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Mass reduction is a primary design goal pursued in satellite structural design, 
since the launch cost is proportional to their total mass. The most common mass 
reduction method currently employed is to introduce honeycomb structures, with 
space qualified composite materials as facing materials, into the structural 
design, especially for satellites with larger masses. However, efficient 
implementation of these materials requires significant expertise in their design, 
analysis, and fabrication processes; moreover, the material procurement costs 
are high, therefore increasing the overall program costs. Thus, the current work 
proposes a low-cost alternative approach through the design and 
implementation of geometrically-shaped, parametrically-defined metal 
perforation patterns, fabricated by standard processes. Four geometric shapes 
(diamonds, hexagons, squares, and triangles) were designed parametrically, 
and hence implemented onto several components of a structural design for a 
conceptual sub-100 kg microsatellite. Subsequently, a parametric design space 
was defined by developing two scale factor and also two aspect ratio variations 
on the four baseline shape designs. The change in the structure’s fundamental 
natural frequency, as a result of implementing each pattern shape and 
parameter variation, was the selection criterion, due to its importance during the 
launcher selection process. The best pattern from among the four alternatives 
was selected, after having validated the computational methodology. This 
validation was achieved through implementing experimental modal analysis on 
a scaled-down physical model of a primary load-bearing component of the 
structural design. The selected pattern design was hence refined iteratively, to 
yield the same value of fundamental natural frequency, but with significant mass 
reduction. From the findings, a significant mass reduction percentage of 23.15%, 
from 84.48 kg to 62.42 kg, utilizing the proposed perforation concept, was 
achieved in the final parametric design iteration. This reduction was relative to 
the baseline unperforated case, while maintaining the same fundamental natural 
frequency. Dynamic loading analyses were also performed, namely, quasi-
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static, random, and shock loading analyses, utilizing both the baseline and the 
finalized perforated designs. These analyses investigated the contrast in the 
capabilities of the two design to withstand the nominal dynamic launch loads. 
The findings showed that the final perforated design did have the capacity to 
withstand the launch loads without yield failure, as indicated by the computed 
positive yield margins of safety for each loading type. With these encouraging 
outcomes, the perforated design concept proved that it could provide an 
opportunity to develop low-cost satellite structural designs with reduced mass, 
and with reasonably good structural performance. 
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Pengurangan jisim adalah matlamat reka bentuk utama yang dijalankan dalam 
reka bentuk struktur satelit, kerana kos pelancaran adalah berkadaran dengan 
jumlah jisimnya. Kaedah pengurangan jisim yang paling biasa digunakan pada 
masa kini adalah dengan menggunakan struktur sarang lebah, berserta bahan 
komposit yang layak angkasa sebagai bahan muka, ke dalam reka bentuk 
struktur, terutamanya bagi satelit dengan jisim yang lebih besar. Walau 
bagaimanapun, pelaksanaan secara cekap bagi bahan-bahan ini memerlukan 
kepakaran yang ketara dalam reka bentuk, analisis, dan proses fabrikasinya; 
tambahan pula, kos perolehan bahan adalah tinggi, justeru itu meningkatkan kos 
keseluruhan program. Maka, kerja semasa mencadangkan pendekatan 
alternatif yang berkos rendah melalui reka bentuk dan pelaksanaan corak 
lelubang logam berbentuk geometri, ditakrifkan secara parametrik, yang 
difabrikasi secara proses standard. Empat bentuk geometri (berlian, heksagon, 
segiempat sama dan segitiga) telah direka bentuk secara parametrik, dan 
seterusnya dilaksanakan pada beberapa komponen reka bentuk struktur bagi 
konseptual mikrosatelit sub-100 kg. Seterusnya, ruang reka bentuk parametrik 
ditakrifkan kepada dua faktor skala dan juga dua variasi nisbah aspek terhadap 
empat reka bentuk bentuk dasar. Perubahan dalam frekuensi asli asas struktur, 
hasil daripada pelaksanaan setiap bentuk corak dan variasi parameter, adalah 
merupakan kriteria pemilihan, disebabkan kepentingannya semasa proses 
pemilihan pelancar. Corak yang terbaik dikalangan empat alternatif ini 
kemudiannya telah dipilih, setelah metodologi pengiraannya disahkan. 
Pengesahan ini dicapai melalui pelaksanaan analisis modal eksperimen pada 
model fizikal yang diskala-kecilkan bagi komponen galas beban utama reka 
bentuk struktur. Reka bentuk corak yang dipilih telah diperhalusi secara lelaran, 
bagi menghasilkan nilai frekuensi asli asas yang sama, tetapi dengan 
pengurangan jisim yang masih ketara. Daripada penemuan, peratusan 
pengurangan jisim yang ketara sebanyak 23.15%, daripada 84.48 kg kepada 
62.42 kg, menggunakan konsep lelubang yang dicadangkan, telah dicapai 
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dalam lelaran akhir reka bentuk parametrik. Pengurangan ini adalah relatif 
terhadap kes dasar tanpa lelubang, disamping mengekalkan frekuensi asli asas 
yang sama. Analisis pemuatan dinamik juga dilaksanakan, iaitu, bebanan kuasi-
statik, rawak dan hentakan, dengan menggunakan kedua-dua reka bentuk 
dasar dan reka berlelubang yang dimuktamadkan. Analisis ini menyiasat 
perbezaan dalam keupayaan kedua-dua reka bentuk dalam menahan beban 
pelancaran dinamik nominal. Hasil penemuan menunjukkan bahawa reka 
bentuk berlelubang akhir sememangnya mempunyai kapasiti untuk menahan 
beban pelancaran tanpa kegagalan alah, seperti yang ditunjukkan oleh margin 
alah keselamatan yang positif yang dikira bagi setiap jenis pemuatan. Dengan 
hasil yang menggalakkan ini, konsep reka bentuk berlelubang membuktikan 
bahawa ianya boleh membuka peluang bagi membangunkan reka bentuk 
struktur satelit kos rendah dengan jisim yang dikurangkan, dan dengan prestasi 
struktur yang cukup baik. 
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CHAPTER 1 

1 INTRODUCTION 

The current chapter will present an introduction to the current work, in terms of 
giving a context of its background, present the research questions and the 
primary objectives that the research effort strived to fulfil. It will also present the 
scope, limitations, and contributions of the research. As will be detailed in the 
subsequent chapters, the research effort was a mixture of computational 
analysis work, focusing on modal analyses as the first stage. The results from 
these modal analyses were validated by performing experimental work. Finally, 
computational dynamic loading analyses were performed, to explore the 
structural performance of the finalized design to expected loading cases.  

1.1 Introduction to Satellite Systems 

A satellite can be thought of as a combination of various subsystems, both 
mechanical and electronic in nature, known collectively as the satellite bus. 
These subsystems all work in unison towards a common goal, namely facilitating 
the operation of a payload system, which is launched into space to perform a 
specific mission. Payload missions include telecommunications, remote sensing 
of the earth and other celestial bodies, scientific missions, data gathering 
missions, plus types of missions. 

Satellite bus subsystems operate in unison to support the operation of the 
payload. The following list gives the critical subsystems, upon which the satellite 
depends for operation: 
 

• The attitude dynamics and control subsystem: controls the satellite’s 
orientation while in orbit, such that the payload is always pointing its 
sensors towards the required geographical regions. 

• The power subsystem: which deals with the various power generation 
and distribution requirements. This generated power is distributed to 
the other subsystems, plus the payload. 

• The communication subsystems: two subsystems handle 
communications between the satellite and its controlling ground 
station. One subsystem works exclusively to send the payload sensor 
data to the ground station. The second subsystem handles the 
commands sent from the ground station to the satellite. These 
commands, related to the various bus and payload subsystems, 
activate or deactivate certain functions, as needed. It also sends 
subsystem operational data back to the ground station. 

• The thermal control subsystem: which controls the thermal balance of 
the satellite’s subsystems. Temperatures are increased or decreased 
to keep the subsystems within their required operating parameters. It 
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also handles the process of removing any unwanted thermal energy 
from the satellite, through ejecting it into space. 

• The structure subsystem: The primary focus of the current work, as 
described below. 

 
 

Among the satellite bus subsystems, the structural subsystem has a special 
importance. It performs two primary functions, towards ensuring that the mission 
will be achieved successfully. Its primary function is that it acts as the skeleton 
of the satellite. Namely, it acts as the mounting platform upon which all the other 
satellite subsystem components are mounted, including the payload 
components. An extension of this function is that its geometric shape is that of 
the satellite as a whole, and can take various forms: prismatic, cylindrical, 
polyhedral, spherical, etc. 

The second primary function of the structural subsystem is to withstand the 
harsh dynamic loads that are imposed upon the satellite by the launcher vehicle, 
that transport it to its operational orbit. These loads occur during the launch 
phase, starting with the launcher leaving the earth’s surface, passing through 
the earth’s atmosphere, and finally injecting the satellite into its final operational 
orbit. Launch systems, such as the Falcon 9 from SpaceX [1] and the Electron 
from Rocket Labs [2], impose a relatively harsh dynamic loading environment on 
payloads during launch. These load environments include significant dynamic 
load levels that have the potential to lead to structural failure, if their effects are 
not taken into account in the structural design and analysis phases of any 
satellite development program. The structural subsystem must be able to 
withstand the various dynamic loads by developing deflections and stresses that 
do not reach the structure’s material’s yield point. If this point is reached by the 
material, permanent geometric deformations would occur, even when the 
loading is removed. If the structural design can achieve this requirement, the 
deflections and stresses will disappear after the launch phase is complete 
without the structure developing any permanent distortions. Any occurrence of 
these distortions would result in losing the carefully calibrated mounting positions 
of the payload’s components, plus certain components within the bus’s 
subsystems. 

Satellites can be classified through several methods, based upon relevant 
parameters. However, the classification method most currently utilized is to 
classify by the satellite’s total mass. The total mass is the mass of the structural 
components, plus the mass of any fuel on-board, if present, that would be utilized 
for in-orbit maneuvering. Table 1.1 presents the most widely accepted satellite 
classifications, based on their total masses [3].  
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Table 1.1 : Satellite Classification Based on Total Mass 
 

Classification System Total Mass Example 

Femtosatellite Less than 100 grams. Pocketsat 

Picosatellite 0.1 – 1 kg. 1U Cubesats 

Nanosatellite 1 kg – 10 kg. 3U Cubesats 

Microsatellite 10 kg – 100 kg. RASAT 

Minisatellite 100 kg – 1000 kg. NigeriaSat-2 

Large Satellite Larger than 1000 kg. Intelsat 

 
 
The current trend in satellite design is to focus on the so-called “small satellite” 
category, with masses ranging from 1 kg (or less) up to 1000 kg (Sweeting [3], 
Kramer and Cracknell [4], Xue et al. [5]). Satellites in this mass range include 
enough volume to carry power-efficient payloads that can perform scientifically 
meaningful missions without requiring relatively large power budgets. Small 
satellites are mostly utilized for remote sensing and earth observation missions. 
Other mission examples include data collection from remotely installed ground 
sensors, scientific missions such as astronomical observations. Other types of 
missions that do not involve time-dependent constraints or high-power budget 
requirements can also be included. 

Figure 1.1a shows a typical microsatellite, in this case the Turkish RASAT earth 
observation satellite [6], This system was launched into its 685 km altitude 
operational orbit during 2011 as a secondary payload onboard the Dnepr-1 
Russian launch system and is still in service, and has a total mass of 
approximately 93 kg. Figure 1.1b shows a typical minisatellite, the NigeriaSat-2 
[7], which is a disaster monitoring and earth observation system. It was launched 
into a 700 km altitude operational orbit during 2011 and is still in service, and 
has a total mass of approximately 300 kg. 

  

(a) RASAT (Microsatellite) (b) NigeriaSat-2 (Minisatellite) 
 
Figure 1.1 : Typical Small Satellites 
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1.2 Problem Statement 

One of the critical design constraints when developing the structural design of a 
satellite is the reduction of its total mass [8]. This mass has a direct effect on the 
class of launcher to be utilized in launching the satellite to its operational orbit 
[9]. As a result of the choice of launcher, the costs of the launching process will 
increase as the class of the launcher increases. The current method of mass 
reduction generally applied in satellite structural design is to implement 
advanced materials, e.g., composite materials, in the design instead of standard 
metallic alloys. Even though these advanced materials offer reduced mass, and 
also good mechanical stiffness, they are very expensive to fabricate, plus require 
specialized knowledge in their design, analysis, and fabrication.  

Thus, in this work, a lower-cost alternative option was proposed. Namely, 
standard aluminum alloy 6061 was utilized in the structural design, with the 
components fabricated through standard mechanical fabrication processes 
instead of implementing advanced materials. Patterns of perforations were 
implemented onto a number of structural components of the design. This had 
the aim of achieving a significant reduction in mass through direct material 
removal instead of utilizing advanced materials. These patterns were designed 
to be scalable, both in terms of their sizes and in terms of their coverage areas 
across the components being perforated by them. The current proposal strove 
to achieve reasonably good mechanical performance, in terms of withstanding 
the highly dynamic launch loads, without any permanent geometric distortions 
as a result of material yielding.  

The proposed mass reduction method of the current work can be expanded upon 
in future works, towards being utilized in structural designs implementing 
advanced materials. It was also envisioned that the proposed mass reduction 
method could potentially be utilized with additive manufacturing processes, e.g., 
three-dimensional printing. The proposed method will remove additional mass 
from such structural designs, beyond that achievable through utilizing these 
materials or fabrication processes alone. 

1.3 Research Aim and Objectives 

The research effort aimed to develop and implement a new method to reduce 
the mass of the structure of a small satellite in the microsatellite mass 
classification range, as given previously. The novelty of the work was to 
introduce an alternate method of mass reduction, other than utilizing space 
qualified composite materials. This was towards drastically reducing the overall 
cost of developing such a structure, since the proposed method utilized direct 
material removal from structural components. The method would implement low-
cost standard machining technologies, instead of the high-cost specialized 
design, analysis, and fabrication methods that are usually adopted by 
microsatellite structures. 
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In order to accomplish this aim, the current work strived to achieve the following 
objectives, in chronological order: 
 

1. Adopt the baseline design of the structural subsystem, developed in 
the MSc. work, for a microsatellite that includes non-perforated 
components. In parallel, a computational modal analysis methodology 
was to be developed and implemented. This methodology was to be 
validated through experimental modal analysis procedures. 

2. Construct a design space consisting of a set of parametrically defined 
geometric patterns, arranged into a number of geometric variations. 
Subsequently, computational modal analysis procedures were to be 
performed on the design space cases, in addition to the baseline case. 
The case with the closest fundamental natural frequency, relative to 
the baseline case value, would be selected as the best perforated 
alternative. 

3. Revise and modify the selected perforated design such that its 
fundamental natural frequency matches that computed for the baseline 
case. This would be through implementing computational modal 
analysis in an iterative process.  

4. Investigate the finalized perforation case’s structural performance, 
through performing dynamic analyses utilizing the finalized design. 
This would be achieved by imposing the same nominal dynamic 
launch loads utilized for the baseline case. The results of these 
analyses would be the final indication that the proposed perforation 
process would yield a mass reduced design that was viable, and 
suitable for future development and implementation.  

 
 
1.4 Research Questions 

Utilizing the 5W+1H method for project planning and question formulation,  as 
implemented by Knop and Mielczarek  [10], Hamborg et al [11], and Almeida et 
al [12], the current work’s problem statement can be posed as follows: 
 

1. What: What is the proposed method introducing, in terms of a novel 
implementation of a previously utilized method of mass reduction in 
other engineering fields? (Objective 1) 

2. Why: Why is the proposed method of importance for satellite structural 
designers? (Objective 1) 

3.  When: At what stage in a satellite structure’s design process can the 
proposed method be implemented? Can it be introduced during the 
initial design stages? Can it be implemented onto an existing design? 
(Objective 1) 

4. Where: Where can this proposed method be implemented, in terms of 
a satellite’s structural design? Can the proposed method be 
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implemented on any structural component, or are there prerequisite 
design considerations that must be met? (Objectives 2 and 3) 

5. Who: Can the method be easily implemented by structural system 
designers in a timely and straightforward way? (Objectives 2 and 3) 

6. How: How can the steps for implementing the proposed mass 
reduction method be characterized, including proving its merit such 
that it can be implemented in future structural system designs? 
(Objective 4) 

 
 

1.5 Scope and Limitations of the Current Work 

The scope of the current work was to consider the structural subsystem of a 
conceptual microsatellite that was previously designed by the researcher in his 
Master of Science research work, taking the design in its unperforated form. The 
aim of the work was to strive to reduce its mass to a significant degree by 
introducing parametrically defined geometric patterns to three of its components 
as metal perforation patterns. The idea of implementing the perforation patterns 
was proposed as an alternative to implementing composite materials, which 
would have been much more costly to implement. The parametrically defined 
geometric patterns were defined as a design space consisting of four geometric 
shapes, namely diamonds, hexagons, squares, and triangles. Each of these four 
shapes were modified by changing their aspect ratios and scale factors, 
generating a total of twenty variations. 

Each of the design study variations were implemented onto the baseline 
structure, hence generating twenty variations of the structural assembly, plus the 
baseline case. To select the best variation, relative to the baseline, modal 
analysis was utilized in the current work as a design tool to differentiate between 
the perforated cases. Each case’s fundamental natural frequency was compared 
to that of the baseline case, and the selected case was the one with the least 
difference in value.  

The aforementioned modal analysis processes implemented in the current work 
were all based upon computational modal analysis procedures, employing the 
finite element method. However, before the results computed through these 
procedures could be endorsed, it was necessary to validate them. This was 
achieved by comparing modal results computed by the computational modal 
analysis procedures on scaled down models of a single structural component 
with results acquired from fabricated models of the same models. These last set 
of results were acquired through experimental modal analysis procedures. Both 
the baseline unperforated form and the perforated form of this component, 
employing the four geometric patterns mentioned above were considered. A 
good correlation between the two result sets would validate the computational 
modal analysis procedures, which could then be endorsed with a reasonable 
level of confidence. Computational modal analysis was again employed to refine 
the modal results of the aforementioned selected perforation case. This was 
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done towards increasing its fundamental natural frequency to match that of the 
baseline case. An iterative process that varied the number of repetitions of the 
perforation patterns implemented on the components was employed. This 
resulted in the finalized, definitive, perforated design.  

The final step in the research effort of the current work was to impose three of 
the nominal dynamic loads that would be expected to be applied to the structure 
while undergoing launch to the satellite’s operational orbit. The structure’s 
structural responses were computed through computational dynamic analyses, 
for both the baseline and finalized perforated cases, and the main parameter 
was the yield margin of safety computed for each case. 

In terms of the limitations of the current work, no consideration was made to 
include any satellite subsystem components in any of its computational or 
experimental analyses. This was because the current work was focused only on 
the developing the perforation patterns for implementation onto structural 
subsystem itself, leaving such investigations to future works. Another limitation 
was forced upon the research team, regarding the experimental modal analyses. 
It can be seen in Chapters 3 and 4 that only one component was submitted to 
analysis, after fabrication, namely single central box plates. This limitation came 
from the fact that an insufficient number of vibration sensing transducers were 
available to the candidate. This resulted in distorted modal results when 
structural subassemblies were tested. This limitation can be overcome in future 
works, when a larger number of transducers can be made available to capture 
the modal results in a coherent fashion. 

1.6 Contribution of the Current Work 

The current work introduces a new method of structural mass reduction to 
astronautic structural design and engineering. Its main focus is on achieving 
significant reductions in total satellite mass while keeping the budgetary 
requirements of the structural design at a much lower level than the current 
practice of introducing advanced structural materials. Savings of at least a tenth 
of the required cost were projected. These were relative to implementing these 
advanced structural materials, in terms of design, analysis, and fabrication 
requirements (e.g., specialized design and analysis software, material 
procurement costs, etc.). These savings were thereby expected to achieve 
significant monetary savings in terms of the overall program costs. The proposed 
mass reduction method also involves significantly reduced structural fabrication 
costs, relative to fabrication costs for components implementing these advanced 
structural materials, hence introducing additional monetary savings. 
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1.7 Thesis Layout 

Chapter one of the current thesis presents an introduction to the work, in 
addition to presenting its primary research objectives, research scope, main 
contributions, and a description of its chapters. 

Chapter Two presents a review of past works that the current work built upon 
and expanded, identified the gap that the current work strived to fill. This included 
a description of the baseline structural design as developed in the original MSc. 
work. Also, it presented mathematical descriptions of the main parameters that 
were hence computed or acquired during the course of the research efforts, 
towards building the result sets through which the primary objectives were 
achieved. 

Chapter Three introduces the research methodologies that were developed and 
implemented towards achieving the work’s primary objectives. These included 
the basic premise of designing the work’s geometric perforation patterns, and 
also descriptions of both the computational and experimental analysis 
methodologies that produced the result sets. It also describes the dynamic 
launch loads that we imposed upon the finalized structural design, in terms of 
specific numerical values. 

Chapter Four presents the numerical result sets either computed or acquired 
as a result of implementing the computational and experimental methodologies 
described in Chapter three. This chapter also includes detailed discussions of 
the numerical results, and their impact on the overall effort to fulfill the research 
work’s primary objectives. 

Chapter Five presents the conclusions of the current work, in addition to the 
suggestions that can be utilized by future researchers to carry forward the 
current work’s research. 

Appendices A, B, and C are included in the current work. Appendix A gives a 
summary of the original research work accomplished by the candidate during his 
MSc. work. This work resulted in a design of a structural subsystem for a 
conceptual microsatellite. The original work led to the design of a set of 
perforation patterns based upon the Isogrid system, and this Appendix gives 
these designs, presenting them as baselines for the perforation patterns 
developed and presented in the current work. Appendix B gives the 
mathematical details of the current work’s designed perforation patterns, in 
terms of the geometric equations that were developed and utilized in the current 
work. Appendix C gives the dimensioned engineering drawings of the structural 
design’s components, both baseline and perforated. 
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