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Power conversion efficiency (PCE) in dye-sensitized solar cells (DSSCs) is a 
pivotal parameter to gauge the ability to convert light energy into electricity. 
However, the preference of substrates is among the issues that contribute to a 
low PCE. While polymer substrates have been exploited as the photoelectrodes 
for their flexibility and transparency which allows for front illumination, high 
temperature is required to eliminate the polymer binder from deposited titanium 
oxide (TiO2) paste. The polymer substrates are unable to withstand high 
temperature, and as such affect the PCE with the residue of the polymer binder 
within TiO2 film. Herein, a flexible titanium (Ti) substrate, a metal-based material, 
is used to replace the polymer substrate as the photoelectrode. Inherently, back 
illumination through counter electrode was opted for instead of front illumination 
through photoelectrode, owing to the opaque characteristic of metal substrate. 
However, the longer distance for the light to travel via this route impeded the 
development of photoelectrons, and thus reducing the power conversion 
efficiency (PCE). Therefore, the aim of this research is to improve the PCE via 
back illumination method. Herein, there were two methods proposed so as to 
increase the PCE. The first method is by coating the counter electrode with a 
different volume of platinum (Pt) solution at 30 µl, 50 µl, 70 µl and 90 µl. The 
second method proposed was incorporation of silver nanoparticles (AgNP) 
prepared via solvothermal into TiO2 paste. Platinum is integrated in the counter 
electrode for the optimization of PCE through catalytic activity induced by Pt. It 
was revealed that 70 µL of Pt solution increased the PCE from 1.248 % to 5.25 
%. The incorporation of AgNP into TiO2 film has been proven to improve the light 
absorption as compared to solely TiO2. Solvothermal, a chemical synthesis 
method was implemented with a varying amount of capping agent of 
polyvinylpyrrolidone (PVP) from 0.2 to 2.6 g to synthesize the silver 
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nanoparticles. TEM images showed that the higher amount of PVP would result 
in smaller AgNPs size, while the largest AgNPs resulted from the lower amount 
of PVP. The absorbance of the AgNPs signified that the absorbance decreased 
with increasing PVP amount. From the results, the AgNP with 28.6 nm sizes was 
selected to be incorporated in TiO2 paste for its low agglomeration and high 
absorbance value. The concentration of AgNPs was thereafter, varied from 1 to 
3 wt.%, incorporated into TiO2 and followed by subsequent annealing process at 
450 °C to fabricate AgNP-TiO2 film. It was observed that addition of 2 wt.% 
concentration of AgNPs showed the highest improvement of PCE at 4.691 % 
from that of TiO2 film with PCE of 2.35 %. Therefore, coating the counter 
electrode with Pt solution by volume and adding AgNPs into TiO2 methods have 
been carried out by which they have been proven to improve the PCE in DSSC. 
With this quantification, this study provides a way in addressing a durable and 
wearable flexible structure of portable electrical solar source in a wide range light 
intensity environment. 
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Kecekapan penukaran kuasa (PCE) dalam sel suria pemeka pewarna (DSSC) 
ialah parameter penting untuk mengukur keupayaan untuk menukar tenaga 
cahaya kepada elektrik. Walaubagaimanapun, pemilihan substrat menjadi 
antara isu yang menyumbang kepada permasalahan PCE yang rendah. 
Walaupun substrat polimer telah dieksploitasi sebagai fotoelektrod untuk 
fleksibiliti dan ketelusannya yang membolehkan pencahayaan hadapan, suhu 
tinggi diperlukan untuk menghapuskan pengikat polimer daripada 
semikonduktor titanium oksida (TiO2) yang terdapat pada substrat tersebut. 
Substrat polimer tidak dapat menahan suhu tinggi, dan oleh itu menjejaskan 
PCE dengan sisa pengikat polimer dalam filem TiO2. Di sini, substrat titanium 
(Ti) fleksibel, bahan berasaskan logam, digunakan untuk menggantikan substrat 
polimer sebagai fotoelektrod. Secara semulajadi, pencahayaan belakang 
melalui elektrod kaunter telah dipilih dan bukannya pencahayaan hadapan 
melalui fotoelektrod kerana ciri substrat logam yang legap. Walau 
bagaimanapun, jarak yang lebih jauh untuk cahaya bergerak melalui laluan ini 
menghalang pembangunan fotoelektron, dan dengan itu mengurangkan 
kecekapan penukaran kuasa (PCE). Oleh itu, tujuan penyelidikan ini adalah 
untuk menambah baik PCE melalui kaedah pencahayaan belakang. Di sini, 
terdapat dua kaedah yang dicadangkan untuk meningkatkan PCE. Kaedah 
pertama ialah dengan menyalut elektrod pembilang dengan isipadu larutan 
platinum (Pt) yang berbeza daripada 30 µl, 50 µl, 70 µl dan 90 µl. Kaedah kedua 
yang dicadangkan ialah penggabungan AgNP yang disediakan melalui 
solvotermal ke dalam TiO2. Platinum disepadukan dalam elektrod kaunter untuk 
pengoptimuman PCE melalui aktiviti pemangkin yang disebabkan oleh Pt. Telah 
didedahkan bahawa 70 µL larutan Pt meningkatkan PCE daripada 1.248 % 
kepada 5.25 %. Penggabungan AgNP ke dalam filem TiO2 telah terbukti 
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meningkatkan penyerapan cahaya berbanding dengan TiO2 semata-mata. 
Solvotermal, kaedah sintesis kimia telah dilaksanakan dengan jumlah agen 
penutup polivinilpirolidon (PVP) yang berbeza-beza daripada 0.2 hingga 2.6 g 
untuk mensintesis nanozarah perak. Imej TEM menunjukkan bahawa jumlah 
PVP yang lebih tinggi akan menghasilkan saiz AgNP yang lebih kecil, manakala 
AgNP yang terbesar terhasil daripada jumlah PVP yang lebih rendah. 
Penyerapan AgNP menunjukkan penyerapan menurun dengan peningkatan 
jumlah PVP. Daripada keputusan, AgNP dengan saiz 28.6 nm telah dipilih untuk 
dimasukkan ke dalam TiO2 untuk penggumpalan rendah dan nilai penyerapan 
yang tinggi. Kepekatan AgNPs selepas itu, diubah daripada 1 hingga 3 wt.%, 
dimasukkan ke dalam TiO2 dan diikuti dengan proses pembakaran seterusnya 
pada 450 °C untuk menghasilkan filem AgNP-TiO2. Diperhatikan bahawa 
penambahan 2 wt.% kepekatan AgNPs ke dalam TiO2 menunjukkan 
peningkatan tertinggi PCE sebanyak 4.691 % daripada TiO2 dengan PCE hanya 
sebanyak 2.35 %. Oleh itu, cara salutan elektrod kaunter dengan larutan Pt 
mengikut isipadu dan menambah AgNPs ke dalam TiO2 telah dijalankan yang 
mana ia telah terbukti dapat meningkatkan PCE dalam DSSC. Dengan 
kuantifikasi ini, kajian ini dapat menyediakan cara dalam menangani struktur 
fleksibel yang tahan lama dan boleh pakai bagi sumber suria elektrik mudah alih 
dalam persekitaran cahaya yang lebih malap. 
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CHAPTER 1 

INTRODUCTION 

1.1 Research Background 

Past research led by the energy researchers’ team from Stanford University 
conducted a roadmap study related to the high performance of renewable energy 
consisting of sunlight, wind, geothermal, and hydropower in consuming just the 
11.808 TW from the global energy demand. To do so, they gathered data 
covering all energy authorities in 139 countries with the predicted 100 % 
conversion up to 2050 of the aforementioned renewable energies [1]. Their 
roadmap provided strong shreds of evidence to support the proposition with 
optimum electricity consumption while casting new light over the world’s worst 
scenarios such as global warming, air pollution, unpredictable energy expenses 
market, as well as burden climate and healthcare expenditures 

As such, photovoltaic (PV) energy has been thrust into the limelight for years to 
come. Figure 1.1 gives the upshot of a global inspection commissioned by the 
National Renewable Energy Laboratory (NREL) to form an up-to-date view of 
the produced efficiencies by PV research experts across various technologies of 
PV in experimental scale-based over 45 years.  There is a clear divide between 
the Silicon-based PV, thin films, and the surge of PV evolution through the cells 
made of organic and inorganic cells, DSSCs, and the perovskite PV-types when 
it comes to power conversion efficiency (PCE) performances. Among the diverse 
PV technologies developed, the highest PCE was emphasized by the 
multijunction cells, aside from crystalline Silicon PV cells. Even though the 
efficiency of the PV evolution or familiarly called third generation PV is the lowest 
PCE amongst others, the success rate of the evolved PV generation appears to 
be between (12 - 28) % compared to (14 - 24) % for the thin-film technologies. 
In the third generation PV cells, perovskite holds the PCE of 28%, whereby the 
PCE of DSSCs was around (10 - 13) % [2].  

Amidst a well-performed plateau of PV energy, the excessive costs incurred by 
solar PV including manufacturing, transportation, assembling, installation, and 
maintenance are increasing yearly. Even worse, the complex procedures using 
high amounts of energy to manufacture the final product of cells, higher 
recombination losses due to the morphological structures of the grain boundaries 
which hinder the continuous flow of electrons in the cells, and the large losses of 
material are other baffling issues faced by Silicon cell [3], [4]. 
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Subsequent disclosure of Flexi DSSCs was discovered by a similar group of 
researchers who developed the first DSSCs in 1993 [5]. Astoundingly, the finding 
was accidental but unveiled fresh insights into the flexible architectural role of 
DSSCs, thus garnering momentum on DSSCs application from lab maneuvers 
to commercial trade. This momentum has been grasped by third-generation-
based PV companies of GreatCell Solar, GCell, and 3GSolar. DSSCs have been 
classified into two categories, and both categories are manufactured from 
Transparent Conductive Oxide (TCO) material but differ based on the coating 
layers. The first category known as a solid-state based DSSCs consists of 
transparent soda-lime glass layered with Fluorine Tin Oxide (FTO) or Indium Tin 
Oxide (ITO), while the second type is layered with polymer poly(ethylene 
terephthalate) (PET) or poly(ethylene naphthalate) (PEN) and termed as flexible 
based DSSCs. In some cases, the metal based substrates are also introduced 
in the flexible category. The solid-state is designed for extreme and harsh 
circumstances in wide geographical areas, whilst the criteria for flexibility are 
meant to be designed in any size or shape relevant to the incessant obligation 
of performance such as transparent, conductive, good transmittance, and low 
sheet resistances. 
 
 
Metals are not as flexible as ITO-PET or ITO-PEN, most likely because they 
have standard ductility that limits their flexibility. However, metals can withstand 
intense heat temperatures soaring up to 500°C and are resistive to corrosion that 
is crucial for stability preservation purposes, in particular during electrolyte 
instillation. The most pervasive metals used are stainless steel (StSt) and 
titanium (Ti), other than copper (Cu), zinc (Zn), Inconel (In), and Tungsten (W). 
Although the highest PCE of flexible DSSCs was exhibited by StSt in contrast to 
the PCE of Ti as photolectrodes in a previous study [6],  the conclusive findings 
[7], [8] disclosed that Ti leads ahead StSt when it comes to their stability aptitude.  
 
 
Surface plasmon resonance (SPR), acting as the optical application in DSSCs, 
is proven to enhance the scattering effects of light into the metal nanostructure 
in the cell. This energy arises from the oscillation of electron density which 
becomes excited when being hit by polarized UV light. The process merely 
occurs at the surface of the metal nanoparticles. In this case, the absorbed light 
will be intensified and directed in terms of its intensity. Thus, the dye as the 
photoactive material would increase its efficiency in absorbing the sunlight. 
Commonly, the engagement of LSPR is found in boundless applications such as 
biomedical, sensing, medical, energy, and catalysis [9]–[11]. For more definitive 
preferences in this research, the plasmonic nano-additive metal particles are 
used as doping substances in DSSCs. Noble metals including Copper(C), Gold 
(Au), and Silver (Ag) can affect the SPR performance through their 
morphological properties such as shapes, sizes, and environment of the utilized 
metals nanoparticles [11]. 
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Surface plasmon resonance (SPR), acting as the optical application in DSSCs, 
is proven to enhance the scattering effects of light into the metal nanostructure 
in the cell. This energy arises from the oscillation of electron density which 
becomes excited when being hit by polarized UV light. The process merely 
occurs at the surface of the metal nanoparticles. In this case, the absorbed light 
will be intensified and directed in terms of its intensity. Thus, the dye as the 
photoactive material would increase its efficiency in absorbing the sunlight. 
Commonly, the engagement of LSPR is found in boundless applications such as 
biomedical, sensing, medical, energy, and catalysis [9]–[11]. For more definitive 
preferences in this research, the plasmonic nano-additive metal particles are 
used as doping substances in DSSCs. Noble metals including Copper(C), Gold 
(Au), and Silver (Ag) can affect the SPR performance through their 
morphological properties such as shapes, sizes, and environment of the utilized 
metals nanoparticles [11].  

This study is concerned with the development of back-illuminated DSSCs with 
flexible metal electrode using various volume of Pt solution on counter electrode. 
By combining the advantageous of metal substrate with AgNPs-TiO2, the PCE 
of back-illuminated DSSCs could be enhanced. There is no shadow of doubt 
that, this research work able to contributes towards many fields such as the 
photodetector, telecommunication, optoelectronics and chemical based sensor 
areas. 
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1.2 Problem Statement 
 
 
Back illumination ensues from the solidity and opacity properties of Ti metal 
substrate as photoelectrodes. It occurs when light is exposed and transferred 
from the back of the DSSCs cell which is the counter electrode. This leads to the 
developed photoelectrons being stunted by lower luminous irradiation as a 
consequence of longer medium-light travel from the counter electrode to the TiO2 
semiconductor. To optimize the loss of back-illuminated performances, previous 
efforts and research were endeavored in modulating variable circumstances 
subjected to cathode electrodes playing a pre-eminent role during the light 
irradiation. This includes investigating the impact of Pt deposition on the counter 
electrode by manipulating different methods of Pt deposition [12], the deposition 
parameters [13], thermal annealed temperature [14], and Pt concentration [15]. 
Unlike the aforementioned past research, the current study employs the variation 
of Pt volume solution by using the spin coating method. The most common Pt 
deposition method is sputtering and chemical reduction [16]. Although sputtering 
provides technologically advanced privileges, especially the ability to deposit into 
a wide area with multiple controlled parameters, it necessitates a costly and high 
energy-consuming setup via a vacuum system. As chemical reduction deals with 
low-temperature heating and the use of sodium borohydrate (NaBH4) as a 
reagent, spin coating is another alternative of coating Pt, favored for its 
uniformity, simplicity in the perspectives of preparation and fabrication as well as 
rein-condition of parameters [17], [18]. 
 
 
A preference of silver (AgNPs) plasmonic impurities doped TiO2 is therefore 
implied to improve the deteriorating performance of TiO2 on the afflicted issues. 
Instead of other plasmonic metal NPs such as copper(C), aluminium (Al), and 
gold (Au), AgNPs are known greatly for having the highest conductivity, which 
allows for more charge transfer pathways into TiO2 to the external circuit. It also 
offers a degree of consistency in terms of corrosivity, flammability, and chemical 
traits.  The plasmonic AgNPs excites its light intensity which helps the dye to 
further elongate the wavelength spectrum potency to the visible range of 
wavelength [19], [20]. 
 
 
Through years of research, metal plasmonic NPs-TiO2 doping studies were 
mostly used for FTO glass substrates. According to a previous study [21], the 
increase of PCE of from 5.36% to 6.99% of TiO2 could be observed only when 
TiO2 was incorporated with the AgNPs via the chemical reduction technique. The 
conductivity was attributed to the competent interfacial movement of charge 
carriers by the AgNPs. Other studies have also reported that the AgNPs 
enhanced the PCE to 6.06 % [22] and 4.86 % [23] after doping with TiO2. The 
solvothermal process on AgNPs on the other hand initiates the electron sink 
effect inside the photoanode to record the PCE of 6.56% [24]. The exploitation 
of AgNPs was also disclosed via ion implantation [25]. The implantation of 
AgNPs-TiO2 was potent with PCE of 5.59 % contributed from the LSPR light 
absorption shift to the visible range that facilitates the photoelectron generation. 
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Nevertheless, there is less disclosed research on the doping of plasmonic 
nanoparticles-TiO2NPs on flexible and back-illuminated DSSCs. 
 
 
This study revolves around the idea of acquiring high temperature resistance 
and inexpensive flexible and back-illuminated DSSCs with better PCE 
performance. To do so, the merit plasmonic effect of the solvothermal produced 
from AgNPs as an additive material is exploited into TiO2NPs film. The beneficial 
impacts of AgNPs which were mostly applied in FTO glass and front illuminated, 
was therefore exploited in this study that used flexible and back-illuminated 
structures of DSSCs. Before the doping process, different volumes of Pt solution 
are coated on the counter electrode by spin coating for optimization purposes. 
Therefore, an improvement must be done to improve the light absorption in 
photoanode which can be fulfilled by exploiting of LSPR in AgNPs of the 
photoanode. 
 
 
1.3 Motivation 
 
 
The low-temperature sintering for plastic and polymer photoanode substrate 
appears to be troublesome, in flexible DSSCs. Therefore, this has allured the 
current study to focus on Ti metal, instead. Unfortunately, the downside of Ti 
metal is the opacity feature that is unable to absorb light from the front which 
leads to back-illuminated circumstances. Therefore, the amount of Pt coated on 
CE provides an impact in optimizing the light penetration and catalytic activity 
into the CE during the process of light irradiation for back-illuminated 
performances. Hence, the various volume of Pt solution was investigated 
towards the back-illuminated DSSCs. For front illumination DSSCs, the optimum 
Pt volume of Pt solution is 50 µl. Therefore, for back illumination, the range 
selection is varied between 10 µl to 100 µl. Meanwhile, the synthesis of AgNPs 
via physical route commonly involves high energy and cost, despite the 
assurance of high purity in material production. In order to provide a simple and 
size-controlled product without a high degree of thermal requisites procedures, 
the preparation of customized AgNPs through the solvothermal method was 
executed.  
 
 
1.4 Aim and Objectives 
 
 
The research aims to improve the power conversion efficiency (PCE) 
performances of back-illuminated DSSC. This can be achieved by few objectives 
as highlighted below: 
 
 
1) To investigate the effect of Platinum catalyst deposition by spin coating under 
30 µl to 90 µl volumes of Pt solution towards the back-illuminated DSSC to 
improve light penetration of the counter electrode. 
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2) To synthesize the Silver nanoparticles (AgNPs) between 20 nm to 40 nm using 
the solvothermal method to be utilized in DSSC photoanode for improvement of 
light absorption. 
3) To investigate on current-voltage (I-V) characteristics of back-illuminated 
DSSCs by embedding the synthesized AgNPs into TiO2NPs based on a variation 
of concentration. 
 
 
1.5  Scope of Research 
 
 
This research work focuses on the development of flexible DSSCs, which was 
limited to the following circumstances: 
 

• A Titanium foil with a thickness of 0.2 mm was tested as photoelectrode 
with the optimized film thickness at two layers Scotch tape thicknesses.  

• The counter electrode (CE) is FTO coated glass substrate with a 
catalytic layer of Pt. This is due to the limitation of equipment for Pt 
deposition on ITO-PET substrates. The ranges of Pt volume solution at 
30 µl, 50 µl, 70 µl and 90 µl were measured by micropipette under spin 
coating method.  

• Method used to obtain Silver Nanoparticles (AgNPs) was the 
Solvothermal method, which was then embedded with TiO2 
nanoparticles under different concentrations. This research only 
conducted on the preliminary implementation of a composite AgNPs-
TiO2 film on the Ti foil photoelectrodes based DSSCs in performing the 
PCE performances. It also does not scrutinize the analysis and effect in 
regards to oxidation as well as corrosion of AgNPs resulting from the 
injected non-aqueous iodide/triiodide electrolyte. 

• The experimental works are conducted Functional Nanotechnology 
Devices Laboratory (FNDL) and Nanomaterials Processing and 
Technology Laboratory (NPTL), Institute of Nanoscience and 
Nanotechnology (ION2), UPM Serdang. 

 
 
1.6 Thesis Outline 
 
 
The thesis is structured into five (5) chapters, which outlines as follows as: 
 
 
Chapter 1 introduces the background of this research, the declaration of the 
research problem, and its objectives. The limitation of research activities is also 
asserted. 
 
 
Chapter 2 presents the inclusive fundamental of Dye-Sensitized Solar Cells 
(DSSCs) and defines the Power Conversion Efficiency (PCE) Performances 
which includes Current Density (Jsc), Open Circuit Voltage (Voc), Fill Factor 
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(FF). The flexible DSSCs in particular of polymer, plastic and metal-based 
anodes are also reviewed. For metal-based anodes, Titanium is highlighted as 
the main preference. The review also comprises the surface modification of TiO2 
via TiO2 nanostructured and Localized Surface Plasmon Resonance (LSPR) that 
exerted metal nanoparticles, specifically AgNPs as a doping substance. 
 
 
Chapter 3 provides the chemicals and methods utilized to synthesize the AgNPs 
and the methodology of cell construction. The characterizations in verifying the 
optimized studies are also described. 
 
 
Chapter 4 discusses the PCE and analysis of characterization from the 
experimental results.  
 
 
Chapter 5 concludes the final finding of the research as well as suggestions for 
further extending of the research. 
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