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Abstract: Background/Objectives: The COVID-19 pandemic caused by the novel severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2) virus has exposed the vulnerabilities and unpreparedness
of the global healthcare system in dealing with emerging zoonoses. In the past two decades, coron-
aviruses (CoV) have been responsible for three major viral outbreaks, and the likelihood of future
outbreaks caused by these viruses is high and nearly inevitable. Therefore, effective prophylactic
universal vaccines targeting multiple circulating and emerging coronavirus strains are warranted.
Methods: This study utilized an immunoinformatic approach to identify evolutionarily conserved
CD4+ (HTL) and CD8+ (CTL) T cells, and B-cell epitopes in the coronaviral spike (S) glycoprotein.
Results: A total of 132 epitopes were identified, with the majority of them found to be conserved
across the bat CoVs, pangolin CoVs, endemic coronaviruses, SARS-CoV-2, and Middle East respira-
tory syndrome coronavirus (MERS-CoV). Their peptide sequences were then aligned and assembled
to identify the overlapping regions. Eventually, two major peptide assemblies were derived based on
their promising immune-stimulating properties. Conclusions: In this light, they can serve as lead can-
didates for universal coronavirus vaccine development, particularly in the search for pan-coronavirus
multi-epitope universal vaccines that can confer protection against current and novel coronaviruses.

Keywords: SARS-CoV-2; coronavirus; universal vaccine; peptide; cell-mediated immunity

1. Introduction

Coronaviruses (CoVs) were thought to only cause common colds in humans until
2002–2003, when severe acute respiratory syndrome-coronavirus (SARS-CoV) struck the
world health system. The SARS-CoV outbreak caused 8098 infections and 774 deaths
globally (~10% mortality) [1]. Nearly 10 years after the SARS outbreak, another coronavirus
outbreak took place in the Middle East and the etiological agent was identified as Middle
East respiratory syndrome coronavirus (MERS-CoV). The outbreak then spread to South
Korea, with the first case reported in 2015 involving a 65-year-old man who had recently
travelled to the Middle East [2]. Compared to SARS-CoV, MERS-CoV had the highest
mortality rate of ~35% among the three outbreak strains, with a total of 2458 infections and
848 reported deaths. In December 2019, a novel coronavirus strain namely SARS-CoV-2
caused a large-scale viral outbreak in WuHan, China. Since then, it has spread rampantly
throughout the world and caused respiratory distress in humans. The disease associated
with SARS-CoV-2 was coined COVID-19 and resulted in the breakdown of the healthcare
system in many countries. The outbreak was eventually announced as a global pandemic by
WHO on 11 March 2020 [3]. As of July 2024, COVID-19 has affected more than 775 million
people and caused more than 7 million deaths worldwide [4].

As the coronaviral spike (S) glycoprotein is located outside the viral particle and medi-
ates viral entry into host epithelial cells, it is undoubtedly the main target of neutralizing
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antibodies (NAbs) upon infection, making it the most important therapeutic target and
the main focus in vaccine design. However, the emergence of new SARS-CoV-2 Omicron
variants has rendered the vaccines ineffective, with ChAdOx1 nCoV-19 (Vaxzevria, As-
traZeneca) conferring almost no protection from 20–24 weeks after the second dose of
vaccine [5]. It is also notable that the emergence of new variants of concern (VOC), such as
Omicron, has attracted attention globally as the new variants can escape the neutralizing an-
tibodies and have increased transmissibility due to the presence of more than 30 mutations
as compared to the parental strain, SARS-CoV-2-Wuhan-Hu-1 [6–9]. In view of the rising
concerns regarding the increased infectivity of the new variants and controversies about
the effectiveness of the existing vaccines, there is an urgent need for a pan-coronavirus
vaccine that can induce the synthesis of neutralizing antibodies and is more comprehensive
in conferring protection against the newly emerging variants as well as future coronavirus
outbreaks While many groups have predicted and identified evolutionarily conserved
epitopes in silico [10–16], and some of them were validated in vitro and in vivo [17–23],
this study scrutinized the conserved epitopes further. Many predicted cytotoxic T lym-
phocyte (CTL), helper T lymphocyte (HTL), and linear B lymphocyte (LBL) epitopes were
found in close vicinity to the S glycoprotein. Instead of studying them individually, they
were aligned into single and relatively long peptide sequences. This novel strategy of
having multi-epitopes is expected to stimulate a stronger and multi-faceted immune re-
sponse against coronaviruses, addressing the limitations of the current vaccines against the
emerging variants.

In this study, the evolutionarily conserved epitopes in both human and animal coron-
aviruses were identified using unique immunoinformatic approaches. After a stringent
scrutiny and selection, 52 CTL epitopes, 11 HTL epitopes, and 68 linear B-lymphocyte
(LBL) epitopes were identified from 30 coronavirus sequences derived from human CoVs
(hCoVs) responsible for the common cold, SARS-CoV, MERS-CoV and SARS-CoV-2. Sub-
sequently, the predicted epitopes were aligned and assembled into two final composite
peptide sequences that were found to be evolutionarily conserved across SARS-CoVs,
bats, and pangolin coronaviruses. These two assembled epitopes were not only found
to be conserved in many of the coronavirus strains, but they also possessed HTL, CTL,
and B-cell antigen binding sites, and they matched a diverse array of HLA class I and II
supertypes prevalent in the human population, indicating their potential to activate both
T and B cells effectively. Although these epitopes were identified on the basis of being
conserved in SARS-CoVs and bat and pangolin coronaviruses, their distinctive compat-
ibility with human HTL and CTL and B cells renders them of high potential in vaccine
development. Altogether, these discoveries not only pave the way for the development of a
pan-coronavirus multiepitope vaccine to combat existing and novel coronavirus strains but
its immunoinformatics are highly applicable in universal vaccine development, especially
in identifying immunogenic conserved epitopes in target antigens.

2. Materials and Methods

2.1. Coronaviral S Gene Sequence Retrieval and Sequence Conservation Analysis

Forty-two coronaviral peptide sequences of the S gene were retrieved from the NCBI
GenBank (https://www.ncbi.nlm.nih.gov/genbank/ (accessed on 28 July 2024)) as listed
in Tables 1–3. A total of 24 sequences encompassing SARS-CoV-2 and its variants were
retrieved from the NCBI GenBank (Table 1) with the latest variant being XBB.1.5. Six se-
quences of the other coronaviruses causing SARS, MERS and common colds in humans are
listed in Table 2, and Table 3, on the other hand, tabulates twelve sequences of coronaviruses
isolated from bats, pangolins and birds.

https://www.ncbi.nlm.nih.gov/genbank/
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Table 1. SARS-CoV-2 and its variants.

Nomenclature Lineage Accession Number

SARS-CoV-2-Wuhan-Hu-1
strain NC_045512.2

Alpha B.1.1.7 OK340744.1
Beta B.1.351 OQ341818.1
Delta B.1.617.2 OQ314763.1

Gamma P.1 OQ316323.1
Omicron B.1.1.529 OQ344199.1
Omicron BA.1 OQ355083.1
Omicron BA.1.1 OQ352636.1
Omicron BA.2 OQ341824.1
Omicron BA.2.12.1 OQ355080.1
Omicron BA.2.75 OQ215893.1
Omicron BA.2.75.2 OQ346937.1
Omicron BA.4 OQ333888.1
Omicron BA.4.6 OQ349323.1
Omicron BA.5 OQ343976.1
Omicron BA.5.2.6 OQ346806.1
Omicron BF.11 OQ347094.1
Omicron BF.7 OQ346784.1
Omicron BN.1 OQ346744.1
Omicron BQ.1 OQ346454.1
Omicron BQ.1.1 OQ346605.1
Omicron CH.1.1 OQ346876.1
Omicron XBB OQ347865.1

Omicron XBB.1.5
XBB.1.5 is a sub-lineage of

XBB with an additional spike
RBD mutation S486P

Table 2. Sequences of hCoVs, SARS and MERS with their accession numbers.

Nomenclature Accession Number

MERS-CoV NC_019843
SARS-CoV (Urbani) AY278741.1

HCoV-HKU1–genotype B AY884001
HCoV-OC43 KF923903
HCoV-NL63 NC_005831

Table 3. Coronaviruses infecting bats, pangolins and birds.

Strain Name Accession Number

Bat CoV RATG13 MN996532.2
Bat CoV ZXC21 MG772934.1
Bat CoV YN02 MW201982.1

Pangolin CoV GX-P2V MT072864.1
Pangolin CoV GX-P5E MT040336.1
Pangolin CoV GX-P5L MT040335.1
Pangolin CoV GX-P1E MT040334.1
Pangolin CoV GX-P4L MT040333.1
Pangolin CoV MP789 MT121216.1

Avian CoV Ind-TN92-03 NC_048213.1
Avian CoV DK/GD/27/2014 NC_048214.1

Avian CoV MG10 NC_010800.1

In order to identify the conserved regions in the coronaviral S glycoproteins, the
amino acid sequence of the S glycoprotein of SARS-CoV-2 Wuhan-Hu-1 strain (Table 1)
was used as a reference sequence to perform Clustal Omega multiple sequence alignments
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in the EMBL-EBI (https://www.ebi.ac.uk/ (accessed on 28 July 2024)). The alignment
was based on the Percentage Identity Threshold of 80% in the amino acid sequences using
Jalview 2.11.2.6 (https://www.jalview.org/ (accessed on 28 July 2024)). The evolutionarily
conserved regions of the S glycoproteins were identified and subjected to antigenicity
screening, selection, and assembly.

2.2. The Flow of Prediction of Conserved HTL, CTL and Linear B-Lymphocyte (LBL) Epitopes of
Coronaviral S Glycoproteins

The prediction was performed separately for (i) CTL, (ii) HTL, and (iii) LBL epitopes
by referring to their respective databases. The flow of prediction of the conversed epi-
topes is depicted in Figure 1. The conserved epitopes were individually screened and
identified, and their antigenicity and toxigenicity were predicted using VaxiJen 2.0 and
ToxinPred, respectively.

tt

tt

tt

tt

Figure 1. Flow of in silico prediction of conserved epitopes of the coronaviral S proteins. The orange,
green and blue-colored lines represent the CTL, LBL and HTL prediction steps, respectively.

https://www.ebi.ac.uk/
https://www.jalview.org/
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2.2.1. Prediction of Conserved CTL Epitopes

The conserved CTL epitopes were identified using NetCTL-1.2 (https://services.
healthtech.dtu.dk/services/NetCTL-1.2/ (accessed on 1 August 2024)). A total of 30 amino
acid sequences of human coronaviral S glycoproteins were uploaded to NetCTL-1.2 by
following the default criteria, which entailed 9 amino acids in length with a minimum
threshold of 0.75. The available HLA class I supertypes provided by NetCTL-1.2 included
A1, A2, A24, A26, B7, B8, B27, B39, B44, B58, and B62. The redundant epitope sequences
were filtered and subjected to the subsequent screening. The selected epitopes were
then subjected to in silico antigenicity screening using VaxiJen 2.0 (http://www.ddg-
pharmfac.net/vaxijen/VaxiJen/VaxiJen.html (accessed on 1 August 2024)). The screening
was performed using the default settings and “Virus” was selected as the target organism
as part of the prediction criteria. Antigens labeled as “Probable Antigen” were sorted
and selected. Subsequently, the selected antigens were screened for their immunogenicity
using the IEDB Class I immunogenicity web-based prediction tool (http://tools.iedb.
org/immunogenicity/ (accessed on 1 August 2024)). The non-immunogenic epitopes
were indicated with negative scores and removed and the remaining epitopes were later
examined using ToxinPred (https://webs.iiitd.edu.in/raghava/toxinpred/protein.php
(accessed on 1 August 2024)) to eliminate the probable toxic CTL epitopes. Following that,
the epitopes were selected based on their high frequencies across different strains and
supertypes. Table 4 summarizes the prediction of CTL epitopes.

Table 4. CTL prediction tools and their prediction criteria.

CTL Prediction Tools Prediction Tool’s Criteria

NetCTL-1.2

1. Threshold: 0.75, 9-mers.
2. Predict with all available supertypes (A1, A2,

A24, A26, B7, B8, B27, B39, B44, B58, and B62).
3. Select sequences with a combined score of

above 0.75.
4. Remove repetitive epitope(s) after prediction.

VaxiJen 2.0
1. Target Organism: Virus.
2. Threshold: Default.
3. Exclude “Non-antigenic” epitope(s).

IEDB MHC Class I immunogenicity
1. Masking position: Default.
2. Exclude non-immunogenic epitopes.
3. Prediction method: SVM (Swiss-Prot) based.

ToxinPred

1. Quantitative Matrix (QM) method: Blank.
2. E-value cut-off for motif-based method: 10.
3. SVM threshold: 0.
4. Exclude “Toxin” epitope(s)

2.2.2. Prediction of Conserved HTL Epitopes

In the conserved HTL epitope prediction, the amino acid sequences of the coron-
aviruses were screened using IEDB MHC-II (http://tools.iedb.org/mhcii/ (accessed on 1
August 2024)) with the following prediction conditions: (i) Percentile rank: 25%, 15-mers
amino acid; (ii) prediction method: Consensus 2.22; (iii) HLA supertypes: HLA-DR, HLA-
DQ, and HLA-DP. Table 5 summarizes the prediction conditions for the conserved HTL
epitopes. Epitopes with a percentile rank lower than 20.0 were eliminated as this indicates
that those epitopes capture a less than 50% immune response [24].

Similar to the conserved CTL epitope prediction, the antigenicity and toxigenicity
of the epitopes were analyzed using the same methods as shown in Table 4. In addition,
the HTL epitopes were screened using IFNepitope (https://webs.iiitd.edu.in/raghava/
ifnepitope/predict.php (accessed on 1 August 2024)) for their abilities to induce interferon
synthesis. The prediction criteria included “Motif and SVM hybrid” as the prediction

https://services.healthtech.dtu.dk/services/NetCTL-1.2/
https://services.healthtech.dtu.dk/services/NetCTL-1.2/
http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html
http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html
http://tools.iedb.org/immunogenicity/
http://tools.iedb.org/immunogenicity/
https://webs.iiitd.edu.in/raghava/toxinpred/protein.php
http://tools.iedb.org/mhcii/
https://webs.iiitd.edu.in/raghava/ifnepitope/predict.php
https://webs.iiitd.edu.in/raghava/ifnepitope/predict.php
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approach and “IFN-gamma versus Non IFN-gamma” as the prediction model. The “NEG-
ATIVE” HTL epitopes were removed.

Table 5. Prediction flow and criteria of conserved HTL epitopes.

HTL Prediction Tools Prediction Tool’s Criteria

IEDB MHC-II

1. Percentile rank: 20%, 15-mers.
2. Method: Consensus 2.22.
3. HLA Supertype: HLA-DR, HLA-DQ, HLA-DP.

i. HLA-DR:

• DRB1*01:01
• DRB1*07:01
• DRB1*09:01
• DRB3-01:01
• DRB4*01:01

ii. HLA-DQ:

• DQA1*01:01/DQB1*05:01
• DQA1*01:02/DQB1*06:02
• DQA1*03:01/DQB1*03:02
• DQA1*04:01/DQB1*04:02
• DQA1*05:01/DQB1*02:01
• DQA1*05:01/DQB1*03:01

iii. HLA-DP:

• DPA1*01/DPB1*04:01
• DPA1*01:03/DPB1*02:01
• DPA1*02:01/DPB1*01:01
• DPA1*02:01/DPB1*05:01
• DPA1*03:01/DPB1*04:02

4. Exclude epitope(s) with percentile rank higher than 20.0

IFNepitope
1. Prediction approach: Motif and SVM hybrid.
2. Model for prediction: IFN-gamma versus non IFN-gamma.
3. Exclude “NEGATIVE” epitope(s).

2.2.3. Prediction of Conserved LBL Epitopes

ABCPred (https://webs.iiitd.edu.in/raghava/abcpred/ABC_submission.html (ac-
cessed on 1 August 2024)) and SVMTriP (http://sysbio.unl.edu/SVMTriP/prediction.php
(accessed on 1 August 2024)) were used for predicting the conserved LBL epitopes with
criteria such as 16-mers amino acids in length for both tools and the thresholds of 0.51
and 0.50, respectively, as shown in Table 6. All of the predicted epitopes were selected for
further antigenicity and toxigenicity prediction. The antigenicity and toxigenicity of the
epitopes were screened as described in Table 4.

Table 6. Prediction flow and criteria of conserved LBL epitopes.

LBL Prediction Tools Prediction Tool’s Condition

ABCPred
1. Length of epitope: 16-mers
2. Threshold: 0.51 and above
3. Overlapping filter: ON

SVMTriP
1. Length of epitope: 16-mers
2. Select epitope(s) with a score of 0.5 and above

2.3. Alignment of the Predicted Conserved CTL, HTL and LBL Epitopes and Allergenicity Prediction

To identify the locations of the epitopes identified in Section 2.2, SARS-CoV-2-Wuhan-
Hu-1 S glycoprotein was used as a reference sequence for multiple sequence alignment.

https://webs.iiitd.edu.in/raghava/abcpred/ABC_submission.html
http://sysbio.unl.edu/SVMTriP/prediction.php
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The overlapped regions of the epitopes were aligned. Then, they were assembled into long
amino acid sequences containing the conserved CTL, HTL, and LBL epitopes. Subsequently,
the assembled peptide sequences were screened for allergenicity using AllergenFP v1.0
(https://www.ddg-pharmfac.net/AllergenFP/ (accessed on 1 August 2024)) to identify
the probable allergens in the assembled sequences. The probable allergenic sequences, if
any, were eliminated.

2.4. Population Coverage Analysis

The assembled epitopes were subjected to population coverage analysis using the
IEDB Population Coverage analysis tool (http://tools.iedb.org/population/ (accessed on
5 October 2024)) with the default parameters. The analysis was conducted based on the
following parameters: (i) “World” as the selected area/population, and (ii) the calculation
was determined for “Class I”, “Class II”, and “Class I and II combined”. The “MHC-
restricted allele(s)” were determined based on the predicted HLA Class I and Class II
associated with the assembled epitopes.

2.5. Structural Visualisation of Assembled Epitopes

The structural information of the closed (PDB: 6VXX) and open states (PBD: 6VYB) of
the S glycoprotein were retrieved from the RCSB Protein Data Bank (https://www.rcsb.org/
(accessed on 10 August 2024)). By using the retrieved information, the structures of
the assembled conserved epitopes were then visualized using UCSF ChimeraX (https:
//www.cgl.ucsf.edu/chimerax/ (accessed on 10 August 2024)).

2.6. Molecular Docking of the Assembled Epitopes to TLR4 and TLR2 Receptors

The molecular docking was performed using HADDOCK 2.4 (https://www.bonvinlab.
org/software/haddock2.4/ (accessed on 15 October 2024)) to determine the interaction
of the assembled epitopes with cell receptors involved in the vaccine-induced immune
responses. Specifically, both Toll-Like Receptor 2 (TLR2) (PDB ID: 2z7x) and TLR4 dimer
(PDB ID: 4g8a) were selected as target receptors due to their localization on the cell
surface and their roles in initiating innate immune responses upon binding to vaccine
components [25,26]. The binding was analyzed using PDBsum (https://www.ebi.ac.
uk/thornton-srv/databases/pdbsum/ (accessed on 19 October 2024)) and the binding
affinity in terms of Gibbs free energy (∆G) and dissociation constants (M) at 25 ◦C be-
tween the docked molecules were calculated using the PRODIGY web server (https:
//rascar.science.uu.nl/prodigy/ (accessed on 19 October 2024)) [27,28].

2.7. Immune Simulation Using C-IMMSIM Server

Immune simulation was performed on the C-IMMSIM server (https://kraken.iac.rm.
cnr.it/C-IMMSIM/ (accessed on 19 October 2024)) to characterize the immune response
profile and immunogenicity of the assembled peptides [29]. The entire simulation was
performed for 300-time steps, equivalent to about 80 days (a time step is about 8 h). Three
peptide injections were given four weeks apart at time steps 10, 94, 178 [29].

3. Results

3.1. Conserved Regions in the S Glycoproteins of Bat and Pangolin CoV, hCoVs, SARS-CoV-2,
SARS-CoV, and MERS-CoV

The S glycoprotein of coronaviruses consists of a signal peptide, a receptor binding sub-
unit (S1) and a fusion subunit (S2) with a length ranging from 1105–1351 amino acids [30–33].
With reference to the SARS-CoV-2-Wuhan-Hu-1, in the S1 subunit, there is an N-terminal
domain (NTD, 14–305 residues) and receptor-binding domain (RBD, 319–541 residues),
whereas, in the S2 subunit, there is a fusion peptide (FP, 788–806 residues), heptapeptide
repeat sequence 1 (HR1) (912–984 residues), HR2 (1163–1213 residues), transmembrane
domain (TM, 1213–1237 residues), and cytoplasmic domain (1237–1273 residues) [34]. As
the coronavirus S glycoprotein is located outside of the viral particle and mediates the

https://www.ddg-pharmfac.net/AllergenFP/
http://tools.iedb.org/population/
https://www.rcsb.org/
https://www.cgl.ucsf.edu/chimerax/
https://www.cgl.ucsf.edu/chimerax/
https://www.bonvinlab.org/software/haddock2.4/
https://www.bonvinlab.org/software/haddock2.4/
https://www.ebi.ac.uk/thornton-srv/databases/pdbsum/
https://www.ebi.ac.uk/thornton-srv/databases/pdbsum/
https://rascar.science.uu.nl/prodigy/
https://rascar.science.uu.nl/prodigy/
https://kraken.iac.rm.cnr.it/C-IMMSIM/
https://kraken.iac.rm.cnr.it/C-IMMSIM/
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viral entry into the host epithelial cells, it is undoubtedly the main target of neutralizing
antibodies (NAbs) upon infection, making it the most important therapeutic target and
essential in vaccine design.

Given the importance of coronaviral S glycoprotein in vaccine development, this
study aimed to screen and identify the evolutionarily conserved sequences in animal and
human coronaviral S glycoproteins. The amino acid sequence of SARS-CoV-2-Wuhan-Hu-1
S glycoprotein served as the reference sequence for all retrieved coronavirus sequences.
Upon screening and alignment, the results revealed that bat coronavirus strains, such as
Bat CoV RATG13, Bat CoV ZXC21, and Bat CoV YN02, and pangolin coronavirus strains,
such as Pangolin CoV GX-P2V, Pangolin CoV GX-P5E, Pangolin CoV GX-P5L, Pangolin
CoV GX-P1E, Pangolin CoV GX-P4L, and Pangolin CoV MP789, showed some level of
evolutionary divergence compared to that of SARS-CoV-2-Wuhan-Hu-1 with an identity
threshold above 80% (Supplementary Figure S1). These results also explain why bats or
pangolins are deduced as the most likely reservoirs of SARS-CoV-2. In contrast, three
selected avian coronaviral S glycoproteins were distantly related to the reference sequence
due to their relatively high evolutionary divergence.

The amino acid sequences of SARS-CoV-2 and hCoVs, causing the common cold, were
also aligned with the reference sequence (Supplementary Figure S2). The S1 regions of
hCoVs, i.e., H-CoV-HKU1–genotype B, CoV-OC43, CoV-NL63, and CoV-229E, showed
insignificant similarities to the reference sequence. Interestingly, their S2 regions were
relatively conserved, particularly at residues S815–S874, S897–S934, S944–S1069, and S1207–
S1218. The residues S897–S1069 corresponded to the HR1 and HR2 regions of the S2 subunit,
whereas the S1207–S1218 region was part of the HR2 and TM domain. The conservation
of the HR1 and HR2 regions was documented previously and suggested as the targets
for the development of fusion inhibitor agents [35,36]. Furthermore, the alignment of
S glycoprotein sequences of SARS-CoV-2 and its variants, MERS-CoV and SARS-CoV,
revealed that SARS-CoV, SARS-CoV-2 and its variants were highly similar to each other
(Supplementary Figure S3). This finding suggests that the emergence of SARS-CoV and
SARS-CoV-2 might be due to the recombination of viral genomes between bat coronaviruses
in their natural reservoir (bats) or the intermediate host (pangolin), or both. There were no
observable evolutionarily conserved regions in the S glycoprotein sequence of MERS-CoV
relative to that of SARS-CoV. Altogether, the alignment of coronaviral S glycoproteins
with the reference sequence revealed a high evolutionary relationship between SARS-
CoV (Urbani), bat CoVs, and pangolin CoVs. It is suggested that the emergence of the
highly contagious and pandemic-causing SARS-CoV-2 is highly attributable to genome
recombination or mutations of the coronavirus in animal hosts such as bats [37–39]. The
high evolutionary relationship among coronaviruses sheds light on the development of
universal vaccines using conserved epitopes.

3.2. Prediction and Screening of Conserved CTL Epitopes of S Glycoprotein

The conserved CTL epitopes of S glycoprotein were first screened and predicted based
on 30 coronaviral S glycoprotein sequences. The NetCTL-1.2 of DTU Health Tech provides
high sensitivity and specificity among the publicly available bioinformatics tools [40,41].
This web-based bioinformatics tool utilizes a combination of predictive algorithms includ-
ing proteasomal cleavage, TAP transport efficiency, and MHC class I affinity to acquire
highly probable CTL epitopes in a given sequence. Given the easy accessibility, the epitopes
were selected based on the available human leucocyte antigen (HLA) class I supertypes
provided by the algorithms, such as A1, A2, A3, A24, A26, B7, B8, B27, B39, B44, B58, and
B62 supertypes.

HLA class I is known to be responsible for presenting processed antigens to T-cell
receptors. Generally, there are three classical HLA class I encoding genes (HLA-A, HLA-B,
and HLA-C) and all of them are extremely polymorphic. The number of identified HLA
alleles has grown exponentially over the past decades and is likely to increase with time.
To date, there are over 36,000 sequences of highly curated HLA alleles deposited in the



Biomedicines 2024, 12, 2530 9 of 28

IPD-IMGT/HLA Database (https://www.ebi.ac.uk/ipd/imgt/hla/ (accessed on 14 Au-
gust 2024)). Undoubtedly, the vast number of HLA alleles makes the epitope prediction
significantly complex and impractical. Thus, in the mid-1990s, an allele-specific classifi-
cation called HLA supertype was created, in which the first nine HLA class I supertypes
were described [42] and three more HLA class I supertypes were added later. Hence, there
are 12 HLA class I supertypes in the latest update [43]. dos Santos Francisco et al. (2015)
investigated HLA class I supertype frequencies among 55 human populations and found
that HLA supertypes A2, A3, B7, B27, and B44 were evenly distributed and not specific to
only certain populations [37]. Half of the populations showed frequencies at 14–29% for
A2, 14–32% for A3, 18–31% for B7, and 21–32% for B44. In contrast, HLA supertypes A1,
A24, B58, and B62 had greater frequency variations among the studied populations. It is
also worth mentioning that the A24 supertype was found at higher frequencies (40% on
average) in SEA, PAC, AUS, NEA and AME; meanwhile, the A1 supertype had an average
frequency of 21% in Africa, Europe, and Southwest Asia [44].

The prediction of conserved CTL epitopes was based on the HLA class I supertypes to
cover as many human populations as possible. The initial screening yielded 1,048,575 poten-
tial CTL epitopes that matched the 12 HLA class I supertypes. The large number of epitopes
was then streamed down based on their antigenicity, immunogenicity, and toxigenicity.
The elimination was performed using VaxiJen 2.0, IEDB MHC Class I immunogenicity and
ToxinPred, respectively. The remaining 2114 epitopes were subjected to another round of
screening based on their frequency of appearance in 30 coronavirus strains and 12 HLA
class I supertypes. After stringent selection and removal of redundant epitopes, 12 epitopes
(Table 7) were chosen for further analysis during the epitope’s alignment step.

Table 7. Final selected CTL epitopes.

Epitopes
Number of Coronavirus Strains in

Which the Epitope Is Found (Out of 30)
Location in the S
Glycoprotein *

Assigned
Name

RVVVLSFEL 25 509–517 CTL1
STQDLFLPF 24 50–59 CTL2

WTAGAAAYY 24 258–266 CTL3
YLQPRTFLL 24 269–277 CTL4
QIITTDNTF 24 1113–1121 CTL5

GAAAYYVGY 24 261–269 CTL6
ITDAVDCAL 24 284–293 CTL7

FTISVTTEI 24 718–726 CTL8
FVFLVLLPL 23 2–9 CTL9
QSYGFRPTY 15 493–501 CTL10
SVLYNFAPF 13 366–374 CTL11
YQPYRVVVL 6 505–513 CTL12

* Reference sequence: SARS-CoV-2-Wuhan-Hu-1 sequence.

3.3. Prediction and Screening of Conserved HTL Epitopes

The IEDB MHC-II prediction tool was used to predict and identify HTL epitopes be-
cause it provides a remarkable performance score owing to the embedded IEDB consensus
2.22 method [45,46]. Thirty coronavirus S glycoprotein sequences were mapped to 27 most
widely distributed HLA class II alleles as described by Greenbaum et al. (2011) [47]. A total
of 108,767 HTL epitopes were identified and selected based on their being in the top 20% of
the consensus percentile rank, corresponding to their abilities to capture 50% of the total
immune response [24].

The epitopes were subjected to antigenicity, IFN-inducing, and toxigenicity predictions.
The total number of remaining peptides was 1377, which rendered difficulties in epitope
selection. Consequently, peptides with 50% or greater matching with the HLA class II alleles
and coronavirus strains were chosen. This is to ensure a wider HLA supertype coverage
and provide a more comprehensive defense against multiple strains of coronaviruses. There
were 52 epitopes retained (Supplementary Table S1), which were subsequently subjected to

https://www.ebi.ac.uk/ipd/imgt/hla/
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sequence alignment with that of SARS-CoV-2-Wuhan-Hu-1 to locate their positions. All
of them were highly related to SARS-CoV-2 and its variants. Among them, three epitopes
including HTL3, HTL6 and HTL26 were also related to SARS-CoV (Urbani).

3.4. Prediction and Screening of Conserved LBL Epitopes

The identified conserved LBL epitopes represented potential antigen candidates for
stimulating the humoral immune response. Generally, B-cell epitopes are divided into
(i) linear and continuous or (ii) conformational and non-continuous (Figure 2). Although
the vast majority of B-cell epitopes are conformational (approximately 90%) [48,49], the
prediction of conformational B-cell epitopes is not as established as the LBL epitopes. Thus,
the LBL epitope prediction has gained the most attention, especially in epitope-based
vaccine development.

tt

 

tt

Figure 2. Schematic diagram of linear and conformational B-cell epitopes. Panels (i) linear or
continuous B-cell epitopes composed of amino acid residues that are sequential to one another;
(ii) conformational or non-continuous B-cell epitopes composed of amino acids that are non-sequential
and scattered along the peptide sequence.

In contrast to the conserved HTL and CTL epitope predictions, screening and predic-
tion of LBL are exclusive of HLA class I and II alleles. This is because B cells recognize
antigens via B-cell receptors (BCR), known as membrane-bound immunoglobulins (Ig).
Immunoglobulins consist of a constant fragment (Fc) region at the stalk and a variable (V)
domain at the top. Given its functions in antigen binding, the V domain is responsible for
the enormous theoretical diversity (1013–15) of the BCR repertoire [50,51]. Despite the high
plasticity and diversity of the BCR repertoire, several lines of evidence demonstrated high
frequencies of shared BCR clonotypes or elements in human BCR [52,53].

On this account, the conserved LBL epitopes were screened and identified using the
ABCPred and SVMTriP prediction tools. These tools are considerably accurate in their
predictions [54,55] and the results are analyzable. A total of 4238 peptides with thresholds of
0.5 and greater were obtained after eliminating the duplicated sequences. The antigenicity
and toxicity predictions were performed as described earlier to exclude non-antigenic and
toxigenic epitopes, leaving only 621 peptide sequences for further analysis. Subsequently,
the number of epitopes was narrowed to 68 by retaining the peptides similar to these
sequences or found in 50% or greater of the coronavirus strains (Table 8).
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Table 8. Final selected LBL epitopes.

Peptide Sequence
Number of Matched
Coronavirus Strains

Location in S
Glycoprotein

Assigned
Name

CVLGQSKRVDFCGKGY 25 1045–1060 LBL1
DKYFKNHTSPDVDLGD 25 1166–1181 LBL2
DEDDSEPVLKGVKLHY 25 1270–1285 LBL3
AMQMAYFNGIGVTQN 25 899–914 LBL4
AGAALQIPFAMQMAYR 25 903–918 LBL5
FAMQMAYRFNGIGVTQ 25 911–926 LBL6
ASANLAATKMSECVLG 24 1033–1048 LBL7
ATKMSECVLGQSKRVD 24 1039–1054 LBL8
HGVVFLHVTYVPAQEK 24 1071–1086 LBL9
HVTYVPAQEKNFTTAP 24 1077–1092 LBL10
FVSGNCDVVIGIVNNT 24 1134–1149 LBL11
VIGIVNNTVYDPLQPE 24 1142–1157 LBL12
HTSPDVDLGDISGINA 24 1172–1187 LBL13
LGDISGINASVVNIQK 24 1179–1194 LBL14
GTTLDSKTQSLLIVNN 24 120–135 LBL15
ESLIDLQELGKYEQYI 24 1208–1223 LBL16

YVGYLQPRTFLLKYNE 24 279–294 LBL17
NENGTITDAVDCALDP 24 293–308 LBL18
AVDCALDPLSETKCTL 24 301–316 LBL19
DPLSETKCTLKSFTVE 24 307–322 LBL20
TVEKGIYQTSNFRVQP 24 320–335 LBL21
VQPTESIVRFPNITNL 24 333-348 LBL22

NDLCFTNVYADSFVIR 24 388–403 LBL23
PTKLNDLCFTNVYADS 24 397–412 LBL24
VVLSFELLHAPATVCG 24 524–539 LBL25
FRSSVLHSTQDLFLPF 24 56–71 LBL26
TDAVRDPQTLEILDIT 24 586–601 LBL27
EILDITPCSFGGVSVI 24 596–611 LBL28

GVSVITPGTNTSNQVA 24 607–622 LBL29
HSTQDLFLPFFSNVTW 24 62–77 LBL30
YSTGSNVFQTRAGCLI 24 649–664 LBL31
TISVTTEILPVSMTKT 24 732–747 LBL32

TECSNLLLQYGSFCTQ 24 760–775 LBL33
RALTGIAVEQDKNTQE 24 778–793 LBL34

AVEQDKNTQEVFAQVK 24 784–799 LBL35
EMIAQYTSALLAGTIT 24 881–896 LBL36

AGTITSGWTFGAGAAL 24 892–907 LBL37
IGKIQDSLSSTASALG 24 944–959 LBL38

FKCYGVSPTKLNDLCF 24 374–389 LBL39
FVTQRNFYEPQIITTD 23 1116–1131 LBL40

YEQYIKWPWYIWLGFI 23 1219–1234 LBL41
PWYIWLGFIAGLIAIV 23 1226–1241 LBL42
EPLVDLPIGINITRFQ 23 237–252 LBL43

QTLLALHRSYLTPGDS 23 239–254 LBL44
TRFQTLLALHRSYLTP 23 249–264 LBL45

NQVAVLYQGVNCTEVP 23 606–621 LBL46
YQGVNCTEVPVAIHAD 23 612–627 LBL47

NNSIAIPTNFTISVTT 23 722–737 LBL48
RDLICAQKFNGLTVLP 23 860–875 LBL49
VFLVLLPLVSSQCVNL 22 16–31 LBL50
TGTGVLTESNKKFLPF 22 560–575 LBL51
NNSYECDIPIGAGICA 22 670–685 LBL52
SQSIIAYTMSLGAENS 22 702–717 LBL53

YTMSLGAENSVAYSNN 22 708–723 LBL54
GDCLGDIAARDLICAQ 22 851–866 LBL55
DIPIGAGICASYQTQT 21 663–678 LBL56
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Table 8. Cont.

Peptide Sequence
Number of Matched
Coronavirus Strains

Location in S
Glycoprotein

Assigned
Name

PFLMDLEGKQGNFKNL 20 187–202 LBL57
GWTAGAAAYYVGYLQP 20 270–285 LBL58
HRSYLTPGDSSSGWTA 19 258–273 LBL59
YGVGHQPYRVVVLSFE 19 501–516 LBL60
SYQTQTKSHRRARSVA 19 673–688 LBL61

TASALGKLQDVVNHNA 19 941–956 LBL62
KQLSSKFGAISSVLND 19 964–979 LBL63
PVLPFNDGVYFASTEK 18 95–110 LBL64

PGQTGNIADYNYKLPD 17 412–427 LBL65
RKSNLKPFERDISTEI 17 470–485 LBL66

GSFCTQLKRALTGIAV 17 757–772 LBL67
LQSYGFRPTYGVGHQP 15 492–507 LBL68

3.5. Alignment and Assembly of the Identified HTL, CTL T, and LBL Epitopes

In this study, a total of 131 epitopes (12 CTL epitopes, 52 HTL epitopes, and 68 LBL
epitopes) were identified. Generally, the selection criteria included (i) within the S1 or S2
region, (ii) conserved regions, and (iii) matching most HLA class I and II supertypes. The
identified epitopes were aligned to the SARS-CoV-2-Wuhan-Hu-1 S glycoprotein to identify
their positions (Supplementary Figure S4). They were then assembled and combined into
two peptide sequences encompassing 39 and 34 amino acid residues, respectively (Table 9).
Interestingly, the sequences of both assemblies, i.e., Epi1 and Epi2, corresponded to the
epitopes located within the S1 region of the S glycoprotein. Epi1 was located at the N-
terminal domain (NTD) (S256–294) while Epi2 was found in the RBD (S492–525). In addition,
they were relatively conserved among the pangolin and bat coronaviral S glycoproteins
(Table 3) except for the avian coronavirus strains. Notably, Epi1 was 66.7% (26/39) and
43.6% (17/39) similar to that of SARS-CoV and MERS-CoV, respectively (Supplementary
Figure S3), suggesting that the conservation of Epi1 renders it a promising candidate of
a broad-spectrum, cross-protective vaccine that potentially offers prophylactic protection
against multiple coronavirus strains.

Table 9. Final assembled epitopes.

Combination of
Peptides

Peptide
Sequence

Peptide
Location *

Peptide
Length

Matched HLA
Class I Supertype

Matched HLA Class II Supertype
Assigned

Name

CTL3+ CTL4+
CTL6+ CTL7+

HTL50+ HTL42+
HTL30+ HTL31+
HTL43+ LBL59+
LBL58+ LBL17

SGWTAGA
AAYYVGYL
QPRTFLLK
YNENGTIT

DAVDCALD

256–294
(N-terminal

domain)
39 A1, A2, A26, B8,

B39, B58, B62

HLA-DPA1*01:03/DPB1*04:01;
HLA-DPA1*01:03/DPB1*02:01;
HLA-DPA1*02:01/DPB1*01:01;
HLA-DPA1*02:01/DPB1*05:01;
HLA-DPA1*03:01/DPB1*04:02;
HLA-DQA1*01:01/DQB1*05:01;
HLA-DQA1*01:02/DQB1*06:02;
HLA-DQA1*04:01/DQB1*04:02;
HLA-DQA1*05:01/DQB1*02:01;
HLA-DQA1*05:01/DQB1*03:01;

HLA-DRB1*01:01;
HLA-DRB1*07:01; HLA-DRB1*09:01

Epi1

CTL1+ CTL10+
HTL51+ HTL25+
HTL14+ HTL22+
HTL23+ HTL15+
HTL16+ HTL45+
LBL60+ LBL68

LQSYGFQ
PTNGVG
YQPYRVV
VLSFELL

HAPATVC

492–525 (RBD) 34 A1, A2, A3, B7,
B27, B58, B62

HLA-DPA1*01:03/DPB1*04:01;
HLA-DPA1*01:03/DPB1*02:01;
HLA-DPA1*02:01/DPB1*01:01;
HLA-DPA1*02:01/DPB1*05:01;
HLA-DPA1*03:01/DPB1*04:02;
HLA-DQA1*01:01/DQB1*05:01;
HLA-DQA1*03:01/DQB1*03:02;
HLA-DQA1*05:01/DQB1*02:01;

HLA-DRB1*01:01; HLA-DRB1*07:01;
HLA-DRB1*09:01; HLA-DRB4*01:01

Epi2

* Reference sequence: SARS-CoV-2-Wuhan-Hu-1 sequence.
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Next, the allergenicity of Epi1 and Epi2 was determined by using AllergenFP v1.0. The
results showed that Epi1 was a potential allergen whereas Epi2 was a non-allergen. Epi1 had
the highest Tanimoto similarity index to a major allergen Pru av 1 (UniProtKB/Swiss-Prot
ID: O24248) that causes birch pollinosis and oral allergy in patients allergic to cherry. Epi1
shared nine amino acids with that of the Pru av 1 peptide, albeit scattered throughout the
latter’s peptide sequence (Supplementary Figure S5). Nonetheless, the overlapping residues
in the Epi1 and Pru av 1 peptides do not coincide with the known IgE binding regions of
the Pru av 1 peptide, i.e., the P-loop region (44LEGDGGPGT52) [56,57], suggesting that the
allergenic potential of Epi1 is mostly negligible. Furthermore, due to its relatively smaller
molecular size, the 3D structure and physiochemical properties of Epi1 are not definitive,
thus it is inconclusive to serve as an allergen after modification for vaccine development.

3.6. Population Coverage

Table 10 summarizes the findings of the population coverage of HLA classes of Epi1
and Epi2. The total world population coverage analysis showed that Epi1 and Epi2 matched
with 75.53% and 81.06% with HLA class I. In terms of HLA class II, Epi1 showed a coverage
of 99.88% whilst it was 99.74% for Epi2. When HLA class I and II were combined, the
coverage for both epitopes was notably high, at 99.97% for Epi1 and 99.95% for Epi2. These
results suggest that Epi1 and Epi2 are potential lead peptides for vaccine development,
targeting broad global coverage and addressing the challenges posed by mutations in
coronaviruses.

Table 10. Analysis of population coverage of HLA classes of Epi1 and Epi2.

Class
Epi1 Epi2

Coverage Average Hit PC90 * Coverage Average Hit PC90 *

Class I 75.53% 1.09 0.41 81.06% 1.25 0.53
Class II 99.88% 4.27 3.04 99.74% 3.82 2.53

Combined 99.97% 5.36 3.79 99.95% 5.07 3.48
* Minimum number of epitope hits/HLA combinations recognized by 90% of the population.

3.7. Identification of the Locations of the Conserved Epitopes in Coronaviral S Glycoprotein

As mentioned previously, Epi1 and Epi2 are located at the NTD (S256–294) and RBD
(S492–525), respectively (Figure 3a). Figure 3 indicates the closed state and open state
positions of Epi1 and Epi2 on the S glycoprotein.

 

ff

−  

Figure 3. Locations of the Assembled Epitopes in the S Glycoprotein. (a) Schematic diagram of
SARS-CoV-2 S glycoprotein with different colors representing the S1 subunit (S14–685) (magenta) and
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S2 subunit (S686–1273) (cornflower blue). (b) Ribbon and 3D structures of the closed state of SARS-
CoV-2 S glycoprotein (PDB: 6VXX). (b1) The ribbon structure of closed state S glycoprotein. The
locations of Epi1 and Epi2 were in cyan and orange colors, respectively. (b2) The orthogonal view of
the closed state of S glycoprotein with Epi1 (cyan) and Epi2 (orange). (b3) The top-down view of the
closed state of S glycoprotein displaying Epi1 (cyan) and Epi2 (orange). (c) Ribbon and 3D structures
of the open state of SARS-CoV-2 S glycoprotein (PBD: 6VYB); (c1) The ribbon structure of the open
state S glycoprotein and the locations of Epi1 and Epi2 in cyan and orange colors, respectively.
(c2) The orthogonal view of the open state of S glycoprotein displaying Epi1 (cyan) and Epi2 (orange).
(c3) The top-down view of the open state of S glycoprotein with Epi1 and Epi2 in cyan and orange
colors, respectively.

The position of epitopes on an antigen contributes to its antigenicity and immuno-
genicity. The findings showed that Epi1 (cyan) was slightly embedded within the NTD
(gray) and, therefore, was relatively less exposed than Epi2 (orange) located within the RBD
domain (S319–541). This justifies the conservation of Epi1. Nonetheless, the conservation
of epitopes is not solely determined by the exposure to immune cells or antibodies; it
also depends on the functional importance of the epitopes. Mutations in conserved epi-
topes possibly disrupt key processes, such as viral attachment, entry, and immune evasion,
thereby compromising the viral infectivity and replication in host cells [58–60]. In this
light, conserved epitopes are important to ensure the structural and functional integrity of
viral particles.

3.8. Molecular Docking of the Assembled Epitopes to TLR2 and TLR4 Receptors

To mount a robust immune response, it is of utmost importance for a vaccine to
interact with cell receptors. Molecular docking was therefore performed with Toll-like
receptors, specifically TLR2 and TLR4, as these receptors are well recognized for their roles
in interacting with viral structural proteins, which subsequently leads to inflammatory
cytokine production [61,62].

3.8.1. Docking of TLR2 with Epi1 and Epi2

The molecular docking analysis of Epi1 and Epi2 with TLR2 was performed using
the HADDOCK 2.4 web server. For Epi1-TLR2, HADDOCK clustered 141 structures
into 15 clusters, which represented 70% of the water-refined models (Figure 4). After
refinement, 13 structures were clustered into one cluster resulting in 100% of the water-
refined models. Epi1-TLR2 showed a strong binding affinity with a score of −76.6± 5.2,
in which a negative score demonstrates a good binding between the docked molecules
(Table 11). The interaction was visualized using UCSF ChimeraX 1.8 and the bonding was
analyzed using PDBsum. The results showed three salt bridges, 13 hydrogen bonds, and
180 non-bonded contacts.

Table 11. HADDOCK 2.4 docking results for Epi1-TLR2 and Epi2-TLR2.

Scores Epi1-TLR2 Epi2-TLR2

HADDOCK score −76.6 ± 5.2 −82.4 ± 6.5
Cluster size 13 25
RMSD from the overall lowest-energy structure (Å) 4.9± 0.3 0.4 ± 0.3
Van der Waals energy (kcal mol−1) −63± 4.5 −69.8 ± 8.8
Electrostatic energy (kcal mol−1) −255.2± 32.3 −245.9 ± 51.1
Desolvation energy (kcal mol−1) −21.6± 5.8 −37.3 ± 4.5
Restraints violation energy (kcal mol−1) 589.9 ± 65.3 738.6 ± 17.6
Buried surface area (Å2) 2292.3 ± 89.5 2271.0 ± 76.4
Z-Score −1.5 −1.5
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Figure 4. Docking of Epi1 with TLR2. (a) Epi1-TLR2 molecules. (b) The PDBsum results display the
protein–protein interface between chain A (TLR2) and chain B (Epi1). (c) The PDBsum results display
interacting amino acid residues in the interface.

Similarly, for Epi2-TLR2, HADDOCK clustered 145 structures into 12 clusters, which
represented 72% of the water-refined models (Figure 5). Upon refinement, 25 structures
were clustered into one cluster resulting in 100% of the water-refined models. Epi2-
TLR2 showed a good binding affinity with a HADDOCK score of −82.4 ± 6.5 (Table 11).
There were one salt bridge, 12 hydrogen bonds, and 159 non-bonded contacts between
the molecules.
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Figure 5. Docking of Epi2 with TLR2. (a) Epi2-TLR2 molecules. (b) The PDBsum results display
the protein–protein interface between chain A (Epi2) and chain B (TLR2). (c) The PDBsum results
demonstrate interactions between amino acid residues in the interface.

The binding affinities were further confirmed using the PRODIGY web server, which
calculated the Gibbs free energy (∆G) and the dissociation constants (Kd) (Supplementary
Table S2). Epi1-TLR2 and Epi2-TLR2 contained ∆G of −14.8 kcal/mol and −13.0 kcal/mol,
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respectively. The Kd were 1.50 × 10−11 M for Epi1 and 2.80 × 10−10 M for Epi2 at 25 ◦C.
The relatively low ∆G and Kd indicate strong, thermodynamically stable interactions.

3.8.2. Docking of TLR4 with Epi1 and Epi2

Epi1 and Epi2 were also docked to TLR4. For Epi1-TLR4, HADDOCK clustered
101 structures into 15 clusters, which represented 50% of the water-refined models (Figure 6).
Subsequently, nine structures were refined and clustered into one cluster resulting in 100%
of the water-refined models. The cluster had a HADDOCK score of 24.2± 19.4 (Table 12)
with 10 hydrogen bonds and 213 non-bonded contacts. The ∆G was −17.1 kcal/mol with a
Kd of 2.80 × 10−13 M (Supplementary Table S2).
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Figure 6. Docking of Epi1 to TLR4. (a) Epi1-TLR4 molecules. (b) The PDBsum results display the
protein–protein interface between chain A (TLR4) and chain B (Epi1). (c) The PDBsum results display
interactions between amino acid residues in the interface.

Table 12. HADDOCK 2.4 docking results for Epi1-TLR4 and Epi2-TLR4.

Scores Epi1-TLR4 Epi2-TLR4

HADDOCK score 24.2 ± 19.4 27.7 ± 4.6
Cluster size 9 20
RMSD from the overall lowest energy structure (Å) 0.5 ± 0.3 8.4 ± 0.0
Van der Waals energy (kcal mol−1) −92.7 ± 13.5 −101.1 ± 6.5
Electrostatic energy (kcal mol−1) −133.2 ± 5.6 −125.3 ± 11.0
Desolvation energy (kcal mol−1) −56.0 ± 4.1 −44.5 ± 1.0
Restraints violation energy (kcal mol−1) 1995.3 ± 111.3 1953.8 ± 46.4
Buried surface area (Å2) 2719.0 ± 164.8 2844.3 ± 109.4
Z-Score −2.2 −1.8

For Epi2-TLR4, 113 structures were clustered in 17 clusters, which represents 56%
of the water-refined models (Figure 7). After refinement, 20 structures were clustered
into one cluster resulting in 100% of the water-refined models. A HADDOCK score
of 27.7± 4.6 (Table 12) was obtained with two salt bridges, 14 hydrogen bonds, and
210 non-bonded contacts. The ∆G was −18.8 kcal/mol with a Kd of 1.70 × 10−14 M
(Supplementary Table S2), displaying a stronger binding affinity than that of Epi1. These
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results indicate stable, thermodynamically favorable interactions between the assembled
peptides and TLR4.
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Figure 7. Docking of Epi2 to TLR4. (a) Epi2-TLR4 molecules. (b) The PDBsum results display the
protein–protein interface between chain A (TLR4) and chain B (Epi2). (c) The PDBsum results display
interactions between amino acid residues in the interface.

3.9. Immune Simulation

An in silico immune simulation was conducted using the C-IMMSIM server [29]
to evaluate the immunostimulatory profile of Epi1 and Epi2. The simulation results of
Epi1 and Epi2 were remarkably similar. The antibody titers shown in Figures 8a and 9a
were zero, indicating lack of B cell responses. This aligns with Figures 8d,e and 9d,e,
where immunoglobulin (Ig) isotype switching was absent. Typically, in the humoral
response, proliferation of B lymphocytes into plasma cells involves an Ig class-switch
recombination, leading to the production of Ig isotypes such as IgG and IgA that are crucial
for neutralization of antigens [63]. However, the presence of only IgM-producing B cells
implies that Ig isotype-switching did not occur as expected, particularly due to the lack
of IL-4 and IL-21 (Figures 8i and 9i) [63]. A strong bias toward a cell-mediated immune
response was, on the other hand, observed in the simulation (Figures 8f–h and 9f–h).

The antigen uptake and presentation of dendritic cells (DCs) and macrophages are
shown in Figures 8b,c and 9b,c. In terms of Epi1 uptake and presentation on DCs, the
antigen was preferably displayed on MHC class II to MHC class I. Interestingly, the
presentation of Epi2 on DCs was predominantly mediated by MHC class I. Macrophages
presented the epitopes mainly through MHC class II molecules.

The hypothesis of Epi1 and Epi2 preferably stimulating cell-mediated immunity is
supported by the findings in Figures 8f,g and 9f,g. The results implied a rapid and robust
CD4+ T-helper cell response after the first immunization, with the T-helper cell counts
exceeding 15,000 cells/mm3 following the third injection. Notably, there was a clear
bias toward Th1 differentiation (Figures 8g and 9g). This is in line with the findings of
Figures 8h and 9h. Under the influence of IFN-γ, IL-12 and IL-2 secreted by Th1, cytotoxic
T (Tc) cells are stimulated and continue to proliferate into active Tc that are responsible for
getting rid of infected cells in natural infections.

According to Figures 8i and 9i, the cytokine profile showed elevated IL-2, IFN-γ, and
IL-12 synthesis following the Epi1 and Epi2 vaccinations, indicating T-cell proliferation
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and expansion. Interestingly, the anti-inflammatory cytokines, i.e., TGF-β and IL-10, were
also observed at lower levels upon Epi2 immunization (Figure 9i), peaking at around
14,000 ng/mL and 5000 ng/mL, respectively. TGF-β and IL-10 are known to be associated
with the Th2 response with relatively lower TGF-β and IL-10 synthesis, supporting the
notion that Epi1 and Epi2 preferably mount Th1-biased immunity upon vaccination.

All in all, Epi1 and Epi2 elicited a predominantly cell-mediated immune response,
characterized by strong Th1 and Tc cell activation. This phenomenon is seconded by robust
production of IL-2, IFN-γ, and IL-12.

ff
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γ

β

β
β
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Figure 8. The simulation of immunostimulatory potential of Epi1 (three injections) using the C-
IMMSIM server. (a) Three doses of Epi1 were injected over a period of 3 months. (b) Antigen
presentation on MHC class I and II molecules of dendritic cells (DC). The curves indicate various
states of DC: active, resting, internalized and antigen presentation. (c) States of macrophages: total
count, internalized, antigen presentation on MHC class II, active, and resting. (d) B lymphocytes:
total count, memory cells, and Ig-isotypes, i.e., IgM, IgG1 and IgG2. (e) Plasma B lymphocytes: count,
Ig-isotype (IgM, IgG1 and IgG2). (f) Total CD4+ T-helper lymphocyte count and states, i.e., active,
resting, anergic and duplicating. (g) Counts of CD4+ T-helper lymphocyte subtypes. (h) Total CD8+
T-cytotoxic lymphocyte count and state. (i) IFN-γ-, IL-12-, and IL-2-biased cytokine responses upon
the peptide injections. D in the inset plot indicates the danger signal.
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ff

Figure 9. The simulation of immunostimulatory potential of Epi2 (three injections) using the C-
IMMSIM server. (a) Three doses of Epi2 were injected over a period of 3 months. (b) Antigen
presen-tation on MHC class I and II molecules of dendritic cells (DC). The curves indicate various
states of DC: active, resting, internalized and antigen presentation. (c) States of macrophages: total
count, internalized, antigen presentation on MHC class II, active, and resting. (d) B lymphocytes:
total count, memory cells, and Ig-isotypes, i.e., IgM, IgG1 and IgG2. (e) Plasma B lymphocytes: count,
Ig-isotype (IgM, IgG1 and IgG2). (f) Total CD4+ T-helper lymphocyte count and states, i.e., active,
resting, anergic and duplicating. (g) Counts of CD4+ T-helper lymphocyte subtypes. (h) Total CD8+
T-cytotoxic lymphocyte count and state. (i) IFN-γ-, IL-12-, and IL-2-biased cytokine responses upon
the peptide injections. Some TGF-β and IL-10 responses were also observed. D in the inset plot
indicates the danger signal.

4. Discussion

The 2019 SARS-CoV-2 pandemic revealed the unpreparedness of global healthcare
systems to effectively respond to such a crisis, eventually leading to the breakdown of
healthcare systems. The evolution and natural selection of coronaviruses are believed to
contribute to the emergence of various VOCs with exceptional abilities to escape vaccine-
and infection-induced immunity. The COVID-19 prophylactic vaccines are mainly based
on the whole S glycoprotein subunit of SARS-CoV-2-Wuhan-1 due to its high antigenicity
and immunogenicity [64–70]. However, the effectiveness of the COVID-19 vaccines is
becoming less pronounced following the development of immune-evading variants due
to the perpetual gene mutations [71–74]. In addition, the immune imprinting induced
by immunization and previous infections also reduces the efficaciousness of the vaccines
against newly emerged variants [75,76]. In this light, a conserved multi-epitope approach
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has been adopted to develop pre-emptive vaccines against highly mutable coronaviruses
by targeting the critical functional viral antigens. This strategy not only induces broad
and long-lasting immune responses but it also prevents the need for a constant review of
vaccine formulations due to viral mutations. To achieve this, epitope identification and
characterization are entailed to generate epitope maps depicting their antibody specificities
in silico prior to rigorous in vitro and in vivo empirical investigations [13–16,20–23,77–79].

Phylogenetically related zoonotic coronaviruses, including distantly related avian
coronaviruses, were included in this study to identify and analyze the conserved regions.
A significant genetic divergence was observed between avian and human coronaviruses
compared to SARS-CoV-2. This divergence is especially notable when comparing avian
coronaviruses, which belong to the Gammacoronavirus genus, with human coronaviruses
and SARS-CoV-2, which belong to the Alphacoronavirus and Betacoronavirus genera, respec-
tively. This observation is consistent with the phylogenetic data reported by Gilbert and
Tengs (2021) [80]. It is noteworthy that none of the avian coronaviruses have been reported
to infect humans to date. In this light, the prediction of conserved epitopes of coronaviruses
prioritizes those and their close zoonotic counterparts causing diseases in humans (hCoVs,
MERS-CoV, SARS-CoV, and SARS-CoV-2).

Initially, 12 HTL epitopes, 52 CTL epitopes, and 68 LBL epitopes were identified and
the majority of them were conserved across the coronavirus strains. The avian coron-
aviruses, hCoVs, and MERS-CoV were distantly related to SARS-CoV, SARS-CoV-2, bat
CoVs, and pangolin CoVs. The evolutionary convergence among those coronaviruses is
likely due to the different natural and/or intermediate hosts [81]. In addition, it is notewor-
thy that the evolutionary convergence also results in the host-cell receptor variations as
observed in hCoVs, among which the surface receptors responsible for viral adsorption are
mainly surface peptidases and sialic acid-rich glycan-based receptors [82].

Human leukocyte antigen (HLA) alleles are among the most gene-dense and poly-
morphic regions in the human genome [83]. HLA molecules are responsible for antigen
presentation to T-cell receptors (TcR) on CTL and HTL, and therefore can readily affect
the vaccine-induced immune response [41,84–92]. In this light, it is important to retain
antigenic epitopes that can interact and bind to HLA class I and class II molecules in vaccine
design and development. Epi1 and Epi2 fulfill the characteristics of immunogenic vaccine
candidates, given their multiple T-cell and B-cell epitopes. The total world population
coverage analysis revealed a remarkably high class I coverage of above 75% and 81% for
Epi1 and Epi2, respectively, whilst the class II coverage was greater than 99% for both
Epi1 and Epi2. These results suggest the promising potential of these peptides as vaccine
candidates with broad global MHC coverage, addressing the challenges posed by constant
genome mutations in coronaviruses. Among the matched HLA class I supertypes, the A*02
supertype is prevalently found in almost all human populations [93]. In regard to the HLA
class II supertypes, more than 20 HLA class II supertypes were identified. Together with
the LBL epitopes, Epi1 and Epi2 are expected to trigger cellular and humoral immune
responses in vivo, thereby providing a more comprehensive protection against coronavirus
infection [49,94].

Many of the identified epitope sequences overlapped one another; therefore, they
were aligned and assembled into single peptide sequences. Two peptide assemblies,
Epi1 and Epi2, consisting of HTL, CTL, and LBL epitopes, represented residues S256–294
(SGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALD) and S492–525 (LQSYGFQPT-
NGVGYQPYRVVVLSFELLHAPATVC) of the S glycoprotein, respectively. Epi1 is located
in the S1 region, particularly the NTD; Epi2, on the other hand, is found in the RBD region.
Essentially, the S glycoprotein of SARS-CoV-2, one of the structural components of the virus,
was reported to interact with TLR4 and potentially TLR2, thus leading to inflammatory
responses [95–99]. In humans, TLR4 are predominantly expressed in cells of myeloid
origin such as macrophages, immature dendritic cells, monocytes, and granulocytes [100].
TLR4 signaling is initiated when the receptor binds to a ligand, leading to homodimeriza-
tion and recruitment of Toll/interleukin-1 receptor-like (TIR)-domain-containing adapter
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molecules. This activates two major pathways: (i) the Myeloid differentiation primary
response 8-dependent (MyD88-dependent) pathway, responsible for early nuclear factor
kappa-β (NF-κβ) activation and pro-inflammatory cytokine release, and (ii) the TIR domain-
containing adaptor inducing IFN-β-TRIF-related adaptor molecule pathway (TRIF-TRAM
pathway), which induces type-I interferon production and TNF-α secretion for late NF-κβ
activation [100]. On the other hand, human TLR2 is mainly expressed on myelomonocytic
cell lines and specific blood cells with CD14+ monocytes showing the highest expression,
followed by CD15+ granulocytes [101]. TLR2 signaling is initiated through ligand-induced
dimerization with other TLRs, such as TLR1, TLR4, TLR6, and TLR10 [102–105], enabling
the recognition of diverse microbial products and viral proteins [106–109]. This interaction
subsequently activates MyD88-dependent signaling, leading to phosphorylation events
involving interleukin-1 receptor-associated kinase (IRAK) proteins and receptor-associated
factor 6 (TRAF6), which in turn activates NF-κB and mitogen-activated protein kinase
(MAPK) pathways [110]. These pathways promote the production of pro-inflammatory
cytokines and modulate cell proliferation and survival [111,112]. In this light, Epi1 and
Epi2 were docked to TLR2 and TLR4 to estimate their interactions and binding strength.
The docking results showed relatively good HADDOCK scores for both Epi1-TLR2 and
Epi2-TLR2, indicating the potential of these peptides to activate the TLR-2-mediated innate
immune response. Similarly, the HADDOCK scores of Epi1-TLR4 and Epi2-TLR4 were
reasonable, implying the activation of TLR4 signaling upon binding to Epi1 and Epi2.
These observations were further validated in the PRODIGY and PDBsum analyses, in
which stable and favorable interactions were formed between the complexes. All in all,
the standard HADDOCK 2.4 protocol effectively combines rigid docking with molecular
dynamics simulations.

Epi1 and Epi2 were shown to predominantly elicit a cell-mediated immune response,
characterized by strong Th1 and Tc cell activation with elevated levels of IL-2, IFN-γ, and
IL-12 after in silico immunization. Notably, antigen presentation by macrophages and
dendritic cells on the MHC class II molecules is responsible for stimulating CD4+ T-helper
cells. Concomitantly, dendritic cells were also demonstrated to display epitopes of Epi2
on MHC class I molecules, thereby promoting the activation of cytotoxic T cells [113]. The
activation of CD4+ T cells also results in the elevation of IL-2, which, in turn, promotes Th1
differentiation [114,115]. In addition, IL-12 secreted by dendritic cells and macrophages,
also boosts Th1 differentiation for IFN-γ production [115,116], a key pro-inflammatory
cytokine essential for orchestrating cell-mediated immunity [117]. Interestingly, the in
silico simulation results coincided with several in vitro and in vivo reports. For instance,
Meyer et al. (2023) reported that the S269–277 epitope, which is similar to that of Epi1,
could induce a high magnitude of CTL immune response after in vitro stimulation [19].
An in vivo study confirmed that a peptide segment identical to that of Epi1 (S265–279
or YYVGYLQPRTFLLKY) could induce a robust antigen-specific IFN-γ-producing CTL
response [17]; meanwhile, another in silico study identified the SGWTAGAAAYYV motif
found in Epi1 as the immunodominant site for T-cell and humoral responses [12]. Collec-
tively, Epi1 is a robust candidate for the development of multi-epitope vaccines. Although
Epi2 (S492–525) and its immunostimulatory roles have not been reported elsewhere, its
PYRVVVLSF motif was hypothesized to induce adaptive immunity [11].

Given the conservation of Epi1 and Epi2, they hold promise as lead antigens in univer-
sal multi-epitope vaccine development, particularly in fighting the upcoming mutants. This
helps address issues concerning the constant gene mutations and immune evasion seen in
coronaviruses. Epi2 consists of most of the important residues required to form tight bind-
ing with ACE2 receptors [118–120]. It also encompasses well-known mutation sites found
in the currently circulating Omicron variant, i.e., N501 and Y505. The N501Y mutation can
lower neutralizing antibody binding in vitro [121], while the Y505H mutation reduces viral
protein stability, affects viral infectivity, and promotes immune evasion [122,123]. Given
the importance of the mutations, including them in a vaccine formulation is likely to add to
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the relevance of the multi-epitope vaccine with the circulating coronavirus variants, hence
greater immune protection.

Incorporating multiple epitopes in a vaccine formulation can offer broader and more
durable protection against a wider range of viral variants. The multi-epitope sequences
identified in this study shed light on the ongoing development and applications of coro-
navirus vaccines. The immune simulation analysis indicates that the medium length
assembled peptides have limitations in stimulating humoral immune responses, as evi-
denced by the results (Figures 8 and 9). This could be attributed to the C-IMMSIM web
server’s restriction to MHC class II DRB alleles selection, having no alleles like DPA, DPB,
DQA, or DQB in the MHC class II selection, which was found to be more prevalent in those
assembled peptides. The interaction of MHC class II and peptides are crucial. The bind-
ing between peptides and the MHC molecules may promote humoral responses in vivo
through both (i) direct mechanisms involving antigen presentation by APCs or (ii) indirect
mechanisms where the interaction of the MHC receptor of CD4+ T cells interacts with
B-cell MHC class II molecules, and/or (iii) through the release of cytokines by CD4+ T
cells [63]. While stimulation of CD4+ and CD8+ T cells is likely to promote humoral re-
sponses in vivo, this needs to be validated through further in vivo studies. Additionally, in
order to effectively deliver the assembled peptide and further improve its immunogenicity
in vivo, the peptide can also be conjugated with virus-like particles (VLPs) or nanoparticle-
based delivery systems to further enhance their abilities in inducing humoral and cellular
responses [124,125]. Furthermore, the epitopes can be developed into multivalent vaccines
consisting of promising flu antigens such as nucleoprotein (NP) of influenza A virus (IAV),
which assembles into virus-like particles (VLP) for vaccine delivery [30,126]. To strengthen
the multivalency of the vaccine, highly conserved matrix 2 ectodomain protein (M2e) of
IAV can be added into the vaccine formulation. The IAV M2e is known for conferring
partial protection in animal models against IAV [127,128]. Collectively, the aforementioned
prospective applications highlight the versatility and the potential of these multi-epitope
peptides in curbing coronavirus infections.

Although these predictive models allow us to screen epitopes quickly, they may not
fully capture the complexities of antigen processing, epitope conformations, or interplays
among immune cells and signaling pathways. This limited scope means in silico predictions
might not fully correlate with the in vitro or in vivo immunogenicity and effectiveness
of vaccine candidates. For instance, the C-IMMSIM predictions applied in this study
may restrict certain MHC allele selections (e.g., DRB alleles), potentially affecting the
overall humoral response prediction. Thus, in vitro and in vivo studies are warranted to
further validate the potential of Epi1 and Epi2 as vaccine candidates. All in all, this study
revealed evolutionarily conserved regions within SARS-CoV-2, SARS-CoV, and certain
animal coronaviruses, while highlighting the genetic divergence observed in MERS-CoV
and hCoVs as implied by their minimal sequence similarities in the S1 subunit.

5. Conclusions

In conclusion, evolutionarily conserved epitopes are present among animal and human
coronaviral S glycoproteins. Overall, 132 candidates representing HTL, CTL and LBL
epitopes with relatively low evolutionary divergence were identified. They were screened
and filtered into two final peptide assemblies: Epi1 is composed of four HLA class I, five
HLA class II, and three LBL epitopes; meanwhile, Epi2 consists of two HLA class I, eight
HLA class II, and two LBL epitopes. Both peptides are located within the S1 subunit of
the coronaviral S protein and demonstrate high population coverage and conservation.
Additionally, they are expected to exhibit robust immunomodulatory roles, particularly
cellular immunity via TLR2- and TLR4-mediated immune responses. Notably, Epi1 also
contains immunodominant CTL epitopes, which adds to its potential as a vaccine candidate.
Collectively, the conserved epitopes provide a robust foundation for universal vaccine
development with extraordinary abilities to stimulate broad-spectrum immunity to mitigate
the impact of coronaviral infections.
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