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Oil palm industry seeks for a reduction of cost and environmental impact, 
promote sustainability and to maximize crop production and quality. In the oil 
palm production process, pollination is one of the main factors contributing to 
yield. However, oil palm pollination is facing issues with fruit formation and filling 
due to poor natural pollination. Alternatively, assisted/artificial pollination and 
Wireless Sensor Network (WSN) systems have been introduced to determine 
pollination readiness of the oil palms, break the reproduction cycle, and 
producing new breeding material. To perform these methods, several factors are 
taken into account such as the number of inflorescences to be pollinated per 
hectare and if these inflorescences require the opening of bracts. These tasks 
are labor-intensive and subjective to the availability of experts. All these methods 
depend on manual monitoring and visual inspection with ever decreasing labor, 
making farming economically inefficient and unstable. Therefore, it’s necessary 
to identify the pollination stages to ensure successful assisted/artificial pollination 
operation. To achieve this in digital agriculture, useful data about the different 
stages of oil palms inflorescences pollination is necessary to deliver better 
decision-making systems. This research studies different Machine Learning (ML) 
classification and ensemble techniques for the assessment of the four pollination 
stages consist of pre-anthesis I, pre-anthesis II, pre-anthesis III, and anthesis 
using thermal imaging. Different ML algorithms such as Random Forest (RF), k 
Nearest Neighbor (kNN), Support Vector Machine (SVM), Artificial Neural 
Network (ANN) as well as an ensemble method are used on data extracted from 
thermal images collected during infield oil palms pollination stages monitoring. 
Thermal images are captured with a selected emissivity values of 0.96, 0.97, and 
0.98 and evaluated to determine the best model performance. To apply the 
above-mentioned models, there are two feature sets are utilized consisting of 
endogenous features from thermal images taken with three emissivity values 
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and exogenous features including meteorological variables. These models’ 
performance is validated statistically and empirically considering the average 
accuracy, recall, precision, and F-measure in classifying the present datasets. 
The ensemble method on endogenous and endogenous+exogenous feature 
sets from emissivity of 0.96 achieved F-measure scores of 92.68% and 93.42% 
respectively and with emissivity of 0.97 resulted in 87.06% and 89.73% 
respectively. However, the ensemble method on emissivity of 0.98 using 
endogenous and endogenous+exogenous feature sets resulted in F-measure 
score of 57.81% and 86.63%, respectively lower than that of the latter. 
Ultimately, the results suggest that the proposed ML method can be utilized 
effectively to accurately estimate the four pollination stages in plantations, 
becoming a reliable and accurate tool in automated assisted/artificial pollination 
decision making systems. The proposed detection system capable of rapid and 
accurate screening and identification of oil palms inflorescences can be applied. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 
sebagai memenuhi keperluan untuk ijazah Doktor Falsafah 

PERINGKAT PERINGKAT WANITA KELAPA SAWIT MEKAR 
PENGENALAN MENGGUNAKAN EMISIVITI TERPILIH MELALUI 

PENGIMEJIAN TERMA DAN PEMBELAJARAN MESIN 

Oleh 

YOUSEFIDASHLIBOROUN MAMEHGOL 

April 2022 

Pengerusi : Azmin Shakrine Mohd bin Rafie, PhD 
Fakulti : Kejuruteraan 

Industri kelapa sawit sentiasa berusaha untuk berusaha untuk pengurangan kos 
dan impak terhadap alam sekitar, mempromosikan kelestarian dan 
memaksimumkan pengeluaran dan kualiti tanaman. Dalam proses pengeluaran 
kelapa sawit, pendebungaan adalah salah satu faktor utama yang menyumbang 
kepada hasil. Walau bagaimanapun, pendebungaan kelapa sawit menghadapi 
masalah dengan isu pembentukan dan pengisian buah disebabkan oleh 
penyebaran pendebungaan semula jadi yang lemah. Sebagai alternatif, sistem 
pendebungaan terbantu/tiruan dan Sistem Rangkaian Penderiaan Tanpa Wayar 
(WSN) telah diperkenalkan untuk menentukan kesediaan pendebungaan kelapa 
sawit, memutuskan kitaran pembiakan, dan menghasilkan bahan pembiakan 
baru. Untuk melaksanakan kaedah ini, beberapa faktor yang perlu diambil kira 
adalah jumlah pendebungaan yang akan didebungakan per hektar dan juga 
sama ada pendebungaan ini memerlukan pembukaan braktea yang akau 
menjurus kepada pergantuagan kepada teuaga buruh yang intensif tenaga 
pakar. Semua kaedah ini bergantung pada pemantauan secara manual dan 
pemeriksaan visual yang memerlukan tenaga kerja yang sememangnya 
berkurangan, menjadikan ketidakcekapan dan ketidakstabilan ekonomi 
pertanian. Oleh itu, adalah sangat diperlukan untuk mengenal pasti peringkat 
pendebungaan bagi memastikan operasi pendebungaan terbantu/tiruan yang 
berjaya. Untuk mencapai keadaan ini dalam pertanian digital, data yang berguna 
mengenai pelbagai peringkat pendebungaan perbungaan betina kelapa sawit 
amat diperlukan untuk menghasilkan sistem pembuat keputusan yang lebih baik. 
Tesis ini menyiasat kemampuan Pembelajaran Mesin (ML) dan ensemble 
tekniques empat peringkat pendebungaan yang utama iaitu terdiri daripada 
pramekar I, pra-mekar II, pra-mekar III, dan mekar mengguuakan pengimejan 
termal. Algoritma Pembelajaran Mesin (ML) yang berbeza seperti Pengkelasan 
Hutan Rawak (RF), Jiran Terdekat k (kNN), Mesin Vektor Sokongan (SVM), dan 
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Rangkaian Neural Buatan (ANN) dan satu kaedah ensemble akan digunakan 
pada data dari pengimejan terma yang diambil di ladang kepala sawit semasa 
pemantauan peringkat pendebungaan kelapa sawit. Imej termal tersebut diambil 
menggumakan kepancaran terpilih iaitu 0.96, 0.97 dan 0.98 dinilai untuk 
menentukan model yang memberikan prestasi yang terbaik. Bagi 
mengaplikasika algoritma ML di atas, dua set ciri telah dipilih iaitu ciri endogenus 
dari imej termal dengan tiga nilai kepancaran dan ciri eksogenus yang meliputi 
data-data meteorologi. Prestasi model ini disahkan secara statistik dan empirik 
dengan mengambil kira purata ketepatan, penarika balik, kejituan, dan ukuran F 
dalam mengklasifikasikan set data yang diperolehi. Kaedah ensemble pada set 
ciri endogenus + eksogenus dan endogenus dari emisiviti 0.96 mencapai skor 
ukuran-F masing-masing 92.68% dan 93.42% manakala dengan emisiviti 0.97 
masing-masing menghasilkan 87.06% dan 89.73%. Walau bagaimanapun, 
model ensemble pada emisiviti 0.98 yang menggunakan set ciri endogenus dan 
endogenus + eksogenus memberi keputusan skor ukuran-F 57.81% dan 
86.63%, masing-masing lebih rendah berbanding kepancaran terpilih lain. 
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CHAPTER 1 
 

INTRODUCTION 
 
 
1.1 Background 

 
 

Oil palm is the most efficient commercial crop with the potential to fulfil the 
growing global demand for vegetable oil consumption. It contributes to the 
economy of several countries such as Malaysia, Indonesia, Nigeria, Congo, 
West Africa, Brazil, Colombia, Costa Rica, Ecuador, and other south and central 
American countries (Vijay et al., 2016). Today the world oil palm production has 
stagnated around 73.49 Mt (Woittiez et al., 2017), yet the demand will increase 
to 250 Mt by 2050 (Corley and Tinker, 2008). With the acceleration of global 
growth and demand for palm oil, its production is concerned. In accordance, 
there are four production levels: the potential, water-limited, nutrient-limited, and 
the actual yield are distinguished. The pollination determines the production over 
a plantation lifetime, incoming Photosynthetically Active Radiation (PAR), 
temperature, atmospheric CO2 concentration, planting material, planting 
density, canopy management, and harvesting. Water-limited yield can be less 
than one-third of the potential product with water deficits greater than 400 mm 
year-1 depending on other factors such as temperature, wind speed, soil texture, 
and soil depth. Nutrient-limited yields have been associated with a lack of 
nitrogen or potassium. Lastly, actual yield losses are affected by improper 
ground vegetation, pests, diseases, and worse in case of severe infestations 
(Woittiez et al., 2017). 
 
 
Naturally, oil palms are cross-pollinated by EKs visiting both male and female 
flowers from 65-70 months onwards. Therefore, before this age and where EK 
is absent, assisted pollination has been given in plantations to improve 
production and enhance breeding materials normally performed by workers 
(Verheye, 2010; Vera et al., 1996; Li et al., 2019). Assisted pollination is 
performed based on a controlled application of pollens on female inflorescences 
at the anthesis stage. However, this practice is labor-intensive, costly, not 
applicable for large scale plantations, time-consuming, and short-term solution 
(Abrol and Shankar, 2012; Melendez and Ponce, 2016; Teo, 2015). 
Inflorescences identification is the most crucial part of assisted /artificial 
pollination operations. Hence, to identify the oil palm inflorescence pollination 
readiness, Wireless Sensor Network (WSN) system was tested using several 
sensors, including temperature (Kassim and Harun, 2015). During the plants’ 
developmental stages, the temperature is one of the highly correlated factors 
across all plant species (Hatfield and Prueger, 2015). While for every plant’s 
observable growth boundary, a rate of minimum and maximum temperatures has 
been defined. Oil palm reproductive developmental stages with reported 
thermogenic behavior will provide new features to simulate a pollination 
detection system. Specifically, various changes occur during the oil palm 
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flowering period, such as fragrance release, temperature elevation, pollen 
dispersal, etc. 
 
 
Also, an anise-like scent known as estragole is mainly produced attracts EK 
during the anthesis stage (Ervik et al., 1999). Oil palm female inflorescences 
pollination phenology stages changes can be associated with thermal changes 
(Combres et al., 2013). The temperature changes could be related to pollen 
dispersal through lowering atmospheric humidity and drying out of female 
inflorescences (Turner and Gillbanks, 1982). Also, oil palm inflorescences 
thermogenic behaviour (Knudsen et al., 2001) induces the volatilization of a 
strong floral scent (in this case, estragole) that attract natural pollinators (Ervik 
et al., 1999). Besides, the bracts covering the inflorescences start tearing when 
the flower bud begins to grow that could cause temperature and scent 
production. It’s evident from various outlooks that effective methods should be 
implemented to improve oil palm assisted pollination (Tuo et al., 2011). 
Therefore, thermal imaging technology can offer great potential to automate 
plant developmental stages identification. The variability of electromagnetic 
radiation in oil palms female inflorescences anthesis stages allows samples to 
be collected and analyzed. These radiations emitted from inflorescences are 
discernible by infrared thermal detectors at any temperature consists of a wide 
range of frequencies. Hence, infrared thermal imaging, applied to the 
quantitative analysis of pollination stages in oil palms, is a well-known secondary 
procedure for simplicity of operation, throughput, objectivity, and accuracy. 
 
 
With the advancement of non-invasive imaging and computing technologies, it’s 
feasible to transform large data from plantations into sensible patterns and 
information. Artificial Intelligence (AI) has revolutionized a broad array of 
industries focusing on data at its core. Machine Learning (ML), as a subset of AI, 
provided highly versatile methods able to generate knowledge and outputs with 
higher speed and accuracy in agricultural engineering (Huang et al., 2010). Thus, 
the combination of a non-invasive imaging technique and AI need to be 
scrutinized to fulfil the intelligent pollination systems. The present research aims 
to determine oil palm female inflorescence pollination stages consisting of pre-
anthesis (I, II, III) and the anthesis with the combination of ML algorithms and 
thermal imaging technologies. The infrared thermal imaging technique is a non-
invasive, simple, and effective tool to obtain features from the targeted objects 
in controlled and infield environments. Remote sensing adaptation in agriculture 
and other domains led to the collection of significant volumes of data. The 
amount of the data is continuously increasing, and it’s beyond human ability to 
personally analyze, integrate and make the best-informed decisions. ML is an 
emerging technology that can help to find patterns and rules in any data type. 
Crop pollination growth and development prediction are considered an important 
research area in precision agriculture. Therefore, issues associated with current 
assisted pollination techniques such as field staff dependency, late decision-
making, and pollination stages can be improved while eliminating the need for 
sensor nodes. 
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Yet with the explosion of remotely sensed data in many domains, discovering 
optimal solutions to explore the data for modelling approaches is becoming a 
challenge. Recognition of ML algorithms for the agricultural application provides 
working solutions quickly, specifically with data from outdoor environments. One 
of the main advantages of ML methods is their capability to perform pattern 
recognition from various datasets. Specifically, the classification techniques 
have been employed to make efficient, quick, and unified decisions to initiate 
immediate and appropriate actions among a large number of plants for many 
environmental and agricultural applications using a wide array of data (Kar, 
2016). According to Lu and Weng (2007), the right choice of classification 
method affects the quality of results, not only the imagery appropriateness. In 
accordance, many classification algorithms have been proposed in the form of a 
decision tree or a set of rules to predict the target outputs from new feature 
samples (Cunningham and Holmes, 1999). These methods range from classical 
algorithms such as Random Forest (RF) (Liu et al., 2013), k Nearest Neighbor 
(kNN) (Guo et al., 2018), and Support Vector Machine (SVM), and Artificial 
Neural Network (ANN) (Rumpf et al., 2010). 

Over the past decade, non-parametric classifiers (ML-based algorithms) 
increasingly being acknowledged for multi-source data classification. According 
to a study performed to evaluate the performance of 176 classifiers to solve real-
world problems, the RF was selected as the best model (Fernandez-Delgado et 
al., 2014). The RF classifier represents a modern approach, which has proven 
to be a reliable method for crop yield and phenology predictions for its high 
accuracy, speed, and simple implementation process (Jeong et al., 2016). 
Several studies have adopted kNN to perform land and crop classification; 
however, finding the best value of k and high computational cost limited its 
application (Naidoo et al., 2012). The SVM classification method has been 
applied to identify the main agricultural system classes based on phenological 
metrics (Lebrini et al., 2019). 

Similarly, both RF and SVM are insensitive to noise or over-fitting, which shows 
their ability in dealing with unbalanced data. Another popular method, ANNs 
capable of performing both classification and regression are increasingly applied 
in remote sensing applications. One of the main benefits offered by ANNs is that 
they can handle large amount of data currently being generated and perform 
more accurately on data with various statistical distribution (Atkinson and Tatnall, 
1997). A precision pollination detection model is one of the recent potential 
techniques to make an efficient, quick, and unified decision from the available 
data if it exists. The comparison of accuracy statistics of several algorithms 
represented non-parametric classifiers RF, SVM, kNN, and ANN which can 
handle training data of various distributions favored among other models (Shao 
and Lunetta, 2012; Bargiel, 2017). 
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Using thermal imaging and modelling approaches, the presented study 
introduces a new approach to identify oil palm inflorescences pollination stages. 
The most established ML algorithms such as RF, kNN, SVM, and ANN are 
constructed and evaluated using three datasets (from three emissivity values) 
based on two feature sets: 1) endogenous and 2) endogenous in combination 
with exogenous features (meteorological parameters). The endogenous feature 
set comprise features extracted from the recorded thermal images such as (Tmax, 
Tmin, and Tavg). The exogenous features studied here are Relative Humidity (RH) 
and air temperature Tair. In addition to individual algorithms investigation, an 
ensemble method is applied to assess whether it can predict the stages better 
than single learners. The ensemble method utilizes combination (i.e., single 
learners) to attain a strong generalization ability rather than selecting the best 
single learner. It also reduces the computational variance and bias commonly 
related to single learners (Zhou, 2019). These methods are applied to predict the 
pollination stages in response to two feature sets. 
 
 
This new approach ensures full implementation of certain features of oil palms’ 
pollination phenology into a classification approach for future improvement of 
artificial pollination systems. 
 
 
1.2 Motivation of Study 
 
 
Ongoing worldwide population growth demands vegetable oils; oil palm 
produces much more oil per area than any other crops (Meijaard et al., 2018). 
But, in plantations, lower yield rates are reported with poor pollination and EKs 
decline (Woittiez et al., 2017). Consequently, this results in more significant land 
needs and deforestation. Such factors of reduced pollination and declining yields 
urge scientists and decision-makers to discover detailed information about the 
pollination phenology of oil palms in plantations. Thus, monitoring oil palm female 
inflorescences anthesis stages will enable researchers to improve and automate 
pollination detection systems. In this research, new possibilities to identify oil 
palm pollination readiness using modelling approaches are proposed to 
overcome the issues related to the current assisted pollination methods. For this 
purpose, infrared thermal imaging and ML technologies provide new insights into 
the autonomous identification of oil palm pollination phases. It also enables the 
planters to facilitate the inter-operation and decision-making process. 
 
 
Assisted pollination in plantations requires a more significant number of workers 
to identify the anthesis stages and perform pollen transfer to every single 
inflorescence through manual works (Ruiz-Alvarez et al., 2021) that are not 
feasible on a large scale. Thus, a reliable and accurate stages identification 
system determines oil palm success towards efficient pollination. Thermal 
imaging and ML classification techniques have proven to be more accurate than 
traditional methods. The classification stochastic approaches process the 
obtained data and predict the probability of stages under different conditions. 
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This model can identify the patterns using random variables and make accurate 
predictions on future events (adaptable). Pollination is necessary to guarantee 
commercially usable palm oil; hence, new technologies should be adopted to 
overcome the challenges related to pollination stages identification 
complementing assisted and artificial pollination. The research is motivated to 
automate the identification process of pollination stages by developing a 
classification model with thermal images and meteorological features inputs. 

While the pollination requirements of many crops appear to be small, but their 
impacts are enormous. Assisted pollination consists of the controlled application 
of pollen on female inflorescences in anthesis is necessary to guarantee the 
successful formation of FFB. The absence of natural pollinators (Kevan and 
Phillips, 2001) necessitates the employment of alternative artificial practices to 
boost oil palm yield (Melendez and Ponce, 2016). Nevertheless, 
assisted/artificial pollination and WSN systems (Kassim and Harun, 2015) have 
been adopted, their application requires two labour forces 1) to inspect and 
detect inflorescence anthesis stages and 2) to transfer the pollen. In addition, 
three times more workers are employed in artificial pollination than in assisted 
pollination due to the need to apply regulator Naphthaleneacetic Acid (NAA). 
Thus, these methods are inconsistent, labour intensive, time-consuming, 
expensive, and impractical (Abrol and Shankar, 2012). 

Alternatively, WSN-based pollination prediction included temperature and 
humidity sensor nodes placed in bagged inflorescences and soil elements, is 
shown to be impractical considering large quantities of oil palms on an enormous 
scale of plantations. Deployment of WSN involves several challenges as follows: 
1) the necessity to install a large number of sensor nodes on crops using workers
makes it impractical, 2) sensor nodes are non-biodegradable and can cause
destructive effects on the crops and the ecosystem, and 3) power requirement,
cost per node, and required infrastructure prevents this method deployment in
natural environment (Lloret et al., 2009). Therefore, it’s evident that oil palm
pollination demands a knowledge-based automated solution to overcome the
summarized challenges with the sophisticated and power-consuming WSN
sensors.

1.3 Problem Statement 

Human-assisted pollination methods in commercial plantations have been 
developed and are practiced despite their high economic costs due to increased 
labour requirements. With the increasing interest in this domain and emergence 
of new technologies, it’s important to study the specific features and data-based 
learning methods to predict oil palm female inflorescence pollination stages. 
Within this context the research questions addressed are: 
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1. How do the thermal imagery and meteorological features contribute to 
oil palm female inflorescences pollination stages identification? 
 

2. How precisely does an optimal data-driven technique automate the 
pollination stages process? 

 
 
Therefore, splitting the research questions elucidates the need for an efficient 
feature acquisition system that encounters the current manual inspection, sensor 
nodes need and provides efficient inputs to experiment data-based models. This 
thesis aimed to propose an automated mechanism to predict the oil palm female 
inflorescences pollination stages. It presents models designed using ML 
classification techniques that assist the decision making of planters and 
pollination workers. Further, various domain-specific thermal and meteorological 
features are evaluated to find the most contributing features and the best model. 
This study develops predictive algorithms such as RF, kNN, SVM, ANN, and 
ensemble. Then, the results of these models are validated by comparing the 
ensemble method against RF, kNN, SVM, and ANN. The algorithm’s 
generalization performance is evaluated with two feature sets of thermal images 
(endogenous) from three selected emissivity values (0.96, 0.97, and 0.98) and 
in combination with meteorological features (exogenous). The performance 
evaluation metrics such as average accuracy, recall, precision, and F-measure 
are calculated to further verify the algorithms in classifying the present samples. 
 
 
1.4 Research Objectives 

 
 
The issues mentioned above lead this thesis to research the combination of non-
destructive imaging and ML modelling technologies and processes that will help 
address the related problems. The first part of this research quantifies the 
relationship between oil palms pollination stages and thermal images. Then, 
evaluated and tested the performance of individual ML models whether a single 
model would outperform the rest. Finally, an ensemble method is constructed to 
examine if it can better predict the stages than the single models. The 
classification method is used to relate the quantified thermal features to 
pollination stages consists of pre-anthesis I, II, III, and anthesis. In addition, 
meteorological variables named exogenous features are utilized to improve the 
models’ performance and provide more insights for pollination stage 
identification. It also compared the performance of three sets of thermal image 
features from emissivities of 0.96, 0.97, and 0.98, used on the same samples. 
As such, the performance of models is evaluated and compared through 
empirical and statistical methods. The project outcome aims to shift the current 
assisted/artificial pollination from an input-intensive to a knowledge-intensive 
industry. It also enhances monitoring using a non-invasive technique with a 
better detection power, eliminates the need for human manual intervention, and 
provides distinctive features. Hence, the number of objectives is summarized as 
below: 
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1. To evaluate selected emissivity and exogenous features to determine 
the best model’s performance 

2. To study the relationship between features obtained from thermal 
images in respect to pollination stages 

 
 
1.5 Scopes of Study 
 
 
Whilst the application of assisted/artificial pollination and WSN have been 
investigated in oil palm plantations where natural pollinators don’t exist or are 
low in numbers, the identification of the pollination stages with non-destructive 
and automated solutions are not explored. This thesis aims to identify the oil 
palms female inflorescences four pollination stages using a combination of non-
destructive thermal imaging and ML techniques.  
 
 
The scope of this study is limited to a total number of 180 female inflorescences 
samples consisted of four stages (pre-anthesis I, II, III, and anthesis) from Dura 
x Pisifera (DxP) cultivar. After samples identification and tagging, thermal 
imagery was performed using a hand-held FLIR E60 camera. For any particular 
wavelength and temperature, the amount of thermal radiation emitted depends 
on the emissivity of the object’s surface. Henceforth, for this specific study 
focusing on vegetation, the emissivity ranges between 0.96 to 0.98 are examined 
due to the restrictions to measure the inflorescences emissivity on trees 
(Messina and Modica, 2020). Therefore, three sets of thermal images were 
obtained with three emissivities on the same samples. This approach is taken to 
gain domain-specific features from the inflorescences at pollination stages and 
not detect the inflorescences’ exact temperature.  
 
 
Thermal images provide important thermal features of surface energy fluxes, 
which are integral to distinguish major phenological stages for potential 
agricultural automation. Hence, three sets of endogenous features were 
extracted from each collection of thermal images with three different emissivities 
and built the related datasets. Predominately, thermal features are used to 
quantify and identify the different pollination stages. In addition, other exogenous 
features (meteorological variables) are used to improve the models’ performance 
and provide more insights into pollination identification in the field environment. 
This research focuses on discovering new features and methods to predict the 
pollination stages of oil palms. 
 
 
Five ML methods, namely RF, kNN, SVM, ANN, and ensemble, were applied 
and evaluated to achieve stages identification automation. These models can be 
used to the same dataset, and each method makes specific assumptions about 
an underlying model and tries to learn within that framework. The ensemble 
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method is proven to improve pattern recognition and finding better fits within that 
model.  
 
 
The models’ performance was evaluated empirically and statistically using a set 
of quantitative metrics (overall accuracy, precision, recall, and F-measure). 
Ultimately, the method with high generalization performance and feature 
selection capability can be used to automate the pollination stages detection 
process and demonstrate the features’ effectiveness. The developed model will 
then be utilized to design assisted/artificial pollination systems for future 
plantations.  
 
 
Proven that oil palm pollination is in danger, there is a pressing need for more 
data about its reproductive stages to enable a data-based automated pollination 
system. With further refinement in analytical techniques and models, thermal 
data from thermal imaging techniques could be beneficial for parameterizing oil 
palm pollination stages and developing better artificial pollination systems.  
 
 
1.6 Research Contribution 
 
 
The study contributions are outlined as follows: 
 
 

• ML models provided an essential contribution for efficient oil palm 
pollination stages identification with reasonable accuracy. In the 
absence of a comprehensive set of empirical tests to determine a single 
best learning algorithm to apply on a collected dataset, we find it most 
effective to use several modelling schemes. 

 
• Collecting and creating site-specific datasets for pollination stages 

classification. Since this is, to the best of our knowledge, the first work 
that attempts to solve the most critical problems in oil palm 
artificial/assisted pollination using ML and thermal imaging techniques, 
the pollination stages identification model and the dataset will be used 
as a baseline for future research.  

 
• Evaluating the effectiveness of designed models with thermal features 

(endogenous) and meteorological (exogenous) feature sets about the 
four main pollination stages  

 
• Integration of thermal imaging and modeling can potentially enable 

artificial pollination management, improving the monitoring of a large 
number of palms in plantations by only scanning and algorithm-based 
prediction compared to manual monitoring using human sources and 
sensors in WSNs  
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• Thermal imaging allows fast monitoring of oil palm pollination status, with 
the potential of cost-effective and non-invasive data acquisition 
technique replacing sensor nodes in WSN 

 
• Ensemble method applied to endogenous features individually and in 

combination with exogenous are capable of developing a method for the 
evaluation of oil palms pollination stages 
 
 
 

1.7 Organization of the Thesis 
 
 
This thesis is included five chapters. The first chapter is Introduction, and the 
following chapters are organized as follows:  
 
 
Chapter 2 provides background knowledge of oil palm pollination effectiveness 
with natural pollinators and conventional methods of assisted pollination in oil 
palm plantations. Moreover, the application of thermal imaging techniques and 
the principles of the ML algorithms for agricultural tasks are reviewed and 
justified.  
 
 
Chapter 3 illustrates the methodology of the sample’s selection, data collection 
and the model design and implementation procedure. The models’ principles and 
methods are elaborated in this chapter. Lastly, the evaluation metrics used to 
evaluate the models’ prediction performance are elaborated.  
 
 
Chapter 4 discusses the models’ prediction results from three datasets consist 
of the thermal images features (endogenous) individually and in combination 
with meteorological features (exogenous). Further, the performance metrics 
such as average accuracy, recall, precision, and F-measure are calculated and 
used to validate the algorithms’ performance in classifying the present datasets. 
Simultaneously, the designed model prediction performance is analyzed 
empirically and statistically.  
 
 
Chapter 5 covers the conclusion of the presented research and points out some 
gaps and issues which can be investigated in future studies.  



© C
OPYRIG

HT U
PM

 

84 
 

REFERENCES 
 

 
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. 

S., Davis, A., Dean, J., Devin, M. et al. 2015, TensorFlow: Large-scale 
machine learning on heterogeneous systems. 

 
Abrol, D. and Shankar, U. 2012, In Technological Innovations in Major World Oil 

Crops, Volume 2, In Technological Innovations in Major World Oil Crops, 
Volume 2, 221–267, Springer, 221–267 

 
Adaigbe, V., Odebiyi, J., Omoloye, A., Aisagbonhi, C. and Iyare, O. 2011. Host 

location and ovipositional preference of Elaeidobius kamerunicus on four 
host palm species. Journal of Horticulture and Forestry 3 (5): 163–166. 

 
Adam, H., Jouannic, S., Escoute, J., Duval, Y., Verdeil, J.-L. and Tregear, J. W. 

2005. Reproductive developmental complexity in the African oil palm (Elaeis 
guineensis, Arecaceae). American Journal of Botany 92 (11): 1836–1852. 

 
Adedayo, O., Onibonoje, M., Isa, M. et al. 2021. A layer-sensitivity based artificial 

neural network for characterization of oil palm fruitlets. International Journal 
of Applied Science and Engineering 18 (1): 1–7. 

 
Adedayo, O. O., Isa, M., A Che, S. and Abbas, Z. 2014. Comparison of Feed 

Forward Neural Network Training Algorithms for Intelligent Modeling of 
Dielectric Properties of Oil Palm Fruitlets. International Journal of 
Engineering and Advanced Technology (IJEAT) 3 (3): 38–42. 

 
Ahmadi, P., Muharam, F. M., Ahmad, K., Mansor, S. and Abu Seman, I. 2017. 

Early detection of Ganoderma basal stem rot of oil palms using artificial 
neural network spectral analysis. Plant disease 101 (6): 1009–1016. 

 
Akhtar, A., Khanum, A., Khan, S. A. and Shaukat, A. 2013. Automated Plant 

Disease Analysis (APDA): Performance comparison of machine learning 
techniques. In 2013 11th International Conference on Frontiers of 
Information Technology, 60–65. IEEE. 

 
Al-doski, J., Mansor, S. B., Shafri, H. and Zulhaidi, H. 2016. Thermal imaging for 

pests detecting a review. Int. J. Agric. For. Plant 2: 10–30. 
 
Alchanatis, V., Cohen, Y., Cohen, S., Moller, M., Sprinstin, M., Meron, M., 

Tsipris, J., Saranga, Y. and Sela, E. 2010. Evaluation of different 
approaches for estimating and mapping crop water status in cotton with 
thermal imaging. Precision Agriculture 11 (1): 27–41. 

 
Alif, A. A., Shukanya, I. F. and Afee, T. N. 2018. Crop prediction based on 

geographical and climatic data using machine learning and deep learning. 
PhD thesis, BRAC University. 

 



© C
OPYRIG

HT U
PM

 

85 
 

Almeida, J., dos Santos, J. A., Alberton, B., Torres, R. d. S. and Morellato, L. P. 
C. 2014. Applying machine learning based on multiscale classifiers to detect 
remote phenology patterns in cerrado savanna trees. Ecological informatics 
23: 49–61. 

 
Appiah, S. and Agyei, D. 2013. Studies on Entomophil pollination towards 

sustainable production and increased profitability in the oil Palm: a review. 
Elixir Agriculture 55: 12878–12883. 

 
Archer, K. J. and Kimes, R. V. 2008. Empirical characterization of random forest 

variable importance measures. Computational Statistics & Data Analysis 52 
(4): 2249–2260. 

 
Ashman, T.-L. 2009. Sniffing out patterns of sexual dimorphism in floral scent. 

Functional Ecology 23 (5): 852–862. 
 
Atkinson, P. M. and Tatnall, A. R. 1997. Introduction neural networks in remote 

sensing. International Journal of remote sensing 18 (4): 699–709. 
 
Auffray, T., Frerot, B., Poveda, R., Louise, C. and Beaudoin-Ollivier, L. 2017. 

Diel patterns of activity for insect pollinators of two oil palm species 
(Arecales: Arecaceae). Journal of Insect Science 17 (2): 45. 

 
Awad, Y. M., Abdullah, A. A., Bayoumi, T. Y., Abd-Elsalam, K. and Hassanien, 

A. E. 2015, In Intelligent Systems’ 2014, In Intelligent Systems’ 2014, 755–
765, Springer, 755–765. 

 
Aziz, W., Kasno, A., Kamarudin, N., Tumari, Z., Aras, S., Rusnandi, H. and Musa, 

K. 2019. An accurate pattern classification for empty fruit bunch based on 
the age profile of oil palm tree using neural network. International Journal of 
Electrical and Computer Engineering 9 (6): 5636. 

 
Balakrishnan, N. and Muthukumarasamy, G. 2016. Crop production-ensemble 

machine learning model for prediction. International Journal of Computer 
Science and Software Engineering 5 (7): 148. 

 
Barcelos, E., Rios, S. d. A., Cunha, R. N., Lopes, R., Motoike, S. Y., Babiychuk, 

E., Skirycz, A. and Kushnir, S. 2015. Oil palm natural diversity and the 
potential for yield improvement. Frontiers in plant science 6: 190. 

 
Bargiel, D. 2017. A new method for crop classification combining time series of 

radar images and crop phenology information. Remote sensing of 
environment 198: 369–383. 

 
Bartlett, P. and Shawe-Taylor, J. 1999. Generalization performance of support 

vector machines and other pattern classifiers. Advances in Kernel methods 
support vector learning 43–54. 

 



© C
OPYRIG

HT U
PM

 

86 
 

Behmann, J., Mahlein, A.-K., Rumpf, T., Romer, C. and Plumer, L. 2015. A 
review of advanced machine learning methods for the detection of biotic 
stress in precision crop protection. Precision Agriculture 16 (3): 239–260. 

 
Benesty, J., Chen, J., Huang, Y. and Cohen, I. 2009, In Noise reduction in 

speech processing, In Noise reduction in speech processing, 1–4, Springer, 
1–4. 

 
Bensaeed, O., Shariff, A., Mahmud, A., Shafri, H. and Alfatni, M. 2014. Oil palm 

fruit grading using a hyperspectral device and machine learning algorithm. 
In IOP conference series: Earth and environmental science, 012017. IOP 
Publishing. 

 
Berthold, M. R., Cebron, N., Dill, F., Gabriel, T. R., K¨otter, T., Meinl, T., Ohl, P., 

Thiel, K. and Wiswedel, B. 2009. KNIME-the Konstanz information miner: 
version 2.0 and beyond. ACM SIGKDD explorations Newsletter 11 (1): 26–
31. 

 
Bhatia, N. et al. 2010. Survey of nearest neighbor techniques. arXiv preprint 

arXiv:1007.0085 
 
Biju, S., Fuentes, S. and Gupta, D. 2018. The use of infrared thermal imaging as 

a non-destructive screening tool for identifying drought-tolerant lentil 
genotypes. Plant physiology and biochemistry 127: 11–24. 

 
Bishop, C. M. et al. 1995. Neural networks for pattern recognition. Oxford 

university press. 
 
Breiman, L. 2001. Random forests. Machine learning 45 (1): 5–32. 
 
Caglayan, A., Guclu, O. and Can, A. B. 2013. A plant recognition approach using 

shape and color features in leaf images. In International Conference on 
Image Analysis and Processing, 161–170. Springer. 

 
Camperos, J., Sinisterra, K., Pulido, N. and Mosquera-Montoya, M. 2020. Labor 

yield for artificial pollination work: Factors to take into account for its 
estimation. 

 
Carson, M. A. and Basiliko, N. 2016. Approaches to R education in Canadian 

universities. F1000Research 5. 
 
Caudwell, R., Hunt, D., Reid, A., Mensah, B. and Chinchilla, C. 2003. Insect 

pollination of oil palm comparison of the long-term viability and sustainability 
of Elaeidobious kamerunicus in Papua New Guinea, Indonesia, Costa Rica, 
and Ghana. ASD Oil Palm Papers 25: 1–16. 

 
Cayon Salinas, D. G. 1990. Induction and development of fruits with pollination 

and hormones in OxG flanges of oil palm (Elaeis oleifera Kunth Cortes x 
Elaeis guineensis Jacq.). Doctorate in Agricultural Sciences. 



© C
OPYRIG

HT U
PM

 

87 
 

 
Chinchilla, C. and Richardson, D. 1950. Polinizacion en Palma Aceitera (Elaeis 

guineensis Jacq.) en Centroamerica. I. Poblacion de Insectos y 
Conformacion de Racimos1. Turrialba 452. 

 
Chinchilla, C. M. and Richardson, D. 1991. Pollinating insects and the pollination 

of oil palms in Central America. ASD. 
 
Chlingaryan, A., Sukkarieh, S. and Whelan, B. 2018. Machine learning 

approaches for crop yield prediction and nitrogen status estimation in 
precision agriculture: A review. Computers and electronics in agriculture 
151: 61–69. 

 
Chouteau, M., Barab´e, D. and Gibernau, M. 2009. Flowering and thermogenetic 

cycles in two species of Monstera (Araceae). Bull. Soc. Hist. Nat. Toulouse 
145: 5–10. 

 
Clemen, R. T. 1989. Combining forecasts: A review and annotated bibliography. 

International journal of forecasting 5 (4): 559–583. 
 
Combres, J.-C., Pallas, B., Rouan, L., Mialet-Serra, I., Caliman, J.-P., 

Braconnier, S., Soulie, J.-C. and Dingkuhn, M. 2013. Simulation of 
inflorescence dynamics in oil palm and estimation of environment-sensitive 
phenological phases: a model-based analysis. Functional Plant Biology 40 
(3): 263–279. 

 
Coopersmith, E. J., Minsker, B. S., Wenzel, C. E. and Gilmore, B. J. 2014. 

Machine learning assessments of soil drying for agricultural planning. 
Computers and electronics in agriculture 104: 93–104. 

 
Corley, R. H. V. and Tinker, P. B. 2008. The oil palm. John Wiley & Sons. 
 
Cortes, C. and Vapnik, V. 1995. Support vector machine. Machine learning 20 

(3): 273–297. 
 
Cunningham, S. J. and Holmes, G. 1999. Developing innovative applications in 

agriculture using data mining. In The proceedings of the southeast Asia 
regional computer confederation conference, 25–29. Citeseer. 

 
Dake, W. and Chengwei, M. 2006. The support vector machine (SVM) based 

near-infrared spectrum recognition of leaves infected by the leafminers. In 
First International Conference on Innovative Computing, Information and 
ControlVolume I (ICICIC’06), 448–451. IEEE. 

 
Dambreville, A., Lauri, P.-E., Normand, F. and Guedon, Y. 2014. Analysing 

growth and development of plants jointly using developmental growth 
stages. Annals of botany 115 (1): 93–105. 

 



© C
OPYRIG

HT U
PM

 

88 
 

Daza, E., Ayala-Diaz, I., Ruiz-Romero, R. and Romero, H. M. 2020. Effect of the 
application of plant hormones on the formation of parthenocarpic fruits and 
oil production in oil palm interspecific hybrids (Elaeis oleifera Cortes x Elaeis 
guineensis Jacq.). Plant Production Science 1–9. 

 
de Castro, A., Torres-Sanchez, J., Pena, J., Jimenez-Brenes, F., Csillik, O. and 

Lopez-Granados, F. 2018. An automatic random forest-OBIA algorithm for 
early weed mapping between and within crop rows using UAV imagery. 
Remote Sensing 10 (2): 285. 

 
Demˇsar, J. 2006. Statistical comparisons of classifiers over multiple data sets. 

The Journal of Machine Learning Research 7: 1–30. 
 
Dhileepan, K. 1994. Variation in populations of the introduced pollinating weevil 

(Elaeidobius kamerunicus)(Coleoptera: Curculionidae) and its impact on 
fruitset of oil palm (Elaeis guineensis) in India. Bulletin of entomological 
research 84 (4): 477–485. 

 
Dieringer, G., Leticia Cabrera, R. and Mottaleb, M. 2014. Ecological relationship 

between floral thermogenesis and pollination in Nelumbo lutea 
(Nelumbonaceae). American journal of botany 101 (2): 357–364. 

 
Dietrich, L. and K¨orner, C. 2014. Thermal imaging reveals massive heat 

accumulation in flowers across a broad spectrum of alpine taxa. Alpine 
Botany 124 (1): 27–35. 

 
Dietterich, T. G. 1998. Approximate statistical tests for comparing supervised 

classification learning algorithms. Neural computation 10 (7): 1895–1923. 
 
Director, I.-I. 2016. ICAR-IIOPR Newsletter April-September 2016. 
 
 
Dubey, H. 2013. Efficient and accurate kNN based classification and regression. 

A Master Thesis Presented to the Center for Data Engineering, International 
Institute of Information Technology, Hyderbad-500 32. 

 
Eisavi, V., Homayouni, S., Yazdi, A. M. and Alimohammadi, A. 2015. Land cover 

mapping based on random forest classification of multitemporal spectral 
and thermal images. Environmental monitoring and assessment 187 (5): 
291. 

 
Ellsasser, F., Stiegler, C., Roll, A., June, T., Knohl, A., Holscher, D. et al. 2020. 

Predicting evapotranspiration from drone-based thermography–a method 
comparison in a tropical oil palm plantation. Bio geosciences Discussions 
1–37. 

 
Ervik, F. and BARFOD, A. 1999. Thermogenesis in palm inflorescences and its 

ecological significance. Acta Botanica Venezuelica 195–212. 
 



© C
OPYRIG

HT U
PM

 

89 
 

Ervik, F., Tollsten, L. and Knudsen, J. T. 1999. Floral scent chemistry and 
pollination ecology in phytelephantoid palms (Arecaceae). Plant 
Systematics and Evolution 217 (3-4): 279–297. 

 
Fadilah, N., Mohamad-Saleh, J., Abdul Halim, Z., Ibrahim, H. and Syed Ali, S. S. 

2012. Intelligent color vision system for ripeness classification of oil palm 
fresh fruit bunch. Sensors 12 (10): 14179–14195. 

 
Fatihah, A., Fahmi, M., Luqman, H., Nadiah, S., Teo, T., Riza, H., Idris, A. et al. 

2019. Effects of rainfall, number of male inflorescences and spikelets on the 
population abundance of Elaeidobius kamerunicus (Coleoptera: 
Curculionidae). Sains Malaysian 48 (1): 15–21. 

 
Feng, A., Zhou, J., Vories, E. D., Sudduth, K. A. and Zhang, M. 2020. Yield 

estimation in cotton using UAV-based multi-sensor imagery. Biosystems 
Engineering 193: 101–114. 

 
Fernandez-Delgado, M., Cernadas, E., Barro, S. and Amorim, D. 2014. Do we 

need hundreds of classifiers to solve real world classification problems? The 
journal of machine learning research 15 (1): 3133–3181. 

 
Fillbrunn, A., Dietz, C., Pfeuffer, J., Rahn, R., Landrum, G. A. and Berthold, M. 

R. 2017. KNIME for reproducible cross-domain analysis of life science data. 
Journal of biotechnology 261: 149–156. 

 
Fix, E. and Hodges Jr, J. L. 1951, Discriminatory analysis-nonparametric 

discrimination: consistency properties, Tech. rep., California Univ Berkeley. 
 
Forero, D., Hormaza, P. and Romero, H. 2012. Phenological growth stages of 

African oil palm (Elaeis guineensis). Annals of Applied Biology 160 (1): 56–
65. 

 
Foster, W. A., Snaddon, J. L., Turner, E. C., Fayle, T. M., Cockerill, T. D., 

Ellwood, M. F., Broad, G. R., Chung, A. Y., Eggleton, P., Khen, C. V. et al. 
2011. Establishing the evidence base for maintaining biodiversity and 
ecosystem function in the oil palm landscapes of South East Asia. Phil. 
Trans. R. Soc. B 366 (1582): 3277–3291. 

 
Friedman, M. 1937. The use of ranks to avoid the assumption of normality implicit 

in the analysis of variance. Journal of the American statistical association 
32 (200): 675–701. 

 
Fuchs, M. and Tanner, C. 1966. Infrared thermometry of vegetation 1. Agronomy 

Journal 58 (6): 597–601. 
 
G Ravichandran, Pand Murugesan, R., Mathur, K., Sunil Kumar, P., Naveen 

Kumar, D., Ramajayam, B. and Babu, K. 2016. Techniques of hybrid seed 
production in oil palm. 

 



© C
OPYRIG

HT U
PM

 

90 
 

Garcıa-Tejero, I., Costa, J., Egipto, R., Duran-Zuazo, V., Lima, R., Lopes, C. and 
Chaves, M. 2016. Thermal data to monitor crop-water status in irrigated 
Mediterranean viticulture. Agricultural Water Management 176: 80–90. 

 
Gates, D. M. 2012. Biophysical ecology. Courier Corporation. 
 
Gates, D. M., Keegan, H. J., Schleter, J. C. and Weidner, V. R. 1965. Spectral 

properties of plants. Applied optics 4 (1): 11–20. 
 
Genty, P. and Ujueta, M. U. 2013, Stories about the interspecific oil palm hybrid 

OxG x Coari x La m Esperanza del Tropico, Tech. rep., Federation Nacional 
de Cultivadores de Palma de Aceite, Fedepalma. 

 
Genuer, R., Poggi, J.-M. and Tuleau-Malot, C. 2010. Variable selection using 

random forests. Pattern recognition letters 31 (14): 2225–2236. 
 
Ghosal, S., Blystone, D., Singh, A. K., Ganapathy subramanian, B., Singh, A. 

and Sarkar, S. 2018. An explainable deep machine vision framework for 
plant stress phenotyping. Proceedings of the National Academy of Sciences 
115 (18): 4613–4618. 

 
Gonzalez, D. A., Cayon, G., Lopez, J. E. and Alarcon, W. H. 2013. Development 

and maturation of fruits of two Indupalma OxG hybrids (Elaeis oleifera x 
Elaeis guineensis). Agronomia Colombiana 31 (3): 343–351. 

 
Gonzalez-Dugo, V., Hernandez, P., Solis, I. and Zarco-Tejada, P. J. 2015. Using 

high-resolution hyperspectral and thermal airborne imagery to assess 
physiological condition in the context of wheat phenotyping. Remote 
Sensing 7 (10): 13586–13605. 

 
Gonzalez Sanchez, A., Frausto Solis, J., Ojeda Bustamante, W. et al. 2014. 

Predictive ability of machine learning methods for massive crop yield 
prediction. 

 
Goodfellow, I., Bengio, Y. and Courville, A. 2016. Deep learning. MIT press. 
 
Granitto, P. M., Furlanello, C., Biasioli, F. and Gasperi, F. 2006. Recursive 

feature elimination with random forest for PTR-MS analysis of agro-
industrial products. Chemometrics and intelligent laboratory systems 83 (2): 
83–90. 

 
Grant, N. M. 2010. Thermogenesis in plants: the mode of heating and regulation 

in hot flowers. 
 
Guo, G., Wang, H., Bell, D., Bi, Y. and Greer, K. 2003. KNN model-based 

approach in classification. In OTM Confederated International Conferences” 
On the Move to Meaningful Internet Systems”, 986–996. Springer. 

 



© C
OPYRIG

HT U
PM

 

91 
 

Guo, W., Fukatsu, T. and Ninomiya, S. 2015. Automated characterization of 
flowering dynamics in rice using field-acquired time-series RGB images. 
Plant methods 11 (1): 7. 

 
Guo, Y., Han, S., Li, Y., Zhang, C. and Bai, Y. 2018. K-Nearest Neighbor 

combined with guided filter for hyperspectral image classification. Procedia 
Computer Science 129: 159–165. 

 
Gupta, S. K. 2011. Technological Innovations in Major World Oil Crops, Volume 

1: Breeding., vol. 1. Springer Science & Business Media. 
 
Harrap, M. J., Rands, S. A., de Ibarra, N. H. and Whitney, H. M. 2017. The 

diversity of floral temperature patterns, and their use by pollinators. eLife 6: 
e31262. 

 
Harun, M. H. and Noor, M. R. M. 2002. Fruit set and oil palm bunch components. 

Journal of Oil Palm Research 14 (2): 24–33. 
 
Hatfield, J. L. and Prueger, J. H. 2015. Temperature extremes: Effect on plant 

growth and development. Weather and climate extremes 10: 4–10. 
 
Hirabayashi, K., Murch, S. J. and Erland, L. A. 2022. Predicted impacts of climate 

change on wild and commercial berry habitats will have food security, 
conservation and agricultural implications. Science of The Total 
Environment 157341. 

 
Hormaza, P., Fuquen, E. M. and Romero, H. M. 2012. Phenology of the oil palm 

interspecific hybrid Elaeis oleifera x Elaeis guineensis. Scientia Agricola 69 
(4): 275–280. 

 
Hornik, K., Stinchcombe, M. and White, H. 1989. Multilayer feedforward 

networks are universal approximators. Neural networks 2 (5): 359–366. 
 
Horning, N. et al. 2010. Random Forests: An algorithm for image classification 

and generation of continuous fields data sets. In Proceedings of the 
International Conference on Geoinformatics for Spatial Infrastructure 
Development in Earth and Allied Sciences, Osaka, Japan. 

 
Howard, F. W., Giblin-Davis, R., Moore, D. and Abad, R. 2001. Insects on palms. 

Cabi. 
 
Hsu, C.-W., Chang, C.-C., Lin, C.-J. et al. 2003. A practical guide to support 

vector classification. 
 
Hu, L.-Y., Huang, M.-W., Ke, S.-W. and Tsai, C.-F. 2016. The distance function 

effect on k-nearest neighbor classification for medical datasets. Springer 
Plus 5 (1): 1304. 

 



© C
OPYRIG

HT U
PM

 

92 
 

Huang, Y., Lan, Y., Thomson, S. J., Fang, A., Hoffmann, W. C. and Lacey, R. E. 
2010. Development of soft computing and applications in agricultural and 
biological engineering. Computers and electronics in agriculture 71 (2): 
107–127. 

 
Hudson, I. L., Kim, S. W. and Keatley, M. R. 2010, In Phenological research, In 

Phenological research, 209–228, Springer, 209–228. 
 
Hussein, M., Lajis, N. and Ali, J. 1990. Biological and chemical factors associated 

with the successful introduction of Elaeidobius kamerunicus Faust, the oil 
palm pollinator in Malaysia. In VI International Symposium on Pollination 
288, 81– 87. 

 
Hussein, M., Lajis, N., Kinson, A., Teo, C. et al. 1989. Laboratory and field 

evaluation on the attractancy of Elaeidobius kamerunicus Faust to 4-
allylanisole. Porim Bulletin (18): 20–26. 

 
Hyseni, G., Caka, N. and Hyseni, K. 2010. Infrared thermal detectors 

parameters: semiconductor bolometers versus pyroelectrics. WSEAS 
Transactions on circuits and systems 9 (4): 238–247. 

 
Imandoust, S. B. and Bolandraftar, M. 2013. Application of k-nearest neighbor 

(knn) approach for predicting economic events: Theoretical background. 
International Journal of Engineering Research and Applications 3 (5): 605–
610. 

 
Ishimwe, R., Abutaleb, K. and Ahmed, F. 2014. Applications of thermal imaging 

in agriculture a review. Advances in remote Sensing 3 (03): 128. 
 
Islam, M. J., Wu, Q. J., Ahmadi, M. and Sid-Ahmed, M. A. 2007. Investigating 

the performance of naive-bayes classifiers and k-nearest neighbor 
classifiers. In 2007 International Conference on Convergence Information 
Technology (ICCIT 2007), 1541–1546. IEEE. 

 
Jackson, L., van Noordwijk, M., Bengtsson, J., Foster, W., Lipper, L., Pulleman, 

M., Said, M., Snaddon, J. and Vodouhe, R. 2010. Biodiversity and 
agricultural sustainagility: from assessment to adaptive management. 
Current opinion in environmental sustainability 2 (1-2): 80–87. 

 
Jeong, J. H., Resop, J. P., Mueller, N. D., Fleisher, D. H., Yun, K., Butler, E. E., 

Timlin, D. J., Shim, K.-M., Gerber, J. S., Reddy, V. R. et al. 2016. Random 
forests for global and regional crop yield predictions. PLoS One 11 (6). 

 
Jin, Zhang Lihua, R. S. M., Renzu, Zhang Yongqiang, Z. W. Z. and Jing, W. 

2012. Prediction of Flowering Beginning of Pear Trees in Fengxian J. 
Meteorological Science and Technology 3: 028. 

 
Jones, H. G. 2004, In Advances in Botanical Research, In Advances in Botanical 

Research, , vol. 41, 107–163, Elsevier, 107–163. 



© C
OPYRIG

HT U
PM

 

93 
 

 
Jones, H. G., Serraj, R., Loveys, B. R., Xiong, L., Wheaton, A. and Price, A. H. 

2009. Thermal infrared imaging of crop canopies for the remote diagnosis 
and quantification of plant responses to water stress in the field. Functional 
Plant Biology 36 (11): 978–989. 

 
Kakishima, S., Terajima, Y., Murata, J. and Tsukaya, H. 2011. Infrared 

thermography and odor composition of the Amorphophallus gigas 
(Araceae) inflorescence: the cooling effect of the odorous liquid. Plant 
Biology 13 (3): 502–507. 

 
Kant, Y., Bharath, B., Mallick, J., Atzberger, C. and Kerle, N. 2009. Satellitebased 

analysis of the role of land use/land cover and vegetation density on surface 
temperature regime of Delhi, India. Journal of the Indian Society of Remote 
Sensing 37 (2): 201–214. 

Kar, A. K. 2016. Bio inspired computing–a review of algorithms and scope of 
applications. Expert Systems with Applications 59: 20–32. 

 
Kartika, N. D., Astika, I. W. and Santosa, E. 2016. Oil palm yield forecasting 

based on weather variables using artificial neural network. Indonesian 
Journal of Electrical Engineering and Computer Science 3 (3): 626–633. 

 
Kassim, M. R. M. and Harun, A. N. 2015. Using Wireless Sensor Network to 

determine pollination readiness of oil palm flower. In Sensing Technology 
(ICST), 2015 9th International Conference on, 59–64. IEEE. 

 
Kaundal, R., Kapoor, A. S. and Raghava, G. P. 2006. Machine learning 

techniques in disease forecasting: a case study on rice blast prediction. 
BMC bioinformatics 7 (1): 485. 

 
Kevan, P. G., Clark, E. A. and Thomas, V. G. 1990. Insect pollinators and 

sustainable agriculture. American Journal of Alternative Agriculture 5 (1): 
13–22. 

 
Kevan, P. G., Hussein, M. Y., Hussey, N., Wahid, M. B. et al. 1986. Modelling 

the use of Elaeidobius kamerunicus for pollination of oil palm. Planter 62: 
89–99. 

 
Kevan, P. G. and Phillips, T. P. 2001. The economic impacts of pollinator 

declines: an approach to assessing the consequences. Conservation 
ecology 5 (1). 

 
Khanal, S., Fulton, J. and Shearer, S. 2017. An overview of current and potential 

applications of thermal remote sensing in precision agriculture. Computers 
and Electronics in Agriculture 139: 22–32. 

 
Knudsen, J., Tollsten, L. and Ervik, F. 2001. Flower scent and pollination in 

selected neotropical palms. Plant Biology 3 (6): 642–653. 
 



© C
OPYRIG

HT U
PM

 

94 
 

Kohavi, R. et al. 1995. A study of cross-validation and bootstrap for accuracy 
estimation and model selection. In Ijcai, 1137–1145. Montreal, Canada. 

 
Kruskal, W. H. and Wallis, W. A. 1953. Errata: Use of ranks in one-criterion 

variance analysis. Journal of the American statistical Association 48 (264): 
907– 911. 

 
Kuccuk, C., Tacskin, G. and Erten, E. 2016. Paddy-rice phenology classification 

based on machine-learning methods using multitemporal co-polar X-band 
SAR images. IEEE Journal of Selected Topics in Applied Earth 
Observations and Remote Sensing 9 (6): 2509–2519. 

 
Kumar, S. and Chong, I. 2018. Correlation analysis to identify the effective data 

in machine learning: Prediction of depressive disorder and emotion states. 
International journal of environmental research and public health 15 (12): 
2907. 

 
Kumar, S. S., Ranjith, A. et al. 2015. Studies on inflorescence production and 

pollination in oil palm. Progressive Horticulture 47 (2): 194–202. 
 
Kushairi, A., Tarmizi, A., Zamzuri, I., Ong-Abdullah, M., Samsul Kamal, R., Ooi, 

S. and Rajanaidu, N. 2010. Production, performance and advances in oil 
palm tissue culture. In International Seminar on Advances in Oil Palm 
Tissue Culture. Yogyakarta. 

 
Lai, J., Lortie, C. J., Muenchen, R. A., Yang, J. and Ma, K. 2019. Evaluating the 

popularity of R in ecology. Ecosphere 10 (1): e02567. 
 
Lamprecht, I., Wads¨o, L. and Seymour, R. S. 2013. Calorimetric investigations 

of the pollination biology of the thermogenic inflorescences of the dragon 
lily (Dracunculus vulgaris) and its pollinator (Protaetia cretica) on Crete. 
Thermochimica acta 551: 84–91. 

 
Latip, N., Abd, F. B., Abidin, C., Zainal, M. R. B., Ghani, I. B. A., MH, M. F., Al 

Talafha, H. et al. 2018. Effects of oil palm planting materials, rainfall, number 
of inflorescences and spikelet on the population abundance of oil palm 
pollinator, Elaeidobius kamerunicus FAUST (Coleoptera: Curculionidae). 
Serangga 23 (1). 

 
Lebrini, Y., Boudhar, A., Hadria, R., Lionboui, H., Elmansouri, L., Arrach, R., 

Ceccato, P. and Benabdelouahab, T. 2019. Identifying agricultural systems 
using SVM classification approach based on phenological metrics in a semi-
arid region of Morocco. Earth Systems and Environment 3 (2): 277–288. 

 
Lee, D. K., In, J. and Lee, S. 2015. Standard deviation and standard error of the 

mean. Korean journal of anesthesiology 68 (3): 220–223. 
 
Legros, S., Mialet-Serra, I., Caliman, J.-P., Siregar, F. A., Cl´ement-Vidal, A. and 

Dingkuhn, M. 2009. Phenology and growth adjustments of oil palm (Elaeis 



© C
OPYRIG

HT U
PM

 

95 
 

guineensis) to photoperiod and climate variability. Annals of botany 104 (6): 
1171–1182. 

 
Li, K., Grass, I., Fung, T.-Y., Fardiansah, R., Rohlfs, M., Buchori, D. and 

Tscharntke, T. 2022. Adjacent forest moderate’s insect pollination of oil 
palm. Agriculture, Ecosystems & Environment 338: 108108. 

 
Li, K., Tscharntke, T., Saintes, B., Buchori, D. and Grass, I. 2019. Critical factors 

limiting pollination success in oil palm: a systematic review. Agriculture, 
Ecosystems & Environment 280: 152–160. 

 
Li, M., Ma, L., Blaschke, T., Cheng, L. and Tiede, D. 2016. A systematic 

comparison of different object-based classification techniques using high 
spatial resolution imagery in agricultural environments. International Journal 
of Applied Earth Observation and Geoinformation 49: 87–98. 

 
Liakos, K., Busato, P., Moshou, D., Pearson, S. and Bochtis, D. 2018. Machine 

learning in agriculture: A review. Sensors 18 (8): 2674. 
 
Lillesand, T., Kiefer, R. W. and Chipman, J. 2015. Remote sensing and image 

interpretation. John Wiley & Sons. 
 
Liu, M., Wang, M., Wang, J. and Li, D. 2013. Comparison of random forest, 

support vector machine and back propagation neural network for electronic 
tongue data classification: Application to the recognition of orange beverage 
and Chinese vinegar. Sensors and Actuators B: Chemical 177: 970–9. 

 
Liu, T., Li, R., Zhong, X., Jiang, M., Jin, X., Zhou, P., Liu, S., Sun, C. and Guo, 

W. 2018. Estimates of rice lodging using indices derived from UAV visible 
and thermal infrared images. Agricultural and Forest Meteorology 252: 144–
154. 

 
Lloret, J., Garcia, M., Bri, D. and Sendra, S. 2009. A wireless sensor network 

deployment for rural and forest fire detection and verification. sensors 9 
(11): 8722–8747. 

 
Lorena, A. C., Jacintho, L. F., Siqueira, M. F., De Giovanni, R., Lohmann, L. G., 

De Carvalho, A. C. and Yamamoto, M. 2011. Comparing machine learning 
classifiers in potential distribution modelling. Expert Systems with 
Applications 38 (5): 5268–5275. 

 
Lu, D. and Weng, Q. 2007. A survey of image classification methods and 

techniques for improving classification performance. International journal of 
Remote sensing 28 (5): 823–870. 

 
Ma, C., Zhang, H. H. and Wang, X. 2014. Machine learning for big data analytics 

in plants. Trends in plant science 19 (12): 798–808. 
 



© C
OPYRIG

HT U
PM

 

96 
 

Maimaitijiang, M., Sagan, V., Sidike, P., Hartling, S., Esposito, F. and Fritschi, F. 
B. 2020. Soybean yield prediction from UAV using multimodal data fusion 
and deep learning. Remote sensing of environment 237: 111599. 

 
Makridakis, S., Spiliotis, E. and Assimakopoulos, V. 2018. Statistical and 

Machine Learning forecasting methods: Concerns and ways forward. PloS 
one 13 (3): e0194889. 

 
Manickavasagan, A., Jayas, D. S., White, N. D. and Paliwal, J. 2005. 

Applications of thermal imaging in agriculture–a review. In Written for 
presentation at the CSAE/SCGR 2005 Meeting, Winnipeg, Manitoba, paper. 

 
Mathews J, Barasa R A, B. H. and A, A. 2016. Impact of assisted and natural 

weevils’ pollination in young matured oil palm in West Kalimantan. 
international seminar IOPRIMPOB 9. 

 
Meeuse, B. 1978. The physiology of some sapromyophilous flowers. The 

pollination of flowers by insects 97: 104. 
 
Meeuse, B. J. and Raskin, I. 1988. Sexual reproduction in the arum lily family, 

with emphasis on thermogenicity. Sexual Plant Reproduction 1 (1): 3–15. 
 
Meijaard, E., Garcia-Ulloa, J., Sheil, D., Wich, S., Carlson, K., Juffe-Bignoli, D. 

and Brooks, T. 2018. Oil palm and biodiversity: A situation analysis by the 
IUCN Oil Palm Task Force. 

 
Meijaard, E. and Sheil, D. 2013, In Encyclopedia of biodiversity, In Encyclopedia 

of biodiversity, Elsevier Science Publishers, Netherlands. 
 
Melendez, M. R. and Ponce, W. P. 2016. Pollination in the oil palms Elaeis 

guineensis, E. oleifera and their hybrids (OxG), in tropical America. 
Pesquisa Agropecuaria Tropical 46 (1): 102–110. 

 
Messina, G. and Modica, G. 2020. Applications of UAV thermal imagery in 

precision agriculture: State of the art and future research outlook. Remote 
Sensing 12 (9): 1491. 

 
Michie, D., Spiegelhalter, D. J., Taylor, C. et al. 1994. Machine learning. Neural 

and Statistical Classification 13. 
 
Mogoll, T. and Diego, J. 2020. Follow-up and characterization on phenologica of 

female inflorescences in three cultivars of the interspecific OxG under 
climatic conditions a ticas from the central zone of Colombia. 

 
Mohammada, Z., NorAzizi Othmanb, N. A. B., Harac, H., Zakariac, Z. and 

Sugiurac, N. 2016. Innovation in agricultural support on sustainability for 
fresh fruit brunch (FFB) of Elaeis guineesis in Malaysia using Artificial 
Domestic Pollination System (ADOPSY). Jurnal Teknologi 78 (8): 125–132 

 



© C
OPYRIG

HT U
PM

 

97 
 

Monitoring, I. C. 2008, Diagnostics of Machines Thermography. 
 
Montes Bazurto, L. G., Sanchez, L. A., Prada, F., Daza, E. S., Bustillo, A. E. and 

Romero, H. M. 2018. Relationships Between Inflorescences and Pollinators 
and Their Effects on Bunch Components in Elaeis guineensis, in Colombia. 
Journal of entomological science 53 (4): 554–568. 

 
 
Montoya, M. M., Villabona, M. V., D’ i az, C. F., A lvarez, E. R.’ i. z., Su ´a ´ rez, 

M. U. n. a., Vargas, F. R.’o. n. and Arias, N. A. 2016. Production costs ’on 
of the oil palm agribusiness in Colombia in 2014. Palmas Magazine 37 (2): 
37–53. 

 
Muhamad Fahmi, M., Ahmad Bukhary, A., Norma, H. and Idris, A. 2016. Analysis 

of volatile organic compound from Elaeis guineensis inflorescences planted 
on different soil types in Malaysia. In AIP Conference Proceedings, 060020. 
AIP Publishing LLC. 

 
Multsch, S., Exbrayat, J.-F., Kirby, M., Viney, N., Frede, H.-G. and Breuer, L. 

2015. Reduction of predictive uncertainty in estimating irrigation water 
requirement through multi-model ensembles and ensemble averaging. 
Geoscientific Model Development 8 (4): 1233–1244. 

 
Mustakim, M., Buono, A. and Hermadi, I. 2016. Performance comparison 

between support vector regression and artificial neural network for 
prediction of oil palm production. Jurnal Ilmu Komputer dan Informasi 9 (1): 
1–8. 

 
Naidoo, L., Cho, M. A., Mathieu, R. and Asner, G. 2012. Classification of 

savanna tree species, in the Greater Kruger National Park region, by 
integrating hyperspectral and LiDAR data in a Random Forest data mining 
environment. ISPRS journal of Photogrammetry and Remote Sensing 69: 
167–179. 

 
National applied R & D center, M. 2015, Intelligent plantation management 

solution, MIMOS BERHAD. 
 
Ng’ombe, J. N. and Lambert, D. M. 2021. Using Hamiltonian Monte Carlo via 

Stan to estimate crop input response functions with stochastic plateaus. 
Journal of Agriculture and Food Research 6: 100226. 

 
Nigam, A., Garg, S., Agrawal, A. and Agrawal, P. 2019. Crop yield prediction 

using machine learning algorithms. In 2019 Fifth International Conference 
on Image Information Processing (ICIIP), 125–130. IEEE. 

 
Norman, K., Ramle, M., Saharul, A. M., Mohd, R. S. et al. 2018. Fruit set and 

weevil pollination issues in oil palm. Planter 94 (1110): 565–578 
 



© C
OPYRIG

HT U
PM

 

98 
 

Normand, F. and Lechaudel, M. 2004. Toward a better interpretation and use of 
thermal time models. In VII International Symposium on Modelling in Fruit 
Research and Orchard Management 707, 159–165 

 
Nosratabadi, S., Imre, F., Szell, K., Ardabili, S., Beszedes, B. and Mosavi, A. 

2020. Hybrid machine learning models for crop yield prediction. arXiv 
preprint arXiv:2005.04155. 

 
Nti, I. K., Adekoya, A. F. and Weyori, B. A. 2019. A systematic review of 

fundamental and technical analysis of stock market predictions. Artificial 
Intelligence Review 1–51. 

 
Ostertagova, E., Ostertag, O. and Kov´aˇc, J. 2014. Methodology and application 

of the Kruskal-Walli’s test. In Applied Mechanics and Materials, 115–120. 
Trans Tech Publ. 

 
Osuna, E., Freund, R. and Girosit, F. 1997. Training support vector machines: 

an application to face detection. In Proceedings of IEEE computer society 
conference on computer vision and pattern recognition, 130–136. IEEE. 

 
Ozgur, C., Colliau, T., Rogers, G., Hughes, Z. et al. 2017. MatLab vs. Python vs. 

R. Journal of data Science 15 (3): 355–371. 
 
Pal, M. 2005. Random forest classifier for remote sensing classification. 

International Journal of Remote Sensing 26 (1): 217–22 
 
Pang, B., Nijkamp, E. and Wu, Y. N. 2020. Deep learning with TensorFlow: A 

review. Journal of Educational and Behavioral Statistics 45 (2): 227–248. 
 
Pena, J., Gutierrez, P., Hervas-Martinez, C., Six, J., Plant, R. and Lopez 

Granados, F. 2014. Object-based image classification of summer crops with 
machine learning methods. Remote Sensing 6 (6): 5019–5041. 

 
Peng, J., Heisterkamp, D. R. and Dai, H. 2002. Adaptive kernel metric nearest 

neighbor classification. In Object recognition supported by user interaction 
for service robots, 33–36. IEEE. 

 
Prakash, A. 2000. Thermal remote sensing: concepts, issues and applications. 

International Archives of Photogrammetry and Remote Sensing 33 (B1; 
PART 1): 239–243 

 
Prasad, P. V. V., Craufurd, P. Q., Kakani, V. G., Wheeler, T. R. and Boote, K. J. 

2001. Influence of high temperature during pre-and post-anthesis stages of 
floral development on fruit-set and pollen germination in peanut. Functional 
Plant Biology 28 (3): 233–240 

 
Prasad, S., Kudiri, K. M. and Tripathi, R. 2011. Relative sub-image-based 

features for leaf recognition using support vector machine. In Proceedings 



© C
OPYRIG

HT U
PM

 

99 
 

of the 2011 International Conference on Communication, Computing & 
Security, 343–346. ACM. 

 
Prasetyo, A. E., Perdana Rozziansha, T. A., Priwiratama, H., Wening, S., 

Susanto, A. and de Chenon, R. D. 2019. Bio-ecological Perspective of 
Elaeidobius kamerunicus Related to Oil Palm Fruit Set in Indonesia. 

 
Prasetyo, A. E., Purba, W. O., Susanto, A. et al. 2014. Elaeidobius kamerunicus: 

Application of hatch and carry technique for increasing oil palm fruit set. 
Journal of Oil Palm Research 26 (3): 195–202. 

 
Prince, G., Clarkson, J. P., Rajpoot, N. M. et al. 2015. Automatic detection of 

diseased tomato plants using thermal and stereo visible light images. PloS 
one 10 (4): e0123262. 

 
Priya, C. A., Balasaravanan, T. and Thanamani, A. S. 2012. An efficient leaf 

recognition algorithm for plant classification using support vector machine. 
In International conference on pattern recognition, informatics and medical 
engineering (PRIME-2012), 428–432. IEEE. 

 
Rahardjo, B., Rizali, A., Utami, I., Karindah, S., Puspitarini, R., Sahari, B. et al. 

2018. Population site of Elaeidobius kamerunicus Faust (Coleoptera: 
Curculionidae) on different age of oil palm plantation. Indonesian Journal of 
Entomology 15 (1): 31–39. 

 
Rampasek, L. and Goldenberg, A. 2016. TensorFlow: biology’s gateway to deep 

learning? Cell systems 2 (1): 12–14. 
 
Rao, V., Law, I. et al. 1998. The problem of poor fruit set in parts of East 

Malaysia. Planter 74 (870): 463–483. 
 
Raskin, I., Turner, I. M. and Melander, W. R. 1989. Regulation of heat production 

in the inflorescences of an Arum lily by endogenous salicylic acid. 
Proceedings of the National Academy of Sciences 86 (7): 2214–2218. 

 
Richards, J. A. and Richards, J. 1999. Remote sensing digital image analysis. , 

vol. 3. Springer. 
 
Riley, S. O., Dery, S. K., Afreh-Nuamah, K., Agyei-Dwarko, D. and Ayizannon, 

R. G. 2022. Pollinators of oil palm and relationship to fruitset and yield in 
two fruit forms in Ghana. OCL 29: 17 

 
Rodriguez-Galiano, V. F., Ghimire, B., Rogan, J., Chica-Olmo, M. and 

RigolSanchez, J. P. 2012. An assessment of the effectiveness of a random 
forest classifier for land-cover classification. ISPRS Journal of 
Photogrammetry and Remote Sensing 67: 93–104. 

 
Romero, H. n. M., Daza, E., Urrego, N., Rivera, Y. and Ayala, I. 2018. Artificial 

pollination with growth regulators increases the production of oil in 



© C
OPYRIG

HT U
PM

 

100 
 

interspecific OxG bridles. In Memories XIX Conference on oil palm, 
Cartagena, Colombia. 

 
Roubik, D. W. 1995. Pollination of cultivated plants in the tropics. Food & 

Agriculture Org. 
 
Rubio, E., Caselles, V. and Badenas, C. 1997. Emissivity measurements of 

several soils and vegetation types in the 8–14, µm Wave band: Analysis of 
two field methods. Remote Sensing of Environment 59 (3): 490–521. 

 
Ruiz-Alvarez, E., Daza, E. S., Caballero-Blanco, K. and Mosquera-Montoya, M. 

2021. Complementing assisted pollination with artificial pollination in oil 
palm crops planted with interspecific hybrids O× G (Elaeis guineensis× 
Elaeis oleifera): Is it profitable? OCL 28: 27. 

 
Rumpf, T., Mahlein, A.-K., Steiner, U., Oerke, E.-C., Dehne, H.-W. and Plumer, 

L. 2010. Early detection and classification of plant diseases with support 
vector machines based on hyperspectral reflectance. Computers and 
electronics in agriculture 74 (1): 91–99. 

 
Sagan, V., Maimaitijiang, M., Sidike, P., Eblimit, K., Peterson, K. T., Hartling, S., 

Esposito, F., Khanal, K., Newcomb, M., Pauli, D. et al. 2019. UAV-based 
high resolution thermal imaging for vegetation monitoring, and plant 
phenotyping using ICI 8640 P, FLIR Vue Pro R 640, and thermos map 
cameras. Remote Sensing 11 (3): 330. 

 
Samaniego, L. and Schulz, K. 2009. Supervised classification of agricultural land 

cover using a modified k-NN technique (MNN) and Landsat remote sensing 
imagery. Remote Sensing 1 (4): 875–895. 

 
Sammut, C. and Webb, G. I. 2011. Encyclopedia of machine learning. Springer 

Science & Business Media. 
 
Sanchez, A., Daza, E., Ruiz, R. and Romero, H. 2011, Oil-assisted pollination. 

Technologies for the agro-industry of the oil palm: guide for facilitators. 
 
Sankaran, S., Khot, L. R., Espinoza, C. Z., Jarolmasjed, S., Sathuvalli, V. R., 

Vandemark, G. J., Miklas, P. N., Carter, A. H., Pumphrey, M. O., Knowles, 
N. R. et al. 2015. Low-altitude, high-resolution aerial imaging systems for 
row and field crop phenotyping: A review. European Journal of Agronomy 
70: 112– 123. 

 
Saruta, K., Hirai, Y., Tanaka, K., Inoue, E., Okayasu, T. and Mitsuoka, M. 2013. 

Predictive models for yield and protein content of brown rice using support 
vector machine. Computers and electronics in agriculture 99: 93–100. 

 
Sepulcre-Canto, G., Zarco-Tejada, P. J., Jimenez-Munoz, J., Sobrino, J., De 

Miguel, E. and Villalobos, F. J. 2006. Detection of water stress in an olive 



© C
OPYRIG

HT U
PM

 

101 
 

orchard with thermal remote sensing imagery. Agricultural and Forest 
meteorology 136 (1-2): 31–44. 

 
Setyawan, Y., Naim, M., Advento, A. and Caliman, J. 2020. The effect of 

pesticide residue on mortality and fecundity of Elaeidobius kamerunicus 
(Coleoptera: Curculionidae). In IOP Conference Series: Earth and 
Environmental Science, 012020. IOP Publishing. 

 
Seymour, R. S. 2001. Biophysics and physiology of temperature regulation in 

thermogenic flowers. Bioscience reports 21 (2): 223. 
 
Seymour, R. S. and Blaylock, A. J. 1999. Switching off the heater: influence of 

ambient temperature on thermoregulation by eastern skunk cabbage 
Symplocarpus foetidus. Journal of Experimental Botany 50 (338): 1525–
1532. 

 
Seymour, R. S., Maass, E. and Bolin, J. F. 2009. Floral thermogenesis of three 

species of Hydnora (Hydnoraceae) in Africa. Annals of Botany 104 (5): 823–
832. 

 
Shafri, H. Z., Anuar, M. I., Seman, I. A. and Noor, N. M. 2011. Spectral 

discrimination of healthy and Ganoderma-infected oil palms from 
hyperspectral data. International Journal of Remote Sensing 32 (22): 7111–
7129. 

 
Shao, Y. and Lunetta, R. S. 2012. Comparison of support vector machine, neural 

network, and CART algorithms for the land-cover classification using limited 
training data points. ISPRS Journal of Photogrammetry and Remote 
Sensing 70: 78–87. 

 
Shapiro, S. S. and Wilk, M. B. 1965. An analysis of variance test for normality 

(complete samples). Biometrika 52 (3/4): 591–611. 
 
Shedlock, C. J. and Stumpo, K. A. 2022. Data parsing in mass spectrometry 

imaging using R Studio and Cardinal: A tutorial. Journal of Mass 
Spectrometry and Advances in the Clinical Lab 23: 58–70. 

 
Shi, L., Duan, Q., Ma, X. and Weng, M. 2011. The research of support vector 

machine in agricultural data classification. In International Conference on 
Computer and Computing Technologies In Agriculture, 265–269. Springer. 

 
Silberbauer-Gottsberger, I. et al. 1990. Pollination and evolution in palms. 

Phyton 30 (2): 213–233. 
 
Singh, A., Ganapathysubramanian, B., Singh, A. K. and Sarkar, S. 2016. 

Machine learning for high-throughput stress phenotyping in plants. Trends 
in plant science 21 (2): 110–124. 

 



© C
OPYRIG

HT U
PM

 

102 
 

Socha, J., Cayon, D., Ligarreto, G. and Chaves, G. 2019. Effect of pollen doses 
on fruit formation and oil production in two hybrid palm genotypes (Elaeis 
oleifera HBK Cortes x Elaeis guineensis Jacq.). Agronomia Colombiana 37 
(1): 12–17. 

 
Soetopo, D. et al. 2020. Population of oil palm pollinator insect (Elaeidobius 

kamerunicus faust.) at PTP Nusantara VIII Cisalak Baru, Rangkasbitung 
Banten. In IOP Conference Series: Earth and Environmental Science, 
012045. IOP Publishing. 

 
Soh, A., Wong, G., Hor, T., Tan, C., Chew, P. et al. 2003. Oil palm genetic 

improvement. Plant Breeding Reviews 22: 165–220. 
 
St-Laurent, L., Maldague, X. and Prevost, D. 2007. Combination of color and 

thermal sensors for enhanced object detection. In 2007 10th International 
Conference on Information Fusion, 1–8. IEEE 

 
Su, Y.-x., Xu, H. and Yan, L.-j. 2017. Support vector machine-based open crop 

model (SBOCM): Case of rice production in China. Saudi journal of 
biological sciences 24 (3): 537–547. 

 
Sutarta, E. S., Santoso, H. and Yusuf, M. 2015, Climate Change on Oil Palm: Its 

Impacts and Adaptation Strategies. 
 
Swaray, S., Amiruddin, M. D., Yusop, M. R., Jamian, S., Ismail, M. F., Yusuff, 

O., Turay, F., Jalloh, M., Mohamed, U., Gassama, M. M. et al. 2021a. 
Impact of Elaeidobius kamerunicus population in F1 hybrid-single 
generation families of oil palm on Malaysia profound peat-soil. International 
Journal of Environment, Agriculture and Biotechnology 7: 3. 

 
Swaray, S., Y. Rafii, M., Din Amiruddin, M., Firdaus Ismail, M., Jamian, S., Jalloh, 

M., Oladosu, Y., Mustakim Mohamad, M., Marjuni, M., Kolapo, O. K. et al. 
2021b. Assessment of oil palm pollinating weevil (Elaeidobius kamerunicus) 
population density in biparental dura× pisifera hybrids on deep peat-soil in 
Perak state, Malaysia. Insects 12 (3): 221. 

 
Syed, R., Law, I., Corley, R. et al. 1982. Insect pollination of oil palm: 

introduction, establishment and pollinating efficiency of Elaeidobius 
kamerunicus in Malaysia. Planter 58: 547–561. 

 
Syed, R. A. 1979. Studies on oil palm pollination by insects. Bulletin of 

Entomological Research 69 (2): 213–224. 
 
Tandon, R., Shivanna, K. and Ram, H. M. 2001. Pollination biology and breeding 

system of Acacia Senegal. Botanical Journal of the Linnean Society 135 (3): 
251–262. 

 



© C
OPYRIG

HT U
PM

 

103 
 

Tatsumi, K., Yamashiki, Y., Torres, M. A. C. and Taipe, C. L. R. 2015. Crop 
classification of upland fields using Random Forest of time-series Landsat 
7 ETM+ data. Computers and Electronics in Agriculture 115: 171–179. 

 
Team, R. et al. 2015. RStudio: integrated development for R. RStudio, Inc., 

Boston, MA URL http://www. RStudio. com 42: 14. 
Teo, T. 2015. Effectiveness of the oil palm pollinating weevil, Elaeidobius 

kamerunicus, in Malaysia. 
 
Ting, K. M. 2017. Confusion Matrix, 260–260. Boston, MA: Springer US. 
 
Tuo, Y., Koua, H. K. and Hala, N. 2011. Biology of Elaeidobius kamerunicus and 

Elaeidobius plagiatus (Coleoptera: Curculionidae), main pollinators of oil 
palm in West Africa. European Journal of Scientific Research 49 (3): 426–
432. 

 
Turner, P. and Gillbanks, R. 1982. Oil palm cultivation and management. 

Stewart, WM. 1965. Physical distribution: key to improve volume and profits. 
Journal of marketing 29: 67. 

 
Urru, I., Stensmyr, M. C. and Hansson, B. S. 2011. Pollination by brood-site 

deception. Phytochemistry 72 (13): 1655–1666. 
 
Ustuner, M., Sanli, F., Abdikan, S., Esetlili, M. and Kurucu, Y. 2014. Crop type 

classification using vegetation indices of rapid eye imagery. The 
International Archives of Photogrammetry, Remote Sensing and Spatial 
Information Sciences 40 (7): 195. 

 
Vanlerberghe, G. C. and McIntosh, L. 1994. Mitochondrial electron transport 

reulation of nuclear gene expression (studies with the alternative oxidase 
gene of tobacco). Plant Physiology 105 (3): 867–874. 

 
Vapnik, V. and Vapnik, V. 1998. Statistical learning theory Wiley. New York 156– 

160. 
 
Venables, W. N. and Ripley, B. D. 2013. Modern applied statistics with S-PLUS. 

Springer Science & Business Media. 
 
Vera, J. et al. 1996. Insect-assisted pollination in young oil palm plantings. 

Plantations, Recherche, Development 3 (2): 89–96. 
 
Verheye, W. 2010, In Land use, land cover and soil sciences, In Land use, land 

cover and soil sciences, UNESCO-EOLSS Publishers. 
 
Vibhute, A. and Bodhe, S. 2012. Applications of image processing in agriculture: 

a survey. International Journal of Computer Applications 52 (2). 
 



© C
OPYRIG

HT U
PM

 

104 
 

Vijay, V., Pimm, S. L., Jenkins, C. N. and Smith, S. J. 2016. The impacts of oil 
palm on recent deforestation and biodiversity loss. PloS one 11 (7): 
e0159668. 

 
Walker, K. 2011, Africal oil palm weevil (Elaaiedobious kamerunicus). 
 
Wallach, D., Martre, P., Liu, B., Asseng, S., Ewert, F., Thorburn, P. J., van 

Ittersum, M., Aggarwal, P. K., Ahmed, M., Basso, B. et al. 2018. Multimodel 
ensembles improve predictions of crop–environment–management 
interactions. Global change biology 24 (11): 5072–5083. 

 
Walter, A., Studer, B. and Kolliker, R. 2012. Advanced phenotyping offers 

opportunities for improved breeding of forage and turf species. Annals of 
botany 110 (6): 1271–1279. 

 
Wang, R., Xu, S., Liu, X., Zhang, Y., Wang, J. and Zhang, Z. 2014. 

Thermogenesis, flowering and the association with variation in floral odour 
attractants in Magnolia sprengeri (Magnoliaceae). PLoS One 9 (6): e99356 

 
Weinberger, K. Q. and Saul, L. K. 2009. Distance metric learning for large margin 

nearest neighbor classification. Journal of Machine Learning Research 10 
(Feb): 207–244. 

 
Weston, J., Mukherjee, S., Chapelle, O., Pontil, M., Poggio, T. and Vapnik, V. 

2001. Feature selection for SVMs. In Advances in neural information 
processing systems, 668–674. 

 
Wetterich, C. B., Kumar, R., Sankaran, S., Belasque Junior, J., Ehsani, R. and 

Marcassa, L. G. 2012. A comparative study on application of computer 
vision and fluorescence imaging spectroscopy for detection of 
Huanglongbing citrus disease in the USA and Brazil. Journal of 
Spectroscopy 2013. 

 
Witten, I. H., Frank, E., Hall, M. A. and Pal, C. J. 2016. Data Mining: Practical 

machine learning tools and techniques. Morgan Kaufmann. 
 
Woittiez, L. S., van Wijk, M. T., Slingerland, M., van Noordwijk, M. and Giller, K. 

E. 2017. Yield gaps in oil palm: A quantitative review of contributing factors. 
European Journal of Agronomy 83: 57–77. 

 
Xuanke, W., Yiqiang, D., Jiawen, L. et al. 2007. Preliminary Research on the 

Prediction of Osmanthus Fragrans Full Flowering Stage. Journal of Anhui 
Agricultural Sciences 35 (27): 8482. 

 
Yamamoto, K. 2019. Distillation of crop models to learn plant physiology theories 

using machine learning. PloS one 14 (5): e0217075 
 



© C
OPYRIG

HT U
PM

 

105 
 

Yue, J., Yan, Z., Bai, C., Chen, Z., Lin, W. and Jiao, F. 2015. Pollination activity 
of Elaeidobius kamerunicus (Coleoptera: Curculionoidea) on oil palm on 
Hainan Island. Florida entomologist 98 (2): 499–505. 

 
Yun, K., Hsiao, J., Jung, M.-P., Choi, I.-T., Glenn, D. M., Shim, K.-M. and Kim, 

S.-H. 2017. Can a multi-model ensemble improve phenology predictions for 
climate change studies? Ecological Modelling 362: 54–64. 

 
Zhou, Z.-H. 2019. Ensemble methods: foundations and algorithms. Chapman 

and Hall/CRC. 
 
Zolfagharnassab, S., Mohamed Shariff, A. and Ehsani, R. 2016. Emissivity 

determination of oil palm fresh fruit ripeness using a thermal imaging 
technique. In III International Conference on Agricultural and Food 
Engineering 1152, 189–194. 

 
Zulkefli, M. H. H., Jamian, S., Adam, N. A., Jalinas, J., Mohamad, S. A. and 

Masri, M. M. M. 2020. Beyond four decades of Elaeidobius kamerunicus 
Faust (Coleoptera: Curculionidae) in the Malaysian oil palm industry: a 
review. Journal of Tropical Ecology 36 (6): 282–292. 

 
Jones, B. C. (1998). Suggestions for better referencing. Journal of Business 

Communication, 289(3): 42-45. 
 
Pratt, D. (1998). The Role of Religion. In M.C. McLaren (Ed.), Interpreting 

Cultural Differences (pp. 86-96). Norfolk: Peter Francis Publishers 
 
Moore, W. K. (2004). Malaysia: A Pictorial History 1400-2004. Kuala Lumpur: 

Archipelago Press. 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 




