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Abstract— Joint torque prediction is crucial when inves-
tigating biomechanics, evaluating treatments, and design-
ing powered assistive devices. Controllers in assistive
technology require reference torque trajectories to set the
level of assistance for a patient during rehabilitation or
when aiding essential daily tasks such as sit-to-walk (STW).
STW itself can be generalized into strategies based on
individual needs and movement patterns. In this study,
three long short-term memory (LSTM) neural networks
were empirically trained for hip and knee torque pre-
diction considering these STW strategies and subject
anthropometry. The hip and knee are the drivers of STW,
while the network architectures were selected for rec-
ognizing temporal and spatial relationships. Performance
of the LSTMs were compared and evaluated against the
STW strategies to accurately generate strategy-specific and
user-oriented torque. As such, train and test STW data were
obtained from 65 subjects across three age groups: young,
middle-aged, and older adults (19-73 years). Model inputs
were hip and knee angles with horizontal center of mass
velocity, while windowing allowed the LSTMs to dynami-
cally adapt to real-time changes in STW transitions. The
encoder-decoder LSTM showcased optimal performance
with robust recognition of temporal features. It produced
significantly (P <0.05) low hip and knee root mean square
error (0.24 ± 0.07 and 0.15 ± 0.02 Nm/kg), strong Spear-
man’s correlation (93.43 ± 2.86 and 84.83 ± 2.96%) and
good intraclass correlation coefficients (greater than 0.75),
demonstrating model reliability. Hence, this network pre-
dicts strategy and user oriented reference torques for
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personalized controllers in assistive devices, with more
natural application of assistance.

Index Terms— Encoder-decoder, CNN-LSTM, strategy
classification, torque controllers, assistive devices.

I. INTRODUCTION

ACTIVE assistive devices are governed by torque con-
trollers which function on accurate joint torque pre-

diction. These predicted reference torque trajectories from
healthy adults set a benchmark to gauge the level of
assistance a patient requires and ensures sufficient assistive
torque is generated to execute a motion correctly [1], [2].
Torque profiles are also essential when studying movement
biomechanics, investigating impaired motion, and evaluat-
ing the efficacy of interventions or treatments [3], [4], [5].
Advancements in torque prediction methods would signifi-
cantly benefit the design and control architecture of assistive
devices (for example exoskeletons or soft robotic exosuits),
in rehabilitation or when aiding daily activities due to move-
ment impairment [6], [7].

Currently, multiple methods exist for deriving reference
joint torque. These include inverse dynamics (ID), math-
ematical modelling, neuromusculoskeletal modelling, and
neural networks. ID provides ground truth and gold stan-
dard torque trajectories using motion capture (Mocap) with
body kinematic models, employing Newton-Euler equations
of motion. However, expensive and bulky Mocap equip-
ment is required with tedious and time consuming data
collection and processing that limits ease of integration
with wearable devices [7], [8]. Mathematical modelling pro-
duces quick and robust torque estimates using the joint
torque-angle relationship with methods such as gravity com-
pensation or Euler-Lagrange. Existing assistive devices use
these models due to their ease of implementation and low
computational requirements [1], [9], [10], [11]. However, they
target only specific motions (for example standing or gait)
and produce generic torque profiles that are not tailored
to individual characteristics, anthropometry, or movement
strategies. Mathematical models may also produce large torque
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estimation errors leading to high controller gains, compensa-
tion factors, and unstable control [12]. Neuromusculoskeletal
modelling uses surface electromyography (SEMG) to derive
muscle force through activation and contraction dynamics,
which when combined with the muscle moment-arms pro-
duces joint torque [13]. This type of torque estimation can
be performed using biomechanical modelling software like
OpenSim [14], and is commonly utilized for muscle or
joint analysis, producing subject-specific torque profiles. Yet,
it requires laborious calibration and processing while SEMG
signals are noisy, affected by sweat, sensor placement, and
is not ideal for prolonged use in wearable devices [3], [5].
Alternatively, neural networks map directly from sensor input
to output torque by capturing temporal and spatial relation-
ships. They can produce assistive torque based on individual
anthropometry, characteristics, and executions. To achieve this,
large training datasets that cover all aspects of a subject
population are required [7], [15].

Sit-to-walk (STW) torque prediction is vital for lower limb
assistive devices, as this simple but essential weight-bearing
transition directly contributes to an individual’s mobility, inde-
pendence and thus, quality of life [4]. STW is defined as a fluid
merging of sit-to-stand with gait [16] and is classified by three
generalized movement strategies: (1) forward continuation,
(2) balance, and (3) sit-to-stand-and-walk (STSW) [4]. Each
strategy is defined by varying biomechanics and specific torque
profiles as detailed in our previous work [4]. Additionally,
the hip and knee extensor muscles are the primary drivers to
this motion [17]. Generating and predicting STW strategy and
user specific hip and knee torque would result in personalized
controllers for assistive devices with more natural delivery of
assistance.

For torque controllers, neural networks could overcome the
limitations of traditional methods (ID, mathematical and neu-
romusculoskeletal modelling) by removing the need for bulky
equipment, tedious data processing, and human biomechanical
models while still providing tailored and strategy-specific
assistance [3], [7]. Neural models for STW torque predic-
tion require timeseries sequence-to-sequence mapping. Long
short-term memory (LSTM) architectures demonstrated strong
performance in this aspect, for predicting joint kinematics,
kinetics, and torques in literature [5], [7], [18], [19], [20].
Therefore, this architecture was considered using hip and
knee joint angles with horizontal center of mass (HCOM)
velocity as inputs. These quantities were selected as they
significantly vary with an individual’s chosen strategy [4], are
easily measured, and integrated into wearable technology.

This study aims to develop LSTM models that predict
hip and knee flexion/extension reference torques, accounting
for STW strategies and subject anthropometry by normal-
ization with bodyweight. The LSTMs are evaluated across
all three strategies to ensure they meet the strategy-specific
torque requirements and are representative of all STW exe-
cutions [4]. Three LSTM models were trained: (1) Vanilla
LSTM as the base model, (2) Encoder-Decoder LSTM for
temporal feature extraction, and (3) Convolution Neural Net-
work (CNN)–LSTM for spatial features. The LSTMs utilized
input and output sliding windows for real-time operation

Fig. 1. Sit-to-walk (STW) motion capture and biomechanical analysis,
where (a) shows the initialized sitting position and (b) illustrates the
timed-up-and-go (TUG) test, from which STW was obtained between
quiet-sitting and toe-off of the stance foot. (c) The motion capture
markers and ground reaction forces were processed using Qualisys
Track Manager (Qualisys, Sweden). This was used in (d) to derive joint
angles, torques, and horizontal center of mass (HCOM) velocity using
the scaled Gait 2392 musculoskeletal model in OpenSim.

mirroring torque controllers. The subsequent sections discuss
the experimental procedure, dataset preparation, LSTM archi-
tectures, and STW strategy-wise performance, culminating in
discussions for the optimal model.

II. METHODS

A. Experimental Details
STW lower body Mocap and force plate data were collected

from 65 subjects ranging from 19-73 years and spanning three
age groups based on chronological ageing, as introduced in
reference [21]. These groupings were young (19-35 years;
n = 32; mean weight of 64.12 ± 17.04 kg), middle-aged
(36-55 years; n = 15; mean weight of 67.94 ± 15.85 kg)
and older adults (56-73 years; n = 18; mean weight of
59.38 ± 10.7 kg), with the total subject group having a mean
age of 39.35 ± 17.51 years. The dataset comprised 325 trials
inclusive of all three STW strategies and the distribution
by biological sex included 32 males and 33 females. For
data collection a Qualisys (Sweden) Mocap system sampling
at 200 Hz and three Bertec (USA) force plates sampling
at 1 kHz were used [22]. Accordingly, for data processing,
training, and testing of the LSTM models, Python ver-
sion 3.9.18, TensorFlow version 2.10.1 and a computer with
a 11th Gen Intel® Core™ i7-11800H CPU @ 2.30 GHz,
NVIDIA GeForce RTX 3050 GPU and RAM of 16.0 GB was
utilized.

STW was obtained from the forward portion of the timed-
up-and-go (TUG) test which is a standard clinical assessment
involving standing, walking 3 m, turning around, walking
back, and sitting down [22]. During the trials subjects were
initialized in a seated position on a backless, armless, height
adjustable chair, with hands resting on their lap and the hip and
knee flexed at approximately 90◦ (Fig. 1). This data collection
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procedure was performed in the Mocap laboratory at Monash
University Malaysia. Informed consent was obtained from all
subjects; with ethical approval granted by the university’s
human research ethics committee. This STW Mocap dataset is
presented in [22] and publicly accessible on the Bridges repos-
itory with the DOI: https://doi.org/10.26180/24515092.v4

B. Data Preprocessing
STW was identified from quiet-sitting till the first toe-off

of the stance foot (Fig. 1) and was extracted from the TUG
trials based on the STW transition phases described by
Buckley et al. [23] and detailed in Perera et al. [4]. The raw
Mocap and ground reaction force (GRF) data were processed
using Qualisys Track Manager, the operational software for
the Qualisys Mocap system. Following marker identification
and gap filling, the data was exported in c3d format. Both
Mocap and GRF data were filtered to eliminate noise, motion
artifacts, and for smoothing, using a second-order Butterworth
low pass filter at cutoff frequencies of 5 Hz and 10 Hz,
respectively [24], [25]. These frequencies were determined
based on the 99% occupied bandwidth from a Fast Fourier
Transform.

Subsequently, the STW c3d files were imported into Open-
Sim 4.2 for biomechanical analysis utilizing the lower body
Gait 2392 musculoskeletal model (Fig. 1). Scaling was per-
formed to match subject anthropometry to the model on
a subject specific basis, verified by ensuring the maxi-
mum marker and root mean square error (RMSE) were less
than 1 cm and 2 cm respectively, as recommended by Open-
Sim [26]. Inverse kinematics was performed to derive the
hip and knee joint angles followed by inverse dynamics for
the modelled ground truth joint torques [27]. Further, a body
kinematics analysis was run to derive HCOM velocity, while
joint torque was normalized with respect to bodyweight and
joint angles to 0◦ when upright.

C. Sit-to-Walk Strategy Identification
The hip and knee joint angles at gait initiation (GI) were

used to classify the three STW strategies (forward continua-
tion, balance and STSW). A K-means clustering algorithm was
applied following the methodology detailed in our previous
work [4] and is presented in Fig. 2, considering the 65 subject
sample. To validate these results gap statistics and silhouette
analysis were conducted, while each STW trial in the dataset
was identified by its respective strategy. Gap statistics cal-
culates the log of the pooled within-cluster sum of squared
distances for each data point with respect to its centroid. It sat-
urated at three clusters, thus verifying the classification into
three generalized STW strategies [28]. Similarly, silhouette
analysis indicates cluster cohesion and separation and resulted
in all data points being greater than zero. This establishes that
all STW trials were correctly assigned to their cluster [29].

D. Training Dataset Preparation
After preprocessing and strategy classification, the STW

dataset was constructed using the derived biomechanical
data (Fig. 3). This dataset comprised three input features - hip

Fig. 2. K-means clustering for classification of the three sit-to-
walk (STW) strategies. It was performed for all 65 subjects, where each
data point represents the hip and knee joint angles at gait initiation (GI),
as described in [4]. Forward continuation in red has the least hip and
knee extension, followed by balance in green, and then sit-to-stand-
wand-walk (STSW) in blue with the greatest hip and knee extension
(almost upright at GI).

Fig. 3. The sit-to-walk (STW) dataset for model training consisting
of (a) hip and knee joint angles, (b) horizontal center of mass velocity,
and (c) modelled hip and knee joint torques. The solid lines represent
the mean and the shaded regions represent their standard deviation.
Additionally, (d) illustrates the input and output sliding windows.

and knee joint angles with HCOM velocity; and two out-
put features - modelled hip and knee torques (via inverse
dynamics). Each STW trial contained a varying number of
data points and was therefore time-normalized to a uniform
201 points, which can be represented as a percentage of
the STW cycle. The number of points ensures a sampling
frequency above 50 Hz is maintained as recommended for
dynamic Mocap applications [30]. To prevent the networks
from training on the same subjects and strategies consecutively
the STW trials were shuffled between inter and intra subjects.
Min-max feature scaling (normalization) was also applied to
all variables, scaling them between zero and one. Thereafter,
the dataset was split for training (70% with 230 STW trials),
validation (20% with 65 STW trials), and unseen testing
(10% with 30 STW trials). The test set included an equal
number of trials for each of the three strategies enabling a fair
evaluation of the LSTMs across all STW executions.



3980 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 32, 2024

Windowing was used to segment the data into a collection
of input and output sliding windows. Model performance was
observed for varying window lengths where the optimal values
were determined as 25 input and five output timesteps (Fig. 3),
as also recommended by Zaroug et al., [20]. This resulted in
training and test datasets containing 25 samples with three
features for the input and five samples with two features for
the output. Windowing allows real-time torque prediction and
mirrors the operation of a torque controller as the model
predicts five output timesteps and then slides forward, thereby
continuously forecasting future torque for the STW cycle.
It enables the network to tailor the output torque based on
the real-time variation in inputs, relative to the STW strategies
and executions.

E. Long Short-Term Memory Architectures
STW data is timeseries in nature containing both tempo-

ral and spatial features, hence LSTM neural networks are
well suited for STW torque prediction. This architecture was
selected as it excels in multi-timestep sequence-to-sequence
tasks, which can map input joint angles and HCOM velocity
directly to predicted output hip and knee torques of different
sequence lengths [31], [32]. LSTMs are also effective at
analyzing temporal and sequential STW data, where data
points are dependent and influenced by their historical values.
To generate strategy specific torque trajectories and con-
trollers, long and short-term temporal relationships in the
data need to be captured, and LSTMs achieve this distinctive
functionality by utilizing memory cells with forget, input,
and output gates. Overall, these networks produce strong
predictions of future torque by leveraging the current input
with prior knowledge, compared to alternate architectures such
as feedforward artificial neural networks or CNNs. This is
supported by existing literature which benchmarked the LSTM
against other neural models and showcased its effectiveness
and applicability for predicting timeseries joint torques, kine-
matics, and kinetics [7], [15], [18], [20], [33].

Three LSTM networks (Fig. 4) were trained, tested, and
compared for the multi-variate, multi-timestep forecasting of
hip and knee torques. These include a (1) Vanilla LSTM,
(2) Encoder-decoder LSTM and (3) CNN-LSTM, which are
commonly used in sequence-to-sequence predictions [3], [7],
[15], [20]. The vanilla LSTM serves as the base model with
only LSTM and dense layers and was selected as a benchmark
for evaluating the performance of the other models. The
encoder-decoder was selected based on literature as it performs
temporal feature extraction using the encoder layer. This
network summarizes the input data before predicting an output,
where the separation into an encoder and decoder allows
complex long-term dependencies to be captured compared
to the vanilla LSTM [15], [31], [32]. To further investigate
spatial dependencies for torque prediction in the STW dataset,
a CNN-LSTM was selected that extracts spatial features
using convolution operators. This model captures both spatial
and temporal relationships compared to the encoder-decoder
LSTM [3], [33]. Comparing these models allows evaluation
of the forecasting methods, for an accurate approach to gener-
ate strategy and user oriented joint torque trajectories. This

Fig. 4. The long short-term memory (LSTM) architectures consisting of
a (a) vanilla LSTM (b) encoder-decoder LSTM and (c) convolution neural
network (CNN)–LSTM. The data input/output dimensions for each layer
are also presented.

also enables an assessment of whether the added network
layers improve performance and the extent of model gener-
alizability to unseen data.

The layers, neurons, and hyperparameters in all three LSTM
architectures (Fig. 4) were selected empirically for optimal
and stable performance. Model iterations were trained by
systematically changing the hyperparameters until no further
improvement in model performance was observed or over-
fitting took place. The tuned hyperparameters and intervals
considered during training are presented in Table I. The vanilla
LSTM used a single LSTM and fully connected dense layer
with 400 and 200 neurons, respectively. The LSTM layer
accepts the input joint angles and HCOM velocity, learns tem-
poral relationships, and then forms an internal representation
via a fixed length feature vector. The dense layer interprets this
to provide an averaged output prediction, while also acting as
a bottleneck that allows the model to learn a more compact
representation of the data and prevent overfitting [34]. This
model uses a vector output method which accepts multivariate
inputs but only produces a single vector output. Hence, the
predicted hip and knee torques are concatenated into a single
vector, which is then reshaped accordingly. Alternatively, the
encoder-decoder LSTM architecture consists of two LSTM
layers, each with 200 neurons. The encoder is responsible for
learning temporal relationships to form a fixed length feature
vector. This passes through a repeat vector adapter which
repeats the encoded sequence for each required timestep in
the output sequence, to match the decoder’s required format.
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TABLE I
THE TUNED HYPERPARAMETERS, TRAINING INTERVALS, AND OPTIMAL VALUES

FOR THE THREE LONG SHORT-TERM MEMORY (LSTM) ARCHITECTURE

The decoder LSTM unpacks this information to make a
prediction for each specified output timestep. A dense output
layer (two neurons) then generates the hip and knee torque
trajectories utilizing a time distributed wrapper. This predicts
each timestep of the output sequence independently, using
the same set of weights to every temporal slice of the input
sequence [35].

The CNN-LSTM combines convolution layers for spatial
information with a LSTM network for temporal interpretation.
A 1D convolution operator extracts spatial relationships along
the time axis, which is projected onto feature maps based
on stride length and kernel size [33], [36]. Two consecutive
convolution layers were used with 80 and 60 filters and
‘same’ zero padding to retain input dimensions. A stride
length of one and a 1 × 3 kernel size were selected to
consider all three model inputs at every time-dependent data
point.

Rectified linear units (ReLU) account for non-linear behav-
ior in the model, while a max pooling layer (1 × 2 pooling
kernel size) accounts for spatial variance, reduces dimen-
sionality, and preserves the key features obtained from
convolution [36], [37]. Next, a flattening layer takes each row
of the output from the pooling layer to form a column vector,
which then passes through a repeat vector adapter and into the
LSTM layer. Temporal predictions are made for each specified
output timestep and averaged through a fully connected dense

layer with 100 neurons and a time distributed wrapper. The
output layer then generates the final hip and knee torques
during STW.

F. Model Optimization and Training
The three LSTMs were trained empirically, with each net-

work undergoing 10 independent repetitions to account for
their stochastic nature and maintain robustness [15]. The Adam
optimizer was employed with a learning rate of 1 × 10−3,
coupled with mean squared error (MSE) as the loss function.
To prevent overfitting a dropout rate of 20% was applied along
with early stopping during training based on the minimum
validation loss. The patience parameter was set to 20 with a
maximum of 300 epochs. Further, a batch size of 16 was uti-
lized with a He-Normal weight initializer, to maintain uniform
training between model repetitions and reduce the impact of
vanishing/exploding gradients. ReLU activation functions were
applied to all layers, except for the output layer which had
linear activation and two neurons for predicting hip and knee
torques.

G. Model Evaluation
1) Walk Forward Testing: Walk forward testing was imple-

mented to assess each network’s performance on the unseen
test data. This approach was selected due to the temporal
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TABLE II
THE SIMPLE MAIN EFFECTS ANALYSIS AND THE CORRESPONDING TUKEY HONEST SIGNIFICANT DIFFERENCE POST-HOC TESTS

nature of the torque trajectories, where each point is not
an independent observation [20]. During testing, the model
forecasts future hip and knee torque based on a ‘history’
variable (prior knowledge) that includes inputs appended from
the previous 25 timesteps, as determined to be the opti-
mal input window. The model then walks forward by five
timesteps (optimal output window) as new input readings
become available, continuously predicting torque as expected
for the operation of a real-time torque controller [20], [38].
Torque predictions are individually generated for each STW
trial in the test set, identified by their labelled strategy. The
outputs are inversely scaled to reverse the Min-Max feature
scaling and obtain the final hip and knee flexion/extension
torques, normalized against subject bodyweight. Performance
metrics are then calculated and averaged for the overall model
performance.

2) Performance Metrics: To evaluate the LSTMs, the pre-
dicted torque trajectories were compared against the modelled
ground truth values (via inverse dynamics) using standard
metrics. RMSE (1) measures the prediction accuracy, with
smaller values indicating a closer match between predicted
and modelled torques. Spearman’s correlation (2) was also
calculated to measure the strength of the monotonic rela-
tionship between the predicted and modelled trajectories,
where a larger coefficient describes a closer match in
trend [3].

RM SE =

√∑n
i=1 (xi − x̂i )

2

n
(1)

ρ = 1 −
6

∑n
i=1 d2

i

n(n2 − 1)
(2)

Equation (1) describes the RMSE, and (2) represents the
Spearman’s rank correlation coefficient (ρ). The modelled
and predicted joint torques are represented by xi and x̂i ,
respectively while di is the difference between their ranks.
Additionally, n represents the total number of data points in
each STW cycle.

3) Statistical Analysis: Due to the varying strategy-wise
torque requirements, the models must encompass all three

strategies to be representative of STW executions. Thus, the
performance of the LSTMs were evaluated against these
STW strategies, through a statistical analysis using SPSS
Statistics (IBM) with an α of 0.05. The independent variables
were model type (vanilla, encoder-decoder, CNN-LSTM) and
strategy (forward continuation, balance, STSW), while the
dependent variables were the hip and knee torque perfor-
mance metrics (RMSE and Spearman’s correlation); with
data from the 10 independently trained repetitions of each
model.

Normality was tested using a Shapiro-Wilk test across both
independent variables, resulting in a parametric distribution.
A statistically significant interaction (P <0.05) between
model type and strategy was observed, leading to a simple
main effects analysis (two-way ANOVA design); to compare
mean performance between the LSTMs for each individual
strategy. The corresponding post-hoc test applied was Tukey
Honest Significant Difference (HSD) with a Bonferroni cor-
rection to minimize Type I error. Additionally, to quantify
model repeatability and reliability, the intraclass correlation
coefficient (ICC) using a two-way mixed effects, single mea-
surement, absolute agreement model was implemented for
each performance metric [39].

III. RESULTS

From the developed LSTMs, the average training and val-
idation losses across all models were 0.0421 ± 0.0040 and
0.0491 ± 0.0019, respectively. Similarly, the encoder-decoder
and CNN-LSTM produced robust training and validation
accuracies above 90%, whereas the vanilla LSTM exhibited
lower accuracy above 60%. This drop in performance can
be attributed to the vector output method, where both hip
and knee output torques were concatenated into a single
vector leading to a misleading measure of accuracy. Table II
summarizes the results of the simple main effects analysis
and the corresponding Tukey HSD post-hoc test. Likewise,
Table III presents the average RMSE and Spearman’s corre-
lation coefficients for each LSTM, per strategy. Across the
networks, performance was relatively strong with overall hip
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TABLE III
MODEL PERFORMANCE METRICS AND INTRACLASS CORRELATION COEFFICIENTS

and knee RMSE being less than 0.28 Nm/kg and 0.16 Nm/kg,
respectively, and the overall correlations exceeding 92.14%
and 83.69%, respectively.

From Table II, statistically significant differences
(P < 0.05) in model performance were observed amongst
forward continuation and STSW strategies, but none across
the balance strategy. This indicates that all models predicted
balance torques with similar error and correlations to
the ground truth. The post-hoc tests revealed statistically
significant differences in model performance, primarily
between the encoder-decoder and the other models.
Considering forward continuation, the encoder-decoder
exhibited the lowest hip and knee RMSE with 0.32 ±

0.01 Nm/kg and 0.16 ± 0.01 Nm/kg, respectively; followed
by the vanilla and then CNN-LSTM. The encoder-decoder
also displayed the highest knee correlation with 87.68 ±

0.51%, while the vanilla LSTM had a marginally higher
hip correlation of 89.61 ± 1.17%, compared to the encoder-
decoder’s 89.58 ± 0.99%. For STSW, the encoder-decoder
had the lowest hip RMSE of 0.24 ± 0.01 Nm/kg but
equivalent knee RMSE (0.16 ± 0.01 Nm/kg) with the other
models. Further, it also exhibited the highest statistically
significant knee correlation of 81.75 ± 2.78%, with no
significant differences in hip correlation (95.08 ± 0.45%).
These results are reflected in Fig. 5, which shows the
predicted and modelled hip and knee torques for the three
trained LSTM networks per strategy.

Across all LSTMs and strategies, the hip displayed greater
RMSE and Spearman’s correlation showing a closer match in
trend but higher point-to-point predictive error, compared to
knee torque prediction. Moreover, Table III presents the ICCs
for each model with all values being greater than or equal
to 0.75 indicating good strength; except for knee RMSE of
the CNN-LSTM (0.68) which showed moderate strength [39].
Overall, these ICCs reflect a good degree of correlation within
the 10 trained LSTM repetitions, thus showcasing good model
reliability and repeatability.

Fig. 5. The modelled (black dashed) and predicted hip (red) and knee
(blue) torques from the three trained long short-term memory (LSTM)
models per sit-to-walk (STW) strategy. The solid lines represent the
mean torques across the test dataset and the shaded areas are their
standard deviations.

The effect of varying the sliding window size was explored,
as presented in Table I. For the input, windows below
10 timesteps produced a drop in performance while windows
above 35 timesteps led to overfitting. In the output window
there was a drop in performance for windows above five
timesteps. Overall, reducing the input window and increasing
the output window led to a reduction in model performance
and overfitting. Larger input windows capture more temporal
information but result in slower prediction times, while larger
output windows predict more timesteps at the cost of perfor-
mance. Hence, the input and output windows were selected
as 25 and five samples respectively, as also recommended
to be the optimal prediction horizon to consistently forecast
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movement trajectories [20]. Considering a minimum sampling
frequency of 50 Hz for Mocap applications [30], [40] the
output window can continuously forecast future trajectories
every 100 ms, requiring an initial input window of 500 ms.
These timesteps are suitable for real-time assistance as they
sufficiently predict future torque [38], [40] but would change
in timing based on the sampling frequency of the controllers
used in assistive devices.

IV. DISCUSSIONS

Three LSTMs were developed and evaluated for predicting
hip and knee joint torques during STW, oriented towards
execution strategies and subject anthropometry via normal-
ization through bodyweight. An individual can perform any
STW strategy at an instance, each with specific generalized
biomechanics and torque requirements [4]. Therefore, the
predicted torque should match each strategy to encompass all
STW executions; and this is verified through evaluation against
these strategies. Utilizing neural networks as torque controllers
allows for a direct mapping of inputs (hip and knee joint
angles with HCOM velocity) to the output torques without
the need for intermediary processing or biomechanical models.
This confers an advantage over traditional torque prediction
methods such as ID or NMS modelling [5], [7]. Neural
models can also provide strategy-specific and user-oriented
assistance, for more effective application in rehabilitation or
when aiding movement impairments [3], [7], [18]. However,
drawbacks include the requirement for big data during training,
with a variety of subject characteristics and demographics
inclusive of a population. These models also have a black-box
nature making it challenging to analyze input/output relation-
ships [13], [41].

Regarding performance, hip torque prediction produced
higher Spearman’s correlation and RMSE (greater than 86%
and less than 0.38 Nm/kg, respectively) compared to the knee
(greater than 79% and less than 0.18 Nm/kg, respectively).
This infers that the networks had a stronger grasp of capturing
the trends in hip torque trajectories but with a higher point-
to-point error. The LSTMs showed no statistically significant
differences for the balance strategy, which had the lowest
RMSE across all models. Forward continuation and STSW had
statistically significant differences across the models with the
encoder-decoder showcasing the lowest hip and knee RMSE
(0.32 and 0.16 Nm/kg for forward continuation and 0.24 and
0.16 Nm/kg for STSW respectively). For the hyperparam-
eters, the vanilla LSTM required 400 and 200 neurons in
the LSTM and dense layers respectively (728610 trainable
parameters), while the CNN-LSTM had two convolution lay-
ers (80 and 60 filters) with a single LSTM (200 neurons)
and dense (100 neurons) layer (772362 trainable parame-
ters). In contrast, the encoder-decoder only contained two
LSTM layers with 200 neurons resulting in less computational
requirements (484402 trainable parameters). The CNN-LSTM
used convolution operators for spatial feature extraction yet
exhibited weaker performance than the encoder-decoder which
considered temporal features. This could highlight a lower
dependence on spatial features with greater reliance on tempo-
ral relationships for torque prediction using kinematics. Thus,

TABLE IV
ENCODER-DECODER LONG SHORT-TERM MEMORY

PERFORMANCE PER AGE GROUP

the encoder-decoder LSTM is the optimal model for STW
torque prediction, using joint angles and HCOM velocity as
inputs.

The predicted torques during STW serve as a baseline in
producing the lift assistance a patient requires. Healthy adult
torque profiles are instrumental in the design and evaluation
of torque controllers, as they set the reference trajectory to be
followed during motion [1], [11]. The input parameters (joint
angles and HCOM velocity) used to generate the torque pro-
files in this study are distinguishing features of the developed
networks. Such inputs are easily measured using wearable
sensors such as IMUs or encoders and readily integrated
with wearable assistive devices [8], [42]. This contrasts with
alternate inputs from literature such as GRFs which require
bulky and expensive Mocap systems [43], or SEMG signals
which face issues due to noise, sensor placement, electrode-
skin displacement, and sweat; resulting in difficulties for
prolonged use [3], [44].

The training and test datasets contained a substantial
sample size of 65 subjects spanning a wide age range
from 19 to 73 years, and a near-equal male to female distribu-
tion. This accounts for variability in human movement, subject
anthropometry, age, biological sex, and STW strategies. There-
fore, considering the central limit theorem [45] the trained
LSTMs are generalizable to a population, compared to other
torque prediction models from literature which utilized smaller
sample sizes (n < 25) with focused subject and age groups [3],
[5], [7], [8], [15], [42], [43]. The encoder-decoder LSTM also
produced strong performance per age group (Table IV), where
young adults had lower RMSE (less than 0.20 Nm/kg), higher
knee correlation but lower hip correlation in comparison to
older adults. Forward continuation required larger peak torques
with higher error in model performance compared to the other
strategies. This variation in performance (including middle-
aged adults) can be attributed to the subject distribution by
age in the data. Balance and forward continuation were most
observed in young adults as good movement confidence and
postural control is required. Alternatively, middle-aged and
older adults favor balance and STSW, which acts as a com-
pensatory strategy to maintain stability during this dynamic
motion. Therefore, balance is the most commonly utilized
strategy amongst the age groups, where future work could
include equalizing sample sizes across strategy and age group
through data augmentation [4], [23]. Additionally, the STW
trials were shuffled to minimize the influence of consecutive
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exposure to the same subject. This ensures that the models do
not only learn characteristics specific to an individual or their
movement style.

Performance metrics were calculated against modelled
torque obtained through gold standard inverse dynamics. Com-
parisons can also be drawn with existing torque prediction
models. Zhang et al., [15] obtained an RMSE less than 0.24 for
the lower limbs, during multiple motions including sit-to-
stand with a LSTM using joint angles and SEMG inputs.
Wang et al., [19] produced a normalized RMSE less than 15%
and correlations greater than 85% for lower body joints
during gait, using a LSTM with SEMG inputs. Likewise,
Moreira et al., [3] obtained a 89% Spearman’s correlation for
ankle torque prediction with joint kinematic inputs and a
CNN model. Alternatively, Schulte et al., [46] utilized a NMS
model to predict knee torque during gait with a NRMSE
of 14.3%, while Liu et al. [1] employed a mathematical model
with a maximal knee torque error of 3.27 Nm. For the trained
encoder-decoder, overall RMSE and correlations for the hip
and knee were 0.24 and 0.15 Nm/kg, and 93.43 and 84.83%,
respectively. The developed network aligns with literature
demonstrating efficacy and comparability with existing state-
of-the-art torque prediction models.

In future work, this LSTM can be utilized within the control
architecture of assistive devices. It acts as a torque controller
that produces reference torque trajectories oriented towards
the STW strategies for a control loop (such as proportional-
integral-derivative) and actuator. These personalized assistive
devices would provide strategy specific torque, enabling a
more natural application of assistance with improved safety
and efficiency during rehabilitation or when aiding movement
impairment [3], [19]. Generating benchmark torque profiles
of healthy adults can help analyze and correct impaired
motion, which is crucial for patients recovering from neuro-
musculoskeletal impairment such as spinal cord injury or the
effects of a stroke. Furthermore, these neural models could be
expanded to generate torque trajectories for other joints and
ADLs such as stair ascent/decent or gait; utilizing methods
like clustering and transfer learning [15].

Even with the current model’s performance certain lim-
itations still need to be addressed. From Fig. 5, the peak
torques during STSW were underpredicted for the knee and
overestimated for the hip. For this, attention layers could be
implemented to focus on important input timesteps such as
those around peak values [47]. Additionally, weighted loss
functions could be explored to assign larger weights for errors
related to peak values compared to the other sequences. Joint
torques were also predicted considering symmetry between
the swing and stance legs. However, they would have slightly
varying torque trajectories especially after GI and should be
considered based on the lead and trailing foot during STW,
when designing appropriate controllers. The LSTMs require
a small burn-in time of 25 input timesteps which is utilized
in memory to make the first prediction [7]. This should
be considered when designing controllers as it impacts the
real-time operation of assistive devices. A memory component
could be used to retain context (stateful) when beginning
torque prediction and minimize burn-in time.

V. CONCLUSION

In this study three LSTM models were investigated for joint
torque prediction during STW, oriented towards movement
strategies and subject anthropometry. To encompass all STW
executions, the models were evaluated against these strategies
with the encoder-decoder LSTM being the optimal. This is
considering joint angles and HCOM velocity as inputs, which
can be measured and integrated with wearable technology.
The encoder-decoder showcased strong performance with low
RMSE and computational resources, high correlations, good
repeatability, and is generalizable to a population. A sliding
window was utilized for real-time torque assistance with
25 input and five output timesteps. This allows the model to
dynamically adapt to changes in STW executions and produces
a smoother reaction to varying STW strategies [20], [38].
These torque predictions serve as reference trajectories in the
control architecture of assistive devices. They determine the
level of assistance a patient requires, are user and strategy
specific, and result in personalized application for rehabilita-
tion or treatments.
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