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This thesis addresses limitation of existing Next-generation wireless mobile 
networks. The spectrum resource, especially below 6 GHz. such as 5th 
generation mobile networks, may reduce capacity bottlenecks by using radio 
frequency (RF) spectrum sharing. Spectrum sharing allows several wireless 
systems to coexist in a single spectrum band. The research on spectrum 
coexistence difficulties between 5G base stations (BS) and fixed satellite 
services (FSS) has recently increased. In Malaysia, the 5G uses frequencies 
between 3.6 - 3.7 GHz, while FSS operates with 3.8 - 4.2 GHz. Although there 
is a gap between both of them, adjacent channel interference might occur. For 
this reason, the FSS downlink Earth Station (FSS-ES) interference should be 
investigated from the 5G-BS to the FSS-ES and the 5G-ES to the 5G User 
Equipment (UE). This is one of the main goals of this thesis, focusing on the 
Malaysian scenario. Several proposals are drawn after realizing the interference 
happened and affected the performance: The first part is the design of an 
exclusion zone on how coexistence between 5G-BS and FSS-ES can be used 
to avoid adjacent co-channel interference in 5G and B5G to FSS-ES. Co-channel 
and adjacent channel interference are investigated at various stages in 5G-BS 
and FSS-ES. For investigating interference in the same frequency band, 
measurements have been carried out and data have been analyzed with 5G-BS 
and FSS-ES. Then, 5G technologies addressed the optimal exclusion zone. In 
order to analyze and improve state of the art, Machine Learning (ML) techniques 
such as Radial Basis Function Neural Network (RBFNN) and General 
Regression Neural Network (GRNN) have been used.  The results indicated that 
the proposed ML has its own set of characteristics that can be used to create a 
new exclusion zone design that is more efficient. Furthermore, the adjacent 
channel interference comprised the Interference-Noise Ratio (INR), where 
interference occurred with INR levels below -12.2 dBm (-55dBc). It has been 
shown that RBFNN has better accuracy, but lower MSE is obtained with GRNN.  
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The second part of the thesis focuses on the proposal of a filtering model 
denoted Filter to Remove Broadband Interference 5G (FIREBRING) based on 
the carrier-to-noise (C/N). It has to be designed jointly with the Guard Band (GB). 
The results indicate that the proposed offered a complete analysis of the 5G 
signal, considering the implications of out-of-band (OOB) emissions, potentially 
LNB define saturation into the FSS receiver, and the repercussions of deploying 
the 5G BS active antenna systems. With the LNB and down-converter in place, 
it can be found that the signal interference between 1.450GHz and 1.550GHz, is 
nearly 18dB. In the third part of the thesis, it is found that a lower look-up angle 
for the FSS-ES is needed for future field trials with various 5G Active Antenna 
Unit variants. The results suggest that 5G transmission operates at 3.620 GHz 
to protect satellite services at 3.7 GHz. A further field trial was conducted to 
evaluate further whether the distance and Guard Band (GB) can be reduced. It 
is concluded that FSS-ES can coexist with 5G-BS as close as 85m apart, with 
100 MHz GB and Bandpass Filter (BPF) rejection at least more than 45 dB. Also 
includes a new filtering technique called 5G-Filter to Remove Interference in 
Major Broadband (5G-FRIMB) to improve the signal. In the last part of the thesis, 
an analytical model for 5G-BS and FSS-ES in C-Band based on ML for the 
design of the exclusion zone is developed.  In order to address these challenges, 
this thesis examined whether it is possible to design a proper exclusion zone for 
small cell 5G and FSS receivers based on the tropical region's characteristics. 
Specific to the interference between 5G-BS and FSS-ES in the adjacent and co-
channel channel. Machine learning techniques have been used to model co-
channel interference. This PhD thesis shows that ML can help with some of the 
modelling problems in RF, even in the presence of interference. 
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Tesis ini menangani had rangkaian mudah alih tanpa wayar generasi akan 
datang yang sedia ada. Sumber dari spektrum, terutamanya yang berjalur 
bawah 6 GigaHertz (GHz), sebagai contoh rangkaian mudah alih generasi ke-5 
(5G), boleh digunakan untuk mengurangkan kesesakan kapasiti dengan 
berkongsi spektrum berfrekuensi radio (RF). Perkongsian spektrum tersebut 
membolehkan beberapa sistem tanpa wayar wujud dalam satu jalur spektrum. 
Walaubagaimanapun, terdapat peningkatan penyelidikan berkaitan kesukaran 
mewujudkan kebersamaan spektrum antara stesen pangkalan jaringan 5G (5G-
BS) dan perkhidmatan satelit tetap (FSS). Di Malaysia, jaringan 5G 
menggunakan frekuensi antara 3.6 - 3.7 GHz, manakala FSS beroperasi dengan 
3.8 - 4.2 GHz. Walaupun terdapat perbezaan frekuensi antara kedua-duanya, 
kemungkinan terdapat gangguan pada saluran disebabkan frekuensi yang 
berdekatan masih boleh terjadi. Atas sebab ini, gangguan FSS pautan menurun 
di stesen bumi (FSS-ES) harus disiasat, iaitu daripada 5G-BS kepada FSS-BS 
dan 5G-BS kepada Peralatan Pengguna 5G (5G-UE). Ini adalah antara 
matlamat utama tesis ini, memfokuskan kepada senario Malaysia. Selepas 
menyedari terdapatnya gangguan yang berupaya menjejaskan prestasi, 
beberapa cadangan telah diutarakan untuk isu ini iaitu bahagian pertama adalah 
mereka-bentuk zon batasan dengan menggunakan kewujudan bersama 5G-BS 
dan FSS-ES untuk mengelakkan gangguan saluran frekuensi berdekatan dalam 
5G dan generasi jaringan yang termaju darinya (B5G) kepada FSS-ES. 
Gangguan pada saluran yang sama dan yang disebabkan frekuensi berdekatan 
disiasat pada pelbagai peringkat dalam 5G-BS dan FSS-ES. Untuk menyiasat 
gangguan dalam jalur frekuensi yang sama, pengukuran telah dijalankan dan 
data telah dianalisis pada 5G-BS dan FSS-ES. Seterusnya, teknologi 5G 
menangani zon batasan secara optimum. Untuk penganalisaan dan penambah-
baikan yang lebih terkini, teknik Pembelajaran Mesin (ML) seperti Rangkaian 
Neural Fungsi Asas Jejari (RBFNN) dan Rangkaian Neural Regresi Umum 
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(GRNN) telah digunakan. Keputusan dari kajian ini menunjukkan bahawa sistem 
ML yang dicadangkan mempunyai ciri tersendiri yang boleh digunakan untuk 
mencipta reka bentuk zon batasan baharu yang lebih cekap. Gangguan saluran 
berdekatan yang terdiri daripada Nisbah Gangguan-Bunyi (INR) berlaku pada 
INR di bawah -12.2 dBm (-55 dBc). RBFNN telah dibuktikan mempunyai 
ketepatan yang lebih baik kerana mempunyai Min Ralat Kuasa Dua (MSE) yang 
lebih rendah daripada GRNN. Bahagian kedua tesis memfokuskan kepada 
cadangan model penapisan yang dinamakan Penapis Nyah Gangguan Jalur 
Lebar 5G (FIREBRING) berdasarkan pembawa kepada nisbah bunyi. Ia perlu 
direka-bentuk bersama dengan Pita Pengaman (GB). Hasil kajian menunjukkan 
bahawa cadangan ini memberikan analisis yang lengkap terhadap isyarat 5G, 
dengan mengambil kira implikasi pancaran di luar jalur, kemungkinan ketepuan 
blok rendah bunyi (LNB) dalam penerima FSS, dan kesan penggunaan sistem 
antena aktif di 5G-BS. Dengan adanya LNB dan penukar bawah, didapati 
bahawa gangguan isyarat pada frekuensi antara 1.450GHz dan 1.550GHz 
adalah hampir 18 decibel (dB). Dalam bahagian ketiga tesis, didapati bahawa 
sudut pandang FSS-ES yang lebih rendah diperlukan untuk pengujian 
menggunakan pelbagai jenis Unit Antena Aktif 5G di masa hadapan. Hasil kajian 
menunjukkan bahawa penghantaran 5G beroperasi pada frekuensi 3.620 GHz 
bagi melindungi perkhidmatan satelit pada frekuensi 3.7 GHz. Ujian di lapangan 
telah dijalankan untuk menilai sama ada jarak dan GB boleh dikurangkan. 
Kesimpulan dari ujian tersebut adalah FSS-ES boleh wujud bersama 5G-BS 
sedekat 85 meter, dengan 100-MegaHertz (MHz) GB dan Penapis Laluan Jalur 
(BPF) dengan nilai penolakan sekurang-kurangnya lebih daripada 45 dB. Juga 
termasuk teknik penapisan baharu yang dipanggil Penapis 5G NyahGangguan 
Jalur Lebar Utama (5G-FRIMB) untuk menambah baik isyarat. Di bahagian 
terakhir tesis, model analisis untuk 5G-BS dan FSS-ES dalam jalur frekuensi C 
telah dibangunkan berdasarkan ML untuk mereka-bentuk zon batasan. Kajian 
ini menyiasat kemungkinan untuk mereka-bentuk zon batasan yang sesuai 
untuk sel kecil penerima 5G dan FSS berdasarkan ciri kawasan tropika, khusus 
kepada gangguan saluran bagi frekuensi berdekatan dan gangguan dalam 
saluran yang sama antara 5G-BS dan FSS-ES. Teknik ML telah digunakan untuk 
memodelkan gangguan pada saluran yang sama. Tesis PhD ini menunjukkan 
bahawa ML boleh membantu dengan beberapa masalah pemodelan dalam RF, 
walaupun dengan adanya gangguan. 
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CHAPTER 1 
 

INTRODUCTION  
 
 
This chapter introduces an overview of the relationship between Fifth-Generation 
new radio (5G-NR) and fixed satellite services earth station (FSS-ES) wireless 
systems, followed by a discussion of related problem statements. To address the 
issues addressed by the study's goals, an overview of research objectives, the 
scope of the research module, and a brief methodology are provided. This 
chapter concludes with a list of the research contributions. And finally, the 
organisation of the thesis. 
 
         
  
1.1 Background  
 
 
In current era, implemented a wide array of applications has led to the global 
mobile data service becoming a fast-growth mode with diversified intelligent 
terminal mobile applications. The spectrum is essential for the future growth of 
the 5G sector as the essential resource required for wireless communication. 
Currently, the domestic low-band mobile bandwidth is around 600MHz. 5G 
communications will require approximately 1GHz bandwidth by 2024 (Kabalci, 
2019). Thus, low adaptability can be compared to measured data analysis. 
However, the traditional channel modelling methods have weaknesses. Science 
and technology progress slowly. 5G wireless carriers enable applications 
requiring high data, reliability, and low latency (M. J. R. I. Series, 2015). World 
regulators are allocating new frequency bands below 6-GHz may also be suitable 
for a 5G wireless service. It is possible to provide a European Union (EU) 
comprehensive wireless broadband electronic communication service using the 
3.4 - 3.8GHz frequency range for terrestrial networks. Notwithstanding that, the 
European Conference of Postal and Telecommunications Administrations 
(CEPT) has established unified technological standards to ensure daily spectrum 
usage (Draft, 2018).  
 
 
Japan sets a 5G frequency range of 3.6 - 4.2 GHz and 4.4 - 4.9 GHz (Son & 
Chong, 2018d). It is proposed by the South Korean Ministry of Science and ICT 
(M. J. J. I. W. C. Marcus, 2015). Data traffic for terrestrial broadband internet 
services is expected to double by 2022 (Obile, 2016). Also, 5G-NR will be located 
below the 6-GHz band, providing more coverage than the mmWave band. The 
3.4 ~ 4.2 GHz frequency range in Hong Kong is mainly used for FSS-ES (DATE, 
2019). For IMT-Advanced, the previous researcher's Japanese study group has 
a 4-year spectrum-sharing study. In addition to investigating the sharing of 3 - 4 
GHz radiation, the research team tested existing FSS-ES performance after 
installing the base station (BS) in the same band. Their first contribution was to 
improve the ITU-R 452 propagation model for detecting anomalous propagation 
probabilities.  
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The other purpose is to measure the effect of clutter loss in urban areas, which 
was unrealistic due to the building heights. As a result of their proposal, a new 
model version was created. Asia-Sat is a heavy C-Band satellite operator in Asia. 
They published numerous articles and studies on coexistence. In addition to 
controlling low-noise block downconverter (LNB) saturation, their latest 
commercial feature is a Bandpass filter (BPF) for 5G interference rejection. 
There need to be more measures to control saturating the LNB. Rejecting the 
LNB filter tradeoff causes higher insertion loss. The insertion loss causes an 
increase in noise temperature, a sensitive issue. An insertion loss of less than 
0.4 dB was attempted to claim for one of these company front-end filters within 
the three-year warranty frequency ranges of 3.4 - 3.6 GHz. Their experiment 
used 5G base stations (BS) deploying a full-loaded beam to an ES deployed with 
its BPF, distant 100 m away. Their white paper stated that the earth station was 
regularly running and reducing interference. Adopt and promote 5G by 2022. 
Malaysia also released a 5G system frequency usage plan in the 3 - 5 GHz 
range, clearly defining 3.3 ~ 3.4 GHz as the 5G system operating band and 3.4 
- 3.6 GHz as the indoor use band (W. A. Hassan, Jo, & Tharek, 2017). The 
frequency range 3.7 - 4.2 GHz is the standard C-Band FSS-ES, and 3.4 - 3.7 
GHz is the extended C-band. Several satellite networks use the 3.4 - 3.7 GHz 
extended C-band. Also, several FSS-ES are authorized to operate in the 3.4 ~ 
3.7 GHz band, and FSS-ES are authorized to operate in the 3.4 - 3.6 GHz band, 
as Malaysia reported to International Telecommunication Union (ITU). Wireless 
communication signals rely on electromagnetic wave propagation, and the 
frequency band is the most valuable resource.  
 
 
That is to avoid interfering with wireless TV broadcasts, mobile communication 
networks, and military frequency bands. Because 6GHz or less radio waves in 
the airpower attenuation are small, intense penetration is regarded as a high-
quality band resource. Many applications rely on radio wave propagation in this 
crowded band. Telecommunications and other companies are expanding as 
technology advances in all areas of our lives. However, mobile communication 
network data was demanded as science and technology advanced. The capacity 
of the communication network is also truly tested by "mission-critical machine 
communication" (Weinand, Karrenbauer, Lianghai, & Schotten, 2017), such as 
industrial automation and vehicle communication. A wide range of industries, 
including agriculture, industry, environmental protection, medical care, 
transportation, and more, generate many data. Data has permeated the 
organization's daily business in various application scenarios.  
 
 
Using machine learning to process and analyze massive amounts of data faster 
will help organizations understand fundamental economic changes and take 
advantage of growth opportunities (Paul, Ahmad, Rathore, & Jabbar, 2016). The 
3.5 GHz band is also used for 5G mobile services in the EU, China, Australia, 
the US, the UK, and Japan regulators and operators use it. Furthermore, the C-
Band is allocated for fixed satellite services (FSS) and provides coverage of 
continental zones. In the United States, the downlink frequency ranges between 
3.7 GHz to 4.2 GHz, whereas in Europe, the range is between 3.4 GHz to 4.2 
GHz. The C-Band is the best option for sustaining telecommunications and 
broadcasting services whenever the terrestrial infrastructure is insufficient or 
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nonexistent in rural and seaside locations. The low sensitivity to rain fade of the 
C-Band enables it for reliable connections in tropical climates, a further 
advantage. Services in the C-Band are also important for emergency cases and 
calamity recovery. However, combining a frequency spectrum with other users 
implies interference with already-running services. Interference in the downlink 
may cause the low-noise blocks (LNB) to become saturated. The fixed and 
mobile earth stations' current receiving systems do not support the use of filters. 
The received signal is already insufficient and would no longer be detectable 
after travelling up to 36 000 km from a geostationary orbit to the earth station. 
Whereas regulatory restrictions provide recommendations for developing a 
cellular network, but they cannot guarantee that waves will not propagate further 
than expected.  
 
 
The performance limitations of interference situations at the component and 
system levels must be investigated to enable the seamless coexistence of 5G 
and satellite services in the C-band. On the regulatory side, it is necessary to 
establish the equivalent isotropic radiated power (EIRP) of nearby stations and 
to identify any out-of-band (OOB) emissions. For active antenna systems, such 
as those utilised in 5G, the transmitted radiated power (TRP) value will be used 
in place of the EIRP for legacy base stations (Carciofi, Grazioso, Petrini, & 
Matera, 2019; Jaedon Park et al., 2019b). This study aims to investigate the 5G 
and FSS-ES downlink coexistence in the 3.4 - 3.6 GHz band.  
  
         

1.2 Problem Statement  
 
 
The following section addresses the most significant problems introduced by this 
study, which are listed as follows: 
 
 
1) A mobile communications network uses radio transmission to enable 

wireless connectivity between smartphones, tablets, machines, and fixed 
infrastructure. Due to increased demand for mobile communications and 
rapid technological advancement, successive generations of mobile 
networks have been deployed across the country, each with superior 
capabilities. This increased demand necessitates more 5G-BS and radio 
spectrum, especially frequencies in urban areas. The 3.4 - 3.6 GHz spectrum 
has been designated the perfect innovator for 5G. Commitment to extending 
the spectrum covers several frequency bands. We are looking for a new 
spectrum for a 5G generation mobile network (Juho Lee et al., 2018d). The 
LNB and filter properties are then tested in the lab, and the coexistence 
requirements are verified in the field. The measurements and field-testing 
results will allow 5G and FSS coexistence to reduce interference and ensure 
5G and FSS coexistence based on distance. 
 
 

2) The 5G-BS saturation interference is considered using the latest 5G-NR 
characteristics and the isolation distance between the two systems (Q. Sun 
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& Nan, 2012; Y. Wang & Lu, 2018). The LNB and filter properties are then 
tested in the lab, and the coexistence requirements are verified in the field. 
The measurements and field-testing results will allow 5G and FSS 
coexistence to reduce interference and ensure 5G and FSS coexistence 
based on distance. It depends on many variables, each of which must be 
evaluated individually. Evaluated individually different uses coexistence in 
the same frequency range to avoid mutually harmful interference (Bensky, 
2019). 
 
 

3) Notwithstanding expanding coverage and capacity, the public should be 
encouraged to use the 5G system (Tullberg et al., 2016). The expected 
operation did not meet mobile users' communication needs. A multi-operator 
constellation is required for successful 5G deployments, requiring many 
more extensive sections of the C-Band (Varrall, 2018). A better 
understanding of antennas and the network's ability to adapt to specific 
needs are offered by 5G technology. 5G high flexibility allows for more 
system setup options. Radio propagation is an important physical 
phenomenon in satellite communications. Radio propagation is possible due 
to radio waves' interaction with topography, structures, and the environment. 
Radio propagation is possible due to radio waves' interaction with 
topography, structures, and the environment. Less radio signal modulation 
means more geographical separation of potentially conflicting systems  
(Mazar, 2016; Nuaymi, 2007; Shahajahan, 2009).  
 
 

The C-Band studies share between 5G and FSS systems. There is proof of this 
separation distance, but no simulation or saturation interference tests were 
conducted (Jo, Yoon, Lim, Park, & Yook, 2007; Su, Han, Yan, Zhang, & Feng, 
2014; Q. Sun & Nan, 2012; Y. Wang & Lu, 2018). The high data rate and 
spectrum quality can be improved by finding more space for the spectrum. 
Increasing spectrum efficiency in heterogeneous wireless networks is difficult 
because the sub-3GHz spectrum is crowded, slipped, and inefficient. The most 
significant problem is the potential for co-channel and adjacent channel 
interference between 5G-BS and FSS-ES signals receiving on the same 
frequency band. Moreover, the Artificial neural networks (ANN) in machine 
learning (ML) techniques to develop the quality of services, that is, to plan 5G 
Next Generation Node Base Station (5G-gNB) deployment without interference 
to FSS. According to the current research results in this thesis. ML is an effective 
improvement and supplement to the severely impacted by co-channel and 
adjacent channel interference if the optimal exclusion zone is not addressed by 
traditional channel modelling approach.   
  

         
1.3 Research Objectives  

 
 

This research aims to design and develop propagation models of coexistence 
between 5G-BS and FSS-ES, using measurements received signals and 
predicting the optimal RSS and Path Loss interference mitigation technique. The 
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models measure 5G-BS and FSS-ES interference in the same frequency range. 
Machine learning models are used for C-Band interference and path loss 
measurements. The following are the study's main objectives concerning the 
problems presented: 
 
 

(i) To determine the optimal exclusion zone between Fixed Satellite 
Service (FSS) station and 5G- gNB considering the Malaysian scenario. 

(ii) To conduct measurements campaign to determine optimal exclusion 
zone considering Malaysian scenario. 

(iii) To analyze and optimize system model parameters between 5G-BS and 
FSS-ES, in C-Band 3.5GHz, towards finding the optimal exclusion zone 
base on ML. 

(iv) To develop analytical models for 5G-BS and FSS-ES in C-Band based 
on using Machine Learning (ML) towards addressing the optimal 
exclusion zone. 

 

 
1.4 Scope of Research and Research Module 

 
 

This thesis examines the coexistence between 5G-BS and FSS-ES to identify 
new opportunities for green 5G and B5G wireless communication network 
design using satellite communications. The goal is to develop a serious 
perspective on how coexistence between 5G-BS and FSS-ES can be used to 
avoid co-channel and adjacent channel interference in 5G and B5G to FSS-ES. 
Co-channel and adjacent channel interference are investigated at various stages 
in the design of 5G-BS and FSS-ES. For investigating interference in the same 
frequency band, the measurements and analysis begin with 5G-BS and FSS-
ES. 5G and B5G technologies address the optimal exclusion zone. ML has its 
own set of characteristics that can be used to create a new exclusion zone 
design that is more efficient. As a result, this thesis examines the current 
coexistence between 5G-BS and FSS-ES to avoid co-channel and adjacent 
channel interference, as well as the key research directions that aim to achieve 
coexistence via 5G-BS and FSS-ES. It should be noted that most of the existing 
research has focused on a specific access technology, namely IMT-Advanced. 
However, current research is based on real-world measurements of 5G-BS and 
FSS-ES, leaving some new opportunities to be discovered.  

 
 

As a result, additional research problems can be identified, and new research 
directions for future work can be proposed. The coexistence between 5G-BS and 
FSS-ES is thus thought to be promising candidates for 5G to FSS-ES design, 
given the newly identified opportunities and research directions. Figure 1.1 on 
the following page depicts the scope of the current study and a summary of the 
approaches used to achieve the established goals. The dashed line 
distinguishes the emerging technologies of the proposed system model in each 
objective, while the colored boxes show the direction to reach the previously 
mentioned objectives. It is worth noting that the uncolored boxes represent other 
technologies and scenarios that need to be covered in this research. 
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1.5 Brief Methodology 
 
 

The methodology outlined how important data and information for research 
projects are systematically gathered. It will indicate how researchers can 
address some urgent problems and conduct research. Theoretical approaches 
are used to collect appropriate data and spots, such as by evaluating 
experiments or comparative investigations. The current research analysis is 
based on field test results; all measurement results except T1, T2, and T3 are 
consistent with the S21 parameter, whereas higher rejection was observed for 
the first carrier as opposed to the second carrier of 5G transmissions. These are 
due to RF leakage between band-pass filters (BPFs) and low-noise block 
downconverters (LNB). The VSAT experienced blocking interference when its 
LNB was unable to fully reject or reduce 5G signals below the satellite reception 
level. Based on field observations, the level of LNB blocking interference reduces 
exponentially at higher VSAT downlink frequencies. Furthermore, the frequency 
range of the LNB has no effect on the impact of blocking interference, as no 
interference was observed at 85 m with a gaud band (GB) of 100 MHz for all 
types of LNB when paired with a BPF with sufficient rejection.  
 
 
At 85 metres and above, no significant impact is observed for both direct and 
indirect facing VSAT, as no interference with 100 MHz GB was observed. 
Furthermore, the directly facing VSAT at 115 m on the 3.836.27 GHz downlink 
frequency experienced out-of-band (OOB) emission interference from the 3rd 
carrier of 5G transmission from 3.600 to 3.650 GHz with 200 W transmit power. 
The OOB interference is fully eliminated when the power is reduced to 100W. 
No VSAT could coexist with 5G within 85 m and with 50 MHz GB due to OOB 
emission interference from the 3rd carrier of 5G transmission from 3.600 to 3.650 
GHz with 100 W Tx power. Based on field testing with various distance meters, 
it has been determined that VSAT can coexist with 5G as close as 85 m with 100 
MHz GB and BPF rejection of at least 45 dB. A minimum of 80 MHz GB (3.730–
3.650 GHz) is needed to avoid OOB emission interference from 5G. Therefore, 
5G carriers should stop at 3.620 GHz to protect satellite services at 3.700 GHz 
and above. Further field tests with different 5G Active Antenna Unit (AAU) 
models and VSATs with direct facing and a lower look-up angle than MEASAT 
VSAT are welcome to evaluate whether the distance and GB can be reduced 
further. Moreover, measurements, simulations, and analysis were implemented 
as the following points:  
 
 

➢ Indoor and outdoor measurements of 5G-BS with FSS-ES were 
conducted for research and interpretation. As a result, only a few 
guidelines were available to ensure that the thesis' objectives were met, 
and the research technique was regulated correctly. Methodologies 
were used to assess the reliability of 5G-BS in the presence of FSS-ES. 
 
 

➢ The RSS and Path Loss Mitigation Technique predicted the coexistence 
of 5G-BS and FSS-ES for the optimal signal strength. Nonetheless, the 
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methodology flowchart goes into great detail about the information 
gathered. 

 
 

➢ The current investigation is included in the scope of this study. 5G NR 
deployment has been considered in the overall research methodology in 
terms of characteristics and occurrences such as mandating 
necessities. On the other hand, further differences in distances, 
frequency ranges, propagation models, and representatives could be 
based on sub-6 GHz raw data. In practice, the 5G-BS is excellent for 5G 
NR. Figure 1.2 depicts the research methodology linked to the objectives 
that addressed the research problems. 

 
➢ The current research has advanced significantly, with potential designs 

and developments contributing to high-ranking international research via 
5G-NR. In wireless communications experiments, the new technique, 
which includes neural networking algorithms and is designed to interfere 
with 5G-BS and FSS-ES design modelling systems, produces significant 
results. 

 
 

➢ Artificially intelligent models (AI), innovative techniques, and 
technologies were used to evaluate the 5G-BS and FSS-ES for 
advanced technologies obtained using ML algorithms. Furthermore, the 
artificial neural network (ANN) and machine learning (ML) for the 
development of novel accuracy analysis experimental models for 5G-BS 
and FSS-ES are based on the use of to determine the optimal exclusion 
zone. 

 
 

➢ Machine models were developed based on c-Band interference and 
path loss measurements. Again, the models were subjected to 5G-BS 
and FSS-ES interference across the C-Band frequency range. Figure 
1.3 shows the research methodology scheme and summarises the 
techniques adopted to control interference based on the proposed ML. 
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Figure 1.3: The Methodology Scheme Summarises the Techniques 
Adopted to Control Interference Based on the Proposed ML 
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1.6 Research Contributions 
 
 
Satellites are becoming increasingly important in our daily lives. Satellite 
technology is used everywhere where cables and wireless are practically 
impossible once there are barriers to their use. As a result of wireless technology, 
information can be accessed from any location on the planet. Because of 
technological advances, such as 5G, it has never been easier or more 
convenient to share information, communicate, or have fun. Wireless technology 
eliminates the need for wires or cables to transmit and receive data. Electronic 
devices linked or networked together without using cable are wireless 
technology. Furthermore, these devices can transmit and receive large amounts 
of data over radio waves; neither communication nor navigation satellites would 
be possible without radio waves. Examples include wireless networks, television 
broadcasts, cordless phones, and other radio-based technologies. In order to 
keep up with rapid advancements in technology and its applications, we have 
been forced to adopt a trendsetting mindset. When it comes to PhD thesis 
research, the most significant contribution is to be presented. However, there are 
a total of three significant contributions are addressed in current research to 
serve 5G-NR technologies:  
 
 

(i) 5G measurements via C-Band in several locations, such as RekaScape 
Cyberview, Cyberjaya, Sungai Buloh, MAEPS Serdang, UPM, and 
Selangor, Malaysia.  

(ii) Coexistence models obtained the optimal exclusive zone in the same 
frequency band for 5G-BS and FSS-ES. 

(iii) Interference models for RSS and Path Loss via 5G-BS and FSS-ES for 
optimal exclusive zone based on machine learning (ML) model results. 

 
 
  

1.7 Thesis Organization   
 
 
The chapters of this Thesis are organized as follows: 
 
 
Chapter 1: 
 
This chapter presents the introduction with the historical perspective and the 
background of the study, which explains the research. Moreover, it is followed 
by the researcher's research problems and challenges to conduct the study, 
objectives, research questions, study scope and motivations, research 
contributions, and publication. And finally, the organization of the document.  

 
 

Chapter 2:  
 
The literature review, as the title, covered the research with essential knowledge 
of the 5G-BS system to describe FSS. This chapter also presented the 5G 
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spectrum new radio frequency and coexistence between 5G-BS and FSS-ES via 
C-Band frequency. As well as the machine learning (ML) studies for 5G new 
radio.   
 
 
Chapter 3:  
 
Preliminary results of the 5G coexistence and interference signal evaluation in 
the C-Band satellite earth station in most countries, FSS-ES was the only C-
Band service. 5G (3.3-3.6GHz) is now widely available, making FSS obsolete. 
This research conducted a measurement campaign, and the interference was 
analyzed. Regional exclusion zones of maximum radiated power in 5G base 
stations (BS) are proposed and evaluated to reduce detrimental interference for 
the FSS. The filtering model Filters to Remove Broadband Interference 5G 
(FIREBRING) is proposed and analyzed in C/N. This research also assesses 5G 
interference in the FSS. Test the satellite down-conversion signal at the receiver 
with a Low-Noise Block (LNB) 3.7 ~ 4.2GHz. The research examined the 5G 
signal from all angles, including out-of-band (OOB) emissions, LNB saturation 
into FSS receivers, and the deployment of 5G BS active antenna systems. 
 
 
Chapter 4: 
 
This chapter addresses the results and efficiency analysis of current 5G outdoor 
measurements and the effectiveness of minimizing interference. However, the 
coexistence Evaluation of 5G Mobile Service (3400-3600 MHz) and 3 Fixed 
Satellites (VSAT) (3700-4200 MHz). Based on field measurements, VSAT can 
coexist with 5G at 85m with 100 MHz GB and BPF rejection of at least 45 Db. 
To avoid 5G out-of-band emission interference, the GB must be at least 80 MHz 
(3730-3650 MHz). As a result, 5G carriers should stop at 3620 MHz to protect 
satellite services. It would be great to see more field measurements using 
different VSAT and 5G-BS models with direct facing and lower look-up angles 
than MEASAT VSAT. 
 
 
Chapter 5:  
 
Machine Learning-based Co-Channel Coexistence for 5G Small Cells and Fixed 
Satellite Service (FSS). The C-Band frequency spectrum has been a priority 
band for 5G implementation in most countries, including Malaysia. However, 
former users of the frequency band used for Fixed Satellite Service (FSS) may 
be dissatisfied with its use for this 5G operation, and thus the service level 
agreement (SLA) may be compromised. That resulted in developing co-channel 
interference modelling for the C-Band channel, especially at 3.4 ~ 3.6 GHz. 
Hence, this research investigates the possibility of developing an optimal 
exclusion zone for the small cell 5G and the FSS receivers for the intended 
frequency spectrum, considering the tropical region's characteristics. However, 
the results can easily be extrapolated to other scenarios. An analysis of received 
signal strength from a measurement campaign has also been conducted in 
Malaysia. A co-channel interference model has been proposed and analyzed 
based on machine learning techniques. Two novel machine learning (ML) 
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models were developed and used, which are radial basis function network 
(RBFNN) and general regression neural network (GRNN). 
 
 
Chapter 6:  
 
The 5G mobile communication access technology, the most advanced currently 
available, uses sub-6 GHz c-bands and mmWave. In high-traffic areas, parts of 
the 5G network are deployed alongside the 4G network. There may be greater 
demand for 5G bandwidth in the future. However, to minimize interference and 
make the most accessible frequency, research into the coexistence of 5G and 
existing radio systems using an adjacent or similar channel is required. This 
research focuses on 5G downlink radio, which will impact FSS-ES that operate 
in the upper 3.5 GHz band in a co-channel and adjacent channel. The machine 
learning model significantly accurately affects the 5G NR Downlink Signal with 
FSS-ES. This research also considers two cases of interference between 5G-
BS and FSS-ES in the co-channel and adjacent channel, three phases of 
analysis simulation and 5G measurements of 5G-BS, and a predicted model 
based on Machine learning (ML). Nonetheless, the findings of this research may 
be useful for future 5G design and deployment, 5G-BS around an FSS-ES. 
 
 
Chapter 7:  
 
Concludes the Thesis by summarizing the critical theories, observations that 
were achieved, contributions to future works, and recommendations. 
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