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Chairman 
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: Engineering 

Hydroxyapatite (HA) coating on metallic implants have been extensively used in 
orthopaedic applications to improve on the tissue-implant interactions, enhance 
their biocompatibility and functionality without altering the implant’s substrate 
properties. However, currently the expensive synthetic HA is widely used for 
coating of implants leading to the high cost of implants. Hence, the present 
research has explored the potentials of an inexpensive and halal natural biogenic 
HA derived from fish scales (FsHA) and FsHA doped with yttria stabilised 
zirconia (YSZ) bioceramic as an alternative coating material on Ti-6Al-4V and Ti-
13Nb-13Zr titanium alloys. In this research, the effect of post coating heat 
treatment at 750 oC on plasma sprayed FsHA and FsHA/YSZ coating materials 
were investigated. Spray dry technique was used to produce the fine FsHA 
powders while plasma spray technique was applied in the coating process on 
the surface of Ti alloys substrates. The FsHA and FsHA/YSZ powders used as 
feedstock for the plasma spray coating were examined by x-ray diffraction (XRD) 
technique, fourier transform infra-red (FTIR) and scanning electron 
microscopy/energy dispersive x-ray (SEM/EDX). Meanwhile the 
physicomechanical and bioactivity tests were conducted on the coated 
substrates to study their mechanical properties, corrosion resistance, wettability, 
in vitro bioactivity in simulated body fluid (SBF) and in vitro cytotoxicity.  The 
results of the research showed that the crystallinity of the FsHA/YSZ powders 
was above 96%, the least crystallinity of the plasma sprayed coatings was 65.7% 
while the crystallinity of the heat-treated FsHA coatings was about 85%. From 
SEM analysis, the microstructure of the plasma sprayed coatings revealed fine 
lamellar with partially melted and unmelted FsHA particles as well as fine micro 
cracks along with evenly dispersed ZrO2 particles within the coating matrix of the 
FsHA/YSZ coatings. Post-coating treatment led to much denser and finer 
lamellar morphology with more cracks. It was observed that plasma sprayed 
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FsHA coatings on both alloys produced rougher surfaces (4.316 and 4.215 µm) 
than heat treated coatings (3.881 and 3.916 µm). Plasma sprayed FsHA/20 wt.% 
YSZ coatings on both Ti alloys recorded the highest hardness values (558.5 and 
536.9 Hv) compared to their undoped coatings (459 and 467.8 Hv). Further 
improvement in hardness strength for heat treated coated Ti alloys gave the 
maximum hardness values (631 and 651.6 Hv), respectively for doped coatings 
of FsHA/20 wt.% YSZ on both substrates. Similarly, YSZ doping of FsHA 
improved the adhesion strengths, wettability and coefficient of friction (CoF) of 
doped coatings. Additionally, the corrosion resistance of both alloys was 
significantly improved up to 80% (9.48 and 9.97 mmpy) with the deposition of 
FsHA/YSZ bioceramic coatings compared to their uncoated substrates (169.37 
and 128.0 mmpy). Bioactivity evaluation of the plasma sprayed and post coating 
heat treatment indicated all the surfaces of the coatings were covered with well 
grown apatite layers after 21 days immersion in SBF solution. Besides, the in 
vitro cytotoxicity test of the coating demonstrated good cell viability (more than 
95%) which indicated the FsHA/YSZ coated Ti alloys were proven to be 
biocompatible. Therefore, it can be concluded that the coating materials 
produced from this research work are suitable for biomedical applications.   
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YANG DISTABILKAN DENGAN YTTRIA YANG DISEMBUR PLASMA KE 

ATAS ALOI TITANIUM UNTUK IMPLAN PERUBATAN 

Oleh 

ANENE FRANKLIN AMAECHI 

Oktober 2022 

Pengerusi 
Fakulti 

: Profesor Madya Ts. Che Nor Aiza Jaafar, PhD 
: Kejuruteraan 

Salutan hidroksiapatit (HA) pada implan logam telah digunakan secara meluas 
dalam aplikasi ortopedik untuk memperbaiki interaksi implant-tisu, meningkatkan 
bioserasi dan kefungsiannya tanpa mengubah sifat substrat implan. Walau 
bagaimanapun, sekarang ini, HA sintetik banyak digunakan secara meluas 
sebagai bahan salutan implan yang membawa kepada kos implan yang tinggi. 
Jadi, penyelidikan yang dijalankan ini telah menerokai potensi biogenik HA 
semulajadi yang murah dan halal yang diperoleh daripada sisik ikan (FsHA) dan 
juga FsHA yang didopkan dengan bioseramik yttria stabilized zirconia (YSZ) 
sebagai bahan salutan alternatif pada Ti-6Al-4V dan Ti-13Nb -13Zr aloi titanium. 
Dalam penyelidikan ini, kesan rawatan haba pada suhu 750 oC ke atas bahan 
salutan FsHA dan FsHA/YSZ yang disembur plasma telah dikaji. Teknik 
semburan kering telah digunakan untuk menghasilkan serbuk FsHA yang halus 
manakala teknik semburan plasma pula digunakan dalam proses salutan pada 
permukaan substrat aloi Ti. Serbuk FsHA dan FsHA/YSZ yang digunakan 
sebagai bahan suapan untuk salutan semburan plasma telah diperiksa dengan 
menggunakan teknik pembelauan sinar-x (XRD), spektroskopi Fourier 
inframerah (FTIR) dan mikroskop elektron imbasan / tenaga pembelauanan 
sinar-x (SEM/EDX). Sementara itu, ujian fizikmekanikal dan bioaktiviti telah 
dijalankan ke atas substrat bersalut untuk mengkaji sifat mekaniknya, rintangan 
kakisan, kebolehbasahan, bioaktiviti in vitro dalam cecair badan yang 
disimulasikan (SBF) dan sitotoksisiti in vitro. Keputusan dari penyelidikan yang 
dijalankan ini menunjukkan bahawa kehabluran serbuk FsHA/YSZ adalah 
melebihi 96%, kehabluran paling sedikit bagi salutan semburan plasma ialah 
65.7% manakala kehabluran salutan FsHA yang dirawat haba adalah sekitar 
85%. Daripada analisis SEM, strukturmikro salutan semburan plasma 
mendedahkan lamelar halus dengan partikel FsHA yang separa cair dan tidak 
cair serta retakan mikro halus bersama-sama dengan partikel ZrO2 yang 



© C
OPYRIG

HT U
PM

iv 
 

tersebar secara sekata di dalam matriks salutan FsHA/YSZ. Rawatan salutan 
lanjut membawa kepada morfologi lamelar yang lebih padat dan halus dengan 
lebih banyak rekahan. Ianya dapat dilihat iaitu salutan FsHA yang disembur 
plasma pada kedua-dua permukaan aloi menghasilkan permukaan yang lebih 
kasar (4.316 and 4.215 µm) daripada salutan yang dirawat haba (3.881 and 
3.916 µm). Salutan plasma FsHA/20 berat.% YSZ yang menyalut kedua-dua aloi 
Ti mencatatkan nilai kekerasan tertinggi (558.5 dan 536.9 Hv) berbanding 
salutan tidak terdop (459 dan 467.8 Hv). Peningkatan kekuatan kekerasan 
selanjutnya untuk aloi Ti bersalut dirawat haba berlaku dengan nilai kekerasan 
maksimum (631 dan 651.6 Hv), masing-masing untuk salutan terdop FsHA/20 
berat.% YSZ pada kedua-dua bahan substrat. Begitu juga, FsHA yang didop 
YSZ telah meningkatkan kekuatan lekatan, kebolehbasahan dan pekali geseran 
(CoF) salutan terdop. Tambahan pula, rintangan kakisan kedua-dua aloi telah 
meningkat dengan ketara sehingga 80% (9.48 and 9.97 mmpy) dengan 
pemendapan salutan bioseramik FsHA/YSZ berbanding substrat yang tidak 
bersalut (169.37 and 128.0 mmpy). Penilaian bioaktiviti ke atas penyembur 
plasma FsHA/YSZ yang disembur dan rawatan haba selepas salutan 
menunjukkan semua permukaan salutan telah ditutupi dengan lapisan apatit 
yang tumbuh dengan baik selepas 21 hari rendaman di dalam larutan SBF. Di 
samping itu, ujian sitotoksisiti in vitro bahan salutan menunjukkan 
perkembangan sel yang baik (lebih daripada 95%) yang menunjukkan bahawa 
aloi Ti bersalut FsHA/YSZ ini terbukti mempunyai sifat bio serasi. Maka, ianya 
dapat disimpulkan bahawa bahan salutan yang dihasilkan daripada kerja 
penyelidikan ini adalah sesuai untuk kegunaan bioperubatan. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background of the Research   
 

The major factors driving the increased demand of orthopedic medical devices 
are the increasing rate of musculoskeletal diseases and osteoporosis, traumatic 
and sports injuries and increasing geriatric population. Reports have it that the 
global market size of orthopedic devices in 2019 was USD 53.44 billion and by 
2027 it is projected to increase to USD 68.51 billion (Fortune business insights, 
2020) while published report by United Health Foundation 2019 (UHF), stated 
that more than 300,000 adults aged 65 and above are estimated to be 
hospitalized each year for hip fractures. Similarly, the American academy of 
orthopedic surgeons reported that about 6.8 million patients with orthopedic 
injuries seek medical attention each year in the USA. Meanwhile the National 
Institute of Health (NIH) reported that more than 53 million people in the United 
States are estimated to have osteoporosis and are susceptible to higher risk of 
this disease due to the low bone to mass density (Medgadget, 2020). 
 

One of the very important properties of metal alloys in use in orthopedic 
applications is the Young’s modulus. Implants with higher modulus than the 
human bone results in inadequate stress transfer to bone which causes implant 
loosening and failure after some years (Geetha et al., 2005). This is one of the 
demerits of α + β Ti alloys like the Ti-6Al-4V alloy with high modulus of 110 GPa 
far more than the bone modulus of 18-30 GPa and contains Al that has been 
associated with long-term alzheimer disease while V has potential toxicity and 
adverse reactions in the body (Zaffe et al., 2004; Rao et al., 1996). This has led 
to the recent adoption of low modulus (40-60 GPa) β-Ti alloys with alloying 
elements such as Nb, Zr, Mo, Ta and Fe instead of Al and V elements (Hao et 
al., 2006; Kuroda et al., 1998).  
 

Biomaterials possess good biological properties that are exploited in drug 
delivery, tissue engineering, cardiovascular devices, orthopedic and dental 
applications (Park and Bronzino, 2003). These materials are grouped into four 
major categories such as ceramics, polymers, metals and its alloys and natural 
materials (Sheikholeslam et al., 2017; Jaganathan et al., 2014; Langer et al., 
2003). The human body which is made up of several parts degenerates as a 
result of many factors such as aging, diseases and accidents, hence, appropriate 
treatment is required. Biomaterials, like replacement implants for the hips, knees, 
shoulders, elbows and dental structures, can be used to replace the damaged 
body components (Aherwar et al., 2016). Metallic alloys such as Co-Cr alloys, 
316L stainless steel and Ti-based alloys are the major biomaterials used in 
fabrication of these implants (Aherwar et al., 2016; El-Zayat et al., 2013; Uhthoff 
et al., 1981). 
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Commercially pure (CP)-Ti and Ti-6Al-4V alloy are the mostly used titanium-
based alloys among the metallic alloys in orthopedic implants production due to 
their good biocompatibility and mechanical properties (Singh and Dahotre, 
2007). Nevertheless, failures of these implants have been reported after long-
term due to many factors like fatigue, wear, corrosion and higher modulus 
compared to the human bone (Geetha et al., 2009). Hence, development of 
enhanced biomaterials with improved toughness, resistance to wear and 
corrosion that can serve long-term in vivo is imperative. Vanadium contained in 
Ti-6Al-4V alloy has been reported to be toxic when released in the body which 
led to Ti-6Al-7Nb alloy gaining prominence in biomaterials application as Nb 
does not cause inflammation and allergic reactions when released in the body 
and stabilizes the β-phase like vanadium (De Assis et al., 2006; Venkatarman 
and Sudha, 2005; Khan et al., 1999). In addition, Ti-6Al-7Nb alloy has been 
noted to have higher biocompatibility and corrosion resistance in physiological 
solutions than Ti-6Al-4V alloy (Kobayashi et al., 1998). In contrast, Ti-6Al-4V 
alloy have higher resistance to wear than Ti-6Al-7Nb alloy with double phase 
microstructure (Fellah et al., 2014).  
 

Researchers have posited that the best way to improve the life span of implants 
is by coating their surfaces with a bioceramic that promotes the adhesion of the 
inorganic component of bone hydroxyapatite (HA) with formula 
[Ca10(PO4)6(OH)2] (Renganathan et al., 2018). Bone consists of inorganic and 
organic components which offer strength, toughness and flexibility properties. 
The organic component comprises the glycoproteins, fibrillin, proteoglycans and 
collagen while HA is the inorganic component (Ghosh et al., 2018). For decades, 
HA has been used as a bioactive bone substitute material mainly as ceramics, 
cements, coatings and biocomposites in biomedical applications (Rey et al., 
2009; Eichert et al., 2008; Xue et al., 2006). HA mainly used as dental prosthetics 
and bone grafting material is a mineral form of calcium apatite which can 
naturally be fabricated from bovine bone, coral, eggshells and fish bone. Other 
bioactive materials used in implant coating include carbonated hydroxyapatite 
(CHA), oxyhydroxyapatite (OHA), alkaline phosphate (ALP), fluoridated 
hydroxyapatite (FHA), tricalcium phosphate (TCP), oxyapatite (OA) and calcium 
phosphate (CaP) (Surmenev et al., 2014).  
 

Materials for coating of orthopedic implants must exhibit high cohesive strength, 
minimal porosity, high adhesion strength, high crystallinity and phase stability 
(Epple and Surmenev, 2013; Surmenev, 2012). HA coating on Ti alloy implants 
is one of the most developed and efficient surface treatments that optimize the 
good mechanical properties of Ti with the bioactivity of HA (Deram, 2003). 
Implants are expected to remain intact after implantation for 15-20 years. 
Unfortunately, corrosive body fluids such as blood and other body fluid 
constituents like proteins, sodium, plasma, water, chlorine, and amino acids can 
adversely affect the biomechanical integrity of implants. Hence, an implant 
should possess high corrosion resistance to limit the dissolution of its surface 
oxide films that may introduce toxic ions in the body and induce the implants 
failure (Cachinho and Correia, 2008). The excellent biocompatibility and 
osteoconductivity of HA with human body fluid favours early bonding between 
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bone tissues and the surface of the implant (Suchanek and Yoshimura, 1998; 
De Bruijn et al., 1995).

Despite the excellent properties of HA, their poor mechanical properties like low 
tensile strength, brittleness, fretting fatigue, toughness, poor impact resistance 
and adhesive strength have limited their use in some load bearing applications
(Grootde et al., 1998). Significant improvement on the mechanical properties of 
HA has been reported with their reinforcement with metal powders or bioinert 
ceramics. Zirconia has been widely used as a biomaterial in implant and 
prostheses productions due to their biocompatibility in addition to good strength
(Kohorst et al., 2012; Piconi and Maccauro, 1999). Similar to Zirconia, 
reinforcement with yttria stabilized zirconia (YSZ) is often used due to their 
biocompatibility, good toughening properties during crack-particle reactions and 
high strength (Chou et al., 2002). Enhanced mechanical properties have been 
reported with plasma coated HA/YSZ and HA/ZrO2 than the HA (Chou and 
Chang, 2002; Fu et al., 2002) while Singh et al., (2013) reported improved
resistance to corrosion with plasma coated HA + SiO2 composite on 304 AlSi 
alloy. 

Some researchers reported the influence of HA coatings modified with other 
elements or compounds such as strontium (Sr), silicon (Si), Zirconia (ZrO2), yttria 
stabilized zirconia (YSZ) and silica (SiO2) on their biological properties (Nguyen 
et al., 2019; Ong et al., 2015; Singh et al., 2013; Balamurugan et al., 2008).
Nguyen et al., (2019) reported that coating with calcium phosphate doped 
strontium improved cell attachment and proliferation on Ti medical devices for 
bone regeneration. Ong et al., (2015) reported good osteoconductivity with HA 
and silicate CaP coatings on porous Ti alloys. Similarly, Balamurugan et al.,
(2008) reported that synthetic HA doped with 3-5 wt.% silicon improved 
osteoblast growth by increasing cell growth density as well as improved
osteoblast activity and differentiation. Addition of 1-10 wt.% strontium to HA was 
reported to favour proliferation of osteoclast and their production inhibition 
whereas carbonate-substituted HA was reported with enhanced osteogenesis 
(Spence et al., 2009; Capuccini et al., 2008). Piconi et al., (2016) reported that 
coating of the metallic ball head of a metal-polyethylene bearings in the hip 
arthroplasty with ceramics such as titanium nitride (TiN), titanium niobium nitride 
(TiNbN), zirconium nitride (ZrN), monoclinic zirconia (ZrO2) and silicon nitride
(SiN) enhanced their wear properties. 

Plasma spray technique is one of the most commercially adopted techniques for 
HA coating owing to its advantages of high uniform rates of deposition, simplicity
and low substrate temperature (Fernandez et al., 2004). Plasma coating involves 
production of an ionized gas (plasma) in which HA powder is injected, partially 
melted and projected to splat on a substrate at a controlled distance from the 
spaying gun (Fernandez et al., 2004). Despite the merits of coating ceramics
such as HA, ZrO2, HA/SiO2 on Ti alloys, some drawbacks have also been 
reported. Firstly, the existence of significant difference in thermal expansion of
ceramics and Ti alloys often induce thermal stresses that can result in formation 
of cracks at the coating interface layers and compromise the adhesion strength 
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of the coatings (Renganathan et al., 2018). Also, the coating strength can be 
adversely affected by the chemical reactions at the interface between the 
ceramic and the alloy substrate (Renganathan et al., 2018).  
 

1.2 Problem Statements 
 

Ti-based alloy implants have been reported to fail in long-term owing to many 
factors like corrosion, fatigue, wear, mismatch of Young’s modulus with bone 
(Geetha et al., 2009). One of the methods to improve the life span of implants is 
to coat their surfaces with a bioceramic that promotes the formation and 
adhesion of hydroxyapatite HA [Ca10(PO4)6(OH)2], the inorganic component of 
bone (Renganathan et al., 2018). However, the expensive synthetic HA is the 
mostly used bioceramic in coating of implants leading to high cost of implants. 
Hence, it’s pertinent to find an economical and natural HA as an alternative 
coating material for implants. 
 

Natural HAs unlike synthetic HA is non-stoichiometric due to the presence of 
trace elements such as Na, Zn, Mg, K, Si, Ba, F and CO3 which makes it similar 
to the chemical composition of human bone (Akram et al., 2014). The presence 
of these trace elements in natural HAs mimic the apatite produced from human 
bone and plays a vital role in the regeneration of bone as well as accelerate the 
process of bone formation (Doostmohammadi et al., 2011). HA extracted from 
fish scales using calcination method have Ca/P ratios in the range of 1.62 to 1.71 
which is close to the stoichiometric Ca/P ratio of 1.67 for synthetic HA and 
contains trace elements such as Mg, Sr, Na, and K (Mohd Pu'ad et al., 2019). 
Natural HA from fish scales offers the best alternative to synthetic HA since it is 
halal and their properties are similar to synthetic HA in addition to being 
inexpensive (Zainol et al., 2012). Also, despite the excellent properties of HA, 
their poor mechanical properties such as poor impact resistance and adhesive 
strength have limited their use in some load bearing applications (Grootde et al., 
1998). Hence, HA was toughened with YSZ which has proven to improve their 
mechanical properties (Chou and Chang, 2002).  
 

Many coating techniques such as sol-gel deposition, pulse laser deposition 
(PLD), chemical vapour deposition (CVD), aerosol deposition, electrophoretic 
deposition (EPD) and plasma spraying techniques have been used in coating 
bioceramics on metallic implants (Ben-Nissan et al., 2015; Duta et al., 2013; 
Hahn et al., 2009; Wang et al., 2009; Choy, 2003). Among all the coating 
techniques, plasma spraying technique is the most commercially adopted 
technique for coating of HA on metallic implants. This is due to its advantages of 
high deposition rates, enhanced corrosion and wear resistance, process 
simplicity and economic viability (Fernandez et al., 2004). The potential of fish 
scale HA (FsHA) as a coating material for Ti alloy implants has not been explored 
by researchers thus this study was carried out to investigate the 
physicochemical, mechanical and bioactivity properties of plasma sprayed 
FsHA/YSZ bioceramic on Ti-6Al-4V and Ti-13Nb-13Zr alloys for medical 
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implants. Above all, this research determined the potentials of FsHA as an 
economical coating material for metallic implants.  
 

1.3 Objectives of the Research 
 

The aim of this research is to develop an inexpensive and eco-friendly 
bioceramic coatings on Ti-6Al-4V and Ti-13Nb-13Zr alloys with fish scale HA 
(FsHA) and FsHA toughened with YSZ using plasma spraying technique for 
biomedical applications. 
The main objectives of the research are as follows: 
 
1. To formulate and evaluate the FsHA and FsHA/YSZ bioceramic coatings on 

Ti-6Al-4V and Ti-13Nb-13Zr alloys produced from plasma spraying 
technique. 

2. To characterize the surface (surface roughness and porosity), hardness 
properties (microhardness and adhesion strength) and morphology of FsHA 
coatings on Ti-6Al-4V and Ti-13Nb-13Zr alloys. 

3. To examine the effects of FsHA coating toughened with YSZ on morphology, 
surface and hardness properties of the Ti-6Al-4V and Ti-13Nb-13Zr alloys. 

4. To investigate the corrosion resistance, wettability, cytotoxicity and 
bioactivity of the FsHA and FsHA/YSZ coatings on the Ti-6Al-4V and Ti-
13Nb-13Zr alloys. 

5. To analyse the post coating heat treatment effects on the physicochemical 
and biomechanical properties and corrosion resistance of the plasma 
sprayed FsHA and FsHA/YSZ coatings on Ti-6Al-4V and Ti-13Nb-13Zr 
alloys. 

 

1.4 Scope and Limitations of the Research 
 

The scope of this research includes the production of FsHA from tilapia fish scale 
using spray drying technique and to produce FsHA powder modified with 10-20 
wt.% YSZ. The characterization of the powders such as particle size distribution 
(PSA), fourier-transform infrared spectroscopy analysis (FTIR), X-ray diffraction 
analysis (XRD), scanning electron microscopy with energy dispersive X-ray 
spectroscopy (SEM-EDX) were performed. After characterization, the FsHA/YSZ 
powders were used as feedstock for plasma spraying on Ti-6Al-4V and Ti-13Nb-
13Zr alloys and subsequently heat treatment was carried out on the plasma 
sprayed coatings. This was followed by the characterization of the coatings using 
FTIR, XRD and SEM-EDX analyses. The determination of their surface 
properties (surface roughness, porosity, and wettability), mechanical properties 
(microhardness and adhesion strength), corrosion resistance and biological 
properties (in vitro bioactivity and cytotoxicity) were also performed. 
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The limitations of this research include: 
 
1. The titanium alloy plates (Ti-6Al-4V and Ti-13Nb-13Zr alloys) used as 

substrates in this research were not produced from this research.  
2. This research was only conducted on sample characterization upto in vitro 

bioactivity and cytotoxicity.  
3. The heat treatment of the coated samples was limited at 750  for one hour 

only due to the reported minimal in vitro dissolution of HA coatings heat-
treated at 800  for 1 hour (Kweh et al., 2002). 

4. This research did not involve in vivo experiments. 
 

1.5 Significance of the Research 
 

Titanium alloys remain the most used alloys in orthopaedic applications due to 
their excellent mechanical properties and good resistance to corrosion. 
However, to enhance their biological properties, implants manufactured from Ti 
alloys are coated with bioinert ceramics. Among the ceramics, HA has remained 
the most preferred as an implant coating material. The major reasons for 
biomedical implants coating with HA are to improve on the tissue-implant 
interactions, enhance their biocompatibility and functionality without altering the 
implant’s substrate properties. Among all the coating techniques, plasma 
spraying technique is the most commercially adopted technique for coating of 
HA on metallic implants due to its advantages of high deposition rates, enhanced 
corrosion and wear resistance, process simplicity and economic viability. The 
use of HA in coating metallic implants can easily compensate for the non-
bioactivity of the metal alloys. Similarly, new bone development is improved with 
coating of metallic implants with HA due to the formation of strong interface 
between the coating and host tissue (Sadat-Shojai et al., 2013; Song et al., 
2008).  
 

Also, HA coating on metallic alloys acts as a corrosion control film against 
aggressive body fluids and the dissolution rate of the metallic ions are 
suppressed by the films, thereby minimizing leaching occurrence (Zhong et al., 
2015). Above all, the lower dissolution rate of HA in body fluid makes it an 
excellent choice as a coating material for metallic implants among other 
ceramics. Despite the indispensable nature of HA and its high demand as an 
implant coating material, synthetic HA has remained the major source of HA for 
this application. Hence, the present study will utilize a low cost and abundant 
natural HA produced from fish scale as a coating material. Fish scales have been 
reported to contain 40-50% of inorganic materials known as HA and have been 
the best alternative source of HA due to low manufacturing cost and safety 
(Zainol et al., 2012). Additionally, FsHA is noted to exhibit similar biological 
properties in comparison to synthetic HA. Also, FsHA is non-stoichiometric due 
to the presence of trace elements such as Mg, Na, Zn, Si etc, which makes it 
similar to the chemical composition of human bone (Akram et al., 2014; Milovac 
et al., 2014). In spite of the cheap processing cost of FsHA compared to the cost 
of synthetic HA, the potentials of FsHA as an implant coating material has not 
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been explored thus far by researchers.  Finally, this research will try to achieve 
in two fonts, firstly improved FsHA coatings on Ti alloys with similar properties to 
that of synthetic HA coatings, thereby reducing the cost of implants. Secondly, 
this research will mitigate the global environmental pollution by the useful 
conversion of biowaste and significantly increase the economy of waste-to-
wealth sector. 
 

1.6 Outlines of the Thesis 
 

This thesis is divided into five major chapters that explicitly covers the whole 
study. Chapter 1 explains the background of the study, biomaterials (types, 
properties and applications), HA (synthetic and biogenic HA, properties and 
applications) and plasma spraying technique. Also, presented in chapter 1 is the 
problem statements, aim and objectives of the research, scope and limitations 
and significance of the research. 
 

Chapter 2 presents in first part, the recent literatures on biomedical applications 
of titanium alloys and a comprehensive review of titanium and its alloys, their 
classifications, surface treatments, mechanical properties, corrosion resistance, 
biocompatibility and porosity. On the second part, the chapter explicitly dealt on 
ceramic coating of Ti alloys, hydroxyapatite (HA), types, merits and demerits of 
HA as a coating material for implants, modification of HA with other bioceramics, 
modification with yttria stabilized zirconia (YSZ), spray drying technique, different 
HA coating techniques and characterization and properties of HA coatings. 
 

Chapter 3 outlined the methodology used in achieving the objectives set for this 
research work which aims to develop an inexpensive and eco-friendly 
bioceramic coatings on Ti-6Al-4V and Ti-13Nb-13Zr alloys with fish scales HA 
(FsHA) and FsHA toughened with YSZ for biomedical applications. The methods 
include production of FsHA from fish scale slurry, addition of 10-20 wt.% YSZ 
and ball milling, characterization of the powders (particle size analysis (PSA), 
FTIR, XRD, SEM-EDX), FsHA/YSZ plasma coating and their heat treatments, 
characterization of the coatings, determination of surface coating properties 
(surface roughness, porosity, and wettability), evaluation of their mechanical 
properties (microhardness and adhesion strength), corrosion resistance and 
their biological properties (in vitro bioactivity and cytotoxicity).  
 

In chapter 4, the results of the experimental work of the research are presented 
and discussed. Firstly, the characterization results such as scanning electron 
microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX), 
particle size distribution, fourier-transform infrared spectroscopy (FTIR), X-ray 
diffraction of the yttria stabilised zirconia (YSZ), fish scale hydroxyapatite (FsHA) 
and FsHA modified with (10-20 wt.%) YSZ powders as well as the titanium alloy 
substrates (Ti-6Al-4V and Ti-13Nb-13Zr) used are presented and discussed. 
Then followed by the results of the surface, hardness and bio-corrosion of the 
plasma sprayed FsHA and FsHA/YSZ coatings. The influence of different wt.% 
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YSZ addition on FsHA and the heat treatment effects on surface, hardness and 
bio-corrosion of FsHA coatings were explicitly explained. Thirdly, the wettability 
and bioactivity in simulated body fluid (SBF) of the plasma sprayed and heat-
treated FsHA/YSZ coatings were equally discussed. Finally, the biocompatibility 
and cell culture results of the plasma coatings were diligently discussed. 
 

Lastly, chapter 5 summarizes the major findings of the research with respect to 
the objectives of the research. Also, recommendations and suggestions on 
future studies on the development of FsHA coating using different coating 
techniques and FsHA modified with different bioinert ceramics are presented. 
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