angles 
due to addition of mass flow from the entrained fluid. An increase in surface 
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inclination angle resulted in a thicker jet though the change is minimal. On the 
whole, the current study offers an analysis result on the impact of surface 
inclination angle on lift performance and demonstrated that designing the 
Coanda UAV with a greater curvature ratio and assuming a 0° surface inclination 
angle results in the highest generated lift force. 
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MUHAMMAD ALIMIN BIN MD SHAFIE 
 

Disember 2022 
 
 

Pengerusi : Mohd Faisal Bin Abdul Hamid, PhD  
Fakulti  : Kejuruteraan 
 
 
Dengan aplikasi pesawat tanpa juruterbang (UAV) kecil yang semakin pelbagai, 
keperluan untuk sistem yang mampu meningkatkan daya angkat yang tinggi 
adalah penting untuk memanjangkan ketahanan masa penerbangan tanpa 
mengorbankan kebolehan melaksanakan pelbagai misi penerbangan. Coanda 
UAV adalah salah satu pilihan. Dalam usaha untuk menangani keperluan 
tersebut, kajian semasa meneroka pengaruh sudut kecondongan permukaan 
melengkung terhadap prestasi peningkatan daya angkat dan tingkah laku aliran 
jet Coanda kerana kesan potensi sudut kecondongan permukaan melengkung 
terhadap prestasi daya angkat masih belum sepenuhnya dikaji. Dalam kajian ini, 
pendekatan secara eksperimen dan komputasi berangka digunakan untuk 
menganalisis dua permukaan melengkung dengan nisbah kelengkungan 1 dan 
2 pada kelajuan jet dari 10 m/s hingga 30 m/s sementara sudut kecondongan 
permukaan diubah dalam julat 0° hingga 40° untuk analisis pengiraan komputer. 
Eksperimen menggunakan kaedah pengukuran tekanan statik yang diukur 
melalui 13 lubang tekanan statik untuk mengambarkan taburan tekanan statik 
sepanjang model ujian manakala pengiraan komputer menggunakan kaedah 
Dinamik Bendalir Pengiraan (CFD) dengan model turbulensi k-ω SST CC untuk 
mensimulasikan aliran jet Coanda. Kedua-dua analisis berurusan dengan aliran 
jet Coanda 2-dimensi (2D). Data eksperimen memberikan gambaran umum 
tentang taburan tekanan statik sepanjang permukaan melengkung pada nisbah 
kelengkungan yang berbeza-beza dan menunjukkan prestasi angkat 
keseluruhan nisbah kelengkungan 2 adalah 52% lebih tinggi daripada nisbah 
kelengkungan 1. Keputusan yang diperoleh dari analisis CFD bersetuju dengan 
data eksperimen dengan perbezaan peratusan 6%. Sama seperti data 
eksperimen, nisbah kelengkungan 2 menghasilkan 32% daya angkat lebih 
tinggi. Daya angkat yang dihasilkan di bawah kesan sudut kecondongan 
permukaan, bagaimanapun, menunjukkan corak yang berubah-ubah dan daya 
angkat yang tertinggi diperoleh pada sudut kecondongan permukaan 0° dengan 
nilai 5.23 N dan 7.1 N untuk nisbah kelengkungan 1 dan 2. Walau 
bagaimanapun, aliran jet Coanda mampu untuk terus melekat pada hujung 
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permukaan pada semua sudut kecondongan dan peningkatan sedikit ketebalan 
jet sekurang-kurangnya tiga kali ganda ketebalan jet asal diperhatikan di 
bahagian hujung permukaan lengkung pada semua sudut kecondongan 
disebabkan oleh penambahan aliran jisim dari kesan bendalir yang terjalin. 
Peningkatan sudut kecondongan permukaan menghasilkan ketebalan jet yang 
lebih tebal walaupun perubahan ini adalah minima. Secara umum, kajian ini 
memberikan hasil analisis mengenai pengaruh sudut kecondongan permukaan 
pada prestasi angkat dan menunjukkan daya angkat yang tertinggi boleh 
diperoleh dengan mereka-bentuk UAV Coanda dengan nisbah kelengkungan 
yang lebih tinggi dan dengan menganggap sudut kecondongan permukaan 0°. 
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CHAPTER 1 
 

INTRODUCTION 
 

1.1 Background 
 

The application of unmanned aerial vehicle (UAV) is gaining more popularity in 
the recent decade. In 2020, the global UAV market was valued at 14.3 billion 
and is projected to grow with a Compound Annual Growth Rate (CAGR) of 14% 
by the year 2030 (Precedence Research, 2020). This promising trend is reflected 
in Figure 1 which forecasts the estimated global market value for the years 2021 
to 2030. The projection includes the military, commercial, and recreational 
market sectors in the UAV industry. 
 

 

Figure 1: UAV market value forecast from 2021 – 2030 (Precedence 
Research, 2020) 
 

The increasing popularity of UAVs is due to their adaptability in carrying out a 
range of missions and their capacity to be outfitted with a variety of sensors and 
cameras. These missions include reconnaissance, search and rescue, mailing 
and delivery, monitoring, and photography (Hassanalian et al., 2018; Saeed et 
al., 2018). These missions are often handed to a group of UAVs that come from 
the small UAV category where its applications are often in urban areas.  To this 
end, various concepts of small UAVs have been developed to match different 
mission requirements and environments, either indoors or outdoors. Various 
methodologies have been used to distinguish these UAVs into specific 
classifications. The small UAVs can be characterized based on their design 
configurations which are the Horizontal Take Off and Landing (HTOL), Rotary 
wing, and Bio-inspired UAVs.  
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The HTOL is a type of UAV that requires space or runway for it to reach the 
minimum required speed to take-off or land, unlike the rotary wing UAVs which 
employ their propulsion system in a vertical direction to gain thrust for take-off, 
landing as well as hovers (Hassanalian & Abdelkefi, 2017). Finally, the Bio-
inspired UAV, which is designed to emulate the flight of live things like birds and 
insects. This sort of UAV might be able to fit into very small spaces due to its 
small size, which can be as little as a few millimetres. However, the benefit is 
complicated by miniaturisation. 
 

Regardless of their classes, each UAV is desired to possess high performance, 
especially for missions that require high flight endurance or high payload 
capacity. However, to achieve the said characteristics, the energy capacity 
carried onboard the UAV system acts as the limiting factor. This limitation can 
be addressed by either developing a power supply (i.e. battery) with a larger 
energy storage capacity or by improving the airframe design to minimize the 
power usage of the UAV’s system to overcome the negative aerodynamic forces 
such as drag (Hassanalian & Abdelkefi, 2017). Unfortunately, battery 
miniaturization and energy capacity technology are limited to the current 
technological progress, even though it is largely contributing to the total weight 
of the UAV system (Petricca et al., 2011). Improvement on the airframe design 
on the other hand offers large room for optimizations largely in terms of lift-to-
drag ratio (L/D), especially for the new type of UAV that is yet maturing such as 
the Coanda UAV.  
 

The Coanda UAV benefits from a fluid dynamics phenomenon called the Coanda 
effect in its propulsion system. Figure 2 illustrates the typical design of the 
Coanda UAV, often characterized by its dome-shaped body geometry.  
 

 

Figure 2: The schematic drawing of the Coanda UAV  
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With an encased rotor placed on top of the UAV, it generates lift by drawing the 
surrounding fluid into the shroud and ejecting it as a thin high-velocity jet 
tangential to the highly curved surface of the UAV. The Coanda effect ensures 
the jet flow follows the contour of the body geometry, hence generating lift that 
is not only produced by the pressure differential but also from the downward jet 
momentum (Hamid et al., 2018). Although the typical design of this type of UAV 
is referred from the design produced by Geoff Hatton in the AESIR project 
(Figure 3) (Hatton, 2010), Henri Coanda himself is the first inventor that develops 
a flying vehicle that utilized the Coanda effect in its propulsion system which is 
similar to the AESIR, is a saucer-shaped named Avrocar as shown in Figure 4. 
 

  

Figure 3: The Coanda UAV designed by Geoff Hatton (Hatton, 2010)  

 

Figure 4: The Avrocar (Francine et al., 2015) 
 

Since the Coanda UAV is part of the rotatory wing class, it is much more 
advantageous compared to the other type of UAVs in terms of flight mission 
versatility due to its hover capability. Moreover, the Coanda UAV offers safe 
human interaction and resistance to collision especially in a tightly spaced indoor 
environment since its rotating component is safely enclosed inside a shroud. 
However, to maintain a hover flight, rotary wing UAVs demand high power usage 
(Bouabdallah et al., 2005; Petricca et al., 2011). Therefore, the current study is 
interested in enhancing the aerodynamic lift augmentation capability of the 
Coanda UAV to reduce the required power for the Coanda UAV to maintain 
hover flight, hence increasing flight endurance. 
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1.2 Problem Statement 
 

The current rotary wing UAVs such as quadcopters do not perform well in 
forward flight due to the effect of retreating blade stall (Lorber et al., 2000). The 
phenomenon occurs due to the retreating side of the rotor disc experiencing a 
much lower relative wind velocity compared to the advancing side. Fixed-wing 
UAVs would not endure such issues, however, they are frequently outfitted with 
intricate mechanisms that add to the overall weight of the system. It also lacks 
the capability to hover in a fixed position due to its low thrust-to-weight ratio which 
makes it much less versatile for diverse missions that require fixed position 
monitoring over a period of time (Darvishpoor et al., 2020). As a result of these 
constraints, a new type of rotary wing UAV incorporating Coanda jets, the 
Coanda UAV has been developed as an alternative with an enclosed rotor 
placed inside a shroud. This reduces the effect of retreating blade stall during 
forward flight and makes it safe to operate in a tight space or near a human. 
Nevertheless, for a rotary wing UAV such as the Coanda UAV to maintain its 
hover flight requires a large amount of energy which in turn will reduce the flight 
endurance. For that reason, further study is required to address the need for 
enhanced lift performance for Coanda UAVs.  
 

The established studies related to the Coanda UAV highlight the critical effects 
of jet parameters and surface curvature on the flow development and 
performance on the surface (Wessapakdee et al., 2014; Ahmed et al., 2014; Ping 
et al., 2010; V. Inthasuwan, 2013). Most of the presented conclusions are in 
agreement with each other that the most effective region to generate lift force is 
near the end of the curved surface (Gan et al., 2015; Wessapakdee et al., 2014). 
This is due to the large area of a concentrated negative region generated around 
it before the suction pressure declines as the flow progresses downstream due 
to the loss of flow momentum. This illustrates the potential effects of surface 
curvature and angle inclination to lift performance when the large concentrated 
area of negative pressure is shifted toward the center. The area of a 
concentrated negative region can be observed in Figure 5, which depicts the 
illustration of the pressure contour on the curved surface of the Coanda UAV at 
a normal and tilted angle. Since pressure acts normally to the curvature of the 
surface, the broad region of high suction pressure in the pressure contour over 
the curvature will not be able to harvest the lift force at full capacity. Therefore, 
controlling the angle of the surface curvature with regard to the incoming jet flow, 
𝜃 so that the force vector is closer to the vertical direction (as illustrated in Figure 
5) appears to be capable of increasing the lift produced since the lift due to the 
pressure differential is much predominant compared to the downward force of 
the jet momentum (Hamid et al., 2018). This is beneficial to UAV endurance 
since the system is dependent solely on the amount of energy on board.  
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Figure 5: Schematic illustration of the pressure contour on a normal (left) 
and tilted (right) curved surface 
 

However, so far, the studies on this topic are still insufficient to establish a good 
understanding of the effect of the surface angle on the behavior of the flow. Up 
to the point where this study is conducted, only a few authors are interested in 
this topic. The study performed by Bailey (1961) tested the influence of the 
surface inclination angle on a curved surface, but his investigation solely focuses 
on the high-speed subsonic speed application. As a result of multiple early 
failures in the endeavor to incorporate the Coanda effect into an aircraft design, 
interest progressively faded (such as the project of AVROCAR). However, in the 
early 2000s, as UAV use increased, the Coanda effect's popularity started to rise 
once more especially after the creation of the AESIR project was made public. 
The study carried out by Maman demonstrated that the surface inclination angle 
contributes positively when compared to the typical Coandá UAV as long as the 
rotational component is considered but the study is primarily focused on the 
impact of the rotational component on aerodynamic performance and only takes 
a 45° angle into account and does not investigate further on the contribution of 
surface angle inclination on the aerodynamic lift augmentation (Maman, 2019). 
Other authors that are interested in the potential effects of angle inclination to lift 
performance include Saeed and Gratton (2010) and Barlow et al. (2009). 
However, these studies are too fundamental and only interested in the ring wing 
surface acting as the deflection surface for the Coanda jet. Moreover, these 
studies are still only conceptual and yet to be realized in the Coanda UAV 
application.  
 

Based on the mentioned studies, the current study is interested to explore the 
flow behavior of Coanda when it flows tangentially to a much simpler curved 
surface geometry under the influence of surface inclination angle, which is a 
much more suitable consideration for the UAV application compared to the 
annular airfoil. Besides that, the current study is interested to examine the impact 
of curved surface inclination angles on jet flow development and behavior. 
Moreover, moving forward the established result could serve as a guideline for 
choosing the right design configuration for the Coanda UAV during the 
preliminary design step. 
 

Resultant force 

Drag 

Lift Region of concentrated 

negative pressure 𝛼 

 
Drag 

Lift 

Resultant force 
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1.3 Objectives 
 

From the research gap presented in subsection 1.2, numerous questions are 
raised that are of interest to the current study to explore. 
 

1. How does the distribution of pressure on the curved surface contribute 
to lift augmentation? 
 

2. How does the curved surface inclination angle impact the jet flow 
development and behavior? 
 

3. At what inclination angle and which curved surface geometry provide 
the best flow performance enhancement? 

 

This study aims to investigate the influence of varying surface inclination angles 
on the overall lift augmentation performance of the Coanda jet and the flow 
behavior under such a setup. To carefully answer the stated questions above, a 
list of objectives is designed and summarized as follows. 
 

1. To analyze the lift performance of the Coanda jet on the curved surface 
with varying curvature ratios through experimental analysis. 
 

2. To analyze the lift performance of the Coanda jet on the curved surface 
with varying curvature ratios and inclination angles through 
computational simulation analysis. 

 

1.4 Scope and Limitations 

 

It should be noted that the current study focuses on both experimental and 
computational simulation approaches. The general aim of this study is to offer a 
preliminary investigation of the design configuration of the Coanda UAV, which 
involves the profile of the curved surface. In this early stage of analysis, 
simplification is assumed to break down the complexity of the problem. Here, 
only 2-dimensional flow is considered due to the symmetricity of the semi-
spherical geometry of the Coanda UAV. Since the static pressure on the curved 
surface of the Coanda UAV is similar due to the symmetricity of the geometry at 
any horizontal plane, the test model can be further simplified into a quarter of the 
sphere. In this study, the analysis is focused more on the aerodynamic lift 
augmentation during the hovering flight since the rotary wing UAV uses a large 
amount of energy to stay afloat in a fixed position. Again, due to the symmetricity 
of the semi-spherical geometry, any drag force acting on the Coanda UAV is 
canceled out by another drag force similar in magnitude on the opposite side of 
the Coanda UAV. Therefore, in this analysis, the drag force is omitted. 
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Based on Darvishpoor et al., the application of small UAVs in the urban area is 
limited by the dynamic flight environment and operational constraints, resulting 
in its operation within a low Reynold number regime with the typical flight speed 
varying from 6 m/s to 20 m/s (Darvishpoor et al., 2020). However, these speeds 
are applicable for forward flight only and since the maximum jet velocity of a 
Coanda UAV is limited by the highest RPM of the motor used to drive the rotor, 
there is no upper limit on how far should the jet speed needed to be analyzed in 
this study. Hence, the upper limit of the speed obtainable by the blower used in 
the experiment is taken as the cap. Therefore, the current study analyses the 
flow with the jet velocity of 10 m/s to 30 m/s with an increment of 10 m/s.  
 

1.5 Thesis Structure 
 

This thesis will be decomposed in the following way. In Chapter 1, an introduction 
to the topic of study is presented and both objectives and scope of the study are 
defined. Chapter 2 will present the literature review on flow control through the 
Coanda jet and the previous attempts to capture the effect both experimentally 
and numerically. Chapter 3 defines the methodology that will be utilized to 
achieve the outlined objectives, which involves the experimental static pressure 
measurement and computational numerical analysis. Chapter 4 exhibits both 
experimental and numerical results, follow-up by a discussion of the qualitative 
and quantitative data. Finally, Chapter 5 presents the conclusion obtained from 
the conducted study.  
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