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The shear strength of the rupture surface is often assumed to be the cause of a 
rock slope's stability. Natural slopes often feature discontinuous rupture surfaces 
composed of fractures and joints separated by massive rock blocks. In such 
cases, the strength of the rupture surface is composed of three components: 
friction, cohesion, and tensile strength. The structure of the rock slope, on the 
other hand, has a significant influence on rock slope stability. While the influence 
of the shear strength components, cohesion, and friction on slope stability is well 
established, little study has been conducted on the role of joint spacing in rock 
slope stability, which affects the shear and tension strengths of the rock layers 
in the rock slope. 
 

This study aims to determine the effect of joint spacing on rock slope when it fails 
in a toppling mode. The rock slope was constructed with a joint spacing of 10 
mm based on a laboratory case study. In that case study, the joint set dips deeply 
into the slope surface, which results in a flexural toppling failure. In this research, 
rock slope with toppling failure is described as three various sizes of thin slabs 
of rock moving out of the slope and finally creating a rupture surface. These three 
joint spacings are smaller, actual, and bigger than the one joint spacing in the 
case study.  Slip between the thin rock layers and tensile rupture across the 
slabs are both involved in the toppling process. Since there is only one joint set 
in that case study, only flexural toppling is addressed; as a result, another joint 
set is added to the rock slope as a secondary joint set to make the model more 
realistic. On the other hand, the secondary joint set dips in the opposite direction 
of the main joint set in order to investigate another kind of toppling. 
 

A mixture of cement, sand, and water was employed to create synthetic rock 
slope specimens. Taguchi and Response Surface Methodology (RSM) 
combined approaches were used to build the appropriate rock sample to run the 
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other tests (such as the direct shear test) and verify the components to get the 
best results while decreasing the number of tests and the expense. The resultant 
combination was then used to create rock layers of varying thicknesses for 
geotechnical centrifuge testing and numerical modeling based on a distinct 
element framework. 
 

This study demonstrates that combining Taguchi and RSM techniques is an 
appropriate strategy for optimization. The experimental findings are within -0.69-
0.90 percent of the model's expected values. In the numerical modeling 
approach, the impact of joint spacing is larger in the middle than in the crest. In 
the first model representing flexural toppling, failure occurred between 37 and 48 
g, with a maximum displacement of two millimeters at the crest and 1.2 
millimeters in the middle of the slope. While model B with block toppling failed in 
the range of 11 to 17 g and with displacements of 0.04 to 0.07 mm at the crest 
and 0.04 to 0.05 mm in the middle, its gravity loading was much lower. This study 
shows that the discontinuities inside the slabs of rock slopes are critical in 
developing the rupture surface. The spacing of rock slabs has a minor influence 
on toppling slopes, while adding a secondary joint set has a significant role in 
controlling the slope's stability. In addition, the created rupture surface influences 
the deformations in the crest and middle of the slope surface. The observed 
deformation patterns, the propagation of the rupture surface, and the initial 
condition of collapse were all in good agreement when the results of distinctive 
element modeling were compared to the results of laboratory scales. The 
findings suggest that the structure inside the rock slope significantly impacts the 
stability of toppling slopes. 
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Kekuatan ricih permukaan pecah sering diandaikan sebagai punca kestabilan 
cerun batuan. Cerun semulajadi selalunya mempunyai permukaan pecah 
terputus yang terdiri daripada patah dan sendi yang dipisahkan oleh bongkah 
batu besar. Dalam kes sedemikian, kekuatan permukaan pecah terdiri daripada 
tiga komponen: geseran, kohesi, dan kekuatan tegangan. Struktur cerun batuan 
pula mempunyai pengaruh yang signifikan terhadap kestabilan cerun batuan. 
Walaupun pengaruh komponen kekuatan ricih, kohesi dan geseran ke atas 
kestabilan cerun sudah mantap, sedikit kajian telah dijalankan tentang peranan 
jarak sendi dalam kestabilan cerun batuan, yang mempengaruhi kekuatan ricih 
dan tegangan lapisan batuan dalam cerun batuan. 
 

Kajian ini bertujuan untuk menentukan kesan jarak sendi pada cerun batuan 
apabila ia gagal dalam mod toppling. Cerun batu itu dibina dengan jarak 
sambungan 10 mm berdasarkan kajian kes makmal. Dalam kajian kes itu, set 
sambungan merendam jauh ke dalam permukaan cerun, yang mengakibatkan 
kegagalan tumbang lentur. Dalam penyelidikan ini, cerun batuan dengan 
kegagalan tumbang digambarkan sebagai tiga pelbagai saiz papak batu nipis 
yang bergerak keluar dari cerun dan akhirnya mencipta permukaan pecah. Tiga 
jarak sambungan ini lebih kecil, sebenar dan lebih besar daripada satu jarak 
sambungan dalam kajian kes. Gelinciran antara lapisan batuan nipis dan pecah 
tegangan merentasi papak kedua-duanya terlibat dalam proses tumbang. Oleh 
kerana hanya terdapat satu set sendi dalam kajian kes itu, hanya toppling 
lenturan ditangani; akibatnya, satu lagi set sambungan ditambah pada cerun 
batu sebagai set sambungan sekunder untuk menjadikan model lebih realistik. 
Sebaliknya, set sambungan sekunder menurun ke arah yang bertentangan 
dengan set sendi utama untuk menyiasat satu lagi jenis topping. 
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Campuran simen, pasir, dan air digunakan untuk menghasilkan spesimen cerun 
batuan sintetik. Pendekatan gabungan Taguchi dan Response Surface 
Methodology (RSM) digunakan untuk membina sampel batu yang sesuai untuk 
menjalankan ujian lain (seperti ujian ricih langsung) dan mengesahkan 
komponen untuk mendapatkan hasil terbaik sambil mengurangkan bilangan 
ujian dan perbelanjaan. Gabungan yang terhasil kemudiannya digunakan untuk 
mencipta lapisan batuan dengan ketebalan yang berbeza-beza untuk ujian 
emparan geoteknikal dan pemodelan berangka berdasarkan rangka kerja 
elemen yang berbeza. 
 

Kajian ini menunjukkan bahawa menggabungkan teknik Taguchi dan RSM 
adalah strategi yang sesuai untuk pengoptimuman. Penemuan eksperimen 
adalah dalam lingkungan -0.69-0.90 peratus daripada nilai jangkaan model. 
Dalam pendekatan pemodelan berangka, impak jarak sambungan lebih besar di 
tengah berbanding di puncak. Dalam model pertama yang mewakili tumbang 
lentur, kegagalan berlaku antara 37 dan 48 g, dengan anjakan maksimum dua 
milimeter pada puncak dan 1.2 milimeter di tengah cerun. Walaupun model B 
dengan blok tumbang gagal dalam julat 11 hingga 17 g dan dengan anjakan 0.04 
hingga 0.07 mm pada puncak dan 0.04 hingga 0.05 mm di tengah, beban 
gravitinya jauh lebih rendah. Kajian ini menunjukkan bahawa ketakselanjaran di 
dalam papak cerun batuan adalah kritikal dalam membangunkan permukaan 
pecah. Jarak papak batuan mempunyai pengaruh kecil pada cerun yang 
meruntuhkan manakala penambahan set sambungan sekunder mempunyai 
peranan penting dalam mengawal kestabilan cerun. Di samping itu, permukaan 
pecah yang dicipta mempengaruhi ubah bentuk pada puncak dan tengah 
permukaan cerun. Corak ubah bentuk yang diperhatikan, perambatan 
permukaan pecah, dan keadaan awal keruntuhan semuanya dalam persetujuan 
yang baik apabila keputusan pemodelan unsur tersendiri dibandingkan dengan 
keputusan skala makmal. Penemuan menunjukkan bahawa struktur di dalam 
cerun batu memberi kesan ketara kepada kestabilan cerun yang runtuh. 
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1CHAPTER 1 
 

 INTRODUCTION 
 

1.1 Background 
 

Rock slopes are extraordinarily heterogeneous and correlated with several 
unknown variables such as the stress condition, the structures within the rock 
mass, and the strength parameters. Those three variables influence the nature 
and failure process of the rock slopes. Depending on the loading process and 
stress path in the field or the laboratory, the rock may fail in shear or tension.  
There are two significant rock slopes: structurally controlled slopes, like planer, 
wedge, circular, and toppling failures, and non-structurally controlled slopes. 
Usually, slopes that are structurally controlled collapse due to shear sliding over 
one or more persistent discontinuities. In comparison, failure is a complex 
process in the non-structurally regulated slopes and requires failure in both 
discontinuity and intact material  (Li et al., 2014, 2015; Robertson, 1970; 
Terzaghi, 1962).  
 

The notion that a single discontinuity controls slope failure is a simple approach 
to researching rock slopes that is only relevant to small-scale slopes, while the 
continuity is restricted for large slopes unless there is a fault or other large rock 
formation before failure. Many research types have addressed this issue and 
concluded that rock joints in large-scale slopes are seldom continuous and that 
intact rock persists between the joint segments (Einstein et al., 1983; Nichol et 
al., 2002; Park, 2005; Terzaghi, 1962). These researchers proposed that the 
fracture surface in the rock slopes moved through the intact rock to create a 
kinematically permissible break surface. This mechanism can occur 
progressively, and surface rupture extends from the current rock joints through 
the intact rock. Some stepping is necessary to develop a kinematically 
permissible rupture surface. The concentrations of tensile stress at the rock 
bridges and tips of the joints are essential for this stepping (Ladanyi & 
Archambault, 1980; Li et al., 2009; Shen et al., 1995). According to some studies, 
these rock bridges fail under tension, and tensile strength plays a key role in the 
failure process of rock slopes in regions with low confinement stress (Einstein et 
al., 1983; Lajtai, 1969a; Shen et al., 1995).  
 

Lajtai (1969a) found fascinating direct shear results for bridges with rock-like 
content and claimed that the bridges collapsed via a variety of processes 
depending on the normal stress level. Additionally, he utilized a nonlinear failure 
envelope to illustrate the impact of normal load on the rock's shear strength.  The 
friction and cohesion did not mobilize simultaneously under direct shear stress; 
instead, the cohesion mobilized first, followed by the friction, allowing gradual 
failure to occur inside the rock mass(Lajtai, 1969a). Rock bridges must withstand 
all stresses due to the direct shear strength of a single plane of weakness in 
which the joints are open; nevertheless, in closed joints, depending on the 



© C
OPYRIG

HT U
PM

2 
 

degree of mobilization, friction may or may not provide an additional source of 
strength. The process of non-simultaneous brittle-strength parameter 
mobilization was also observed in an excavation of a circular test tunnel in a 
massive brittle rock, which resulted in failure around the tunnel, a brittle-failure 
process characterized by a loss of cohesion as friction was mobilized (Martin, 
1997). Hajiabdolmajid and Kaiser (2002) utilized a "brittleness index" to evaluate 
the Frank Slide. They applied the idea of cohesion weakening and friction 
strengthening at various plastic strain levels in a continuum modeling framework. 
According to these experts, frictional strength begins at zero and is mobilized as 
plastic strain rises, while cohesiveness is gradually dissolved as damage to the 
rock mass increases. They developed a model for the direct shear test and 
compared their findings to those of Lajtai. These findings demonstrated clearly 
that the jointed rock mass has a non-linear failure envelope. Additionally, the 
Hoek-Brown failure criteria indicated a non-linear failure envelope for the rock 
mass, in contrast to the Mohr-Coulomb criterion's linear failure envelope (Hoek, 
Evert and Brown, 1980). Although rock bridges across discontinuities often fail 
in tension and shear failure occurs as a secondary failure, the impact of tensile 
strength on rock slopes is seldom considered, owing to a lack of sufficient failure 
criteria and tools for accounting for the tensile strength effect (Einstein et al., 
1983; Shen et al., 1995; Sjöberg, 1999). The inclination of the bridge between 
preexisting fractures results in a variety of rock failures. Failures may originate 
at the tips of pre-existing fractures and propagate toward the center of the bridge, 
or they might originate in the center of the bridge and propagate toward the tips. 
This thesis presents new modeling techniques by varying the distance between 
the bridges in order to account for the impact of tensile strength on rock slope 
instability. It also investigates whether this modeling method accurately captures 
the behavior and instability of rock slopes.  
 

1.2 Statement of the Problem 
 

Rock masses are heterogeneous and consist of intact blocks as well as structural 
planes such as faults, bedding planes, and joints, which are seldom continuous. 
Terzaghi (1962) and  Einstein et al. (1983) indicated that discontinuities' 
persistence is limited in nature, and there was a need for a complex interaction 
between pre-existing joints and the brittle propagation of fractures across the 
intact rock to have a rupture surface.  
 

In rock slope, the rupture surface happens when a stable rock slope deteriorates 
into a minimally stable state and ultimately fails as a result of external factors; 
including geometrical changes (unloading toe, loading crest), shock, and/or 
internal factors; such as promoting progressive failure, progressive rock mass 
degradation due to cracking, decrease mobilized strength within the rock and/or 
increase driving stresses (Hajiabdolmajid & Kaiser, 2002). Time-dependent 
processes, including brittle strength deterioration and progressive failure, are 
more likely to have been major contributors to the collapse of the slope 
(Eberhardt et al., 2004). Friction, cohesion, and tensile strength are the strength 
components of rock masses. The time-dependent deterioration of the strength 
barely influences the friction angle, whereas its cohesion and tension are 
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vulnerable. Slippage takes place along in- and out-dipping joints, and for any 
given natural slope exposed to flexural or block toppling, variables affecting the 
tensile strength of the intact rock, such as weathering and the persistence of 
cross-cutting joints, may have a major effect on the slope's performance 
(Alzo’ubi et al., 2010). Tensile strength is less than cohesiveness in natural rock 
masses. Tensile strength is lost before cohesion if cohesion and tension both 
deteriorate at the same rate  (Alzo’ubi, 2009). 
 

Lajtai (1969b) studied the system of direct shear tests in-depth and their 
advantages and disadvantages, explaining its compliance with the natural 
loading conditions. He contended that the major principal stress on the bridges 
in non-continuous joints is tensile stress, even though the whole stresses are 
compression, and that the development of tension cracks inside rock bridges 
arises from such tensile stresses (Figure 1.1). In flexural toppling, after a joint 
slip is activated at more joints, the rock columns at the toe start to be 
compressed, which establishes a space for small rotation of the columns. These 
block rotations will result in a tensile bending failure at the base of the toppling 
columns. 
 

   
Figure 1.1: Definition of rock bridge and crack in a rock column poses the 
risk of flexural toppling 
 

A rock mass can be represented as blocks of random size bounded to each other 
with cohesion, stress, and friction. When the ties between the blocks are 
breached, failure occurs.  Once stresses exceed the strength of the rock, the 
discrete element method allows failure to be triggered and spread throughout 
the rock mass. In nature, rocks consist of complicated grain forms that interlock 
throughout the rock mass. While the rock block is subjected to stresses, localized 
tensile stress in the direction of the least principal stress may result in failure, 
especially in the case of low-confinement stress.  
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Cundall and Strack (1979) introduced the discrete numerical modeling approach. 
The discrete element approach is improved with a new degree of freedom by a 
Voronoi tessellation generator that generates random blocks within the rock 
mass. This technique can generate blocks of random size to replicate rock mass 
heterogeneity and induce tensile stress (Alzo’ubi et al., 2010; Alzo’ubi, 2009). 
The strength is related to both the rock bridge and the joint section in non-
persistent jointed rock masses. In the conventional architecture method, limit 
equilibrium, the strength is assumed to be controlled by the joints, and the 
bridge's strength is ignored. Consequently, the designs dependent on this 
method are conservative since a small bridge will substantially contribute to the 
strength of the rock mass. 
 

Furthermore, the tensile strength is critical for the flexural and block toppling 
mechanism and for controlling the toppling failure load. However, recent studies 
indicate that the deformation pattern seems to be indifferent to the tensile 
strength (Alzo’ubi et al., 2010; Lian et al., 2018). On the other hand, increasing 
or decreasing the rock layers' thicknesses can affect the rock blocks' strength, 
resulting in changing the failure pattern. The rock mass's internal deformation, 
brittleness, and ductility result in a complex failure process. Einstein et al. (1983) 
and Shen et al. (1995) also concluded that rock bridges collapse under tension, 
and the second phenomenon is a shear failure. 
 

The tensile strength of the intact rock in weathered rock is greatly influenced by 
the degree of weathering and cross-cutting joint persistence (Alzo’ubi et al., 
2010; Aydin & Basu, 2006). Cut slopes in rock masses begin to erode 
immediately after excavation owing to stress release and weathering, according 
to a case study on a rock slope in a humid tropical environment in Sabah, 
Malaysia. In Malaysia, toppling failures are uncommon. However, rock slope 
failures such as slide, wedge, and toppling have been documented in the 
Cameron Highlands. Given the significance of rock layer strength and its 
interaction with weathering through time, the impact of its significance should not 
be overlooked. The degradation is a time-dependent process that is affected by 
the local climate, rock mass, history, and environment. The quantity of 
degradation per time unit ('the weathering intensity rate') is not constant 
throughout time but is more prominent while the mass is less weathered and 
decreases as weathering progress (Tating et al., 2013). The findings of their 
investigation indicate that the optimal relationship between intact rock strength 
and exposure duration is through a logarithmic function. This conclusion 
demonstrates the significance of the effects of tensile strength deterioration on 
the rocky slopes, and in order to determine the stability of the rock slopes, this 
impact should not be ignored, especially in tropical areas.  
 

Rock slope failure mechanisms should be investigated, considering the influence 
of tensile fracture on the kinematics of rock failure and the strength obtained from 
the bridges and joints. These processes are investigated by analyzing the effect 
of introducing an additional degree of freedom throughout rock mass to create 
initiation, spread, and coalescence of fracture initiation among preexisting 
discontinuous joints or along the discontinuous basal slip surface. Field 
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experiments and computational models have demonstrated that fracture 
initiation and distribution in brittle rocks are critical factors in progressive failures 
and typically contribute to catastrophic failure. For this cause, the simulation of 
fracture propagation and rock mass collapse is significant in modeling the failure 
phase. 
 

In rock slope modeling, in addition to the factors described in rock tensile 
strength, the mechanical characteristics of discontinuities, such as shear 
strength, its geometrical aspects, including the angle of joints, joint spacing, and 
persistence of joints, have a substantial impact on the kind of failure and its 
stability. Changing the thickness of rock layers may lead the model to become 
totally continuous even if the density of the joint formed by its spacing is 
increased or decreased; this behavior, half of which is controlled by a change in 
the rock's shear and tensile strength, is essential. In addition, the continuity of a 
joint set, measured in terms of a percentage, is also of significance. It has been 
proven that these joint sets do not form a totally continuous sequence in nature. 
Naturally, this discontinuity level can remain the same even when the distance 
between the joints changes. However, it is critical to determine whether or not 
the amount of shear and tensile strength, which is responsible for the change in 
the propagation of the fracture surface, will also remain the same. 
 

1.3 Scope of the Thesis 
 

This thesis focused on exploring the processes and mechanisms of rock slope 
failure by developing a centrifuge model with the assistance of a distinct element 
approach capable of modeling the damage process within rock masses and 
capturing the effect of tensile and shear strength degradation on rock slope 
instability. 
 

1.4 Objectives of the Study  
 

The main aim of this research is to explore the behavior of a rock slope stability 
built with synthetic rock layers dip-in and -out of the slope under gravity loading 
with different joint spacing by using geotechnical centrifuge and numerical 
modeling. To achieve this aim, the following objectives were focused: 
 

a) To obtain the effect of synthetic rock specimens’ composition on uniaxial 
compressive strength 

b) To evaluate the state of flexural and block toppling failures under 
gravitational loading with different joint spacing 

c) To determine the extent of joint spacing variations impact on the flexural 
toppling and block toppling failures 
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1.5 Limitations of the Study 
 

This research focused only on the stability of rock slopes that had a tendency for 
two forms of toppling failure: flexural and block toppling. The findings of these 
two forms were acquired from a limited number of tests with the aim of having 
the joint spacing effect while being subjected to centrifugal force. It was 
necessary to conduct a large number of experiments using a variety of different 
types of geometry on the layered rock. The most significant restrictions might be 
broken down into three categories dealing with different aspects of the research: 
sample preparation, physical modeling, and numerical modeling. 
 

Regarding the preparation of synthetic rock samples and joints, it should be 
noted that synthetic rock has been made to resemble natural rock as closely as 
possible. In contrast, in nature, real rock undergoes different changes and 
transformations, including weathering, which can be different, particularly in a 
tropical region such as Malaysia, where the amount of rainfall and the 
percentage of humidity are very high and have a significant impact on the 
resistance. In addition, the surface of the joints in this model has been smoothed 
and connected with materials such as grease to increase its shear resistance. 
However, the nature of the surface sections prevented them from being perfectly 
smooth, and the sole purpose of these cross sections was to control the joints in 
modeling. Adding additional materials, such as glue or even concrete, would 
significantly increase the shear strength of the joints, but it would also lengthen 
the modeling process and make it uncontrollable. 
 

One of the most important aspects of physical modeling was the model's size 
and weight. Increasing the model's weight would make it unstable when the 
model was spinning, resulting in incorrect results. Using professional devices 
such as a stroboscope and a camera would help collect images showing the 
model's changes during each phase of gravity loading, and its absence would 
result in just estimating the centrifuge loading. 
 

In numerical modeling, when the model was impacted by loading and failed, the 
amount of displacement in various parts of the sample might be the same as its 
physical type, but the propagation of failure in the actual case may vary from the 
propagation of failure in numerical modeling. Creating an internal flaw in the 
intact rock might mitigate this disparity to some degree, but it would significantly 
increase the modeling time. 
 

1.6 Organization of Thesis 
 

The thesis is organized into five chapters. This chapter (Chapter 1) presents the 
thesis's problem, the research objectives, and the organization of the thesis 
adapted to support the thesis hypothesis. 
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Chapter 2 discusses the current state of knowledge in rock slope engineering. 
The discussion covers different rock types of toppling failures in experimental 
studies and the methods of analysis. 
 

The proposed method of rock slope analysis is introduced in Chapter 3. Synthetic 
specimens of intact rocks and rock slabs are used to identify the specimen’s 
properties and simulate the rock slope stability. 
 

In Chapter 4, several kinds of geotechnical centrifuge-numerical methods on 
rock slopes are simulated to evaluate rock slope stability.   The centrifuge-
numerical tests will examine the discrete element model to capture the rupture 
surface of the rock slope. In this chapter, the deformation pattern is observed in 
the laboratory as compared to DEM. 
 

Finally, Chapter 5 provides the current research's findings and suggestions. This 
chapter contains an outline of the research's findings.  
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