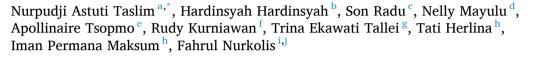

Contents lists available at ScienceDirect



journal homepage: www.sciencedirect.com/journal/journal-of-agriculture-and-food-research

Functional food candidate from Indonesian green algae *Caulerpa racemosa* (Försskal) J. Agardh by two extraction methods: Metabolite profile, antioxidant activity, and cytotoxic properties

^a Division of Clinical Nutrition, Department of Nutrition, Faculty of Medicine, Hasanuddin University, Makassar, 90245, Indonesia

- ^f Graduate School of Medicine, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
- ^g Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado, 95115, Indonesia
- ^h Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang, 45363, Indonesia
- ¹ Department of Biological Sciences, Faculty of Sciences and Technology, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Yogyakarta, 55281, Indonesia

ARTICLE INFO

Keywords: Caulerpa racemosa Metabolite profile Nutraceutical property Antioxidant capacity Green algae Cytotoxicity

ABSTRACT

There is an urgent need to explore natural sources like *Caulerpa racemosa* (Försskal) J. Agardh for bioactive compounds with strong antioxidant and therapeutic potential, providing sustainable alternatives for health and pharmaceutical innovation. This study aimed to determine the phytochemical profile and biological activities of extracts from edible green algae–known as sea grapes (*C. racemosa*). This present study has successfully identified secondary metabolites through untargeted metabolomic profiling by liquid chromatography-high resolution mass spectrometry (LC-HRMS) as well as a bioactive peptide. The antioxidant activity and cytotoxicity of extracts from *C. racemosa* and compounds were determined. A total of 103 metabolites were identified in the *C. racemosa* extract obtained by the maceration (ME), while 48 metabolites were detected in the soxhlet extract (SE). The sequence of the identified peptide was ELWKTF (Glu-Leu-Trp-Lys-Thr-Phe; C41H58NgO) and its abundance was identified in the α -chymotrypsin hydrolysate of *C. racemosa*. In the antioxidant activity test, SE and purified fraction 1 (PF1) had EC₅₀<EC₅₀ of control or Glutathione (GSH) in terms of 2,2'-Diphenyl-1-picrylhydrazyl (DPPH) inhibition, and PF1 had EC₅₀<EC₅₀ of control or Trolox in terms of 2,2'-Azino-bis(3-ethylbenzothiazo-line-6-sulfonic acid) (ABTS) inhibition. In general, *C. racemosa* contains antioxidant nutrients, metabolites, and bioactive peptides, suggesting its promising potential as a functional food and pharmaceutical.

1. Introduction

Marine life is a rich natural source of numerous bioactive compounds. Marine organisms exist in various complex habitats with extreme circumstances, and these biochemically and ecologically significant differences provide a wide variety of specific, potent, and novel compounds that have not yet been extensively explored [1,2]. Among these organisms, marine macroalgae are currently recognized as 'superfoods' because of their superior nutritional value and abundance of bioactive secondary metabolites [3,4]. They are rich in carbohydrates, proteins, unsaturated fatty acids, a complete set of vitamins, and estimated minerals, which are 10–100 folds higher than terrestrial

* Corresponding author.

Received 20 August 2024; Received in revised form 10 November 2024; Accepted 10 November 2024 Available online 12 November 2024

^b Division of Applied Nutrition, Department of Community Nutrition, Human Ecology, IPB University, Bogor, West Java, 16680, Indonesia

^c Department of Food Sciences, Universiti Putra Malaysia, Selangor, 43400, Malaysia

^d Department of Nutrition, Faculty of Health Science, Muhammadiyah Manado University, Manado 95249, Indonesia

^e Food Science and Nutrition Program, Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada

^j Medical Research Center of Indonesia (MERCIE), Surabaya, 60281, Indonesia

E-mail addresses: pudji_taslim@yahoo.com (N.A. Taslim), hardinsyah2010@gmail.com (H. Hardinsyah), sonradu@gmail.com (S. Radu), nmayulu@unsrat.ac.id (N. Mayulu), apollinaire_tsopmo@carleton.ca (A. Tsopmo), rudycrates@gmail.com (R. Kurniawan), trina_tallei@unsrat.ac.id (T.E. Tallei), tati.herlina@unpad.ac. id (T. Herlina), iman.permana@unpad.ac.id (I.P. Maksum), fahrul.nurkolis.mail@gmail.com (F. Nurkolis).

https://doi.org/10.1016/j.jafr.2024.101513

^{2666-1543/© 2024} The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

vegetables due to their bioabsorption and bioaccumulative properties [2,5]. The global harvest of macroalgae in 2013 was estimated at \$ 6.7 billion, with more than 95 % produced in mariculture countries, making Indonesia one of the top producers [6]. About two-thirds of Indonesia's territory is sea and is well known as one of the mega-diversity areas in the world, with more than 555 macroalgal species reported from its waters [7]. Furthermore, most of the islands of Indonesia are located within the Coral Triangle, which has been identified as an area with a high diversity of *Caulerpa*, a genus of green algae [6].

Sea grapes or Caulerpa racemosa is one of the green seaweeds that grow naturally in the waters of Indonesia, found in coral reef areas or sand-rubble substrates. It is traditionally used as a fresh vegetable; however, its consumption range is still limited to fishermen or communities in the coastal region [8]. C. racemosa is famous for its high nutritional content, which includes minerals, dietary fibers, rich polyunsaturated fatty acids, bioactive secondary metabolites such as phenolics, alkaloids, polysaccharides, and flavonoids that act as bioactive compounds [9,10]. Seaweeds are rich sources of dietary fibers, antioxidants, essential amino acids, phytochemicals, vitamins, polyunsaturated fatty acids, and minerals, making them valuable in various fields [11,12]. Moreover, seaweeds are significant suppliers of commercially valuable substances like agar, carrageenan, and alginate [13]. Studies have shown that these bioactive molecules are behind a diverse range of health benefits, including antioxidant, anticancer, antibacterial, antiobesity, and antidyslipidemic properties [14-16]. These health benefits are mostly attributed to the primary metabolites (polysaccharides, proteins, and lipids) and secondary metabolites (fucoidan, lycopene, astaxanthin, and other pigmental compounds) [17]. In addition, *C. racemosa* is also rich in macro and micro minerals, including Mg, Ca, K, Na, Fe, Cu, and Zn, which are needed to sustain metabolic processes. Due to these beneficial findings, C. racemosa has been considered a potentially valuable functional food, with tremendous development prospects due to its distinctive taste and color [18].

To further incorporate these bioactive molecules into ideal formulations with significant health and economic potential, these compounds must initially be separated by extraction, followed by analysis and identification [19]. Classical maceration and Soxhlet extraction are the most popular techniques among conventional extraction methods. Maceration is an easy and low-cost method of extracting bioactive compounds because it uses non-complicated utensils with barely any operating skills [20-22]. The plant specimen is ground to increase the surface area and then mixed with chosen solvents, followed by periodic shaking to increase diffusion. This method is suitable for thermolabile plant materials, water as a solvent, extended exposure to the menstruum, and the need for large final volume products [19,23]. Meanwhile, Soxhlet extraction, known as continuous hot extraction, is carried out by repeatedly washing the matrix with a warm solvent, allowing higher possible solubilization of the compounds [24,25]. Advantages of Soxhlet extraction include that large amounts of drugs can be extracted with a lower amount of solvent than maceration, no filtration is required, and a high amount of heat can be applied. However, this method is labor-intensive and unsuitable for thermolabile sources [26]. Furthermore, hydrolysis extraction method uses protease enzymes (such as α -chymotrypsin) which are usually used to extract a bioactive peptide content in foodstuffs [27].

However, it should also be noted that natural populations of *C. racemosa* (Försskal) J. Agardh tend to have varying nutritional and biochemical properties due to several environmental factors such as sedimentation, salinity, temperature, pollution, and nutrients. Therefore, different geographical growing fields can contribute to varying levels of nutrients and secondary metabolites [14]. Despite its abundance, the exploration, identification, and isolation of Indonesian *C. racemosa*-specific bioactive molecule profile, bioactive peptides, and their direct activities are still minimal. A compelling approach to conduct this metabolomics identification is liquid chromatography coupled with high-resolution mass spectrometry (HPLC-ESI-HRMS/MS),

which is increasingly used in metabolomics, allowing comprehensive analysis of phytochemicals with semiautomatic collection of study samples [28]. Therefore, this research aims to identify bioactive molecules of *C. racemosa* by metabolomic profiling and bioactive peptides by proteomics and examine its antioxidant potentials and cytotoxicity via *in vitro* 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assays on normal cell lines to ensure its safety. This research is part of foodomics and their interactions with humans, which is currently a trend in food and health research [29,30]. This study's importance lies in its novel focus on Indonesian *C. racemosa*, specifically examining bioactive compounds that may vary significantly due to the unique environmental factors in Indonesia. Compared to previous studies, this research uniquely applies advanced LC-HRMS metabolomic profiling to highlight regional variances, uncovering new therapeutic potentials not yet identified in similar algae from other global regions.

2. Materials and methods

2.1. Reagents

In this study, all reagents used were of analytical grade and sourced to ensure high specificity and accuracy in results. Ethanol (C₂H₅OH, 96 %) was supplied by Merck, Germany, and utilized as the primary solvent in both Soxhlet and maceration extractions, ensuring optimal solubility of bioactive compounds from the C. racemosa (Försskal) J. Agardh samples. DPPH reagent (2,2-diphenyl-1-picrylhydrazyl) was obtained from Sigma-Aldrich (354102, Germany) for evaluating radical scavenging capacity by measuring absorbance at 517 nm, a standard wavelength for colorimetric assays sensitive to radical interactions. For ABTS (2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt) assays, Sigma-Aldrich provided the ABTS and potassium persulfate, prepared as a 7 mM and 2.4 mM solution, respectively, to generate a stable radical solution. The absorbance for ABTS radical activity was measured at 734 nm using a Thermo Scientific™ GENESYS™ spectrophotometer, providing a controlled setting for radical-based evaluations.

The MTT cytotoxicity assay involved using an MTT reagent from Sigma-Aldrich, which forms formazan crystals upon mitochondrial reduction in viable cells. Cell viability was measured post-incubation at 560 nm to establish the cytotoxic profile of extracts and purified fractions on Bud-8 fibroblast cells. DMSO (Sigma-Aldrich, Germany) was used to dissolve the formazan, ensuring consistent solubility for accurate spectrophotometric analysis of cytotoxicity. All procedures maintained controlled environments for reproducibility, with high-grade solvents and reagents supporting the integrity of *in vitro* antioxidant and cytotoxicity evaluations.

2.2. Sea grapes specimen

The sample collection has been approved by the local authorities and the owner of the sea grapes pond. Fresh sea grapes (*C. racemosa* (Försskal) J. Agardh) were collected from the sea grapes cultivation pond in Jepara Regency, Central Java Province, Indonesia (6°35'12.5"S latitude 110°38'36.0"E longitude). Botanical identification and authentication were confirmed in the Integrated Laboratory of the Faculty of Sciences and Technology, UIN Sunan Kalijaga, Yogyakarta-55281, Indonesia, conducted by Dian Aruni Kumalawati, M.Sc, and has complied with National Center for Biotechnology Information (NCBI) Taxonomy ID 76317 (Eukaryota/Viridiplantae/Chlorophyta/Ulvophyceae/ Bryopsidales/Caulerpaceae/Caulerpa). Specimens were collected for future reference. Researchers (authors) state and confirm that all methods carried out in this study are in line or in accordance with relevant guidelines and regulations of *in vitro* and algae study.

2.3. Sea grapes extract preparations

Sea grapes (*C. racemosa*) were thoroughly washed so that the dirt attached to the sea grapes became lost and clean. Washed sea grapes were then twisted and dried in an oven (Memmert Incubator IN55) at a temperature of 60 °C for 3×24 h. Sea grapes (whole-body) were dried, cut into small pieces, and then mashed with a blender to obtain sea grapes (*C. racemosa*) simplicia powder. Dried simplicia was mashed and then extracted using two methods: the hot and cold ways. Maceration represents the cold way, while Soxhlet extraction represents the way of heat (Graphical Abstract).

2.3.1. Maceration extraction method

A total of 1000 g of simplicia powder sea grapes (*C. racemosa*) were put in a dark bottle, then 96 % ethanol solvent (C₂H₅OH; Merck) as much as 2 L with a ratio of 1:2 between simplicia and solvent were mixed and soaked for 3×24 h [31]. Every 1×24 h, the acquired filtrate was occasionally stirred, then filtered with Whatman 41 paper, and the residue was re-macerated with a new 96 % ethanol solvent. The extracted sample was concentrated using a rotary evaporator (RV 8 IKA) under low pressure (100 mbars) for 90 min and re-evaporated in the oven (Memmert Incubator IN55) at a temperature of 40 °C so that a thick extract of sea grapes were obtained. The extract was stored in the refrigerator at a temperature of 10 °C until used in research.

2.3.2. Soxhlet extraction method

Fifty grams of sea grapes (*C. racemosa*) simplicia powder was wrapped in filter paper and inserted into a Soxhlet tube (thimble) on installed Soxhlet tools (PYREX® Soxhlet extractor). 96 % ethanol solvent (C₂H₅OH; Merck) along with 250 mL of the solution was divided into two parts; 150 mL was inserted into the Soxhlet gourd (pumpkin round base), and 100 mL was inserted into the Soxhlet tube to moisten the simplicia. The ratio between simplicia and solvent was 1:5. The Soxhlet extraction process was carried out at a temperature of 70–80 °C, and the extraction was carried out for up to 3 repeat cycles. The extract was stored in the refrigerator at a temperature of 10 °C until used in research [32].

2.3.3. Hydrolysis extraction method by α -chymotrypsin for bioactive peptide measurements

C. racemosa simplicia was dissolved in a 1.0 mM phosphate buffer and then hydrolyzed with the α -chymotrypsin enzyme under its optimal conditions, referring to Ref. [27], which utilizes 1200 U/mg enzyme activity, 37 °C temperature, at 8.0 pH with digestion time of 2 h, substrate concentration of 20 mg/mL, 4.0 E/S (w/w) (%). The reaction was stopped by heating at 95 °C for 15 min, and the hydrolysate protein was centrifuged at 28,617 g for 10 min at 4 °C. The supernatant protein (PS) was lyophilized and stored at a temperature of -20 °C for further use in the analysis of the bioactive profiling of peptides.

2.4. Metabolomic profile of extract from maceration and soxhlet methods

The untargeted metabolomics profiling test on sea grapes extract samples (Maceration; Soxhlet Method) was carried out using the Liquid Chromatography High-Resolution Mass Spectrometry (LC-HRMS) method at the Laboratorium Sentral Ilmu Hayati (LSIH; ISO 9001:2008 and ISO 17025:2005; Central Laboratory of Life Sciences; Brawijaya University, Malang-65145, Indonesia) testing services, with the test number 041/LSIH-UB/LK/II/2022.

2.4.1. Analysis of the maceration and soxhlet samples by HPLC-ESI-HRMS/MS

Fifty μ L of extract samples (Maceration; Soxhlet Method) were diluted using 96 % ethanol up to a final volume of 1500 μ L. The solutions were vortexed at 447 g for 2 min and then span-down at 4024 g for 2 min. The supernatant was taken and then filtered using a 0.22 μ m

syringe filter and injected into the vial. The sample in the vial was ready to be inserted into an autosampler and then injected into LC-HRMS. LC-HRMS uses High-Performance Liquid Chromatography (HPLC) Thermo Scientific Dionex Ultimate 3000 RSLC nano with a micro flow meter. Solvents A and B consist of 0.1 % formic acid in water and 0.1 % formic acid in acetonitrile. The analytical column uses Hypersil GOLD aQ 50 \times 1 mm x 1.9 μ particle size with a flow rate of 40 μ L/min, a flow gradient run time of 30 min, and a column oven with a temperature of 30 °C. HRMS using Thermo Scientific Q Exactive with a full scan at 70,000 resolution, data-dependent MS/MS at 17,500 resolution, and run time of 30 min, with both positive and negative modes [33].

2.4.2. Processing data software

Annotated or detected compounds were automatically identified via mzCloud MS/MS Library (Thermo Scientific Q Exactive Software), which were performed by Midia Lestari Wahyu Handayani, S.TP, M.Sc., MP., Ph.D., a certified laboratory technician at the Sentral Ilmu Hayati Laboratorium (LSIH; ISO 9001:2008 and ISO 17025:2005; Central Laboratory of Life Sciences; Brawijaya University, Malang-65145, Indonesia).

2.5. Proteomics assay of sequence and molecular weight of amino acids

2.5.1. Ultrafiltration and reversed-phase HPLC (RP-HPLC)

The hydrolyzed protein (PS) of *C. racemosa* was divided into three peptide fractions including F1 (<3 kDa), F2 (3–10 kDa), and F3 (>10 kDa) using ultrafiltration membrane of 10 kDa and 3 kDa. This approach referred to Ref. [27], which showed that the peptide fraction of F1 (MW < 3 kDa) at 4 mg/mL had better antioxidant activity than F2 (3–10 kDa) and F3 (MW > 3 kDa). Peptides with lower molecular weight are more active than those with a high molecular weight [27].

2.5.2. Separation of fraction F1 by RP-HPLC

F1 (<3 kDa) was purified using RP-HPLC [34]. 40 mg of peptide fraction was dissolved into 1 mL 0.05 % TFA (v/v) and then was filtered using micropores membrane (0.22 m) before being inserted into Agilent ZORBAX SB-C18 (5 m, 9.4×150 mm). A binary moving phase system was used in this study along with eluent A (0,1 % TFA (v/v)) and moving phase B (ACN, 0.05 % (v/v) TFA). The solution was eluted with a linear gradient of 0–40 % moving phase B from 0 to 40 min dan 40 % moving phase B from 40 to 55 min. All fractions were collected and lyophilized for further activity assays. The purification level of fractions with the highest activity was further analyzed using the Sunfire C18 column (5 m, 4,6 mm \times 150 mm; Waters, USA). The column was eluted using a linear gradient of 0–20 % moving phase B from 0 to 20 min and 20 % moving phase B from 20 to 25 min, resulting in a purified fraction 1 (PF1).

2.5.3. Analysis of amino acid sequence and MW

The ELWKTF (Glu-Leu-Trp-Lys-Thr-Phe) peptide was synthesized in the Laboratory of Biochemistry and Biomolecular Medicine, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia. A protein sequencer from Applied Biosystems 494 (ProciseTM 494 N-terminal sequencer; Applied Biosystems Inc, Foster City, CA, USA) was used to examine the amino acid sequence of the purified fraction (PF1) based on time-of-flight quadrupole mass spectrometer (MS/MS) paired with electrospray ionization (ESI) source to determines the molecular weight of the ELWKTF. Analysis of the sequence and molecular weight of ELWKTF was performed according to the method described by Zhang et al. (2019) [35]. The results of research by Xiaoqian Zhang et al., 2019 showed good activity of ELWKTF against radical scavenging activity (DPPH and ABTS) [27].

2.6. DPPH radical scavenging assay

The percentage (%) of the inhibition of 2,2-diphenyl-1-picrylhydrazyl (DPPH) was measured using a method referring to Kaur et al. (2021) [36], Sheng et al. (2023) [37], and Permatasari et al. (2022) [38], on all samples which include a macerated extract (ME), soxhlet extract (SE), and purified fraction 1 (PF1), while glutathione (GSH; 354102, Sigma-Aldrich, Germany) was used as a positive control. In the testing vial (at a concentration of 1, 2, 3, 4, and 5 μ g, an aliquot (100 μ L) of samples and control was added, followed by a DPPH reagent addition (3 mL). The DPPH-extract combination that resulted was then left undisturbed (30 min; dark cycle). The samples were read at 517 nm absorbance with a UV–Vis Shimadzu 80 spectrophotometer. To ensure the validity of the data results, each sample was checked three times (n = 3). Inhibition of DPPH was expressed as a percentage and is determined according to the formula below:

% DPPH Inhibition =
$$\frac{A0 - A1}{A0} \times 100\%$$
 (1)

A0 = Absorbance of blank; A1 = Absorbance of standard or sample. The half-elimination ratio (EC_{50}) was used to express the radical scavenging capacity of ME, SE, PF1, and GSH and defined as the concentration of a sample that caused a 50 % decrease in the initial radical concentration.

2.7. ABTS radical scavenging assay

For testing the 2.2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) or diammonium salt radical cation (ABTS+; Sigma-Aldrich, Germany), the procedure follows the method introduced by Arnao et al. (2010) with some modifications [39]. The stock solution includes 7 mM ABTS solution and 2.4 mM potassium persulfate solution. The working solution was prepared by mixing two stock solutions in equal quantities and letting them react for 14 h at room temperature under dark conditions. The solution was then diluted by mixing 1 mL of ABTS solution with 60 mL of ethanol to set absorbance to 0.706 \pm 0.01 units at 734 nm using a spectrophotometer (Thermo ScientificTM GENESYSTM). A fresh or new ABTS fresh/new solution was prepared for each test. Samples (at a concentration of 1, 2, 3, 4, and 5 μ g) were allowed to react with 1 mL of ABTS solution, and the absorbance was taken at 734 nm after 7 min using a spectrophotometer. Treatment was carried out in the same way for all samples, including macerated extract (ME), Soxhlet extract (SE), purified fraction 1 (PF1), and Trolox (6-Hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid; Sigma-Aldrich, Germany) was used as a positive control. All determinations were performed in three replications (n = 3).

% ABTS radical scavenging activity =
$$\frac{A0 - A1}{A0} \times 100\%$$
 (2)

A0 = Absorbance of blank; A1 = Absorbance of standard or sample.

2.8. Cytotoxicity evaluation using MTT assay

Cell viability was assessed on the Human Caucasian skin fibroblast cell line (Normal cell; Bud-8) [40]. The proliferation rate of the Bud-8 cell line after sample treatment was determined by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) test [41]. A mitochondrial dehydrogenase reduces MTT to a purple compound formazan that is insoluble in water, depending on the viability of the cell. Cells were preserved in Dulbecco's Modified Essential Medium (DMEM), which was supplemented with 10 % fetal bovine serum (FBS) and 1x Penicillin-Streptomycin-Neomycin (PSN). One hundred microliters of cells (4 \times 10⁴ cells/mL) were seeded in a 96-well plate and incubated at 37 °C, 5 % carbon dioxide for 24 h. After 24 h of incubation, the cells were treated with 100 μL of 100, 200, 300, 400, and 500 $\mu g/mL$ of samples (ME, SE, PF1). The plate was incubated at 37 $^\circ\text{C},$ with 5 % CO $_2$ for 24 and 48 h. After incubation, the morphology of the cells was examined under a microscope. Twenty microliters of MTT (5 mg/mL) (Sigma) solution were added to each well plate. The plate was further incubated for 2-4 h, and the medium was removed. Formazan crystals

dissolved with 100 μ L dimethyl sulfoxide (DMSO; Sigma). Absorbance was measured at 560 nm, and the percentage of cell viability and LC₅₀ cells was calculated by:

% Cell Viability
$$=$$
 $\frac{A1}{A0}$ X 100% (3)

Where A0 is absorbance control in cells given 1 %, DMSO and A1 are cells' absorbance samples given the test sample.

Lethal concentration (LC_{50}) is the lowest concentration of samples that inhibits 50 % of cells. In general, a low LC_{50} value indicates high toxicity. Extracts with high LC_{50} are preferred for use due to their low toxicity effect on host cells [40].

2.9. Data management and analysis

Data from *in vitro* tests (DPPH antioxidants, ABTS antioxidants, and Cytotoxicity) were analyzed for significance or not between groups (ME, SE, PF1, or control) using two-way ANOVA CI 95 % (0.05) with the MacBook version of GraphPad Prism 9.0.0 premium software. All data were presented in the form of average \pm SEM. Graphic visualizations were presented using the MacBook version of GraphPad Prism 9.0.0 premium software. The graphical abstract was designed using the licensed BioRender Premium.

3. Results

3.1. Caulerpa racemosa metabolite profiles by non-targeted metabolomic profile

The LC-MS/MS total ion chromatogram and mass spectrum of the macerated sea grapes (*C. racemosa*) extract are presented in Fig. 2, where the data were used to determine the peaks representing the number of annotated ions, the retention time, and the relative abundance of the ions. Based on non-targeted metabolomic profiling results, within a retention time of 40 min, macerated sea grapes extract (which represents cold extraction) contained a total of 103 compounds that were eluted between 0.00 and 30.0 min (Fig. 1A). One hundred and three metabolite derivatives were successfully identified in sea grapes from macerated extracts and were presented in Table 1. Fourier transform mass spectrometry (FTMS) + p ESI Full ms. [50.0000–750.0000] is a spectrum with a base peak intensity of 2.90 x 10^6 counts (a combination of electrospray ionization [ESI] with FTMS) (Fig. 1B). This FTMS was in positive mode and with electrospray ionization ESI continuous measurements from m/z 50 to m/z 600 (NL = normalization rate).

The data p in Table 1 were based on matches with libraries or mzCloud Best Match (>90 %) and in order according to their abundance. This was what caused the difference between the calculated exact mass (*) observed in the LC-HRMS results and the predicted-calculated molecular mass (**) in both PubChem and ChemDraw databases. Therefore, we presented molecular mass data by juxtaposing Calculated Exact Mass (*) with Predicted-calculated molecular mass (**) from ChemDraw in Table 1.

The LC-MS/MS total ion chromatogram and mass spectrum of the soxhlet extraction of sea grapes are presented in Fig. 2, where the data were used to determine the peaks representing the number of annotated ions, the retention time, and the relative abundance of the ions. Just like in the maceration extract, Annotated compounds were automatically identified via mzCloud MS/MS Library (Thermo Scientific Q Exactive Software). Based on non-targeted metabolomic profiling results with LC-HRMS, within a retention time of 40 min, soxhlet of sea grapes extract (which represents heat extraction) contained a total of 48 compounds that were diluted between 0.00 and 30.0 min (Fig. 2A). Forty-eight (48) metabolite derivatives were successfully identified in sea grapes from soxhlet extraction extracts and presented in Table 2. Fig. 2B FTMS + p ESI Full ms. [50.0000–750.0000] was a spectrum with a base peak

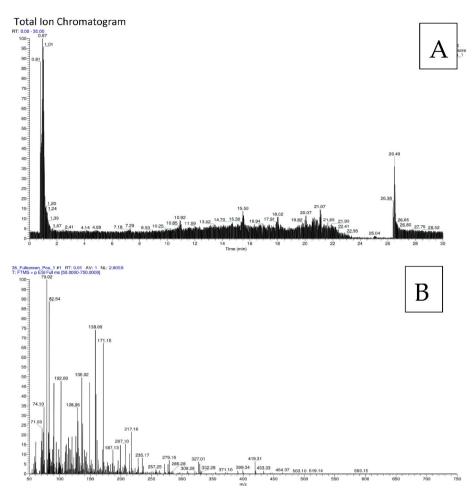


Fig. 1. A Total ion chromatogram (TIC) of macerated Sea grapes (*C. racemosa*) extract by HPLC. Fig. 1B. Mass spectrum of macerated sea grapes (*C. racemosa*) extract by MS/MS. S#: scan number; RT: retention time; AV: averaged (followed by the number of averaged scans); SB: subtracted (followed by subtraction information); NL: neutral loss; T: scan type; F: scan filter.

intensity of 2.52 x 10^6 counts (combination of electrospray ionization (ESI) with Fourier transform mass spectrometry (FTMS)). This FTMS was in positive mode and by ESI continuous measurements from m/z 50 to m/z 670 (NL = normalization rate).

3.2. Identification of the peptide in purified fraction 1 of extracts from C. racemosa

PF1 of *C. racemosa* found a bioactive peptide named (2S,5S,8S,11S,14S,17S)-11-((1H-indol-3-yl)methyl)-17-amino-8-(4-aminobutyl)-2-benzyl-5-((R)-1-hydroxyethyl)-14-isobutyl-

4,7,10,13,16-pentaoxo-3,6,9,12,15-pentaazaicosanedioic acid or ELWKTF which was eluted at a retention time of 30.9 min with a peak area of 815,602,581.03 (Table 3). The structural visualization of ELWKTF is shown in Fig. 3.

3.3. The DPPH radical scavenging activity of extracts from C. racemosa

The results of an *in vitro* study inhibiting DPPH radical scavenging activity have been presented (Fig. 4). The inhibitory activity of DPPH was compared among *C. racemosa* ME, SE, PF1, and GSH. The results showed lesser DPPH inhibition activities than GSH or control at 1 µg/mL, 2 µg/mL, 3 µg/mL, and 4 µg/mL of ME; and 1 µg/mL, 2 µg/mL, 3 µg/mL, 4 µg/mL, 5 µg/mL of SE and PF1 (p < 0.0001). The DPPH inhibition of ME was to close with GSH at a dose of 5 µg/mL with a percentage of 87.43 ± 0.67 % and 86.73 ± 0.61 %, respectively (Fig. 4). As shown in Fig. 5, the EC₅₀ yields of ME, SE, PF1, and GSH were 2.945 µg/mL,

 $2.297~\mu\text{g/mL},~2.302~\mu\text{g/mL},~\text{and}~2.691~\mu\text{g/mL},~\text{respectively}.$ SE and PF1 show good potential effectiveness in DPPH radical elimination activity because the EC_{50} values are lower than the control or GSH.

3.4. ABTS radical scavenging activity of extracts from C. racemosa

Rhe results of an *in vitro* study inhibiting the radical scavenging activity of ABTS have been presented (Fig. 6). The inhibitory activity of ABTS was compared among the macerated extract of *C. rasemosa* (ME), the soxhlet extract (SE), the purified fraction 1 (PF1), and the Trolox or control. The results showed lesser ABTS inhibition activities at doses 1 μ g/mL, 2 μ g/mL, 3 μ g/mL, 4 μ g/mL, and 5 μ g/mL for SE and PF1, compared to Trolox or control (p < 0.0001). As shown in Fig. 7, the ME, SE, PF1, and Trolox yield was EC₅₀ of 3.306 μ g/mL, 3.244 μ g/mL, 2.508 μ g/mL, and 2.547 μ g/mL, respectively. PF1 showed good potential effectiveness in the radical elimination activity of ABTS because it has a lower EC₅₀ value than the control or Trolox.

3.5. Cytotoxicity evaluation of Extracts from C. racemosa using MTT assay

There is a difference in the viability percentage of normal cells or fibroblasts from the human Caucasian cell line receiving different treatments (Fig. 8). There was a significant difference (p < 0.05) between each concentration between the groups during 24 h of incubation and 48 h (Fig. 8). The sequence of LC₅₀ samples that are lowest or show the highest cytotoxicity to the lowest cytotoxicity is ME 914.78 µg/mL,

Journal of Agriculture and Food Research 18 (2024) 101513

Table 1

The 103 compounds observed from HPLC-ESI-HRMS/MS analysis of macerated sea grapes (C. racemosa) extract.

RT (min)	Abundance (Area Max.)	Observed HR-ESIMS m/z ^a	Calculated HR-ESIMS m/z**	Molecular Formula	Tentatively Identified Compound	Category
15.508	2,607,709,506.66	366.0987	344.1100	$C_{15}H_{20}O_{9}$	3-[3-(beta-D-Glucopyranosyloxy)-2-hydroxyphenyl]propanoic	Carboxylic Acids
0.948	1,702,868,432.32	103.0996	104.1100	C ₅ H ₁₃ NO	acid Choline	Amines (Quartenary
0.952	815,230,823.19	117.0787	117.0800	$C_5H_{11}NO_2$	Betaine	Ammonium Compounds Amines (Quartenary
18.019	530,234,031.11	278.1504	278.1500	$C_{16}H_{22}O_4$	Dibutyl phthalate	Ammonium Compounds Carboxylic Acids
10.763	484,746,646.13	312.0885	312.0900	$C_{18}H_{11}F_3N_2$	2-(1H-indol-3-yl)-3-[4-(trifluoromethyl)phenyl]acrylonitrile	(Phthalic Acids) Organofluorine
0.931	464,700,110.40	189.0429	167.0600	C ₈ H ₉ NO ₃	2-(3,4-dihydroxyphenyl)acetamide	compounds Organonitrogen compound
12.259	312,358,366.23	157.146	156.1400	C9H19NO	2,2,6,6-Tetramethyl-1-piperidinol (TEMPO)	(carboxamide) Heterocyclic compound (piperidines)
21.93	275,377,138.03	255.2549	255.2600	C ₁₆ H ₃₃ NO	Hexadecanamide	Fatty Acids (Palmitic Acids)
17.905	273,288,427.76	278.1504	276.1400	C ₁₆ H ₂₂ O ₄	Diisobutylphthalate	Carboxylic Acids
0.927	209,833,574.73	205.0169	205.0200	$C_{10}H_7NO_2S$	5-(2-Thienyl)nicotinic acid	Carboxylic acid (aromatic carboxylic acid)
0.916	204,192,224.93	87.10487	87.1000	C ₅ H ₁₃ N	Isoamylamine	Amines
18.231	188,856,575.32	296.2341	Cannot be	C ₁₈ H ₃₄ O ₄	NP-008993	unknown
			generated			
15.894	188,602,459.59	276.2077	254.2200	$C_{16}H_{30}O_2$	Palmitoleic Acid	Fatty Acids
17.615	128,180,581.48	294.2184	294.2200	C18H30O3	9-Oxo-10(E),12(E)-octadecadienoic acid	Fatty Acids
17.427	123,110,274.85	294.2183	312.2300	C18H32O4	(±)13-hydroperoxy-9Z,11E-octadecadienoic acid	Fatty Acids
13.158	120,142,739.65	294.1819	294.1800	C17H26O4	6-Gingerol	Alcohol (Fatty Alcohol
1.001	115,965,792.41	270.108	135.0500	$C_5H_5N_5$	Adenine	Heterocyclic compound (purines)
21.564	113,705,808.63	281.2706	281.2700	C ₁₈ H ₃₅ NO	Oleamide	Fatty Amides
16.815	101,832,983.44	278.2234	278.2200	C18H30O2	α-Eleostearic acid	Fatty Acids
16.451	95,661,314.03	268.2027	Cannot be generated	$C_{16}H_{30}O_4$	NP-001596	unknown
11.582	85,055,308.35	326.1044	326.1000	$C_{16}H_{14}N_4O_4$	4-{[(4,6-Dimethoxypyrimidin-2-yl)amino]methylidene}-2- phenyl-4,5-dihydro-1,3-oxazol-5-one	Organofluorine compounds
14.177	82,274,117.71	148.0883	148.0900	$C_{10}H_{12}O$	Cuminaldehyde	Hydrocarbons (Terpenes)
15.669	79,749,057.14	326.2445	326.2500	$C_{19}H_{34}O_4$	1,2-dihydroxyheptadec-16-yn-4-yl acetate	Organic Hydroxy compound (alcohol)
1.024	79,366,759.62	267.0956	267.1000	$C_{10}H_{13}N_5O_4$	Adenosine	Carbohydrates (Purine Nucleosides)
20.046	75,757,786.32	278.2234	278.4400	$C_{18}H_{30}O_2$	α-Linolenic acid	Essential fatty acid
17.351 16.633	73,810,505.50 70,444,302.73	342.0991 292.2026	320.1200 322.2500	$C_{19}H_{16}N_2O_3$ $C_{18}H_{28}O_3$	ethyl 3-oxo-5,6-diphenyl-2,3- dihydropyridazine-4-carboxylate 12-Oxo phytodienoic acid	Fatty acid transporters Fatty Acids
1.044	70,264,037.81	122.0476	122.0500	$C_6H_6N_2O$	Nicotinamide	(Octadecanoids) Heterocyclic compound
						(Pyridinecarboxylic acids)
23.794	66,634,752.38	283.2858	283.2900	C18H37NO	Stearamide	Amides
21.936	62,781,318.81	307.2861	325.3000	C20H39NO2	Oleoyl ethanolamide	Amines (Amino alcohol
13.43	61,670,246.92	276.1714	Cannot be generated	$C_{15}H_{26}O_3$	NP-020014	unknown
17.56	58,853,299.74	302.2233	320.2400	$C_{20}H_{32}O_3$	11,12-epoxy-5,8,14-eicosatrienoic acid	Eicosanoids
20.518 12.847	57,317,714.92 56,359,590.26	622.2406 164.0831	584.6600 182.0900	$\begin{array}{c} C_{29}H_{44}O_{12} \\ C_{10}H_{14}O_{3} \end{array}$	Ouabain 1-(4-methoxyphenyl)propane-1,2-diol	Autacoids (Eicosanoids Hydrocarbon (cyclic
0.070		005 1 110	005 1 100	0 11 710	4 201 11 1 1 1	hydrocarbon)
0.873	53,487,771.60	235.1412	235.1400	C ₁₄ H ₁₈ FNO	4-Fluoro-α-pyrrolidinobutiophenone	Butyrophenones
1.305	53,461,055.41	167.0611	167.1600	C ₈ H ₉ NO ₃	Pyridoxal	Heterocyclic compound (Pyridine
14.862	53,396,851.21	214.135	232.1500	$C_{15}H_{20}O_2$	(4aR,5R,6R)-6-hydroxy-4a,5-dimethyl-3-(prop-1-en-2-yl)- 2,4a,5,6,7,8-hexahydronaphthalen-2-one	carboxaldehydes) Terpenoid
14.874	51,133,618.50	356.1586	334.1800	$C_{19}H_{26}O_5$	(3S,3aR,4S,4aR,7aR,8R,9aR)-3,4a,8-trimethyl-2,5-dioxo- 2H,3H,3aH,4H,4aH,5H,7aH,8H,9H,9aHazuleno[Heterocyclic Compound
15.089	47,187,926.45	328.0835	328.0800	C ₁₈ H ₁₇ ClN ₂ S	6,5-b]furan-4-yl 2-methylpropanoate 1-(4-chlorobenzyl)-2-{[(4-methylphenyl)thio]methyl}-1H- imidazola	Protein Enzyme
16.835	44,926,299.27	328.2602	328.2600	$C_{19}H_{36}O_4$	imidazole 1,4-dihydroxyheptadec-16-en-2-yl acetate	Organic Hydroxy compound (alcohol)
22.189	43,991,117.28	500.2191	250.1100	$C_{16}H_{14}N_2O$	Methaqualone	Heterocyclic compound (Quinazolines)

Table 1 (continued)

₹T min)	Abundance (Area Max.)	Observed HR-ESIMS m/z ^a	Calculated HR-ESIMS <i>m/z</i> **	Molecular Formula	Tentatively Identified Compound	Category
6.48	41,454,327.51	250.1923	426.3000	C ₁₆ H ₂₆ O ₂	Octylphenol Ethoxylates (OPEO)	alkylphenols
4.714	38,806,980.21	273.2655	256.2400	$C_{16}H_{26}O_2$ $C_{16}H_{32}O_2$	Palmitic Acid	Fatty acids
6.334	37,032,281.51	300.2076	318.4600	C ₂₀ H ₃₀ O ₃	8-Hydroxyeicosapentaenoic acid ((\pm)8-HEPE)	Hydroxy fatty acid
0.334	35,975,153.82	282.2548	282.2600	$C_{20}H_{30}O_3$ $C_{18}H_{34}O_2$	Ethyl palmitoleate	Fatty acid ester (Fatty
1.041	34,105,859.15	280.239	Cannot be	C18H34O3	NP-011548	acid ethyl ester) unknown
			generated			
1.577	33,493,328.71	164.0831	164.0800	$C_{10}H_{12}O_2$	4-Phenylbutyric acid	Carboxylic Acids (Phenylbutyrates)
4.077	32,107,702.51	248.1766	266.1900	$C_{16}H_{26}O_3$	Tetranor-12R-HETE	Organy Hydroxy compound (Hydroxy carboxylic acid)
6.588	31,279,593.58	314.1846	292.2000	$C_{18}H_{28}O_3$	4-hydroxy-6-[2-(2-methyl-1,2,4a,5,6,7,8,8a- octahydronaphthalen-1-yl)ethyl]oxan-2-one	Heterocyclic compoun (oxacycle)
7.366	31,243,191.82	354.2756	354.2800	C21H38O4	1-Linoleoyl glycerol	Glycerides
8.021	31,197,110.75	323.2083	306.1800	C ₁₈ H ₂₆ O ₄	n-Pentyl isopentyl phthalate	Phthalates
6.258	30,927,401.68	268.2028	Cannot be	$C_{16}H_{30}O_4$	NP-001596	unknown
			generated			
.466 8.515	30,636,932.36 30,124,986.19	197.1198 318.216	197.1200 Cannot be	C ₁₄ H ₁₅ N C ₁₈ H ₃₂ O ₃	Dibenzylamine NP-014287	Amines unknown
2.819	29,968,764.20	232.1455	generated Cannot be	C15H22O3	(1aR,1bR,2R,3R,7R,7aS)-1b,2-dimethyl-7a-(prop-1-en-2-yl)-	unknown
2.019	29,908,704.20	232.1433	generated	G ₁₅ Π ₂₂ O ₃	1aH,1bH,2H,3H,4H,5H,7H,7aH-naphtho [1,2-b]oxirene-3,7- diol	unknown
5.64	28,287,214.04	196.0881	196.0900	$C_{14}H_{12}O$	4-Methylbenzophenone	Ketones (Benzophenones)
4.449	27,409,945.13	214.135	232.1500	$C_{15}H_{20}O_2$	(4aR,5R,6R)-6-hydroxy-4a,5-dimethyl-3-(prop-1-en-2-yl)- 2,4a,5,6,7,8-hexahydronaphthalen-2-one	Terpenoid
6.302	27,286,206.71	302.2444	302.2500	C17H34O4	2,3-dihydroxypropyl 12-methyltridecanoate	Glyceride
5.864	25,328,627.10	316.2003	316.2000	C ₂₀ H ₂₈ O ₃	Cafestol	Hydrocarbons
4.695	24,803,082.67	508.263	526.2700	$C_{27}H_{37}F_3N_2O_5\\$	[6-Hydroxy-1-(hydroxymethyl)-1,4a-dimethyl-5-(2-oxo-2- pyrrolidin-1-ylethyl)-2,3,4,5,6,7,8,8a-octahydronaphthalen-2-	(Terpenes) Organofluorine compounds
0.606	24,591,569.01	308.2339	302.2200	СНО	yl] N-[3-(trifluoromethyl)phenyl]carbamate	Fotty Asida
				C ₂₀ H ₃₀ O ₂	Eicosapentaenoic acid	Fatty Acids
1.592 2.163	23,630,078.82 23,533,439.36	313.2967 370.094	313.3000 Cannot be	C ₁₉ H ₃₉ NO ₂ C ₂₁ H ₂₀ Cl ₂ N ₂	R-Palmitoyl-(2-methyl) ethanolamide 2-(2,4-dichlorophenyl)-4,4,7,9-tetramethyl-4,5-dihydro-3H-	Lipid (Fatty Amide) unknown
			generated		naphtho[1,2-d]imidazole	
2.76 4.233	23,504,570.02 23,426,676.24	234.1611 244.1091	252.1700 262.1200	$C_{15}H_{24}O_3$ $C_{15}H_{18}O_4$	Ageratriol (3aR,4aS,5R,8S,9aR)-5-hydroxy-4a,8-dimethyl-3-methylidene-	Terpenoids Terpenes
					2H,3H,3aH,4H,4aH,5H,6H,8H,9H,9aH-azuleno[6,5-b]furan- 2,6-dione	
3.406	23,234,665.52	232.1455	Cannot be generated	$C_{15}H_{22}O_3$	(1aR,1bR,2R,3R,7R,7aS)-1b,2-dimethyl-7a-(prop-1-en-2-yl)- 1aH,1bH,2H,3H,4H,5H,7H,7aH-naphtho[1,2-b]oxirene-3,7- diol	Nuclear receptor
2.099	22,988,983.05	384.1096	Cannot be generated	$C_{18}H_{19}F_{3}N_{2}O_{2}S$	ethyl 2-(methylthio)-4-tetrahydro-1H-pyrrol-1-yl-8- (trifluoromethyl)quinoline-3-carboxylate	unknown
8.446	22,839,809.05	218.1662	Cannot be	$C_{15}H_{24}O_2$	NP-004713	unknown
0.376	22,099,138.42	330.2546	generated 330.2600	C22H34O2	Eicosapentaenoic acid ethyl ester	Fatty Acids
0.370 7.161	21,808,214.15	270.2183	Cannot be	$C_{16}H_{32}O_4$	NP-020214	unknown
3.431	20,606,367.65	261.1354	generated 239.1500	C13H21NO3	Levalbuterol	Amines
0.074	20,450,089.14	306.2545	306.2600	C ₂₀ H ₃₄ O ₂	Linolenic acid ethyl ester	(Phenethylamines) Fatty Acids
1.707	19,935,241.14	310.2857	310.2900	C ₂₀ H ₃₈ O ₂	Ethyl oleate	Fatty Acids
4.41	19,870,753.40	182.0725	182.0700	C ₁₃ H ₁₀ O	Benzophenone	Ketones
7.367	18,964,856.34	262.2285	280.4500	$C_{18}H_{32}O_2$	Octadec-9-ynoic acid	(Benzophenones) Hydrocarbons (Alkyno
5.997	18,954,242.24	228.1141	246.1300	$C_{15}H_{18}O_3$	(3aS,5aS,9bR)-5a,9-dimethyl-3-methylidene- 2H,3H,3aH,4H,5H,5aH,6H,7H,8H,9bH-naphtho[1,2-b]furan- 2,5-dione	Terpenes
9.433	18,184,819.14	328.2388	328.2400	C22H32O2	2,5-dione Docosahexaenoic acid	Fatty Acids
9.433 6.392	18,184,819.14 18,033,386.90	328.2388 283.3227	284.3300	C ₂₂ H ₃₂ O ₂ C ₁₉ H ₄₁ N	Cetrimonium	Amines (Quartenary
7.063	17,943,409.82	398.169	398.1700	$C_{22}H_{26}N_2O_3S$	3-(3,4-dimethoxyphenethyl)-2-[(4-isopropylphenyl)imino]-1,3- thiazolan.4-one	Ammonium Compoun Organic Chemicals
9.957	17,802,168.49	236.1402	254.1500	$C_{14}H_{22}O_4$	thiazolan-4-one (±)-C75	Organic heterocyclic
6.951	17,509,512.15	234.1611	234.1600	$C_{15}H_{22}O_2$	3,5-di-tert-Butyl-4-hydroxybenzaldehyde	compound Aldehydes (Bongaldahydas)
20.317	17,492,831.93	299.2812	299.2800	C ₁₈ H ₃₇ NO ₂	Palmitoyl ethanolamide	(Benzaldehydes) Amines (Amino Alcohols)

Table 1 (continued)

RT (min)	Abundance (Area Max.)	Observed HR-ESIMS m/z ^a	Calculated HR-ESIMS <i>m/z</i> **	Molecular Formula	Tentatively Identified Compound	Category
15.118	16,405,749.44	467.3231	467.3100	$C_{28}H_{41}N_3O_3$	Oxethazaine	Amines (Amino Alcohols)
19.858	16,337,402.48	305.2705	Cannot be generated	C ₂₀ H ₃₅ NO	NP-016582	unknown
20.015	16,138,319.09	321.2654	299.5000	C18H37NO2	Sphingosine (d18:1)	Amines
16.742	15,941,236.73	692.3268	Cannot be generated	$C_{22}H_{22}N_2O_2$	4-(3-methoxy-5,6-dihydrobenzo[c]acridin-7-yl)morpholine	unknown
13.152	15,540,877.24	334.1743	334.1700	$C_{21}H_{22}N_2O_2$	(–)-Strychnine	Alkaloids (Indole Alkaloids)
20.726	15,378,473.45	304.2391	304.2400	$C_{20}H_{32}O_2$	Arachidonic acid	Autacoids (Eicosanoids)
16.279	15,308,423.13	356.0783	356.0700	$C_{20}H_{12}N_4OS$	3,4-Diphenylpyrimido[4',5':4,5]thieno[2,3-c]pyridazin-8(7H)-one	Thienopyridazine derivatives
17.305	14,960,482.55	378.2755	378.2800	C23H38O4	2-Arachidonoyl glycerol	Glycerolipid
19.83	14,601,900.81	442.3432	442.3400	$C_{29}H_{46}O_3$	Testosterone decanoate	Gonadal Steroid Hormones (Testosterone congeners)
14.886	14,357,946.57	274.1558	252.1700	C15H24O3	(5E)-7-methylidene-10-oxo-4-(propan-2-yl)undec-5-enoic acid	Terpenes
17.72	13,897,675.48	312.2651	306.2600	C20H34O2	γ-Linolenic acid ethyl ester	Fatty acid derivative
15.669	12,500,838.24	510.2786	Cannot be generated	$C_{27}H_{40}N_2O_6$	6-Hydroxy-1-(hydroxymethyl)-5-{2-[2-(hydroxymethyl)-1- pyrrolidinyl]-2-oxoethyl}-1,4a-dimethyldecahydro-2- naphthalenyl phenylcarbamate	unknown
19.475	12,426,002.76	344.195	344.2000	C21H28O4	Nor-9-carboxy-69- tetrahydrocannabinol	Terpenes
26.449	12,331,286.20	131.0942	131.0900	C ₆ H ₁₃ NO ₂	6-Aminocaproic acid	Carboxyclic Acid (Caproates)
17.805	9,806,912.19	340.1637	340.1600	$\mathrm{C_{20}H_{24}N_{2}OS}$	Propionylpromazine	Sulfur compounds (Phenothiazines)
23.138	9,589,300.00	390.2753	390.2800	$C_{24}H_{38}O_4$	Di(2-ethylhexyl) phthalate	Carboxylic acid (Phthali acid)
20.548	9,339,555.94	176.1194	194.1300	$C_{12}H_{18}O_2$	Sedanolide	Heterocyclic Compound (Benzofurans)
19.703	9,113,695.23	303.2549	303.2600	C ₂₀ H ₃₃ NO	Arachidonoyl amide	Fatty acid derivative (fatty amide)
16.962	8,865,034.10	248.1766	266.1900	$C_{16}H_{26}O_3$	Tetranor-12(S)-HETE	Organic Hydroxy compound (hydroxy carboxylic acid)
18.548	8,618,378.15	306.2545	306.2600	$C_{20}H_{34}O_2$	8Z,11Z,14Z-Eicosatrienoic acid	Autacoids (Eicosanoids)
21.448	8,239,070.91	363.3121	357.3000	C24H39NO	Oleyl anilide	Amines (Anilides)

RT = retention time (minutes).

^a = calculated exact mass observed from LC-HRMS; ** = predicted-calculated molecular mass from ChemDraw.

PF1 2069.21 µg/mL, and SE 2227.85 µg/mL at 24 h; and, SE 1816.17 µg/mL, PF1 2173.02 µg/mL, and ME 2971.15 µg/mL at 48 h (Table 4). This result suggested ME, SE, and PF1 as antioxidant agents in the observed EC_{50} were safe. Furthermore, in terms of cytotoxicity, it was observed that *C. racemosa* was safe to be potentially developed into various products. In addition, the value of LC_{50} is presented in Table 4.

4. Discussion

Macroalgae are traditionally used as a sea vegetable in Asian countries, especially Indonesia. For example, in Simeulue Island, Aceh, *C. racemosa* are called Natu that utilized by coastal community. This macroalga is also frequently consumed fresh as "lalap" or salad [18]. However, its consumption is still minimal. *C. racemosa* is one of the green macroalgae whose metabolite profiles, health properties, and potential use as functional ingredients in food, supplements, and pharmaceuticals should be further explored. This will be a new opportunity to introduce *C. racemosa* indirectly into the human food chain in Western countries, especially in Europe.

Foodomics is a discipline that studies the domain of food and nutrition through the application and integration of advanced technology "-omics" to improve the well-being, health, and knowledge of consumers [29,30]. One part of Foodomics is the metabolomic study [30] which was applied in this study and successfully profiled the secondary metabolites of *C. racemosa* with different extraction methods. On the other hand, the bioactive peptides were also successfully identified using proteomics approaches. Secondary metabolites and bioactive peptides

are expected to be a data challenge for other researchers or follow-up research to find their continued effects on health and product development based on *C. racemosa*. This untargeted metabolomic profiling study that we conducted has succeeded in profiling secondary metabolites of *C. racemosa*, which was previously a challenge from the research of Pangestuti et al. (2021) [42]. A study by Pangestuti et al. (2021) only observed phytochemicals of *C. racemosa* in terms of total phenolic, saponins, and flavonoid contents without the metabolite compounds [42].

There was a difference in the number of compounds identified in the maceration (cold) and soxhletation (heat) methods of extraction of sea grapes extract through the extraction-maceration method had higher bioactive compounds than the sea grapes extracted using a Soxhlet. The soxhlet extraction method integrates the advantages of reflux and percolation extraction, which utilizes the principle of reflux and siphon to continuously extract the herb with fresh solvent [20]. Extraction using the soxhlet method has the advantage of an automatic continuous extraction method with less extraction time and less solvent use than maceration or percolation [20]. However, high temperatures and long extraction times in soxhlet extraction will increase the likelihood of thermal degradation. This is what is strongly suspected to cause differences in the results of compounds from the two extracts in this C. racemosa study. In line with the results of our study, other studies showed that the degradation of catechins in tea was also observed in soxhlet extraction due to the high extraction temperature [43]. The total polyphenol and total alkaloid concentrations of the soxhlet extraction method decreased compared to the maceration method [43,44]. Therefore, for C. racemosa, the maceration (cold extraction) method is

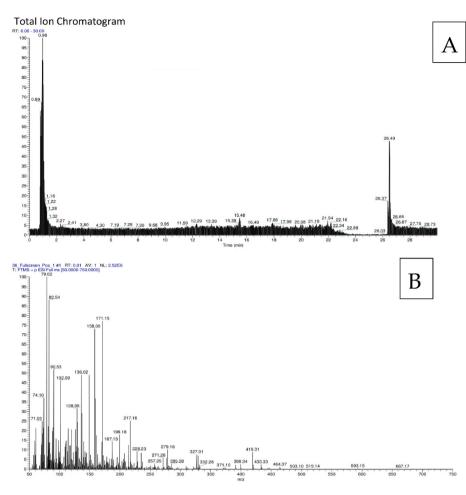


Fig. 2. A total ion chromatogram (TIC) of soxhlet extraction of sea grapes (*C. racemosa*) extract by HPLC. Fig. 2B. Mass spectrum of soxhlet extraction of sea grapes (*C. racemosa*) extract by MS/MS. S#: scan number; RT: retention time; AV: averaged (followed by the number of averaged scans); SB: subtracted (followed by subtraction information); NL: neutral loss; T: scan type; F: scan filter.

more appropriate as it minimizes thermal degradation of sensitive compounds, preserving a higher yield of bioactive metabolites compared to the heat-intensive soxhlet method. This careful selection of extraction method ensures the stability and potency of vulnerable bioactive compounds within the sea grapes.

The bioactive compounds found in this study showed both health benefits and toxic effects based on other literature (see Supplementary). However, not all bioactive compounds will have a significant effect since the dose of each metabolite should be considered. For example, an *in vivo* intervention study using 450 mg/kgBW of sea grapes extract on rats showed no adverse effects [10].

Proteins in foods sourced from marine resources and their byproducts have high structural diversity and are a considerable resource for exploring bioactive peptides [45]. Previous literature suggests that the types of amino acids in Bioactive Peptides (BPs) are considered a critical factor in their activity [46]. Residual hydrophobic groups from hydrophobic amino acids such as Pro, Met, Ala, Leu, and Ile, can strongly react with hydrophobic polyunsaturated fatty acids (PUFAs) to inhibit lipid peroxidation in lipid-rich foods [47,48]. The EC50 of PF1 which was allegedly derived from ELWKTF activity in this study was more potential than Trolox (in ABTS inhibition assay) and GSH (DPPH inhibition Assay) as a control based on the EC₅₀ value. Carboxyl and amino groups in polar amino acid residues are essential to capture hydroxyl radicals and the metal-ion chelating capacity of BPs [48,49]. In addition, Glu and Leu residues can maintain the high flexibility of the polypeptide skeleton, and its single hydrogen atom can be donated to neutralize reactive oxygen species (ROS) [46,50]. Therefore,

polar amino acids, including -Glu and -Leu residues in ELWKTF, may have played an essential role in hydroxyl radical capture activities. C. racemosa, which has an abundance of ELWKTF, can be a source of free radical inhibition activity through the mechanism presented in the previous sentence. Previous evidence reported that bioactive peptides may exhibit their effects via hydrogen bonding, electrostatic force, hydrophobic interaction, and the regulation of free radical-related enzymes [51-53], highlighting the antioxidant properties of bioactive peptides. Recent scientific evidence suggested that dietary proteins may function as nutrients and can also modulate the body's physiological functions [54]. This physiological function is mainly regulated by several encrypted peptides in the original protein sequence. This bioactive peptide can provide beneficial properties for health and is therefore considered a significant compound for developing nutraceuticals or functional foods to fight metabolic syndrome, obesity, cancer, diabetes, and aging, which are associated with cardiovascular disease. This study that we conducted showed novelty in the measurement of bioactive peptides and their antioxidant activity, which in previous studies had never been reported or carried out [42,55].

 LC_{50} is the lowest concentration of samples that inhibits 50 % of cells. In general, a low LC_{50} value indicates high toxicity. Extracts with high LC_{50} are preferred for use due to their lower toxicity effect on host cells [40]. The interpretation of the LC_{50} value was based on the National Cancer Institute [56], LC_{50} value of 20 µg/mL indicates strong cytotoxic properties, 21–200 µg/mL indicates moderate cytotoxicity, 201–500 µg/mL exhibits weak cytotoxicity, and >500 µg/mL indicates no cytotoxic properties. *C. racemosa* has a potential antioxidant activity

Table 2

The 48 compounds observed from HPLC-ESI-HRMS/MS analysis of soxhlet extraction of sea grapes (C. racemosa).

RT (min)	Abundance (Area Max.)	Observed HR- ESIMS m/z^a	Calculated HR- ESIMS <i>m/z</i> **	Molecular Formula	Tentatively Identified Compound	Category
0.902	615,708,699.02	117.0787	117.0800	$C_5H_{11}NO_2$	Betaine	Amines (Quartenary Ammonium Compounds)
21.916	353,793,967.91	255.25505	255.2600	C ₁₆ H ₃₃ NO	Hexadecanamide	Fatty Acids (Palmitic Acids)
17.877	344,623,223.38	278.15076	276.1400	C ₁₆ H ₂₂ O ₄	Diisobutylphthalate	Carboxylic Acids
12.294	274,478,961.83	157.14607	156.1400	C ₉ H ₁₉ NO	2,2,6,6-Tetramethyl-1-piperidinol	Heterocyclic compounds
				-919	(TEMPO)	(piperidines)
18.209	195,885,637.15	296.23405	Cannot be	C18H34O4	NP-008993	unknown
10.209	190,000,007,110	200120100	generated	018113404		
16.424	119,602,748.90	268.20276	Cannot be	C16H30O4	NP-001596	unknown
10.121	119,002,7 10.90	200.20270	generated	01613004	11 001050	undiown
21.547	104,636,468.21	281.27056	281.2700	C ₁₈ H ₃₅ NO	Oleamide	Fatty Amides
0.901	104,452,391.68	131.09424	131.0900	$C_{6}H_{13}NO_{2}$	DL-β-Leucine	Amino Acids
16.928	82,954,091.16	278.22365	278.2200	C ₁₈ H ₃₀ O ₂	α-Eleostearic acid	Fatty Acids
23.776	82,837,237.90	283.28606	283.2900	C ₁₈ H ₃₀ O ₂ C ₁₈ H ₃₇ NO	Stearamide	Amides
13.397					NP-020014	
13.397	79,829,227.71	276.17153	Cannot be	$C_{15}H_{26}O_3$	NP-020014	unknown
10 (01	75 5 40 005 00	000 05 470	generated	0 11 0	Delevel and a state to the	Petter and entry (Petter and etter
18.681	75,543,295.89	282.25472	282.2600	$C_{18}H_{34}O_2$	Ethyl palmitoleate	Fatty acid ester (Fatty acid ethy
17 507	75 400 000 44	004 01051	010 0000	0 11 0		ester)
17.587	75,423,822.44	294.21851	312.2300	C ₁₈ H ₃₂ O ₄	(±)13-HpODE	Fatty acid
0.911	70,567,131.89	87.10485	87.1000	C ₅ H ₁₃ N	Isoamylamine	Amines
21.92	67,501,000.61	307.2863	325.3000	C20H39NO2	Oleoyl ethanolamide	Amines (Amino alcohols)
0.906	62,987,796.05	103.0996	104.1100	C ₅ H ₁₃ NO	Choline	Amines (Quartenary Ammoniun
						Compounds)
0.835	60,193,728.47	228.97644	228.9800	C ₉ H ₅ ClFNOS	2-(3-Chloro-2-fluorophenyl)-2,3-	Enzyme
					dihydroisothiazol-3-one	
18.938	42,693,613.10	308.19524	Cannot be	$C_{16}H_{30}O_4$	NP-001596	unknown
			generated			
17.881	42,504,568.52	323.20854	306.1800	C18H26O4	n-Pentyl isopentyl phthalate	Phthalates
16.455	39,764,527.54	250.19238	426.3000	$C_{16}H_{26}O_2$	Octylphenol Ethoxylates (OPEO)	alkylphenols
17.434	39,577,349.70	316.20043	316.2000	C20H28O3	Cafestol	Hydrocarbons (Terpenes)
16.654	37,079,182.87	254.22351	254.2200	C ₁₆ H ₃₀ O ₂	Palmitoleic acid	Fatty Acids
22.8	33,398,733.18	309.30147		$C_{20}H_{41}NO_2$	Stearoyl Ethanolamide	Fatty Acids
20.591	32,595,365.73	308.23406	302.2200	$C_{20}H_{30}O_2$	Eicosapentaenoic acid	Fatty Acids
17.87	31,871,173.23	294.21853	294.2200	C ₁₈ H ₃₀ O ₃	9-Oxo-10(E),12(E)-octadecadienoic acid	Fatty Acids
14.577	31,454,460.53	273.26564	256.2400	C16H32O2	Palmitic Acid	Fatty acids
7.411	31,100,701.46	197.11981	197.1200	C ₁₄ H ₁₅ N	Dibenzylamine	Amines
17.367	30,483,737.39	280.2392	Cannot be		NP-011548	unknown
17.307	30,403,737.39	200.2392		$C_{18}H_{34}O_3$	NF-011348	unknown
26.447	20 206 706 45	121.00427	generated	C IL NO	6 Aminoconnois said	Conhormalia Asid (Connector)
	29,296,796.45	131.09427	131.0900	C ₆ H ₁₃ NO ₂	6-Aminocaproic acid	Carboxyclic Acid (Caproates)
19.991	29,136,008.89	278.22365 261.13552	278.4400	$C_{18}H_{30}O_2$	α-Linolenic acid Levalbuterol	Essential fatty acid
13.398	25,493,790.28		239.1500	C ₁₃ H ₂₁ NO ₃		Amines (Phenethylamines)
22.054	19,542,351.23	361.2968	361.3000	C ₂₃ H ₃₉ NO ₂	Methanandamide	Fatty acid derivative
16.914	17,243,572.51	234.16117	234.1600	$C_{15}H_{22}O_2$	3,5-di-tert-Butyl-4-	Aldehydes (Benzaldehydes)
10.100	10,000,001,00	08/ 18/50	05/ 15/2		hydroxybenzaldehyde	D1 1
13.132	16,983,601.06	276.17153	276.1700	C ₁₇ H ₂₄ O ₃	Shogaol	Phenols
20.295	16,462,133.15	299.28127	299.2800	C18H37NO2	Palmitoyl ethanolamide	Amines (Amino Alcohols)
14.576	14,874,891.90	414.20268	414.2000	$C_{24}H_{30}O_6$	Bis(4-ethylbenzylidene)sorbitol	Sugar alcohol
19.986	14,176,669.67	321.26558	299.5000	C18H37NO2	Sphingosine (d18:1)	Amines
19.715	13,852,334.54	336.20778	336.2100	C20H29FO3	Fluoxymesterone	Hormones
17.688	13,159,097.66	350.24193	328.2600	$C_{19}H_{36}O_4$	2,4-dihydroxyheptadec-16-en-1-yl acetate	Unsaturated Fatty Acids
26.392	12,768,022.53	283.32268	284.3300	C19H41N	Cetrimonium	Amines (Quartenary Ammonium
						Compounds)
23.12	12,428,205.36	390.2755	390.2800	C24H38O4	Bis(2-ethylhexyl) phthalate	Carboxylic Acids
16.474	11,621,213.91	266.16368	266.1600	C ₁₂ H ₂₇ O ₄ P	Tributyl phosphate	Organophosphorus Compounds
16.926	10,593,568.28	248.17679	266.1900	C ₁₆ H ₂₆ O ₃	Tetranor-12(S)-HETE	Organic Hydroxy compound
	-,			-102003		(hydroxy carboxylic acid)
20.537	9,753,652.00	176.11943	194.1300	C12H18O2	Sedanolide	Heterocyclic Compound
_0.007	\$,700,002.00	1/0.11/10	121.1000	01211802	ceamonae	(Benzofurans)
21.427	8,882,476.13	363.31224	357.3000	C24H39NO	Oleyl anilide	Amines (Anilides)
11.188	8,843,434.72	294.21855	294.2200	C ₁₈ H ₃₀ O ₃	13(S)-HOTrE	Unsaturated Fatty Acids
11.662	8,423,640.09	191.13033	191.11300	C ₁₂ H ₁₇ NO	Diethyltoluamide or DEET	Carboxylic Acids
21.688	7,026,193.73	310.28584	310.2900	C ₂₀ H ₃₈ O ₂	Ethyl oleate	Fatty Acids
	.,	010.20001	010.2000	20-3802		

RT = retention time (minutes).

^a = calculated exact mass observed from LC-HRMS; ** = predicted-calculated molecular mass from ChemDraw.

of EC_{50} value accompanied by an LC_{50} value which was in a safe category. This is in line with similar studies that observed the cytotoxicity of *C. racemosa* in subcritical water extraction, which did not show significant cytotoxicity activity [42]. Furthermore, a review study by Aroyehun et al. (2020) stated that in addition to minimal toxicity, *C. racemosa*

has bioprospecting as a promising nutraceutical due to its nutritional value [9].

Table 3

Amino acids (ELWKTF) analysis.

Peptide Sequence	Average Local Confidence (ALC, %)	Length ^a	m/z	Retention Time (RT)	Theoretical Mass/Observed Mass (Da)	Peak Area (max)
ELWKTF	97	6	412.2320	30.9	822.43/822.428	815,602,581.03

Chemical Formula: C41H58N8010. Exact Mass: 822.43. Molecular Weight: 822.96. m/z: 822.43 (100.0 %), 823.43 (45.4 %), 824.43 (13.0 %), 823.42 (3.0 %), 825.44 (2.4 %). Elemental Analysis: C, 59.84; H, 7.10; N, 13.62; O, 19.44.

^a The number of amino acids on the peptide.

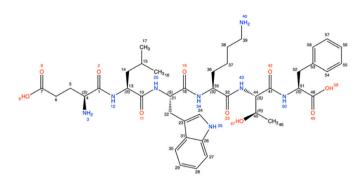
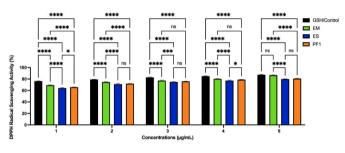



Fig. 3. ELWKTF analysis and visualization results using ChemDraw 21.0.0 Macbook version.

Fig. 4. Comparison of DPPH radical scavenging activity. * = p 0.0374; *** = p0.0002; **** = p < 0.0001; ns = not significant (p > 0.05).

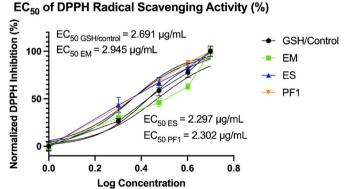


Fig. 5. Dose-response curve of ME, SE, PF1, and GSH regarding DPPH radical scavenging activity. $EC_{50} =$ half-maximal effective concentration; ME =

macerated extract; SE = soxhlet extract; PF1 = purified fraction 1.

4.1. The potential and prospects of Caulerpa racemosa as nutraceuticals and pharmaceuticals in terms of cultivation and use in commercial industrial production applications

Fewer incidences of diet-related diseases, especially noncommunicable diseases and including cancer and cardiovascular disease have been observed in countries that consume high amounts of macroalgae as a supplement or food [57,58]. Macroalgae consumption

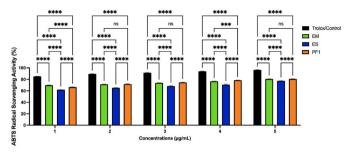


Fig. 6. Comparison of ABTS radical scavenging activity of ME, SE, PF1, and Trolox. *** = p 0.0004: **** = p < 0.0001: ns = not significant (p > 0.05).

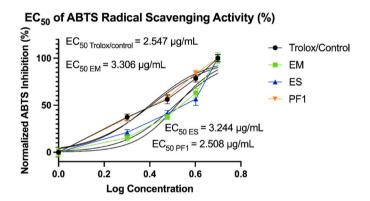
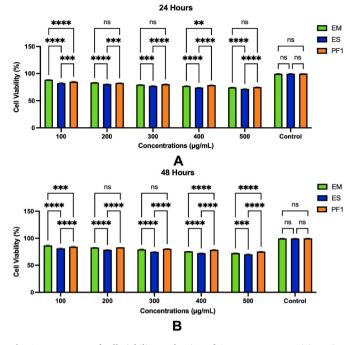



Fig. 7. Dose-response curve of ME, SE, PF1, and Trolox regarding ABTS radical scavenging activity. EC₅₀ = half-maximal effective concentration; ME = macerated extract; SE = soxhlet extract; PF1 = purified fraction 1.

has been shown to reduce the prevalence of different non-communicable diseases due to the metabolites and other bioactive compounds working as a defense mechanism [58]. Studies carried out with macroalgae extracts or their specific metabolites proved that they have cytotoxins, which prevent the proliferation of cancer cells [59]. In this study, the results showed that. ES and PF1 show good potential effectiveness in DPPH radical elimination activity because the EC₅₀ values are lower than the control or GSH. This was in line with a review study by Collins et al., 2016, which focused on the potential use of bioactive macroalgae derivatives, including polysaccharides, antioxidants, and fatty acids, among others, to treat chronic non-communicable diseases [57]. Furthermore, the main compounds resulting from the identification of C. racemosa metabolomic profiling, such as choline [60], betaine [60], oleamide [61], hexadecanamide [62], palmitoleic acid [63], and α -eleostearic acid [64] may become therapeutic drugs for non-communicable diseases [65,66]. Furthermore, we also explored the antioxidant activity of each secondary metabolite of metabolomic profiling results by a review approach, which can be seen in Supplementary Table 1.

The therapeutic activity of food-derived bioactive proteins and peptides - such as from medicinal plants - is attracting increasing attention in the research community [54]. Bioactive peptides offer promising potential as antiviral drugs, and therapeutic peptides are an exciting alternative to be developed into anti-Dengue virus drugs due to

Fig. 8. Percentage of cell viability evaluation of *C. racemosa* cytotoxicity using MTT assay on the human Caucasian skin fibroblast cell line. **A** = Cytotoxicity evaluation using MTT assay at 24 h. **B** = Cytotoxicity evaluation using MTT assay at 48 h ** = p 0.0096; *** = p 0.0002; **** = p < 0.0001; ns = not significant (p = 0.2745). EM = macerated extract; ES = soxhlet extract; PF1 = purified fraction 1.

Table 4

LC50 value of extracts from C. racemosa on cytotoxicity test in BUD-8 cell lines.

Hours of Incubation	LC ₅₀ (µg/mL)	LC ₅₀ (µg/mL)				
	EM	ES	PF1			
24 h	914.78	2227.85	2069.21			
48 h	2971.15	1816.17	2173.02			

ME = macerated extract; SE = soxhlet extract; PF1 = purified fraction 1. LC_{50} = half-maximal lethal concentration (lowest concentration of samples that inhibit 50 % of cells).

their safety and diverse biological and chemical properties [67]. In addition, many potential compounds were identified from *C. racemosa* metabolites profiles, such as choline [68], betaine [69], oleamide [70], hexadecanamide [71], palmitoleic acid [72], and α -eleostearic acid [73]. More research is needed to examine the clinical effects of *C. racemosa* as a nutraceutical. On the other hand, optimizing the supply chain of *C. racemosa* may also promote sustainability. An important strategy to ensure a stable supply of sea grapes as raw material is to implement controlled, year-round cultivation techniques can help maintain consistent availability, reduce environmental impact, and support local livelihoods without overharvesting natural populations [74].

4.2. Potential for future research

Many strategies are needed to further develop *C. racemosa* products to explore their secondary metabolites and health benefits. In addition, environmental factors play an essential role in influencing the composition of secondary metabolites in *C. racemosa* [75,76], which is important to be considered. To ensure the validity and safety of sea grapes research development, the drug discovery process should be carried out through various steps as recommended by the Food and Drug Administration (FDA, US), which can be seen in Fig. 9.

The process initiated by metabolomic profiling identifies what processes/pathways can be targeted to affect the disease/condition. Compound screening can also be done to identify compounds that can be promising candidates for further development. Next, an *in silico* study is needed for target validation, determining whether the drug can provide therapeutic benefit to the target, and lead discovery to identify the lead compound to be observed for further studies. Subsequently, preclinical trials are needed to evaluate the therapeutic index and dose using *in vitro* and *in vivo* approaches and evaluate the aspects of pharmacokinetics and pharmacodynamics in experimental animals (Fig. 9). Finally, to ensure efficacy and safety, three phases of clinical trials need to be conducted, first on healthy patients and then on obese or patients with other cardiovascular diseases.

4.3. Strengths and limitations of study

The results of this study complemented the published data related to secondary metabolites from C. racemosa found and grown in Asia, especially in Indonesia waters. Furthermore, this study succeeded in profiling the bioactive peptide and their bioactivity properties from the purified fraction 1 of C. racemosa (Graphical Abstract). In addition, the synthesis and purification of their respective compounds (metabolites and bioactive peptides) for the development of food and drug products and the exploration of bioactive carbohydrates and other bioactive peptides is a limitation of this research. It is hoped that more research will be carried out in the future. Seeing the metabolomic results which show indications of several compounds that are thought to be antinutrients, further studies are needed to confirm whether they are naturally present in sea grapes or as contaminants. References indicating the activity of the health benefits of each metabolite that have been successfully identified are still very few and limited, so computational molecular docking or in silico studies are needed for various diseasecausing receptors.

5. Conclusions

The abundance of secondary metabolites and bioactive compounds in sea grapes (*C. racemosa* (Försskal) J. Agardh) was obtained from the maceration method's extraction process. The bioactive peptide purified fraction 1 (PF1), as shown in ELWKTF, was also analyzed for its antioxidant and cytotoxicity activity. These metabolites were responsible for high biochemical activity (antioxidants, scavenging, and reducing) and have good prospects of cytotoxicity. The study revealed that *C. racemosa* contained antioxidant nutrients, metabolites, and bioactive peptides (Graphical Abstract); these factors make it a promising functional food and pharmaceutical. This research confirmed the bioactive molecules and antioxidant potential of *C. racemosa* using metabolomic profiling and proteomics, demonstrating both safe cytotoxicity levels and promising health applications. From a future perspective, *C. racemosa* is a potential candidate for development as a functional food and other nutraceutical applications, including pharmaceuticals.

6. Patents

Patent Number S00202211473 (Fahrul Nurkolis is a patent holder).

CRediT authorship contribution statement

Nurpudji Astuti Taslim: Writing – review & editing, Supervision, Resources. Hardinsyah Hardinsyah: Writing – review & editing, Validation, Supervision. Son Radu: Writing – review & editing, Supervision. Nelly Mayulu: Writing – review & editing, Supervision, Resources. Apollinaire Tsopmo: Writing – review & editing, Supervision. Rudy Kurniawan: Writing – review & editing, Formal analysis, Data curation. Trina Ekawati Tallei: Writing – review & editing, Validation, Supervision, Methodology. Tati Herlina: Writing – review & editing,

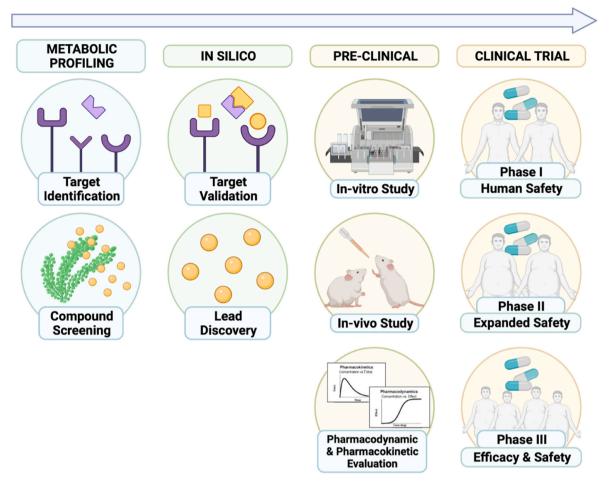


Fig. 9. The flow of research and product development of C. racemosa in the future.

Supervision. Iman Permana Maksum: Writing – review & editing, Validation, Supervision, Formal analysis. Fahrul Nurkolis: Writing – review & editing, Writing – original draft, Visualization, Software, Resources, Project administration, Methodology, Investigation, Formal analysis, Data curation, Conceptualization.

Data availability statement

The underlying data presented in this study are available on request from the author (FN).

Funding

This research received no external funding.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

The authors thank all of the contributors for their outstanding help in research and also in formatting the paper. I also want to express my gratitude to my two special people, who have provided suggestions and comments on the research and writing of this manuscript, as well as the motivation that has led the authors to keep the passion for research during the pandemic: 1. *Professor Hardinsyah, MS, Ph.D.* (the President of

the Federations of Asian Nutrition Societies; President of the Food and Nutrition Society of Indonesia; and Member of the Southeast Asian Probiotic Scientific and Regulatory Experts Network). Preprint: Research Square (This is a preprint https://doi.org/10.21203/rs.3.rs-2 158307/v2; it has not been peer reviewed by a journal).

Abbreviations Used:

ABTS = 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid); BPS = Bioactive Peptides; DENV = Dengue virus; DMEM = Dulbecco's Modified Essential Medium; DMSO = Dimethyl sulfoxide; DPPH = 2,2-diphenyl-1-picrylhydrazyl; ELWKTF: Glu-Leu-Trp-Lys-Thr-Phe; EM = Macerated Extract (Extract Maceration); ES = Soxhletated Extract (Extract-Soxhletation); ESI = Electrospray ionization; FBS = Fetal bovine serum; GSH = Glutathione; HPLC = High-Performance Liquid Chromatography; HRMS = High-Resolution Mass Spectrometry; IUPAC = International Union of Pure and Applied Chemistry; MTT = 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide; PS = Protein Supernatant; PSN = Penicillin-Streptomycin-Neomycin; PUFAs = Polyunsaturated fatty acids; ROS = Reactive Oxygen Species.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jafr.2024.101513.

N.A. Taslim et al.

References

- I. Hamed, F. Özogul, Y. Özogul, J.M. Regenstein, Marine bioactive compounds and their health benefits: a review, Compr. Rev. Food Sci. Food Saf. 14 (2015) 446–465, https://doi.org/10.1111/1541-4337.12136.
- [2] S. Pooja, Algae used as medicine and food-A short review, Journal of Applied Pharmaceutical Science and Research 6 (2014) 33–35.
- [3] G. Rajauria, Y.V. Yuan, Algae: a functional food with a rich history and future superfood, Recent Advances in Micro and Macroalgal Processing (2021) 1–13.
- [4] T. Løvdal, D. Skipnes, Assessment of food quality and safety of cultivated macroalgae, Foods 11 (2021) 83, https://doi.org/10.3390/foods11010083.
- [5] A.R. Circuncisão, M.D. Catarino, S.M. Cardoso, A.M.S. Silva, Minerals from macroalgae origin: health benefits and risks for consumers, Mar. Drugs 16 (2018), https://doi.org/10.3390/md16110400.
- [6] M. Darmawan, N.P. Zamani, H.E. Irianto, H. Madduppa, Mol ecul Ar characteri zati on of caul erpa racemosa (caulerpales, chlorophyta) from Indonesia based on the plastid TufA gene, Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology 16 (2021) 101–109, https://doi.org/10.15578/SQUALEN.588.
- [7] U. Zakiyah, Mulyanto, L.T. Suwanti, M.D. Koerniawan, E.A. Suyono, A. Budiman, U.J. Siregar, Diversity and distribution of microalgae in coastal areas of east Java, Indonesia, Biodiversitas 21 (2020) 1149–1159, https://doi.org/10.13057/biodiv/ d210340.
- [8] D. Fithriani, Opportunities and challenges for developing caulerpa racemosa as functional foods, KnE Life Sciences 2 (2015) 85, https://doi.org/10.18502/kls. v1i0.90.
- [9] T. Nagappan, C.S. Vairappan, Nutritional and bioactive properties of three edible species of green algae, genus Caulerpa (caulerpaceae), J. Appl. Phycol. 26 (2014) 1019–1027, https://doi.org/10.1007/s10811-013-0147-8.
- [10] B. Tanna, S. Yadav, A. Mishra, Anti-proliferative and ROS-inhibitory activities reveal the anticancer potential of Caulerpa species, Mol. Biol. Rep. 47 (2020) 7403–7411, https://doi.org/10.1007/s11033-020-05795-8.
- [11] K.-L. Sun, M. Gao, Y.-Z. Wang, X.-R. Li, P. Wang, B. Wang, Antioxidant peptides from protein hydrolysate of marine red algae eucheuma cottonii: preparation, identification, and cytoprotective mechanisms on H2O2 oxidative damaged HUVECs, Front. Microbiol. 13 (2022) 791248, https://doi.org/10.3389/ fmicb.2022.791248.
- [12] B. Wang, Z.-S. Chen, Z. Jiang, Z. Zhang, Editorial: biological macromolecules from marine organisms: isolation, characterization and pharmacological activities, Front. Mar. Sci. 10 (2023), https://doi.org/10.3389/fmars.2023.1326516.
- [13] B. Pradhan, P.P. Bhuyan, S. Patra, R. Nayak, P.K. Behera, C. Behera, A.K. Behera, J.-S. Ki, M. Jena, Beneficial effects of seaweeds and seaweed-derived bioactive compounds: current evidence and future prospective, Biocatal. Agric. Biotechnol. 39 (2022) 102242, https://doi.org/10.1016/j.bcab.2021.102242.
- [14] A.Q.B. Aroyehun, S.A. Razak, K. Palaniveloo, T. Nagappan, N.S.N. Rahmah, G. W. Jin, D.K. Chellappan, J. Chellian, A.P. Kunnath, Bioprospecting cultivated tropical green algae, Caulerpa racemosa: a perspective on nutritional properties, antioxidative capacity and anti-diabetic potential, Foods 9 (2020), https://doi.org/10.3390/foods9091313.
- [15] M. Kuswari, F. Nurkolis, N. Mayulu, F.M. Ibrahim, N.A. Taslim, D.S. Wewengkang, N. Sabrina, G.R. Arifin, K.E.K. Mantik, M.R. Bahar, et al., Sea grapes extract improves blood glucose, total cholesterol, and PGC-1α in rats fed on cholesteroland fat-enriched diet, F1000Research 10 (2021) 718, https://doi.org/10.12688/ f1000research.54952.1.
- [16] A.M. Abo-Shady, S.F. Gheda, G.A. Ismail, J. Cotas, L. Pereira, O.H. Abdel-Karim, Antioxidant and Antidiabetic Activity of Algae, 2023.
- [17] K. Thiyagarasaiyar, B.-H. Goh, Y.-J. Jeon, Y.-Y. Yow, Algae Metabolites in Cosmeceutical: an Overview of Current Applications and Challenges, 2020.
- [18] A.M. Tapotubun, T.E.A.A. Matrutty, J. Riry, E.J. Tapotubun, E.G. Fransina, M. N. Mailoa, W.A. Riry, B. Setha, F. Rieuwpassa, Seaweed Caulerpa sp position as functional food, Proceedings of the IOP Conference Series: Earth and Environmental Science 517 (2020).
- [19] M. Yahyaoui, N. Ghazouani, I. Sifaoui, M. Abderrabba, Comparison of the effect of various extraction methods on the phytochemical composition and antioxidant activity of thymelaea hirsuta L. Aerial parts in Tunisia, Biosciences, Biotechnology Research Asia 14 (2017) 997–1007, https://doi.org/10.13005/bbra/2534.
- [20] Q.W. Zhang, L.G. Lin, W.C. Ye, Techniques for extraction and isolation of natural products: a comprehensive review, Chin. Med. 13 (2018), https://doi.org/ 10.1186/S13020-018-0177-X.
- [21] M.B. Soquetta, L.M. Terra, C.P.B.-C.-J. Food, Green Technologies for the Extraction of Bioactive Compounds in Fruits and Vegetables, vol. 16, Taylor & Francis, 2018, pp. 400–412, https://doi.org/10.1080/19476337.2017.1411978, 2018.
- [22] E.J. Rifna, N.N. Misra, M. Dwivedi, Recent advances in extraction technologies for recovery of bioactive compounds derived from fruit and vegetable waste peels: a review, Crit. Rev. Food Sci. Nutr. (2021), https://doi.org/10.1080/ 10408398.2021.1952923.
- [23] J.C. Hogervorst, U. Miljić, V. Puškaš, Extraction of bioactive compounds from grape processing by-products, in: Handbook of Grape Processing By-Products: Sustainable Solutions, Academic Press, 2017, pp. 105–135. ISBN 9780128098714.
- [24] A. Pandey, S. Tripathi, C.A. Pandey, Concept of standardization, extraction and pre phytochemical screening strategies for herbal drug, Journal of Pharmacognosy and Phytochemistry JPP 115 (2014) 115–119.
- [25] A. Altemimi, N. Lakhssassi, A. Baharlouei, D.G. Watson, D.A. Lightfoot, Phytochemicals: Extraction, Isolation, and Identification of Bioactive Compounds from Plant Extracts, 2017.

- [26] A.R. Abubakar, M. Haque, Preparation of Medicinal Plants: Basic Extraction and Fractionation Procedures for Experimental Purposes, 2020.
- [27] X. Zhang, D. Cao, X. Sun, S. Sun, N. Xu, Preparation and identification of antioxidant peptides from protein hydrolysate of marine alga gracilariopsis lemaneiformis, J. Appl. Phycol. 31 (2019) 2585–2596, https://doi.org/10.1007/ s10811-019-1746-9.
- [28] C. Citti, U.M. Battisti, D. Braghiroli, G. Ciccarella, M. Schmid, M.A. Vandelli, G. Cannazza, A metabolomic approach applied to a liquid chromatography coupled to high-resolution tandem mass spectrometry method (HPLC-ESI-HRMS/MS): towards the comprehensive evaluation of the chemical composition of cannabis medicinal extracts, Phytochem. Anal. 29 (2018) 144–155, https://doi.org/ 10.1002/PCA.2722.
- [29] M. Herrero, C. Simö, V. García-Cañas, E. Ibáñez, A. Cifuentes, Foodomics: MS-Based Strategies in Modern Food Science and Nutrition, 2012.
- [30] F. Capozzi, A. Bordoni, Foodomics: a new comprehensive approach to food and nutrition, Genes and Nutrition 8 (2013) 1–4, https://doi.org/10.1007/s12263-012-0310-x.
- [31] H.K. Permatasari, E.N. Barbara Ulfa, V.P. Adyana Daud, H.W. Sulistomo, F. Nurkolis, Caulerpa racemosa extract inhibits HeLa cancer cells migration by altering expression of epithelial-mesenchymal transition proteins, Front. Chem. 10 (2022) 1052238, https://doi.org/10.3389/fchem.2022.1052238.
- [32] F. Nurkolis, N.A. Taslim, F.R. Qhabibi, S. Kang, M. Moon, J. Choi, M. Choi, M. N. Park, N. Mayulu, B. Kim, Ulvophyte green algae Caulerpa lentillifera: metabolites profile and antioxidant, anticancer, anti-obesity, and in vitro cytotoxicity properties, Molecules 28 (2023), https://doi.org/10.3390/molecules28031365.
- [33] F. Nurkolis, N.A. Taslim, Hardinsyah, S. Radu, N. Mayulu, A. Tsopmo, R. Kurniawan, T.E. Tallei, T. Herlina, I.P. Maksum, Metabolomic profiling, in vitro antioxidant and cytotoxicity properties of Caulerpa racemosa : functional food of the future from algae, Research Square (2024).
- [34] X. Bao, S. Ma, Y. Fu, J. Wu, M. Zhang, Sensory and structural characterization of umami peptides derived from sunflower seed, CyTA - J. Food 18 (2020) 485–492, https://doi.org/10.1080/19476337.2020.1778794.
- [35] L. Zhang, G.X. Zhao, Y.Q. Zhao, Y.T. Qiu, C.F. Chi, B. Wang, Identification and active evaluation of antioxidant peptides from protein hydrolysates of skipjack tuna (Katsuwonus pelamis) head, Antioxidants 8 (2019), https://doi.org/10.3390/ antiox8080318.
- [36] P. Kaur, K.S. Sandhu, S.P. Bangar, S.S. Purewal, M. Kaur, R.A. Ilyas, M.R.M. Asyraf, M.R. Razman, Unraveling the bioactive profile, antioxidant and dna damage protection potential of rye (secale cereale) flour, Antioxidants 10 (2021) 1–14, https://doi.org/10.3390/antiox10081214.
- [37] Y. Sheng, W.-Y. Wang, M.-F. Wu, Y.-M. Wang, W.-Y. Zhu, C.-F. Chi, B. Wang, Eighteen Novel Bioactive Peptides from Monkfish (Lophius Litulon) Swim Bladders: Production, Identification, Antioxidant Activity, and Stability, 2023.
- [38] H.K. Permatasari, F. Nurkolis, H. Hardinsyah, N.A. Taslim, N. Sabrina, F. M. Ibrahim, J. Visnu, D.A. Kumalawati, S.A. Febriana, T. Sudargo, et al., Metabolomic assay, computational screening, and pharmacological evaluation of Caulerpa racemosa as an anti-obesity with anti-aging by altering lipid profile and peroxisome proliferator-activated receptor-γ coactivator 1-α levels, Front. Nutr. 0 (2022) 1412, https://doi.org/10.3389/FNUT.2022.939073.
- [39] M.B. Arnao, A. Cano, M. Acosta, The hydrophilic and lipophilic contribution to total antioxidant activity, Food Chem. 73 (2001) 239–244, https://doi.org/ 10.1016/S0308-8146(00)00324-1.
- [40] V. Nemudzivhadi, P. Masoko, In vitro assessment of cytotoxicity, antioxidant, and anti-inflammatory activities of ricinus communis (euphorbiaceae) leaf extracts, Evid. base Compl. Alternative Med. (2014), https://doi.org/10.1155/2014/ 625961, 2014.
- [41] S.-K. Suo, S.-L. Zheng, C.-F. Chi, H.-Y. Luo, B. Wang, Novel angiotensin-converting enzyme inhibitory peptides from tuna byproducts-milts: preparation, characterization, molecular docking study, and antioxidant function on H2O2damaged human umbilical vein endothelial cells, Front. Nutr. 9 (2022) 957778, https://doi.org/10.3389/fnut.2022.957778.
- [42] R. Pangestuti, M. Haq, P. Rahmadi, B.S. Chun, Nutritional value and biofunctionalities of two edible green seaweeds (ulva lactuca and Caulerpa racemosa) from Indonesia by subcritical water hydrolysis, Mar. Drugs 19 (2021) 578, https://doi.org/10.3390/md19100578.
- [43] C. Fui Seung Chin, K. Phin Chong, M. Atong, N. Kui Wong, F.-S. Chin, K.-P. Chong, A. Markus, Tea polyphenols and alkaloids content using soxhlet and direct extraction method tea polyphenols and alkaloids content using soxhlet and direct extraction methods, World J. Agric. Sci. 9 (2013) 266–270, https://doi.org/ 10.5829/idosi.wjas.2013.9.3.1737.
- [44] D.P. Xu, Y. Zhou, J. Zheng, S. Li, A.N. Li, H. Bin Li, Optimization of ultrasoundassisted extraction of natural antioxidants from the flower of jatropha integerrima by response surface methodology, Molecules 21 (2016) 18, https://doi.org/ 10.3390/molecules21010018.
- [45] P.A. Harnedy, R.J. FitzGerald, Bioactive peptides from marine processing waste and shellfish: a review, J. Funct.Foods 4 (2012) 6–24, https://doi.org/10.1016/j. jff.2011.09.001.
- [46] A. Sila, A. Bougatef, Antioxidant peptides from marine by-products: isolation, identification and application in food systems. A review, J. Funct.Foods 21 (2016) 10–26, https://doi.org/10.1016/J.JFF.2015.11.007.
- [47] C.F. Chi, D. Wang, Y.M. Wang, B. Zhang, S.G. Deng, Isolation and characterization of three antioxidant peptides from protein hydrolysate of bluefin leatherjacket (navodon septentrionalis) heads, J. Funct.Foods 12 (2015) 1–10, https://doi.org/ 10.1016/J.JFF.2014.10.027.

- [48] W.H. Zhao, Q. Bin Luo, X. Pan, C.F. Chi, K.L. Sun, B. Wang, Preparation, identification, and activity evaluation of ten antioxidant peptides from protein hydrolysate of swim bladders of miiuy croaker (miichthys miiuy), J. Funct.Foods 47 (2018) 503–511, https://doi.org/10.1016/J.JFF.2018.06.014.
- [49] Y.Q. Zhao, L. Zhang, J. Tao, C.F. Chi, B. Wang, Eight antihypertensive peptides from the protein hydrolysate of antarctic krill (euphausia superba): isolation, identification, and activity evaluation on human umbilical vein endothelial cells (HUVECs), Food Res. Int. 121 (2019) 197–204, https://doi.org/10.1016/J. FOODRES.2019.03.035.
- [50] X.R. Li, C.F. Chi, L. Li, B. Wang, Purification and identification of antioxidant peptides from protein hydrolysate of scalloped hammerhead (Sphyrna lewini) cartilage, Mar. Drugs 15 (2017), https://doi.org/10.3390/MD15030061. Page 61 2017, 15, 61.
- [51] S.-K. Suo, Y.-Q. Zhao, Y.-M. Wang, X.-Y. Pan, C.-F. Chi, B. Wang, Seventeen novel angiotensin converting enzyme (ACE) inhibitory peptides from the protein hydrolysate of Mytilus edulis: isolation, identification, molecular docking study, and protective function on HUVECs, Food Funct. 13 (2022) 7831–7846, https:// doi.org/10.1039/d2fo00275b.
- [52] Y. Sheng, Y.-T. Qiu, Y.-M. Wang, C.-F. Chi, B. Wang, Novel antioxidant collagen peptides of siberian sturgeon (acipenserbaerii) cartilages: the preparation, characterization. Cytoprotection of H2O2-Damaged Human Umbilical Vein Endothelial Cells (HUVECs), 2022.
- [53] M. Gazali, Nurjanah, N.P. Zamani, Zuriat, M. Suriani, R. Alfitrah, R. Syafitri, Z. Hanum, N. Zurba, C.D. Febrina, et al., Antioxidant activity of green seaweed Caulerpa racemosa (försskal) J. Agardh from balai island water, Aceh, IOP Conf. Ser. Earth Environ. Sci. 1033 (2022) 012052, https://doi.org/10.1088/1755-1315/1033/1/012052.
- [54] S. Chakrabarti, S. Guha, K. Majumder, Food-derived bioactive peptides in human health: challenges and opportunities, Nutrients 10 (2018), https://doi.org/ 10.3390/NU10111738. Page 1738 2018, 10, 1738.
- [55] R.P. Magdugo, N. Terme, M. Lang, H. Pliego-Cortés, C. Marty, A.Q. Hurtado, G. Bedoux, N. Bourgougnon, An analysis of the nutritional and health values of Caulerpa racemosa (forsskål) and ulva fasciata (Delile)—two chlorophyta collected from the Philippines, Molecules 25 (2020), https://doi.org/10.3390/ molecules25122901.
- [56] 자연과학대순천향대학교 료과학대순천향의대학교, Y.-H. Kim, D.-S. Kim, S.-S. Woo, H.-H. Kim, Y.-S. Lee, H.-S. Kim, K.-O. Ko, S.-K. Lee, Antioxidant activity and cytotoxicity on human cancer cells of anthocyanin extracted from black soybean, koreascience.or.kr 53 (2008) 407–412.
- [57] K.G. Collins, G.F. Fitzgerald, C. Stanton, R.P. Ross, Looking beyond the terrestrial: the potential of seaweed derived bioactives to treat non-communicable diseases, Mar. Drugs 14 (2016), https://doi.org/10.3390/md14030060.
- [58] E. Shannon, N. Abu-Ghannam, Seaweeds as nutraceuticals for health and nutrition, Phycologia 58 (2019) 563–577, https://doi.org/10.1080/ 00318884.2019.1640533.
- [59] T. Olivares-Bañuelos, A.G. Gutiérrez-Rodríguez, R. Méndez-Bellido, R. Tovar-Miranda, O. Arroyo-Helguera, C. Juárez-Portilla, T. Meza-Menchaca, L.E. Aguilar-Rosas, L.C.R. Hernández-Kelly, A. Ortega, et al., Brown seaweed egregia menziesii's cytotoxic activity against brain cancer cell lines, Molecules 24 (2019), https://doi.org/10.3390/MOLECULES24020260. Page 260 2019, 24, 260.
- [60] M. Golzarand, Z. Bahadoran, P. Mirmiran, F. Azizi, Dietary choline and betaine intake and risk of hypertension development: a 7.4-year follow-up, Food Funct. 12 (2021) 4072–4078, https://doi.org/10.1039/D0F003208E.
- [61] C. Tanase, C. Negut, D.I. Udeanu, E.M. Ungureanu, M. Hrubaru, C.V.A. Munteanu, F. Cocu, R.I.S. Van Staden, New oleamide analogues with potential food - intake regulator effect. II, Rev. Chem. 67 (2016) 282–288.
- [62] S. Mazzari, R. Canella, L. Petrelli, G. Marcolongo, A. Leon, N-(2-Hydroxyethyl) Hexadecanamide is orally active in reducing edema formation and inflammatory

hyperalgesia by down-modulating mast cell activation, Eur. J. Pharmacol. 300 (1996) 227–236, https://doi.org/10.1016/0014-2999(96)00015-5.

- [63] M.E. Frigolet, R. Gutiérrez-Aguilar, The role of the novel lipokine palmitoleic acid in health and disease, Adv. Nutr. 8 (2017) 173S–181S, https://doi.org/10.3945/ AN.115.011130.
- [64] S.N. Lewis, L. Brannan, A.J. Guri, P. Lu, R. Hontecillas, J. Bassaganya-Riera, D. R. Bevan, Dietary α-eleostearic acid ameliorates experimental inflammatory bowel disease in mice by activating peroxisome proliferator-activated receptor-γ, PLoS One 6 (2011) e24031 https://doi.org/10.1371/JOURNAL.PONE.0024031.
- [65] N. Andalia, M.N. Salim, N. Saidi, M. Ridhwan, M. Iqhrammullah, U. Balqis, Molecular docking reveals phytoconstituents of the methanol extract from Muntingia calabura as promising α-glucosidase inhibitors Muntingia calabura as promising-glucosidase inhibitors, Karbala International Journal of Modern Science 8 (2022) 330–338.
- [66] R. Yusnaini, R. Nasution, N. Saidi, T. Arabia, R. Idroes, I. Ikhsan, R. Bahtiar, M. Iqhrammullah, Ethanolic extract from limonia acidissima L. Fruit Attenuates Serum Uric Acid Level via URAT1 in Potassium Oxonate-Induced Hyperuricemic Rats, 2023.
- [67] P.J. Patil, S.S. Sutar, M. Usman, D.N. Patil, M.J. Dhanavade, Q. Shehzad, A. Mehmood, H. Shah, C. Teng, C. Zhang, et al., Exploring bioactive peptides as potential therapeutic and Biotechnology treasures: a contemporary perspective, Life Sci. 301 (2022) 120637, https://doi.org/10.1016/J.LFS.2022.120637.
- [68] M.A. Cox, G.S. Duncan, G.H.Y. Lin, B.E. Steinberg, L.X. Yu, D. Brenner, L. N. Buckler, A.J. Elia, A.C. Wakeham, B. Nieman, et al., Choline acetyltransferase–expressing T cells are required to control chronic viral infection, Science 363 (2019) 639–644, https://doi.org/10.1126/SCIENCE.AAU9072/ SUPPL FILE/AAU907256.MP4.
- [69] M. Zhang, X. Wu, F. Lai, X. Zhang, H. Wu, T. Min, Betaine inhibits hepatitis B virus with an advantage of decreasing resistance to lamivudine and interferon α, J. Agric. Food Chem. 64 (2016) 4068–4077, https://doi.org/10.1021/ACS. JAFC.6B01180/ASSET/IMAGES/MEDIUM/JF-2016-011806 0005. GIF.
- [70] C.R. Zwick, H. Renata, A one-pot chemoenzymatic synthesis of (2S, 4r)-4-methylproline enables the first total synthesis of antiviral lipopeptide cavinafungin B, Tetrahedron 74 (2018) 6469–6473, https://doi.org/10.1016/J.TET.2018.09.046.
- [71] M. Minteguiaga, E. Dellacassa, M.A. Iramain, C.A.N. Catalán, S.A. Brandán, Synthesis, spectroscopic characterization and structural study of 2-isopropenyl-3methylphenol, carquejiphenol, a carquejol derivative with potential medicinal use, J. Mol. Struct. 1165 (2018) 332–343, https://doi.org/10.1016/J. MOLSTRUC.2018.04.001.
- [72] H. Hirotani, H. Ohigashi, M. Kobayashi, K. Koshimizu, E. Takahashi, Inactivation of T5 phage by cis-vaccenic acid, an antivirus substance from rhodopseudomonas capsulata, and by unsaturated fatty acids and related alcohols, FEMS (Fed. Eur. Microbiol. Soc.) Microbiol. Lett. 77 (1991) 13–17, https://doi.org/10.1111/ J.1574-6968.1991.TB04314.X.
- [73] S.S. Saha, M. Ghosh, Antioxidant and anti-inflammatory effect of conjugated linolenic acid isomers against streptozotocin-induced diabetes, Br. J. Nutr. 108 (2012) 974–983, https://doi.org/10.1017/S0007114511006325.
- [74] F.E. Msuya, J. Bolton, F. Pascal, K. Narrain, B. Nyonje, E.J. Cottier-Cook, Seaweed farming in africa: current status and future potential, J. Appl. Phycol. 34 (2022) 985–1005, https://doi.org/10.1007/s10811-021-02676-w.
- [75] A. Ramakrishna, G.A. Ravishankar, Influence of Abiotic Stress Signals on Secondary Metabolites in Plants 6 (2011) 1720–1731, https://doi.org/10.4161/ psb.6.11.17613, doi:10.4161/PSB.6.11.17613.
- [76] Y. Shi, L. Yang, M. Yu, Z. Li, Z. Ke, X. Qian, X. Ruan, L. He, F. Wei, Y. Zhao, et al., Seasonal variation influences flavonoid biosynthesis path and content, and antioxidant activity of metabolites in tetrastigma hemsleyanum diels & gilg, PLoS One 17 (2022) e0265954, https://doi.org/10.1371/JOURNAL.PONE.0265954.