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Many past studies had used multiple MRI scans and protocols to automate the prediction 

of MS patients’ disability. They focused on using non-raw MRI data including clinical, 

radiological, and general patient information with different study durations. Furthermore, 

they were using manual and semi-automated features extraction. Unlike previous studies, 

this study aims to predict MS patients’ disability by using automated feature extraction, 

single MRI scan, and single MRI protocol, without patient follow up. Since each part of 

the brain controls a specific human body function, the location of brain abnormalities in 

which lobes would help to identify the type of dysfunction, and at which part of the 

human body. Different brain abnormality’s location may result in different values of MS 

patient disability scores. Thus, segmenting the brain abnormalities that have a high 

correlation to the patient’s disability and classifying them according to their locations 

would be significant for disability prediction. This study uses data extracted from 65 MS 

patients who were from multiple centers in Iraq and Saudi Arabia. The Dynamic Image 

Thresholding (DIT) method was proposed to segment areas of brain abnormalities on 

brain MRI. This is followed by an estimation method to segments the brain lobes and 

brain periventricular region segmentation (BLBPRS). The performance of DIT and 

BLBPRS methods were evaluated by two experts, radiologists, for each method with an 

overall performance evaluation of 80% and 79% respectively. A large-scale statistical, 

volumetric, texture, location, radiological, clinical and ratio-based features were 

extracted using clinical, radiological, general patient information, and raw-imaging data. 

From the large-scale features, a correlation analysis is performed to select the highly 

correlated features used for predicting patients’ disability. This was based on machine 

learning and regression algorithms at the first phase. The proposed methodology is 

divided into two phases. The first phase aims to investigate the best types of required 

data, features and algorithms to be used in the final proposed methodology to predict 

exact EDSS, and different ranges of EDSS. A 5-fold cross-validation has been used to 

evaluate the performance. In the first phase, all dataset is combined and weak 

performance was found. In the second phase, the dataset was divided into four groups 

according to the MRI-Tesla and the condition of a lesion in the spinal cord or not. The 

division of dataset into four groups produced good performance in EDSS prediction and 
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classification. The best machine learning performance, after the grouping, came from 

SVM, with an average accuracy, sensitivity, and specificity of 82%, 77%, and 79%, 

respectively. The best performance from the linear regression had an average RMSE of 

0.6 for EDSS step of 2. These results showed the possibility of using fully automated 

feature extraction, single MRI scan, and single MRI protocols without patient follow-up 

to predict MS patients’ disability.  
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Kebanyakan kajian terdahulu telah memfokuskan ramalan ketakupayaan pesakit 

menggunakan imbasan dan protokol MRI berbilang untuk mengautomasi ramalan 

ketakupayaan pesakit MS dengan tempoh kajian yang berbeza dan menyokong data 

bukan MRI termasuk klinikal, radiologikal dan maklumat am pesakit menggunakan 

penyarian ciri-ciri manual atau separa automatik. Kajian ini bertujuan untuk meramal 

ketakupayaan pesakit MS menggunakan penyarian ciri-ciri berautomasi, imbasan MRI 

tunggal dan protokol MRI tunggal dan tanpa rawatan susulan pesakit. Setiap bahagian 

otak mengawal fungsi tubuh manusia spesifik. Lokasi keabnormalan otak, iaitu lobus 

mengenal pasti jenis ketakfungsian bahagian tubuh manusia yang terkesan  yang 

mengakibatkan nilai yang berbeza bagi skor ketakupayaan pesakit. Oleh sebab itu, 

pembahagian  keabnormalan otak yang mempunyai korelasi yang tinggi  ke atas 

ketakupayaan pesakit  dan mengklasifikasikan mereka berdasarkan lokasi adalah 

signifikan bagi peramalan ketakupayaan. Oleh itu, penyarian ciri-ciri  berautomasi 

merupakan peraturan  penting bagi ramalan ketakupayaan MS. Data daripada 65 pesakit 

MS telah digunakan dalam kajian ini dan telah dikumpul dari pelbagai pusat perubatan 

di  Iraq dan di Arab Saudi. Kaedah ambang imej dinamik (DIT) telah disyorkan dalam 

kajian ini bagi membahagikan kawasan keabnormalan  ke atas MRI otak. Kemudian, 

kaedah anggaran bagi membahagikan lobus otak  dan kawasan di sekeliling 

periventrikular otak juga telah disyor  bagi membahagikan lobus otak mengikut lobus  

frontal, parietal, temporal dan occipital, di samping  kawasan di sekitar kawasan 

periventrikular otak.  Dari ciri berskala besar, analisis korelasi telah dijalankan bagi  

membahagikan ciri berkorelasi tinggi sebagai input bagi kerangka ramalan berdasarkan 

pembelajaran mesin dan algoritma regresi. Metodologi yang disyor  dibahagikan kepada 

dua fasa, fasa pertama bertujuan untuk menyelidiki jenis terbaik bagi data yang 

diperlukan  dan algoritma ramalan yang digunakan dalam fasa kedua dalam  

mengutarakan metodologi cadangan akhir. Dalam fasa pertama, jenis  data input yang 

berbeza termasuk data klinikal, data radiologikal  dan maklumat am pesakit dan pelbagai 

algoritma ramalan telah digunakan bagi meramal  EDSS yang tepat dan julat  EDSS yang 

berbeza. Latihan dan pengujian telah dijalankan dengan  5 lipatan pengesahsahihan 

silang bagi memilih kaedah peramalan terbaik. Pengesahan silang 5 kali ganda telah 
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digunakan untuk menilai prestasi. Dalam fasa pertama, semua dataset adalah 

digabungkan dan prestasi lemah diperolehi. Dalam fasa kedua, dataset dibahagikan 

kepada empat kumpulan mengikut jenis MRI-Tesla dan keadaan lesion pada saraf 

tunjang atau tidak. Pembahagian dataset kepada empat kumpulan menghasilkan 

pencapaian yang baik dalam ramalan EDSS dan pengkelasan. Prestasi pembelajaran 

mesin terbaik selepas pengelompokan adalah daripada SVM dengan masing-masing 

ketepatan, sensitiviti dan spesifisiti iaitu 82%, 77% dan 79%  manakala prestasi terbaik 

dari regresi linear adalah dengan purata RMSE  0.6. Dapatan tersebut memperlihatkan 

kewajaran ramalan ketakupayaan pesakit MS   menggunakan penyarian ciri-ciri 

berautomasi sepenuhnya, imbasan MRI tunggal, protokol MRI tunggal dan tanpa 

rawatan susulan pesakit.  
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CHAPTER 1 

1 INTRODUCTION 

1.1 Overview 

This chapter introduces the study by focusing on what Multiple Sclerosis (MS) is. It then 

delves into the background of the study, problem statement, motivation for this study, 

the research objectives, scope of this study, and the contributions. It ends with an 

organization of this thesis.  

Multiple Sclerosis (MS) is a chronic, progressive autoimmune condition. It affects the 

central nervous system (brain and spinal cord). MS occurs when the immune system 

attacks the myelin that protects the nerve fibers in the brain and the spinal cord (Altermatt 

et al., 2018; Colato et al., 2021; Ghribi et al., 2018; Pinto et al., 2020) MS is considered 

a rare disease in Asia (Ruggieri et al., 2021) (Colato et al., 2021; Kaunzner & Gauthier, 

2017). The exact cause of MS is still unknown. However, several risk factors have been 

suggested as possible causes of MS. They include one’s race, genes, being female, the 

climate, the lack of sunlight, a lack of vitamin D, smoking, teenage obesity, or even viral 

infections (Altermatt et al., 2018; Colato et al., 2021; Pinto et al., 2020). Magnetic 

Resonance Imaging (MRI) has been increasingly used for diagnosing MS. MRI findings 

of the brain and spinal cord serve as the most helpful information which helps in the 

diagnosis of MS. It can also substitute as clinical findings. MRI has a crucial feature for 

making diagnosis, treatment decisions, monitoring treatment responses, and monitoring 

MS disease progression (Altermatt et al., 2018; Colato et al., 2021; Ghribi et al., 2018; 

Pinto et al., 2020).  

McDonald’s MS diagnostic criteria state that the most significant areas of findings in 

MRI are location, type, size, and number of MS-lesions (Ridler, 2018). Several MRI 

protocols have been used to evaluate MS abnormalities, for instance, fluid-attenuated 

inversion recovery (FLAIR), T2-weighted, and T1-weighted with, and without contrast. 

FLAIR MRI has a vital role in diagnosing MS (Filippi et al., 2016, 2019b; Trip & Miller, 

2005). The MS-lesions in FLAIR MRI are typically hyperintense. Nonetheless, MS  is a 

rare disease in Iraq and other Middle Eastern countries, with a prevalence of between 0 

and 20 per 100,000 (Nguengang Wakap et al., 2020). As a result of this, there is a lack 

of sample size thereby causing difficulty in the extraction of data for studies conducted 

in Middle Eastern countries.    

The Expanded Disability Status Scale (EDSS) is considered a golden standard when 

aiming to score MS patients’ disabilities (Bonomi et al., 2021). The EDSS is a clinician-

administered assessment scale. It is used as a tool to evaluate the eight functional systems 

of the patient’s central nervous system. The EDSS scores range between 0 (no disability) 

to 10 (death due to MS), with an increment interval of 0.5 (Carass, Roy, Jog, Cuzzocreo, 

Magrath, Gherman, Button, Nguyen, Bazin, et al., 2017; Danelakis et al., 2018; Dewey 



© C
OPYRIG

HT U
PM

2 

et al., 2017; Doyle et al., 2018; Gonzalez et al., 2017; Rummel et al., 2018). Figure 1.1, 

shows the EDSS scores’ range, with its corresponding disability level, and the 

progression of the disease. To assist the EDSS, eight neurological Functional Systems 

(FS) need to be scored by an expert. The scoring range for these eight neurological FS 

examinations is between 0-4 and 0-15 (Gonçalves et al., 2018). The lowest score means 

normal FS, while the highest score means complete loss of function in a particular 

neurological FS. Scoring MS patients’ disability level through the EDSS is time-

consuming. It also requires expert knowledge and inter-and intra-subject variations.  

 
Figure 1.1 : EDSS scores range with their corresponding disability level as well as 

the progression of the disease 

 

 

Identifying the central nervous system’s abnormalities is crucial because it significantly 

predicts patients’ disability levels. MS lesions within the brain and the spinal cord are 

considered as the key features in identifying the central nervous system’s abnormalities. 

Each location within the central nervous system is responsible for controlling a specific 

function in the human body. Thus, the abnormality of any part of the central nervous 

system would directly affect a specific function of the human body corresponding to that 

location  (Filippi et al., 2019a). In that regard, identifying the central nervous system 

abnormality’s location is considered a key feature in predicting patients’ disabilities.   

The traditional method for evaluating the central nervous system’s abnormalities is done 

by a specialist who uses manual MS-lesion detection. It considers any seen lesions or 

abnormalities by using one or several MRI protocols, such as T2-FLAIR, T2-weighted 

and T1-weighted with or without contrast.  
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There are several challenges in using the automated method to predict MS disability 

when using MRI. First, Multiple Sclerosis is a clinically heterogeneous disease with 

different symptoms, behaviour, and CNS abnormalities among patients. Second, the MRI 

is inhomogeneous due to different image sizes, brain sizes, image intensity range, and 

MRI Tesla. This makes the automated system, which detects and quantifies MS 

abnormalities, a difficult task. As a result of this, most studies focusing on disability 

prediction tend to use supporting non-raw MRI data, such as radiological, clinical, and 

general patient information, which requires human interactions and expert knowledge. 

Furthermore, they require patient follow-up. 

1.2 Problem statement 

Multiple Sclerosis (MS) patients’ disability predictions is significant for diagnosis, 

treatment decisions, and monitoring the disease's progression. The traditional method to 

score MS patient disability is the Expanded Disability Status Scale (EDSS), which is 

scored by eight neurological physical examinations done by an expert. Thus, the 

prediction of MS disability using brain MRI only is not an easy task. Due to the weak 

correlation between MRI findings and MS patient disability (Tommasin et al., 2021). 

However, most of the previous studies focusing on this field were working on multiple 

MRI scans or MRI protocols. They also used large amounts of patient information 

requiring multiple visits from patients’ follow-ups. Past studies also tend to use 

supporting non-raw MRI data that require human interactions and expert knowledge. 

This practice tends to involve variations in terms of inter and intra-expert input as well 

as radiological, clinical, and general patient information, as illustrated in Section 2.7. As 

a result, all the previous MS prediction algorithms cannot consider as fully automated 

prediction algorithms. However, implementing a fully automated system to predict MS 

disability prediction algorithms using a single MRI scan, single MRI protocols, without 

patients’ follow-up and also without clinical data, is challenging. All the previous 

mentioned related work issues and limitations are motivating us to implement a fully 

automated prediction algorithms based on fully automated feature extraction method and 

without clinic data. 

As a clinically heterogeneous disease, MS brain abnormalities vary in size, shape, 

number, and location. In addition, MRI scans have a high variation in size, quality, Tesla, 

and intensity range. Most past studies  (Law et al., 2019; Roca et al., 2020; Tommasin et 

al., 2021) that had examined this area had detected traditional brain abnormalities, such 

as seen lesions only, without considering the hidden or unseen brain abnormalities. Thus, 

automated segmentation of brain abnormalities that have high correlation to the patients’ 

disabilities may not be an easy task although it is significant for MS patients’ disability 

prediction.  

Secondly, each location within the central nervous system is responsible for controlling 

a specific function of the human body. This means that the abnormalities at any central 

nervous system would directly affect a specific function of the human body which 

corresponds to that location (Filippi et al., 2019a). Furthermore, abnormalities at a 

specific brain region, such as the brain periventricular region, have higher correlations to 

the patients’ disabilities than other brain regions, which have a substantial correlation to 
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patients’ disabilities when compared to other brain regions (Correale & Gaitán, 2015). 

Thus, identifying the location of the brain abnormalities based on brain lobes and brain 

periventricular region can help us to identify which human body function is affected by 

the abnormalities. This task is challenging because of the high variation of the human 

brains in terms of size, shape, and abnormality level. In addition to that, this task also 

requires high-quality 3D imaging. Most of the previous studies had used radiological 

information extracted by the expert for brain abnormalities localization (Gajofatto et al., 

2013). 

Lastly, traditional MRI findings have been found to be weakly correlated to MS patient's 

disabilities (Correale & Gaitán, 2015). Thus, most of the previous studies used 

supporting non-raw MRI data such as clinical, radiological and general patient 

information for feature extraction, which required expert knowledge and inter and intra-

expert variation. Therefore, extracting and selecting a highly correlated feature to the MS 

patients’ disabilities is active research in the past few years to facilitate MS disability 

prediction and to enhance the understanding of MS disease. This study aspect can also 

help identify an imaging biomarker for MS disease.   

1.3 Motivation 

Developing an automated method which can be used to predict MS patients’ disability 

level is significant for the MS diagnosing stage as well as for identifying the progression 

of the disease. Both aspects are vital and significant for MS treatment plan, medication 

dose, and for assessing how much the MS patients are responding to the medication. Past 

studies tend to rely on manual or semi-automated feature extraction methods, which used 

multiple MRI scans, various MRI protocols, with patient follow ups. This is in addition 

to the various clinical and radiological data used to support MS patients’ disabilities. 
These methods, as mentioned earlier, not only involved excessive and costly patient 

follow-ups, but also contained variations in expert input and patient information. These 

challenges have motivated us to design an automatic feature extraction method which 

can be used to predict MS disabilities by using a single MRI scan, and single MRI 

protocols, both of which reduce cost, time, expert knowledge, and muti-visits for the 

patients. However, this study tries to answer three hypotheses: First, it can automatically 

segment MS brain abnormalities. Second, it can automatically segment brain lobes and 

brain periventricular regions using 2D images. Third, it can automatically predict MS 

patient disability using a fully automated feature extraction method.   

1.4 Aim and Objectives 

Based on the problem statement explained, our study thus aims to design an automatic 

feature extraction method using brain MRI to predict MS disabilities. The following 

objectives were thus formulated to fulfil the aim of this study.  

 

1. To investigate a segmentation method for MS brain abnormalities’ areas of MR 

images by using dynamic image thresholding.  
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2. To design a segmentation method to approximately segment brain lobes and 

brain periventricular region by using 2D brain MRI. 

 

3. To evaluate the ability of the highly selected features extracted from the 

segmented MS lesion based on the correlation analysis in order to predict MS 

disabilities by using machine learning classifiers and the regression method. 

 

 

1.5 Scope of study 

This study focuses on 2D FLAIR MRI for patients confirmed with the diagnosis of MS, 

with an EDSS score range of between 0 to 5, and MRI Tesla of 1.5 and 3. This study 

uses a dataset collected from multi-centers in Iraq and Saudi Arabia. The proposed 

method can automatically segment and locate MS brain abnormalities without human 

interactions by using our proposed dynamic image thresholding, brain lobes, and brain 

periventricular region segmentation. 

A fully automated feature extraction is developed by considering the segmented 

abnormalities and the locations of the abnormalities in the brain lobes and brain 

periventricular region. A correlation analysis which used the Pearson correlation 

coefficient is then performed by using the IBM SPSS statistics version 28.0.1 (Kurtzke, 

1983). The Brain Extraction Tool (BET) (Abou Elmaaty et al., 2019; Abouelmaaty et al., 

2019; Artemiadis et al., 2018; Filippi et al., 2010) is then conducted for skull striping. 

Then using, the highly correlated feature to predict the different types of MS disabilities, 

including exact EDSS, and the different ranges of EDSS, with a step of between 1 to 2.5.  

Two datasets were collected from Iraq and Saudi Arabia. These were used with different 

MRI Tesla of 1.5 and 3, with the EDSS score ranging between 0 to 5. The first dataset 

has rich patient meta information, including general patient information, such as gender, 

age, age of onset, and clinical information, like types of medicine, presenting symptoms, 

number of presenting symptoms, dose the patient has for co-morbidity, and whether or 

not the patient has abnormalities encompassing pyramidal, cerebella, brain stem, 

sphincters, visual, speech, motor system, sensory system, coordination, gait, bowel and 

bladder function, mobility, mental state, optic discs, nystagmus, ocular movement, and 

swallowing, during one of the neurological examinations. The first dataset was also 

supplied with radiological information, including manual MS-lesion segmentations 

representing seen lesions done by experts. Patients’ meta-information for the second 

dataset includes gender, age, MS type, and MRI report. Appendix A illustrates patients’ 

meta-information, and Appendix B shows a sample extracted from patients’ documents.    

The proposed framework is run using a CPU with the following specifications: (4th Gen 

Intel® Core™ i7-4700MQ (2.4GHz 1600MHz 6MB) and RAM of 16GB. 
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1.6 Contribution 

This study offers a new automated feature extraction method which uses single brain 

MRI and single MRI protocols to predict MS disabilities. The main contributions of this 

study can be traced to the extraction method designed. It can be used to:  

 

1. Automatically segment brain abnormalities by using our proposed dynamic 

image thresholding (DIT) method. 

 

2. Automatically localized the brain abnormalities based on brain lobes and brain 

periventricular region by using our proposed brain lobes and brain 

periventricular region segmentation (BLBPRS) method.  

 

3. Extract features automatically based on the DIT, and BLBPRS using single 

MRI scan, single MRI protocols and without patient follow-ups.  

 

4. Predict patient disabilities (exact EDSS and different ranges of EDSS) by using 

highly correlated features. 

1.7 Thesis Organization 

This chapter has highlighted the background of MS, the problem statement, the 

motivation inspiring this study, the research aim, the research objectives, and the scope 

of this study, followed by the contributions derived. The remainder of this thesis is 

organized as follows:  

 

Chapter 2 presents a review of the state-of-the-art of related studies of MS patients’ 

disability prediction, diagnosis, and evaluation process. This chapter also looks at the 

different MRI protocols used to predict MS patients’ disabilities. 

 

Chapter 3 presents the proposed automated feature extraction method based on brain 

abnormalities segmentation, lobes segmentation, periventricular region segmentation, 

correlation analysis, and disability prediction methods.  

 

Chapter 4 presents the results of the proposed method in detail for correlation analysis, 

dynamic image thresholding, brain lobes and brain periventricular region segmentation, 

and disability prediction algorithms.  

 

Chapter 5 presents the conclusions and recommendations for future research work. 
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