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ABSTRACT
Uncertainty of data, the degree to which data are inaccurate, imprecise, untrusted,
and undetermined, is inherent in many contemporary database applications, and
numerous research endeavours have been devoted to efficiently answer skyline
queries over uncertain data. The literature discussed two different methods that
could be used to handle the data uncertainty in which objects having continuous
range values. The first method employs a probability-based approach, while the
second assumes that the uncertain values are represented by their median values.
Nevertheless, neither of these methods seem to be suitable for the modern high-
dimensional uncertain databases due to the following reasons. The first method
requires an intensive probability calculations while the second is impractical.
Therefore, this work introduces an index, non-probability framework named
Constrained Skyline Query processing on Uncertain Data (CSQUiD) aiming at
reducing the computational time in processing constrained skyline queries over
uncertain high-dimensional data. Given a collection of objects with uncertain data,
the CSQUiD framework constructs the minimum bounding rectangles (MBRs) by
employing the X-tree indexing structure. Instead of scanning the whole collection of
objects, only objects within the dominantMBRs are analyzed in determining the final
skylines. In addition, CSQUiD makes use of the Fuzzification approach where the
exact value of each continuous range value of those dominant MBRs’ objects is
identified. The proposed CSQUiD framework is validated using real and synthetic
data sets through extensive experimentations. Based on the performance analysis
conducted, by varying the sizes of the constrained query, the CSQUiD framework
outperformed the most recent methods (CIS algorithm and SkyQUD-T framework)
with an average improvement of 44.07% and 57.15% with regards to the number of
pairwise comparisons, while the average improvement of CPU processing time over
CIS and SkyQUD-T stood at 27.17% and 18.62%, respectively.
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INTRODUCTION
The continuous increase in the deployment of modern solutions that make use of database
applications, such as online reservation systems for hotel, airline, and business
transactions; the deployment of e-health support system, fog-cloud computing, and
health edge computing; employment of workflow scheduling applications for handling
multi-objective optimization problem, and hosting of other portals to name a few has
resulted in the capture or generation of massive volume and varieties of data. With the
advancement in computing, uncertain data widely exist in many database applications.
Due to the immense volume of these uncertain data, accessing data for supporting many
practical applications becomes tedious (Khalefa, Mokbel & Levandoski, 2010; Kuo et al.,
2022; Li et al., 2012, 2017, 2019; Lian & Chen, 2013a; Liu et al., 2013; Qi et al., 2010; Saad
et al., 2014, 2016, 2018, 2019). This study defines uncertain data as those with continuous
range values where their exact values are not explicitly represented in the database.

In most real-world database applications, a database represents requisite information in
a variety of ways. For instance, several accommodation portals exist, like Rent.com (https://
www.rent.com), Apartment.com (https://www.apartments.com/), ForRent.com (https://
www.forrent.com/), Rentals.com (https://www.rentals.com/), Gottarent.com (https://www.
gottarent.com), and showcase.com (https://www.showcase.com). Often times, information
retrieved by these platforms contains objects with different representations of data values
which undoubtedly influenced how queries are processed. Figure 1 presents a snapshot of
the showcase.com website for New York properties in the United States of America
(https://www.showcase.com). The website contains the following dimensions: Name of
Property, Size, Rent Rate, Office Space, and Deposit. From this snapshot, examples of
continuous range values are 2,598–37,143, 10,024–30,905, 3,906–8,832, 1,891–18,241, and
1,464–6,559 as presented under the Size dimension. These values reflect uncertain data as
their precise values are not known.

The skyline operator introduced by Borzsonyi, Kossmann & Stocker (2001) plays an
important role to accurately and efficiently solve problems that involve user preferences.
The skyline operator is used to identify dominant objects also known as skyline objects
from a potentially large multi-dimensional collection of objects by keeping only those
objects that are not worse than any other. The dominant objects are said to be the best,
most preferred set of objects; hence fulfilling the user preferences. Enormous number of
skyline algorithms have been proposed since its introduction two decades ago, dealing with
a wide variety of queries including skyline queries (Afshani et al., 2011; Alwan et al., 2016;
Atallah & Qi, 2009; Bartolini, Ciaccia & Patella, 2006, 2008; Chomicki et al., 2005; Han
et al., 2013; Jiang et al., 2012; Khalefa, Mokbel & Levandoski, 2010; Kossmann, Ramsak &
Rost, 2002; Lawal et al., 2020b;Mohamud et al., 2023; Liu et al., 2013; Papadias et al., 2003,
2005; Pei et al., 2007; Saad et al., 2014, 2016, 2018, 2019; Tan, Eng & Ooi, 2001;Wang et al.,
2009), range query (Saad et al., 2016, 2019), reverse skyline query (Gao et al., 2014; Lim
et al., 2016; Xin, Bai & Wang, 2011), etc.

Unlike skyline query that requires the whole collection of objects to be analyzed during
dominance testing, processing a constrained skyline query requires the collection of objects
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to be filtered before the dominance testing is performed. Only those objects that lie within
the query are collected for dominance testing while the rest are considered as not satisfying
the constraint specified in the query. Intuitively, identifying whether an object satisfies a
constrained skyline query is straightforward when dealing with certain data. Skyline
computations are typically performed on objects whose exact values are within the
constraints specified in the constrained skyline query. Likewise, objects with uncertain data
require additional evaluation which increases the complexities of evaluating the
constrained skyline query.

Although there are quite a number of works on skyline queries over uncertain data
(Atallah & Qi, 2009; Jiang et al., 2012; Khalefa, Mokbel & Levandoski, 2010; Li et al., 2017,
2019; Pei et al., 2007; Saad et al., 2014, 2016, 2018, 2019; Zhou et al., 2015) only a few that
focus on constrained skyline queries (Papadias et al., 2005; Qi et al., 2010). These works
either employ a probability-based approach that requires additional computational cost
due to intensive probability calculations (Atallah & Qi, 2009; Godfrey, Shipley & Gryz,
2005; Jiang et al., 2012; Khalefa, Mokbel & Levandoski, 2010; Lian & Chen, 2013a, 2013b;
Lim et al., 2016; Liu & Tang, 2015; Pei et al., 2007; Saad et al., 2016, 2019) or assume that
the uncertain values can be represented by their median values (Li et al., 2012) which is
impractical for many modern database applications in which the rate of data uncertainty is
reasonably high. To efficiently address the challenges associated with computing
constrained skyline queries over uncertain data, in this article we proposed an index, non-
probability framework named Constrained Skyline Query processing on Uncertain Data
(CSQUiD). Given a collection of objects with uncertain data, the CSQUiD framework
constructs the minimum bounding rectangles (MBRs) by employing the X-tree indexing
structure. The idea of the proposed method relies on accumulating objects with similar
uncertainty values within the same MBR. This intuitive process guarantees that the
computational cost of skyline computation is significantly minimized by analyzing the
associations between MBRs and between MBRs and the constrained skyline query. Instead
of identifying those objects whose dimension values are within the constraints of a
constrained skyline query as proposed in CIS algorithm (Li et al., 2012), these objects are

Figure 1 Database for properties at New York in USA. Full-size DOI: 10.7717/peerj-cs.2225/fig-1
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identified based on the MBRs that lie within the constraints of the query. By doing so,
irrelevant objects are discarded as early as possible. This leads to avoiding many unwanted
pairwise comparisons between objects, which in turn results in a significant reduction in
the processing time of the skyline process. Moreover, to deal with the issue of uncertainty
of data, the CSQUiDmakes use of the Fuzzification approach where the exact value of each
continuous range value of those dominant MBRs’ objects is identified. This will provide a
significant advantage to our proposed solution by allowing the conventional skyline
algorithm to be easily employed for computing the final skylines.

The following points summarize the main contributions of this article:

i) We have proposed an index, non-probability framework, named Constrained Skyline
Query processing on Uncertain Data (CSQUiD) designed to tackle the issue of
processing constrained skyline queries over uncertain data.

ii) We have formally extended the concept of object dominance toMBRs and introduced
a variant of dominance relationship, named Dominance Relationship between MBRs,
which identifies the skyline objects based on the identified dominant MBRs.

iii) We have conducted extensive experiments to demonstrate the CSQUiD’s superiority
over the most recent solutions in processing constrained skyline queries and
ultimately identifying the dominant objects over uncertain data.

This article is organized as follows: The ‘Related Work’ section reviews the methods
proposed by previous studies that are related to the work presented in this article. The
Preliminary section introduces the notations and the terms that are frequently used
throughout the article. This is followed by the ‘Proposed Framework’ section which
presents the proposed framework, CSQUiD. Meanwhile, the ‘Result and Discussion’
section evaluates the performance of the proposed framework and compares the results to
other previous works. The last section which is the ‘Conclusion’ section, concludes this
work and sheds light on some directions which can be pursued in the future.

Motivating example
Uncertainty of data is inherent in many emerging applications such as sensor networks,
data integration and cleaning, record lineage, spatio-temporal and scientific data
management, and so forth, and query processing including skyline query over uncertain
data has gained widespread attention. Nonetheless, the existing skyline algorithms assume
that the query requirements of the users are based on the same fixed set of dimensions (all
dimensions) that are available in the data set and users are assumed to be only interested in
either the minimum or maximum value over the whole space of each given dimension.
This rigid assumption often lead to an impractical skyline query which no longer offer any
interesting insights. In practice, different users may be interested in different range of
values (subspace) of a given dimension. For instance, a user may only be interested in those
apartments whose price rates are between $50–$60. In this regard, the constrained skyline
queries where constraints on specific dimensions are being attached to the query
requirements give flexibility to users in specifying their interests. Nonetheless, deriving
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skylines of a constrained skyline query over uncertain data is challenging. This is illustrated
through the examples given in Fig. 2.

Figure 2A presents the set of skylines, S, that is derived based on the given set of certain
data, D = {A, B, C, D, E, F}. With the assumption that apartments with the lowest price
(minimum price) and nearest to the beach (minimum distance) are preferrable, then S =
{C, E, A} while objects B, D, and F are not the skyline objects. Meanwhile, Fig. 2B shows the
skyline result of a given set of uncertain data. For simplicity, the uncertain value is reflected
by object F over the price dimension. In this example, S = {C, E, A} and the object C
dominates the object F regardless the point where the exact value of F will fall along the

Figure 2 (A) Skyline query with certain data (B) Skyline query with uncertain data (C) Constrained
skyline query with certain data (D) Constrained skyline query with uncertain data (E) Constrained
skyline query with uncertain data and MBR. Full-size DOI: 10.7717/peerj-cs.2225/fig-2
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range $50–$100. Nonetheless, an object with uncertain value may have chances to
dominate other objects. This is further discussed in the example given in Fig. 2D.

On the other hand, Fig. 2C shows the result of S when a constrained skyline query is
specified over a set of certain data. The objects that fall within the specified constraint, i.e.,
price between $75 and $125, are D, E, and F while the set of skylines, S = {E, F}, since both
objects E and F dominate D in both dimensions. However, identifying skylines of a
constrained skyline query when uncertain data are inevitable is not straightforward. The
main challenges are as explained below: (i) the conventional dominance relationship as
defined in Definition 1 works by comparing the values of each dimension of the objects
being analysed in determining the dominant objects. The comparison is straightforward if
the values to be compared are precise (certain) values. However, the dominance
relationship cannot be applied directly to compare a precise value/continuous range value
against another continuous range value. For instance, consider F ¼ ð3; ½50� 100�Þ and
E ¼ ð1:5; 100Þ, we cannot certainly conclude that ½50� 100� � 100 without knowing the
exact value of F:d2. (ii) A constrained skyline query contains constraints on specific
dimensions. If the value of an object on the dimension being constrained falls within the
specified constraints, then the object is said to be relevant to the given query. However, to
decide if an object falls within the specified constraints is not straightforward when the
continuous range values of the objects intersect with either the lower bound and/or upper
bound of the constrained skyline query. This is shown in Fig. 2D where the price value of
object F is in the range of $50–$100. Using the same constrained skyline query, the object
F is said to fall within the constraint of the query if its price value falls in the range $75–
$100 and otherwise if its price value is less than $75. Moreover, we cannot say for sure
that the object E is better than F and vice versa. If the exact price value of F is less than
$100, then both E and F do not dominate each other; while F is dominated by E if its price
value is equal to 100. The work by Li et al. (2012) assumes that the exact value of a
continuous range value is represented by its median value. Hence, the price value of object
F is always $75 (i.e., (50 + 100)/2) which results in the skyline set, S = {E, F}. This
approach is not realistic since not all continuous range values will fall in the median point,
especially objects/values with seasonal effect. On the other hand, by employing the
probability-based approach as used by Atallah & Qi (2009), Coffman-Wolph (2016), Gao
et al. (2014), Li et al. (2012, 2014), Lim et al. (2016), Papadias et al. (2005), Qi et al. (2010),
Saad et al. (2014, 2016, 2018, 2019), the probability that object F dominates E is 49%. This
is calculated as follows: PraðF < EÞ ¼ R 100�0:5

75 f ðFÞdF ¼ 1
50 ð99:5Þ � 1

50 ð75Þ = 1.99 − 1.5 =
0.49. Nevertheless, F will be the skyline object if its probability value is greater or equal to
a threshold value, s, set by the user. If s = 75%, then F will not be listed as one of the
skyline objects. This approach is prohibitively expensive as calculation against every
object that has the potential to dominate an object needs to be performed including
objects having low chances of being the skyline objects. Also, if the s value is high, then
the number of skyline objects derived is small while a low value of s will result in a huge
number of skyline objects.

In contrast to the previous approaches, we employed the following approaches (i) X-tree
indexing technique where objects are organized intoMBRs and (ii) Fuzzification approach
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where the exact value of each continuous range value is determined. Figure 2E presents the
MBRs that are derived based on the given set of data. TwoMBRs are constructed, namely:
R1 and R2. Based on the given constrained skyline query and dominance relationship
betweenMBRs (see Definition 9), it is clear that theMBR R1 dominates theMBR R2. This
will disregard object D from being considered in skyline computation at an earlier stage.
Then, by employing the Fuzzification approach, the exact price value of F is identified. If
the predicted value is less than 75, then F will not be considered in the skyline
computation, otherwise if its value is less than 100, then the set of skyline objects, S = {E, F}.
In our approach, the exact value of a continuous range value is not necessarily the median
value; while extensive probability computation and thresholding are simply avoided.

RELATED WORKS
After the introduction of the skyline operator by Borzsonyi, Kossmann & Stocker (2001),
many variations of skyline algorithms have been proposed. Among the earlier and notable
skyline algorithms reported in the literature are Skyline Sorted Positional List (SSPL) (Han
et al., 2013), Bitmap (Tan, Eng & Ooi, 2001), Nearest—Neighbor (NN) (Kossmann,
Ramsak & Rost, 2002), Divide-and-Conquer (D&C) (Borzsonyi, Kossmann & Stocker,
2001), Branch and Bound Skyline (BBS) (Papadias et al., 2005), Block-Nested-Loop (BNL)
(Borzsonyi, Kossmann & Stocker, 2001), Sorted Filter Skyline (SFS) (Chomicki, 2003),
Linear Eliminate Sort for Skyline (LESS) (Godfrey, Shipley & Gryz, 2005), and Sort and
Limit Skyline (SaLSa) (Bartolini, Ciaccia & Patella, 2008). Although there are several works
reported in the literature that focus on skyline analysis on uncertain data, they differ with
regard to the type of uncertain data being handled. Works like Atallah & Qi (2009), Jiang
et al. (2012), Liu & Tang (2015), and Pei et al. (2007), developed solutions for data with
discrete uncertainty; while Khalefa, Mokbel & Levandoski (2010), Li et al. (2017, 2019), and
Saad et al. (2014, 2016, 2018, 2019) assumed uncertain objects that are represented as an
interval value. Most of the reported works like Khalefa, Mokbel & Levandoski (2010), Li
et al. (2017, 2019), and Saad et al. (2014, 2016, 2018, 2019) rely on the probabilistic skyline
model to compute the probability of an uncertain object to be in the skyline. There are also
works that focus on a specific environment/platform like distributed database (Li et al.,
2017; Zhou et al., 2015). With regard to the type of queries handled by these works,
Papadias et al. (2005) and Qi et al. (2010) focus on range query, Li et al. (2019) on parallel
k-dominant skyline queries, Lian & Chen (2009) on top-k dominating queries, while most of
the previous works like Khalefa, Mokbel & Levandoski (2010), Li et al. (2017, 2019), and
Saad et al. (2014, 2016, 2018, 2019) emphasized on skyline queries. In the following, we
report some of these works that are relevant to the work presented in this article.

A novel probabilistic skyline model is introduced by Pei et al. (2007) to tackle the
problem of skyline analysis on uncertain data. In this work, probabilistic skylines also
known as p-skylines are identified as those uncertain objects whose skyline probabilities
are at least p. To derive p-skylines over large uncertain data, the top-down and bottom-up
algorithms are developed. Using a selection of instances of uncertain objects and their
computed skyline probabilities, the bottom-up algorithm effectively prunes other instances
and uncertain objects. Meanwhile, the top-down algorithm aggressively prunes both
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subsets and objects after recursively partitioning the instances of uncertain objects into
subsets.

With the assumption that low probability events cannot be simply ignored, the work in
(Atallah & Qi, 2009) studied the problem of computing skyline probabilities for data with
discrete uncertainty; hence eliminating thresholding. An efficient algorithm based on space
partitioning and weighted dominance counting is proposed. The skyline analysis is done
only once for all users. By returning skyline probabilities of all instances provides flexibility
to the users in identifying their own interesting skyline instances.

The problem of computing the probability of a point with an uncertain location lying on
the skyline is investigated by Afshani et al. (2011). Two algorithms are presented to exactly
compute the probability that each uncertain point, described as a probability distribution
over a discrete set of locations, is on the skyline; while two new near-linear time algorithms
were introduced for approximately computing the probability that each uncertain point is
on the skyline.

Li et al. (2012) first identified the issue of skyline query on uncertain data, where each
dimension of the uncertain object is represented as an interval or an exact value. Two
efficient algorithms are devised, namely: Branch and Bound Interval Skyline (BBIS) and
Constrained Interval Skyline (CIS) with I/O optimal for the conventional interval skyline
queries and constrained interval skyline queries, respectively.

Meanwhile, Jiang et al. (2012) examined the problem of skyline analysis with uncertain
data. Similar to the idea of the work in Pei et al. (2007), a novel probabilistic skyline model
is proposed where an uncertain object may take a probability to be in the skyline, and a
p-skyline contains all objects whose skyline probabilities are at least p (0 < p � 1). A
bounding-pruning-refining framework and three algorithms were systematically
developed. These algorithms are named bottom-up, top-down, and hybrid algorithms. Both
the top-down and bottom-up algorithms are as suggested by Pei et al. (2007), while the
hybrid algorithm is presented to combine the benefits of the first two algorithms to further
enhance performance.

To resolve the issue of setting a probabilistic threshold to qualify each skyline tuple
independently as developed by p-skyline, Liu et al. (2013) propose a new uncertain skyline
query, called U-Skyline query. U-Skyline query searches for a set of tuples that has the
highest probability (aggregated from all possible scenarios) as the skyline answer. In order
to answer the U-Skyline queries efficiently, a number of optimization techniques were
introduced that are: computational simplification of U-Skyline probability, pruning of
unqualified candidate skylines and early termination of query processing, reduction of the
input data set, and partition and conquest of the reduced data set.

In Li et al. (2017), a distributed skyline query is defined to address the skyline queries
over interval data, which is a special kind of attribute-level uncertain data that widely exists
in many contemporary database applications. Two efficient algorithms were devised to
retrieve the skylines progressively from distributed local sites with a highly optimized
feedback framework. To further improve the queries, two strategies are exploited.

Similar to the work of Pei et al. (2007), Saad et al. (2014, 2018) proposed a framework
named SkyQUD to efficiently answer skyline queries on high dimensional uncertain data
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with objects represented as continuous ranges and exact values, which is referred to as
uncertain dimensions. The term is introduced to emphasize that a particular dimension
may contain both continuous ranges and exact values. The skyline objects are determined
through three methods that guaranteed the probability of each object being in the final

Table 1 Summary of related works on uncertain data.

Reference Approach Algorithm Type of
query

Type of data Data set Limitation

Pei et al.
(2007)

Probabilistic skyline Bottom-up, Top-down Probabilistic
skyline

Discrete
uncertainty

NBA,
synthetic

Require additional
computational cost due to
intensive probability
calculation

Atallah & Qi
(2009)

Probabilistic skyline Sub-Quadratic based on space
partitioning and weighted
dominance counting

Probabilistic
skyline

Discrete
uncertainty

Synthetic Require additional
computational cost due to
intensive probability
calculation

Liu et al.
(2013)

Probabilistic skyline Dynamic Programming
Framework

U-Skyline Discrete
uncertainty

Used Cars,
synthetic

Rigid assumptions where users
are only interested in either
the minimum or maximum
value over the whole space of
a given dimension

Afshani et al.
(2011)

Probabilistic skyline Deterministic and Monte Carlo
algorithms

Skyline Discrete
uncertainty

– Rigid assumptions where users
are only interested in either
the minimum or maximum
value over the whole space of
a given dimension

Li et al. (2012) R*-tree and Median
approach

Branch-and-Bound Interval
Skyline (BIS) method,
Constrained Interval Skyline
(CIS) algorithm

Interval
skyline,
constrained
interval
skyline

Interval
uncertain
data

Synthetic Not realistic since not all range
values can be assumed to fall
within the median point

Jiang et al.
(2012)

Probabilistic skyline Bounding-pruning-refining
framework, Bottom-up, Top-
down

Probabilistic
skyline

Discrete
uncertainty

NBA,
synthetic

Require additional
computational cost due to
intensive probability
calculation

Li et al. (2017) Probabilistic skyline Distributed Interval Skyline
Query (DISQ), Enhanced
Distributed Interval Skyline
Query (e-DISQ)

Interval
skyline

Interval
uncertain
data

Apartments,
synthetic

Require additional
computational cost due to
intensive probability
calculation

Saad et al.
(2014, 2018)

Probabilistic skyline
model

Skyline Query on Uncertain
Dimension (SkyQUD)
Framework

Skyline Uncertain
dimension
(continuous
real range)

NBA,
synthetic

Rigid assumptions where users
are only interested in either
the minimum or maximum
value over the whole space of
a given dimension

Saad et al.
(2016, 2019)

Probabilistic skyline
model

Skyline Query on Uncertain
Dimension with
Thresholding (SkyQUD-T)
Framework

Range query Uncertain
dimension
(continuous
real range)

NBA,
synthetic

Require additional
computational cost due to
intensive probability
calculation

Our work X-Tree and
Fuzzification

Constrained Skyline Queries
over Uncertain Data
(CSQUiD) Framework

Constrained
skyline

Continuous
range

NBA,
synthetic

–
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skyline results. These methods are exact domination, range domination, and uncertain
domination which follows the filter-refine approach. The SkyQUD framework is designed
to be able to accept a threshold value that is specified by users, in which each object must
exceed to be recognized as a dominant object.

Utilizing similar concept, Saad et al. (2016, 2019) extended their solution reported in
Saad et al. (2014) to compute skyline with range query issued on uncertain dimensions. The
proposed framework named SkyQUD-T eliminates objects that do not satisfy a given query
range before advance processing is performed on the surviving objects. The work attempts
to support users that would query information in a range of search rather than a fixed
search.

Table 1 summarizes the research works presented in this section that mainly focus
on uncertain data. It presents the reference, the approach employed, the proposed
algorithm(s), type of query, type of data, and the data sets that these works have utilized in
their performance analysis. From this summary, the following can be concluded: (i) Most
of these works focus on skyline query with the assumption that users are only interested in
either the minimum or maximum value over the whole space of each given dimension
(Afshani et al., 2011; Atallah & Qi, 2009; Jiang et al., 2012; Li et al., 2017; Liu et al., 2013; Pei
et al., 2007; Saad et al., 2014, 2018). Only a few studies like Li et al. (2012) and Saad et al.
(2016, 2019) focus on constrained skyline query (also known as interval and range query)
(ii) There are two types of data uncertainty being explored, namely: discrete uncertainty
(object is associated with multiple instances) (Afshani et al., 2011; Atallah & Qi, 2009; Jiang
et al., 2012; Liu et al., 2013; Pei et al., 2007) and continuous uncertainty (also known as
interval and range) (Li et al., 2012, 2017; Saad et al., 2014, 2016, 2018, 2019). Hence, the
closest works that can be compared to our work which mainly focus on constrained skyline
query with continuous uncertainty are the CIS algorithm (Li et al., 2012) and SkyQUD-T
(Saad et al., 2016, 2019).

PRELIMINARIES
This section explains the concepts that are related to the work presented in this article. It
also defines the terms and introduces the notations used throughout this article. Table 2
provides examples of objects with uncertain data, while Fig. 3 gives a pictorial
representation of the six MBRs labelled as R1, R2, R3, R4, R5, and R6 that are constructed
based on the given sample data. Note that the construction of the X-tree and its MBRs is
omitted here, as interested reader may refer to Lawal et al. (2020a) for further details.

Based on the notations used in this article, we first provide the general definitions (i.e.,
Definition 1 through Definition 6) that have been defined either formally or informally in
the literature (Alwan et al., 2016; Borzsonyi, Kossmann & Stocker, 2001; Lawal et al., 2020b;
Saad et al., 2019). Then, we present the specific definitions that are relevant to our work in
this article. These definitions assume a database D withm dimensions d ¼ fd1; d2;…; dmg
and n objects O ¼ fo1; o2;…; ong.

Definition 1 Dominance Relationship: Object oi 2 D is said to dominate object oj 2 D
where i 6¼ j denoted as oi � oj if and only if 8dk 2 d, oi:dk � oj:dk^ 9dl 2 d, oi:dl < oj:dl.
Without loss of generality, we assume minimum value is preferred for all the dimensions.
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For example, referring to Table 2, apartment B is said to dominate apartment G since the
values of apartment B for both dimensions, Rent Rate and Distance, are lesser than that of
apartment G.

Definition 2 Exact Value: A value vi E R where R is a set of real numbers is said to be
an exact value as its precise value is known/given.

Figure 3 Graphical representation of MBRs for the sample data set provided in Table 2.
Full-size DOI: 10.7717/peerj-cs.2225/fig-3

Table 2 Running example of objects with uncertain data.

Apartments Rent rate ($) Distance

A 110–120 50

B 120 25

C 60–83 45

D 78 105

E 100 50

F 120–160 40

G 145 40

H 85 45

I 120 40

J 160 45
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Definition 3 Continuous Range Value: A value vi with a lower bound value, lb, and an
upper bound value, ub, is a continuous range value as its precise/exact value is not known/
given. In this work, a continuous range value is denoted as vi ¼ ½lb� ub� while the exact
value of vi is a value that falls between both bounds including the endpoints. An example of
a continuous range value is 110–120 which represents the rent rate of apartment A while
the value 115 is one of the possible exact values of the given range.

Definition 4 Comparable Objects:Objects oi 2 D and oj 2 D where i 6¼ j are said to be
comparable if and only if 8dk 2 d, both oi:dk and oj:dk are in the form of exact value as
defined by Definition 2. Otherwise, the objects oi and oj are said to be incomparable
objects. For example, given the apartments G = (145, 40) and F = ([120–160], 40) as shown
in Table 2, G and F are said to be incomparable objects, since the values of G:d1 and F:d1
are not comparable, as F:d1 = [120–160] is of the form of ½lb� ub�.

Definition 5 Constrained Query: A constrained query, cqi, over dk 2 d is specified as
½lb� ub� where lb and ub are the lower bound and upper bound values that defined the
permissible range of values for dk of the given cqi.

Definition 6 Constrained Skyline Query:A constrained skyline query, cqi, retrieves the
set of objects in D that lie within the constrained query ½lb� ub�, say D0 where D0 � D,
that are not being dominated by any other objects in D′. This is formally written as
foijoi 2 D0 ^ oj 2 D0; oj � oig.

Definition 7 Left Vertex: Given an X-tree with a set of MBRs denoted as
T ¼ fMBR1;MBR2; . . . ;MBRzg with a search space Spðx; yÞ defined as the root of the tree,
where x � 0 and y � 0, each MBRw 2 T contains four vertices denoted by
fw:bl;w:br;w:tr;w:tlg. The vertex w:bl is referred to as the left vertex of the MBRw, as
depicted in Fig. 4. The notation w:bl½x� is used to refer to the value of the x dimension of
the vertex bl of MBRw. Based on the example given in Fig. 5 where
MBRw ¼ fð1; 2Þ; ð12; 2Þ; ð12; 9Þ; ð1; 9Þg, the left vertex of MBRw is given by (1, 2).

Definition 8 Leftmost Vertex: Given an X-tree with a set of MBRs denoted as
T ¼ fMBR1;MBR2; . . . ;MBRzg and a list of left vertices LV ¼ fLVMBR1; LVMBR2;

. . . ; LVMBRzg, LVMBRk 2 LV is said to be the leftmost vertex of LV if and only if the
distance between LVMBRk and Sp is the shortest as compared to the distances between other
left vertices and Sp. Meanwhile, the notation MBRLMV is used to denote the MBR having
the leftmost vertex.

Given four MBRs labelled as r ¼ fð10; 39Þ; ð10; 45Þ; ð15:5; 45Þ; ð15:5; 39Þg,
s ¼ fð16; 35Þ; ð16; 43Þ; ð23; 43Þ; ð23; 35Þg, t ¼ fð7; 28Þ; ð7; 36Þ; ð14; 36Þ; ð14; 28Þg, and
u ¼ fð16:5; 28Þ; ð16:5; 36Þ; ð24; 36Þ; ð24; 28Þg, while a constrained skyline query, cqb,
defined on dimension x with constraint [5–25] as depicted in Fig. 6. The left vertices of r, s,
t, and u are LVMBRr ¼ ð10; 39Þ, LVMBRs ¼ ð16; 35Þ, LVMBRt ¼ ð7; 28Þ, and
LVMBRu ¼ ð16:5; 28Þ, respectively. By employing the Euclidean distance to calculate the
distance between the left vertices of the MBRs and the Sp, the LVMBRt is identified as the
leftmost vertex that lies within the given cqb.

Definition 9 Dominance Relationship betweenMBRs:AnMBRi ¼ fi:bl; i:br; i:tr; i:tlg
is said to dominate anMBRj ¼ fj:bl; j:br; j:tr; j:tlg where i 6¼ j denoted asMBRi � MBRj if
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Figure 6 The leftmost vertex among MBRs. Full-size DOI: 10.7717/peerj-cs.2225/fig-6

Figure 4 The vertices of an MBR. Full-size DOI: 10.7717/peerj-cs.2225/fig-4

Figure 5 The leftmost vertex of an MBR. Full-size DOI: 10.7717/peerj-cs.2225/fig-5
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and only if the left vertex of MBRi < left vertex of MBRj, i.e., i:bl½x� < j:bl½x� and
i:bl½y� < j:bl½y�. Obviously, object at the left vertex of anMBR is the dominant object of the
MBR. For instance, the MBRt ¼ fð7; 28Þ; ð7; 36Þ; ð14; 36Þ; ð14; 28Þg is said to dominate
theMBRr ¼ fð10; 39Þ; ð10; 45Þ; ð15:5; 45Þ; ð15:5; 39Þg since t:bl½x� ¼ 7 < r:bl½x� ¼ 10 and
t:bl½y� ¼ 28 < r:bl½y� ¼ 39. The dominant object of r at (10, 39) will apparently be
dominated by the dominant object of t at (7, 28). In this case t is recognized as the
dominant MBR.

Definition 10 Associations between MBRs: The associations between MBRs are
determined by analyzing the overlapping area (if any) between theseMBRs. There are three
cases that could occur, namely: non-overlapping, subset, and intersection, which are
explained in the following:

Case I: Non-overlapping between MBRs–Given two MBRs, MBRr ¼ fr:bl; r:br;
r:tr; r:tlg and MBRs ¼ fs:bl; s:br; s:tr; s:tlg where r 6¼ s, MBRr and MBRs are said to be
non-overlapping if and only if any of the following conditions hold:

i) r:tl½x� � s:br½x� or s:tl½x� � r:br½x�
ii) r:tl½y� � s:br½y� or s:tl½y� � r:br½y�
Some examples of non-overlapping associations between MBRs are given in Figs. 7A

and 7B.
Case II: Subset between MBRs-Given two MBRs, MBRr ¼ fr:bl; r:br; r:tr; r:tlg and

MBRs ¼ fs:bl; s:br; s:tr; s:tlg where r 6¼ s, MBRs is said to be a subset of MBRr denoted by
MBRs � MBRr if and only if the following conditions hold: s:br½x� � r:br½x�,
s:tl½x� � r:tl½x�, s:br½y� � r:br½y�, and s:tl½y� � r:tl½y�. Some examples are given in Figs. 8A
and 8B.

Figure 7 Non-overlapping between MBRs. Full-size DOI: 10.7717/peerj-cs.2225/fig-7
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Case III: Intersection between MBRs–Given two MBRs, MBRr ¼ fr:bl; r:br; r:tr; r:tlg
and MBRs ¼ fs:bl; s:br; s:tr; s:tlg where r 6¼ s, MBRr and MBRs are said to intersect if and
only if the following conditions hold:

i) s:br½x� � r:tl½x�, s:br½y� � r:tl½y�, s:bl½x� � r:br½x�, and s:tl½y� � r:br½y�
ii) MBRs is not a subset of MBRr as defined by Case II of Definition 10.

Some examples are provided in Figs. 9A–9D.

Figure 8 Subset between MBRs. Full-size DOI: 10.7717/peerj-cs.2225/fig-8

Figure 9 Intersection between MBRs. Full-size DOI: 10.7717/peerj-cs.2225/fig-9
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Figure 10 MBR lies within cqi. Full-size DOI: 10.7717/peerj-cs.2225/fig-10

Figure 11 (A and B) Intersection betweenMBR and cqi.Full-size DOI: 10.7717/peerj-cs.2225/fig-11
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Definition 11 Associations between MBRs and a Constrained Skyline Query cqi–
There are four possible associations betweenMBRs and cqi that are lie within, intersection,
overlap, and non-overlapping, as depicted in Figs. 10–13, respectively.

Case I: MBR lies within cqi–Given a constrained skyline query, cqi ¼ ½lb� ub� over
dimension x, an MBRw ¼ fw:bl;w:br;w:tr;w:tlg is said to lie within the cqi if and only if

Figure 12 (A–C) Overlap between MBR and cqi. Full-size DOI: 10.7717/peerj-cs.2225/fig-12

Figure 13 Non-overlapping between MBR and cqi. Full-size DOI: 10.7717/peerj-cs.2225/fig-13
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the following conditions hold: w:tl½x� � cqi:lb and w:br½x� � cqi:ub. This is depicted by an
example provided in Fig. 10.

Case II: Intersection between MBR and cqi–Given a constrained skyline query,
cqi ¼ ½lb� ub� over dimension x, an MBRw ¼ fw:bl;w:br;w:tr;w:tlg is said to intersect
the cqi if and only if any of the following conditions hold:

i) w:tl½x� < cqi:lb and w:br½x� < cqi:ub

ii) w:tl½x� > cqi:lb and w:br½x� > cqi:ub

This is depicted by examples provided in Figs. 11A and 11B.
For each of the above cases, a new MBR is derived denoted as MBR0

w with a new set of
vertices as follows:

i) MBR0
w ¼ fw:bl ¼ ðcqi:lb;w:bl½y�Þ;w:br;w:tr;w:tl ¼ ðcqi:lb;w:tl½y�Þg

ii) MBR0
w ¼ fw:bl;w:br ¼ ðcqi:ub;w:br½y�Þ;w:tr ¼ ðcqi:ub;w:tr½y�Þ;w:tlg

Case III: Overlap between MBR and cqi–Given a constrained skyline query,
cqi ¼ ½lb� ub� over dimension x, anMBRw ¼ fw:bl;w:br;w:tr;w:tlg is said to overlap the
cqi if and only if any of the following conditions hold:

i) w:tl½x� < cqi:lb and w:br½x� ¼ cqi:ub

ii) w:tl½x� < cqi:lb and w:br½x� > cqi:ub

iii) w:tl½x� ¼ cqi:lb and w:br½x� > cqi:ub

This is typified by the examples provided in Figs. 12A–12C. For each of the above cases,
a new MBR is derived and denoted as MBR0

w with a new set of vertices as follows:

i) MBR0
w ¼ fw:bl ¼ ðcqi:lb;w:bl½y�Þ;w:br;w:tr;w:tl ¼ ðcqi:lb;w:tl½y�Þg

ii)
MBR0

w ¼ fw:bl ¼ ðcqi:lb;w:bl½y�Þ;w:br ¼ ðcqi:ub;w:br½y�Þ;w:tr ¼ ðcqi:ub;w:tr½y�Þ;
w:tl ¼ ðcqi:lb;w:tl½y�Þg

iii) MBR0
w ¼ fw:bl;w:br ¼ ðcqi:ub;w:br½y�Þ;w:tr ¼ ðcqi:ub;w:tr½y�Þ;w:tlg

Note that MBR0
w is said to lie within the cqi, as defined by Case I of Definition 11.

Case IV: Non-overlapping between MBR and cqi–Given a constrained skyline query,
cqi ¼ ½lb� ub� over dimension x, an MBRw ¼ fw:bl;w:br;w:tr;w:tlg is said to be non-
overlapping the cqi if and only if the following conditions hold:

i) w:tl½x� > cqi:ub or

ii) w:br½x� < cqi:lb

This is typified by the examples provided in Fig. 13.

THE PROPOSED FRAMEWORK
The Constrained Skyline Query processing on Uncertain Data (CSQUiD) is a framework
that utilizes the MBRs of the X-tree indexing structure (Berchtold, Keim & Kriegel, 1996)
that are constructed based on a given collection of uncertain data, to efficiently compute
skylines of the constrained skyline queries. Instead of evaluating the objects that lie within
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a given constrained skyline query, cqi, only the objects of dominantMBRs are analyzed for
deriving the dominant objects. The CSQUiD framework depicted in Fig. 14, consists of two
distinct phases, namely: Data Pre-processing & Local Skylines Derivation (DP&LSD) and

Figure 14 The CSQUiD framework (A) DP&LSD phase (B) F&FSD phase.
Full-size DOI: 10.7717/peerj-cs.2225/fig-14

Figure 15 Algorithm 1 of CSQUiD. Full-size DOI: 10.7717/peerj-cs.2225/fig-15
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Fuzzification & Final Skylines Derivation (F&FSD). These phases are further explained in
the following sections. Meanwhile, Algorithm 1 (Fig. 15) presents the general steps
followed by CSQUiD to realize the dominant objects, S, from an uncertain database,Du, for
a given cqi.

Data pre-processing & local skylines derivation (DP&LSD)
At the DP&LSD phase, an X-tree indexing structure which consists ofMBRs is constructed
based on the given uncertain database, Du. These MBRs are leverage upon by the
framework to streamline the processing of deriving skyline objects of a given constrained
skyline query, cqi. As a result, the number of pairwise comparisons among objects is
reduced. However, how to identify theMBRs that satisfy the conditions of the constrained
skyline query needs to be explicitly specified. In this respect, several methods are employed
by CSQUiD at this phase, namely: Cropping, Culling, and Grouping. The Croppingmethod
is utilized to filter the MBRs of the X-tree that are relevant to a given constrained skyline
query (see cases I, II, and III of Definition 11). MBRs that intersect, overlaps, or lie within
the range defined by the constrained skyline query are identified and saved into a list
named ND. Subsequently, the Culling method is utilized to get the MBR with the leftmost
vertex, MBRLMV , by computing the distance between the Sp and the left vertices of the
MBRs in the ND list which is then saved into the CD list. The Groupingmethod groups the
objects in MBRLMV into two distinct groups that are Oc having objects with certain values
while CS having objects with uncertain values. Then, the local skylines for the Oc group of
MBRLMV are derived by employing the conventional skyline algorithm. By combining
together the local skylines derived for Oc group with the CS group of MBRLMV , we realize
the LS list which serves as input to the Fuzzification & Final Skylines Derivation (F&FSD)
phase. The methods stated above are further elaborated in the following paragraphs.

Cropping Method: The Cropping method is employed after constructing an X-tree of a
given uncertain database, Du, to identify the MBRs that either lie within, overlap, non-
overlap, and intersect (see cases I, II, III, and IV of Definition 11) with the range specified
by the constrained skyline query, cqi. Purposefully, this method is introduced to collect a
set of MBRs into a list called ND whose objects would most likely contribute to the final
skylines. The detail steps are as shown in Algorithm 2 (Fig. 16) with time complexity
m � OðnÞ where m is the number of MBRs of a given tree, T, and n ¼ 7 for the seven
different cases as presented in the algorithm. By applying Algorithm 2 on the example
provided in Fig. 17, with cqi ¼ ½55� 120�, theMBRR4,MBRR5, andMBRR6, are returned as
theMBRs that satisfy the conditions stated in Definition 11. Here,MBRR4 is said to overlap
with the cqi, while MBRR5 and MBRR6 are said to intersect the cqi.

Culling Method: The Cullingmethod is employed to identify theMBR with the leftmost
vertex,MBRLMV , by computing the Euclidean distance of the left vertices ofMBRs realized
in ND to Sp which is the left vertex to the root of the X-tree. Instead of evaluating the
dominance relationship between objects ofMBRs in the ND, only the set of objects within
the MBR with the leftmost vertex, MBRLMV , and those objects of MBRs not dominated by
MBRLMV are processed in identifying the dominant objects for the given constrained
skyline query, cqi. Essentially, the number of pairwise comparisons is reduced since many

Lawal et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2225 20/34

http://dx.doi.org/10.7717/peerj-cs.2225
https://peerj.com/computer-science/


unnecessary comparisons among objects are avoided. This is due to the fact that theMBRs
dominated by MBRLMV are pruned off. The MBRLMV and the dominant MBRs are then
passed to the Groupingmethod. The detail steps of the Cullingmethod are as delineated in
Algorithm 3 (Fig. 18).

Using the example depicted in Fig. 17, with cqi ¼ ½55� 120�, the left vertices for the
MBRs in ND of the given example are MBRR4 ¼ ð100; 50Þ, MBRR5 ¼ ð60; 45Þ, and
MBRR6 ¼ ð120; 25Þ with distances computed to Sp(0,0) as 47.16, 22.36, and 60,
respectively. With this, the MBR with the leftmost vertex is MBRR5. Nonetheless, the
objects of MBRR5 and MBRR6 are collected since MBRR5 does not dominate MBRR6; while
it dominatesMBRR4. Thus, objects {B, C,D,H, I} are the objects passed to the next method,
Grouping method.

Grouping Method: Based on the CD derived by the previous method, the Grouping
method is employed to group the objects into two distinct groups. The first group, Oc,
consists of objects with certain data, while the second group, CS, consists of objects with
uncertain data. The detail steps of the Groupingmethod are as demonstrated in Algorithm
4 (Fig. 19). The result of deploying the Grouping method is presented in Fig. 20.

Figure 16 Algorithm 2 of CSQUiD. Full-size DOI: 10.7717/peerj-cs.2225/fig-16
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Conventional Skyline Algorithm: To determine the local skylines, theOc group of objects
is subjected to the conventional skyline algorithm. {B, D,H} is the set of local skylines ofOc
in Fig. 20, based on the instances shown in Fig. 17. In a single list, LS, the items of Oc and
CS are handed to the subsequent phase.

Fuzzification & final skylines derivation (F&FSD)
The Trapezoid Fuzzification method is used at the Fuzzification & Final Skylines
Derivation (F&FSD) phase to generate the trapezoid membership function values for each
continuous range value of the objects in LS, and the Sum Aggregation method is used to
return a single trapezoid membership function value for the values derived by the

Figure 18 Algorithm 3 of CSQUiD. Full-size DOI: 10.7717/peerj-cs.2225/fig-18

Figure 17 MBR with the leftmost vertex. Full-size DOI: 10.7717/peerj-cs.2225/fig-17
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Trapezoid Fuzzification method. The final skylines of the constrained skyline query, cqi,
are computed using the conventional skyline algorithm, while the Centroid Defuzzification
method is employed to return the exact value to the continuous range value. These
techniques are explained in more detail below.

Trapezoid Fuzzification Method–This inductive approach typically creates a fuzzy set by
assigning a trapezoid membership function to a set of independent observations (Chiu,
1996; Coffman-Wolph, 2016). The CSQUiD framework generates a trapezoid fuzzy set by
first normalising a continuous range value of an object into segments. Next, the kNN
algorithm is applied to identify the k objects with either an exact value or a midpoint value
that are closest to the given continuous range value. The Trapezoid Fuzzification method
then determines and uses the exact value or midpoint value that has the shortest distance
to each segment to derive its trapezoid membership function values. Given a segment of a
continuous range value, uj ¼ ½uj:lb� uj:ub�, its midpoint, cpuj , is computed as
cpuj ¼ ðuj:ub� uj:lbÞ=2 where uj:lb and uj:ub are the lower bound and upper bound

values of uj, respectively. With the cpuj value, a trapezoid fuzzy set of the segment is
derived; denoted by fsðcpuj ;mfvujÞ. Meanwhile, mfvuj ¼ fmfvu1 , mfvu2 ,…, mfvung
represents the trapezoid membership function values of all the segments of the given
continuous range value, vi. The degree to which a continuous range value belongs to a
fuzzy set is represented by the trapezoid membership function value, which is a real
continuous interval [0,1]. The endpoint of 0 indicates no membership and 1 indicates full

Figure 20 Grouping objects of MBR. Full-size DOI: 10.7717/peerj-cs.2225/fig-20

Figure 19 Algorithm 4 of CSQUiD. Full-size DOI: 10.7717/peerj-cs.2225/fig-19
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membership, while values between the endpoints represent different degrees of
membership. Interested readers may refer to (Chiu, 1996; Coffman-Wolph, 2016; Ross,
2000; Zadeh, 1996), to get further details on the Trapezoid Fuzzification method.

As an example, consider the apartment C with the continuous range value [60 − 83]
presented in Fig. 17. To determine the set of segments, the midpoint is calculated as [(83 +
60)/2] = 71.5, while the unit scale of each segment is derived through the normalization of
the range specified by the continuous range value C as [(71.5 − 60)/(83 − 60)] = 0.5. Thus,
using the derived segment unit scale, the set of segments of [60 − 83] is represented as
f½60� 60:5�; ½60:5� 61�;…; ½82:5� 83�g. To compute the trapezoid membership
function value for the derived segments, the midpoint of each segment is calculated. The
segments within the range [60 − 83], having the shortest distance between cpuj and D(78)
are [77.5 − 78] and [78 − 78.5], while the midpoint for these segments are 77.75 and 78.25,
respectively. The trapezoid membership function values for the continuous range value [60
− 83] for apartment C have 0.55694799, 0.49839744, and 0.50160256 as the shortest
distances to the exact value of D(78).

Sum Aggregation Function–The Sum Aggregation function is used to get a single
trapezoid membership function value to the continuous range value. The single value for
the trapezoid function values generated for the closest segments to objectD is computed by
adding 0.55694799 + 0.49839744 + 0.50160256 = 1.55694799. Based on the sum
aggregation method, max (1,1.55694799) = 1.55694799 is realized as the sum aggregate
value for the trapezoid membership function values of [60 − 83].

Centroid Defuzzification Method: The Centroid Defuzzification method returns the
computed exact value for the single trapezoid membership function value. The result is
found along the range defined by a continuous range value. For example, 71.5 +
1.55694799 = 73.05694799 is the exact value for the continuous range values [60 − 83] of
apartment C. Figure 21 shows the data set Du with objects having exact values.

RESULTS AND DISCUSSIONS
In this section, through an extensive experimental analysis conducted on both synthetic
and the NBA real data set, the experimental results for processing constrained skyline
queries over uncertain data were obtained. With a constrained skyline query
cqi ¼ ½lb� ub� defined on uncertain data, the performance result of the proposed CSQUiD
framework with respect to the CIS and SkyQUD-T algorithms by (Li et al., 2012) and (Saad
et al., 2019), respectively, were discussed and analyzed.

Figure 21 Du with objects having exact values. Full-size DOI: 10.7717/peerj-cs.2225/fig-21
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Experimental settings
The performances of CIS, SkyQUD-T and CSQUiD algorithms are measured based on the
CPU processing time and the number of pairwise comparisons. The experiments make use
of two data sets, namely: synthetic and real data sets. The synthetic data set includes
correlated, anti-correlated, and independent data sets. The experimental parameters used in
the performance analysis include size of the data set (n), data distribution (r), number of
dimensions (d), and the size of the constrained skyline query (k) as presented in Table 3.
The method utilized in the work of Saad et al. (2019) is employed for uniformly generating
the size of a constrained skyline query (k) as a percentage of the volume of the data sets.
For each size, for instance 0.1%, 50% constrained skyline queries are generated at random
and the average results obtained are reported as the final results.

Synthetic data set
The synthetic data sets which include anti-correlated, independent, and correlated as
illustrated in Fig. 22 are generated using the same generator as used by Lawal et al. (2020a)
and Saad et al. (2016). Every data set contains 100 k objects, each of which has three
dimensions that corresponds to a uniform random variable with values between 1 and 100.
Further, to ensure that the distribution between exact values and continuous range values
is 50%, we set one of each object’s dimensions to represent the uncertain data in the form
of a continuous range value with a length between 1 and 100.

Real data set
The National Basketball Association (NBA) statistic (www.basketballreference.com), a real
data set that represents various statistic values associated with NBA players, is also used in

Table 3 Experimental parameter settings.

Parameter Values

Data set type Synthetic NBA

Size of data set (n) 100 k 21,961

Data distribution (r) (%) 50

Number of dimension (d) 3 17

Size of constrained query (k) (%) 0.1, 8, 16, 32, 64, 98, 98.5, 99, 99.5

Figure 22 An illustration of the synthetic data set (Lawal et al., 2020a).
Full-size DOI: 10.7717/peerj-cs.2225/fig-22
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the performance analysis of this study. It has been widely employed in other studies that
focus on skyline queries over uncertain data (Lawal et al., 2020a; Saad et al., 2016, 2018,
2019; Tan, Eng & Ooi, 2001). The NBA data set contains 21,961 objects with a total of 16
dimensions. Since the NBA data set is a complete data set with exact values, a new
dimension representing the uncertain dimension is added to the data set. The values of this
dimension are in the form of a continuous range that are randomly generated using the
same procedure that was employed to generate the synthetic data set.

Eperimental results
We present the CIS, SkyQUD-T, and CSQUiD performance analyses in supporting
constrained skyline queries below. The query size is adjusted during the analysis, ranging
from 0.1% to 99.5%. This analysis’s goal is to confirm how well these methods work with
queries of varying widths, ranging from the smallest range (0.1%) to the highest range
(99.5%). The analysis’s findings for CPU processing time and number of pairwise
comparisons are shown in Figs. 23 and 24, respectively.

From Fig. 23, the following can be observed: (i) In most data sets, a slight increment in
the CPU processing time can be seen in all solutions, when the size of the constrained
skyline query is increased. Intuitively, the larger the size of the query, the more spaces it
covers and consequently more objects need to be analyzed. (ii) For anti-correlated data set,
the CPU processing time for all solutions is relatively the same as can be seen in Fig. 23A.
Nonetheless, CSQUiD shows a slight better performance compared to CIS and SkyQUD-T.
(iii) For correlated and independent data sets, the performance of both SkyQUD-T and
CSQUiD is by far better than that of CIS, even though there is an exception at 8% of the
constrained skyline query, as presented in Figs. 23B and 23C, respectively. (iv) For the real
data set, NBA, CSQUiD shows better performance while both SkyQUD-T and CIS have
similar performance as clearly shown in Fig. 23D.

In most cases CSQUiD gained better performance with regard to the CPU processing
time. This is due to several reasons, as discussed in the following: CSQUiD employed the X-
tree indexing technique to organize the objects intoMBRs. Objects having similar features
are grouped into the sameMBRs. Given a constrained skyline query, theMBRs that satisfy
the constraints of the query are identified. Only the objects of the dominant MBRs are
analyzed further while those objects of the dominatedMBRs (although initially they satisfy
the constraint of the query) are discarded from skyline computation. Utilizing the
fuzzification approach, the exact value of each continuous range value is predicted; which
then enable the conventional skyline algorithm to be applied to derive the skylines. Similar
to CSQUiD, CIS employed the R*-tree to organize the objects of the uncertain data set.
Unlike CSQUiD, the MBRs that satisfy the constraints of the query are identified and the
objects of these MBRs are analyzed. While, the median approach is employed to get the
exact value of each continuous range value. This means that only objects of the dominants
MBRs are analyzed by CSQUiD; while objects of thoseMBRs that are within the constraints
of the query are analyzed by CIS. Obviously, the number of objects involved in the skyline
computation of CSQUiD is lesser than the CIS algorithm as unnecessary objects are filtered
in the earlier stages. Meanwhile, SkyQUD-T requires scanning every object in the data set
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to identify the relevant objects, i.e., those objects that are within the constraints of the given
query; before extensive probabilistic calculation and thresholding are performed between
every pair of these relevant objects. Nonetheless, when the size of the constrained skyline
query is relatively small (0.1–8%), the chances of anMBR to dominate the otherMBRs are
low. Consequently, the performance of CSQUiD, CIS, and SkyQUD-T with regard to CPU
processing time for such case is almost similar.

From Fig. 24, the following can be observed: (i) In most data sets, a slight increment in
the number of pairwise comparisons can be seen in all solutions, when the size of the
constrained skyline query is increased. This is mainly due to the fact that a larger size of
query will span a larger space and consequently covers more objects. (ii) For anti-
correlated and correlated data sets, the number of pairwise comparisons of SkyQUD-T is
the highest while both the CSQUiD and CIS show almost similar performance as presented
in Figs. 24A and 24B, respectively. (iii) For independent and NBA data sets, the

Figure 23 (A–D) The CPU processing time of CIS algorithm, SkyQUD-T and CSQUiD frameworks
by varying the size of constrained queries. Full-size DOI: 10.7717/peerj-cs.2225/fig-23
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performance of CSQUiD is by far better than that of CIS and SkyQUD-T, as presented in
Figs. 24C and 24D, respectively.

Given a data set with m dimensions and n objects, the average number of pairwise
comparisons is m½ðnðn� 1ÞÞ=2�. The objects analyzed by CSQUiD are those of the
dominant MBRs that satisfy the constraint of the constrained skyline query. While the
objects analyzed by CIS are the objects of all the MBRs that satisfy the constraint of the
constrained skyline query. Obviously, the number of pairwise comparisons performed by
CSQUiD is lesser than CIS. Meanwhile, the objects analyzed by SkyQUD-T are those that
satisfy the constraint of the constrained skyline query. The pairwise comparisons
performed by both CSQUiD and CIS are based on the precise values (either the initial value
or predicted/median value) while the pairwise comparisons performed by SkyQUD-T are

Figure 24 (A–D) The number of pairwise comparisons of CIS algorithm, SkyQUD-T and CSQUiD
frameworks by varying the size of constrained queries.

Full-size DOI: 10.7717/peerj-cs.2225/fig-24
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based on the initial value, which can either be exact or continuous range value.
Nonetheless, when the size of the constrained query is relatively small (0.1–8%), the
performance of CSQUiD, CIS, and SkyQUD-T with regard to number of pairwise
comparisons is almost similar. This is mainly because the number ofMBRs that fall within
the constraint of the given query is small and the chances of anMBR to dominate the other
MBRs are low.

From the experimental results presented in Figs. 23 and 24, it is obvious that CSQUiD is
superior and outperforms other algorithms in terms of CPU processing time and number
of pairwise comparisons. Hence, employing an indexing technique like X-tree, applying the
dominance relationship between MBRs, avoiding extensive probability computation and
thresholding, and predicting the exact values of continuous range values have enhanced
the performance of the CSQUiD in processing constrained skyline queries.

Table 4 presents the percentages of improvement gained by CSQUiD as compared to
CIS and SkyQUD-T algorithms. With regard to the number of pairwise comparisons,
CSQUiD outperforms CIS and SkyQUD-T algorithms by 30.32–34.60%, 5.85–58.42%,
47.13–60.15%, and 79.71–88.68% for anti-correlated, correlated, independent, and NBA
data sets, respectively. Meanwhile the percentages of improvement gained with regard to
CPU processing time are as follows: 12.09–19.37%, 16.17–21.92%, 21.52– 37.06%, and
24.68–30.31%, for anti-correlated, correlated, independent, and NBA data sets,
respectively.

CONCLUSION
The skyline process is considered expensive due to the exhaustive domination tests
performed to identify the skylines. Skyline search space and computation process on
uncertain data are affected by parameters such as the number of dimensions, data set size,
and the size of the constrained query. In this article, an efficient framework called CSQUiD
is proposed to address the problem associated with processing constrained skyline queries
over uncertain data. This framework consists of two phases, namely:Data Pre-processing &
Local Skylines Derivation and Fuzzification & Final Skylines Derivation. The DP&LSD

Table 4 Percentage of improvement of CSQUiD framework by varying the size of constrained
queries.

Algorithm compared Data set Number of pairwise comparisons CPU processing time

CIS Anticorrelated 34.60% 19.37%

Correlated 5.85% 21.92%

Independent 47.13% 37.06%

NBA 88.68% 30.31%

SkyQUD-T Anticorrelated 30.32% 12.09%

Correlated 58.42% 16.17%

Independent 60.15% 21.52%

NBA 79.71% 24.68%
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phase utilizes an X-tree indexing technique to organize the uncertain database intoMBRs;
where objects with similar uncertainty values are organized into the same MBR. The
Cropping, Culling, Grouping methods besides the conventional skyline algorithm are
invoked in this phase to derive the local skylines of each identified dominant MBR.
Meanwhile, F&FSD phase adopts the Trapezoid Fuzzification, Sum Aggregation, and
Centroid Defuzzification methods to predict an exact value to a continuous range value
before the conventional skyline algorithm can be applied to derive the final skylines.
Various sets of experiments have been accomplished to prove the efficiency and
effectiveness of the CSQUiD framework over the recent existing frameworks that are CIS
and SkyQUD-T. The results have proven that our proposed solution is outclassing all the
existing solutions in computing constrained skyline queries over uncertain data.

There are several enhancements that can be made based on the findings presented in the
article. These include (I) Processing multiple constrained skyline queries as a batch–the
CSQUiD framework handles a constrained skyline query at a time. Multiple constrained
skyline queries can be evaluated as a batch and further improvement can be achieved by
analyzing the similarities between these queries with regard to the constraints specified in
each query. Similar constraints can be grouped and evaluated together instead of
evaluating each query separately. This will avoid unnecessary skyline computation. (II)
Processing constrained skyline queries over data stream–handling constrained skyline
queries over data streams is a challenging task as these streams of data are known to have
the properties of time varying (time sensitive), continuous, real time, volatile, and
unrepeatable. By utilizing the sliding window approach, the CSQUiD framework can be
employed to dynamically update the skyline objects at each window. (III) Maximizing
user’s preference function–to ensure users are given flexibility to specify their interest as
their query requirements, different forms of skyline retrieval like subspace skyline, top-k
skyline, k-dominate skyline, and k representative skyline can be explored. For example,
subspace skyline allows users to define their preferences on various subsets of dimensions.
It is also effective in protecting the privacy and anonymity of data, with only specific
dimensions being accessible. In the meantime, top-k skyline filters the best k skylines,
where k is the number of answers the user desires, rather than returning all skyline objects,
which are probably large in size. Additionally, the k representative skyline provides an
intuitive way to identify the kmost significant objects that can represent the corresponding
full skyline. Exploring these types of skyline queries may also address the shortcomings of
the CSQUiD framework, as mentioned earlier.
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