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The growing interest in Industry 4.0 has spurred the demand for reliable 
wireless communication. Low-Power Wide-Area Networks (LPWANs) have 
pivotal role in emerging applications such as Internet of Things (IoT) and 
Machine-to-machine (M2M) communication wherein massive number of 
sparsely located machines and sensor nodes are connected. Reliability and 
robustness are compromised when LPWANs are deployed to support industrial 
grade communication. Moreover, critical IoT applications have pressing 
demands for high data rate and extended coverage with minimal information 
loss. The design requirements of wireless M2M systems influence the choice of 
modulation and diversity techniques, and the selection of spectrum. Rotating 
Polarization Wave (RPW) is an LPWAN technology tested for highly reliable 
M2M communication. It is a hybrid polarization-based modulation that exploits 
Binary Phase Shift Keying (BPSK) and Polarization Diversity (PD) to provide 
robust wireless connectivity. In this thesis, an enhanced RPW modulation is 
proposed whereby a novel pair of complementary Multilevel PSK (MPSK) 
modulators successfully generates an RPW waveform with multiple phase 
shifts, hence termed as Rotating Polarization Multilevel Phase-Shift Keying (RP-
MPSK). A novel channel model is also proposed that exploits quaternions to 
account for the impact of multipath fading and channel depolarization on RPW 
transmission. The model is referred to as Quaternion RPW (Q-RPW) model in 
this thesis. Q-RPW simplifies computation involved in modeling and simulation 
of RPW that is otherwise complex if classical dual-polarized channel models are 
employed. Performance of RP-MPSK over multipath fading channel under noise 
and interference conditions has been evaluated in terms of Bit Error Rate BER 
using the proposed Q-RPW model. The results show that uncoded RP-MPSK 
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modulation with the smallest sampling ratio of 3 attains BER profile similar to 
that of BPSK system with second-order space diversity. Further improvement in 
BER performance can be achieved provided higher sampling ratios are 
maintained. Therefore, sampling ratio on RP-MPSK receiver is a practical trade-
off between reliability and data rate. RPW with RP-MPSK also outperforms all 
other forms of polarization in terms of BER. A comprehensive link budget 
analysis is performed to demonstrate the potential of RPW as an enabling 
technology for LPWAN. Sensitivity, Received Signal Strength (RSS), and 
maximum range of RPW is determined. Results show that RP-MPSK exhibits an 
excellent sensitivity level of -114 dBm under multipath conditions. The 
minimum RSS in urban settings is -85 dBm while the maximum range achieved 
by RP-MPSK in rural areas is 15 km despite shadowing and multipath fading. 
RPW with proposed RP-MPSK modulation offers transmission rate of up to 500 
kbps with a channel bandwidth of 125 kHz. However, in ISM band, channel 
bandwidth can be increased to 500 kHz. Consequently, potential transmission 
rates of up to 2 Mbps are feasible. Higher data rates translate to increased energy 
efficiency as more data is transmitted in shorter time intervals to counterpoise 
duty cycle limitations of ISM band. 
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Minat yang semakin meningkat dalam Industri 4.0 telah mendorong permintaan 
untuk komunikasi tanpa wayar yang boleh dipercayai. Rangkaian Kawasan 
Luas Kuasa Rendah (LPWANs) mempunyai peranan penting dalam aplikasi 
baru yang sedang berkembang iaitu seperti Internet Benda (IoT) dan 
komunikasi Mesin-ke-mesin (M2M) di mana sebilangan besar mesin dan nod 
sensor yang jarang terletak, disambungkan. Kebolehpercayaan dan keteguhan 
dikompromi apabila LPWAN ditempatkan untuk menyokong komunikasi gred 
industri. Lebih-lebih lagi, aplikasi IoT kritikal mempunyai permintaan yang 
mendesak, untuk kadar data yang tinggi dan liputan luas dengan kehilangan 
data yang minimum. Reka bentuk yang diperlukan pada sistem M2M tanpa 
wayar mempengaruhi pilihan teknik modulasi dan kepelbagaian, dan 
pemilihan spektrum. Gelombang Polarisasi Berputar (RPW) adalah teknologi 
LPWAN yang telah diuji dan sangat cekap untuk komunikasi M2M. Ia adalah 
modulasi berasaskan polarisasi hibrid yang mengeksploitasi Kekunci Anjakan 
Fasa Perduaan (BPSK) dan Kepelbagaian Polarisasi (PD) untuk menyediakan 
sambungan tanpa wayar yang kukuh. Di dalam tesis ini, modulasi RPW yang 
intensif dicadangkan di mana sepasang pemodulat Pelbagai Peringkat Kekunci 
Anjakan Fasa (MPSK) pelengkap yang baru berjaya menjana bentuk gelombang 
RPW dengan peralihan pelbagai fasa, oleh itu disebut sebagai Polarisasi 
Berputar Pelbagai Peringkat Kekunci Anjakan Fasa (RP-MPSK). Model saluran 
baru juga dicadangkan iaitu yang dapat mengeksploitasi kuaternion serta 
mengambil kira kesan pudar multipath dan depolarisasi saluran pada 
penghantaran RPW. Model ini dirujuk sebagai model Quaternion RPW (Q-
RPW) di dalam tesis ini. Q-RPW memudahkan pengiraan yang terlibat dalam 
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pemodelan dan simulasi RPW yang sebaliknya kompleks jika model saluran 
dwi-Polarisasi klasik digunakan. Prestasi RP-MPSK ke atas Berbilang Laluan 
saluran di bawah keadaan hingar dan gangguan telah dinilai dari segi Kadar 
Ralat Bit (BER) menggunakan model Q-RPW yang dicadangkan. Keputusan 
menunjukkan bahawa modulasi RP-MPSK yang tidak dikodkan dengan nisbah 
persampelan terkecil 3 mencapai profil BER yang sama dengan sistem BPSK 
dengan kepelbagaian ruang pesanan kedua. Penambahbaikan yang seterusnya 
dalam prestasi BER boleh dicapai dengan syarat nisbah persampelan yang lebih 
tinggi dikekalkan. Oleh itu, nisbah persampelan pada penerima RP-MPSK 
adalah pertukaran praktikal antara kebolehpercayaan dan kadar data. RPW 
dengan RP-MPSK juga telah mengatasi semua bentuk polarisasi lain dari segi 
BER. Analisis bajet pautan yang komprehensif dilakukan untuk menunjukkan 
potensi RPW sebagai teknologi yang berpotensi tinggi dengan LPWAN. 
Sensitiviti, Kekuatan Isyarat Diterima (RSS), dan julat maksimum RPW telah 
dapat ditentukan. Keputusan menunjukkan bahawa RP-MPSK menunjukkan 
tahap sensitiviti yang sangat baik -114 dBm di bawah keadaan MP. RSS 
minimum dalam persekitaran bandar ialah -85 dBm manakala julat maksimum 
yang dicapai oleh RP-MPSK di kawasan luar bandar ialah 15 km walaupun 
bayangan dan multipath pudar. RPW dengan modulasi RP-MPSK yang 
dicadangkan menawarkan kadar penghantaran sehingga 500 kbps dengan lebar 
jalur saluran 125 kHz. Walau bagaimanapun, dalam jalur ISM, lebar jalur 
saluran boleh ditingkatkan kepada 500 kHz. Oleh itu, kadar penghantaran yang 
berpotensi sehingga 2 Mbps boleh dilaksanakan. Kadar data yang lebih tinggi 
diterjemahkan kepada peningkatan kecekapan tenaga kerana lebih banyak data 
dihantar dalam selang masa yang lebih pendek untuk mengatasi batasan kitaran 
tugas kumpulan ISM.   
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CHAPTER 1 
 

1 INTRODUCTION 
 

This first chapter of the thesis opens with a background of latest trends and 
developments in the domain of Information and Communication Technologies 
(ICT) and the rising significance of Wireless Communication in Internet of 
Things (IoT). The background of the thesis is described followed by the 
statement of underlying problem and its aim and objectives. The last section 
explains the organization of the thesis. 
 

1.1 Background 
 

The onset of the 21st century has pushed new terms into ICT domain with 
impending demands for robust and seamless wireless connectivity for billions 
rather trillions of end users, sensor nodes and machines. A few terms that have 
attracted worldwide attention of academia, industry and governments are IoT, 
Machine-to-Machine (M2M) communication, Industrial IoT (IIoT), Industrial 
Communication Systems (ICS), and Industry 4.0. These terms are related to each 
other and occasionally interchanged in context of digital revolution. IoT is the 
combination of physical devices with an ability to generate, process and 
exchange data with humans and machines (Montori et al., 2018). M2M is the 
exchange of data between the devices without human intervention (Montori et 
al., 2018). The exact origin of M2M is not known but it is widely believed to 
conceive as the first telemetry circuit in 1845 for an exchange of logistic 
information between two military locations in Russia (Mayo-Wells, 1963). The 
terms M2M and IoT were coined in 1990s and now IoT is seen as an evolution of 
M2M (Alam et al., 2013). IoT can be further divided into Consumer IoT (CIoT) 
and IIoT based on the type of services they provide (Sisinni et al., 2018). CIoT is 
human-centered to improve his awareness about the surrounding consumer 
electronic devices through Machine-to-Human (M2H) link. On the other hand, 
in IIoT, Information Technology (IT) is combined with Operating Technology 
(OT) to optimize industrial operations for smart manufacturing. A suitable ICS 
is used for this purpose so that the control systems and machines can be 
connected to the business processes and information systems (Vitturi et al., 
2019). An ICS is a communication network adopted in factories to automate 
manufacturing and control processes. Industry 4.0 is a subset of IIoT that 
combines IoT with Internet technologies and Cyber-Physical Systems (CPS) to 
improve production efficiency (Sisinni et al., 2018). CPS provides a digital 
description of real-world physical objects.  
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Some IoT systems perform communication tasks on wired media while others 
can communicate wirelessly. Low-Power Wide-Area Networks (LPWAN) are 
wireless IoT systems that have been explored and deployed worldwide because 
of robust communication, broader coverage, and low power consumption.  
 

Rotating Polarization Wave (RPW) is a new method for reliable wireless 
communication that is undergoing its embryonic stages (Takei & Yamada, 2018). 
It offers the advantage of high reliability that is of central interest to M2M and 
ICS. It can also offer data rates equivalent to or higher than most of the LPWANs. 
However, RPW has not been fully explored for its suitability to IoT applications. 
Detailed analysis of its performance in terms of reliability, link budget, power 
consumption, receiver sensitivity, and transmission delay is required to 
demonstrate its eligibility for LPWANs. 
 

1.2 Motivation 
 

The IoT market is growing exponentially in terms of number of market shares, 
size of data traffic, number of connections, and number of subscriptions. One of 
the factors is the rapid growth of M2M subscriptions. The estimated global 
subscriptions of M2M are 97 billion by 2030, approximately five times the 
number of mobile subscriptions (International Telecommunications Union, 
2015). Existing M2M deployments mostly use LPWANs. In their LPWAN 
market report, IoT Analytics have shown that LPWAN landscape was 
dominated by four technologies namely Long Range (LoRa), Sigfox, 
Narrowband IoT (NB-IoT) and Long-Term Evolution for Machines (LTE-M) in 
2019, projecting 92% share among all LPWAN connections (LPWAN Market 
Report 2018-2023, 2018). In 2023, this share is expected to reach 97%. Therefore, a 
contribution to LPWAN research has a discernable impact on IoT research and 
industry. 
 

Exponential Roadmap Initiative has highlighted 36 solutions to exponentially 
scale Green-House Gas Emissions (GHGE) to halve by 2030 (J. Falk et al., 2019). 
ICT is one of the key sectors that can contribute to achieving this goal. The 
projected share of GHGE from ICT has been forecasted to exceed 4% and 6% of 
the global GHGE in 2025 and 2030, respectively (Belkhir & Elmeligi, 2018). IoT 
could help reduce this percentage globally by up to 15% by 2030, which is 
equivalent to 10 gigatons of GHGE (ICT’s Potential to Reduce Greenhouse Gas 
Emissions in 2030, n.d.). With a large number of LPWAN connections in future, 
use of energy efficient LPWANs is indispensable to converge the amount of 
GHGE. 
 



© C
OPYRIG

HT U
PM

3 

The purpose of this research is therefore to propose an affordable and 
environment-friendly solution for dependable wireless connectivity that can 
bridge digital divide in the era of IoT. 
 

1.3 Problem Statement 
 

In wireless communication systems, the reliability and data rate are affected by 
the modulation technique being used (Buurman et al., 2020b). Simple 
modulations like BPSK and Binary Frequency-Shift Keying (BFSK) are reliable 
but provide low data rates. To achieve higher data rates, higher order or 
multilevel modulation schemes such as Multilevel Phase Shift Keying (MPSK) 
and Multilevel Quadrature Amplitude Modulation (MQAM) are required, but 
they increase complexity resulting in reduced reliability and increased power 
consumption. This complexity can be reduced by combining a diversity 
technique with a multilevel modulation scheme. Polarization Diversity (PD) 
with MPSK modulation can provide higher data rate and reliability, while 
reducing the overall complexity. 
 

Based on design requirements, IoT systems are sometimes classified as critical 
and non-critical IoT systems (Buurman et al., 2020b). Critical systems are 
intended for high data rate and high reliability real-time communication such as 
cellular LPWANs, whereas moderate reliability and data rates are sufficient for 
non-critical systems. LPWANs operating on Industrial, Scientific, and Medical 
(ISM) band such as LoRa and Sigfox can be used in this case. However, they 
compromise link reliability in harsh multipath environments with elevated 
perturbations and provide low data rates not exceeding a few kilobits per second 
(kbps). On the other hand, cellular LPWANs like LTE-M and NB-IoT are reliable 
and provide data rates up to a few hundred kbps (Buurman et al., 2020b), but 
they necessitate cellular infrastructure that is often limited or not available in 
rural and remote areas. Therefore, a reliable LPWAN is the need of the hour to 
minimize dependency of IoT on infrastructure but offer the benefits of cellular 
LPWAN connectivity. RPW system can offer a high data rate and reliable 
communication by employing MPSK modulation. 
 

An accurate performance analysis of a wireless system depends on the system 
model being used. Channel models for PD systems are either physical or 
analytical, both having their own limitations (Guo et al., 2017). The physical 
models are more scenario-specific and cannot be generalized for all PD systems. 
On the other hand, analytical models are appropriate for Rayleigh fading but 
they do not address some of the crucial propagation aspects such as scattering 
and depolarization. A quaternion analytical model was proposed for PD systems 
with an advantage to include depolarization and scattering effects and thus 
provides polarization as an additional degree of freedom for signal detection 
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(Wysocki et al., 2006). The model also reduces the complexity of the classical 
channel models (Wysocki et al., 2006). RPW transmitter and receiver can also be 
modelled in terms of quaternions to exploit quaternion channel model for a 
realistic performance analysis of RPW system. 
 

Link budget analysis is of crucial importance to validate a wireless network in 
various terrains. Previous works on LPWANs have either ignored fast fading 
margin or have used empirical values for shadowing and fast fading margins 
(Ikpehai et al., 2019b; Lauridsen et al., 2017). In practice, the fast-fading margin 
depends on the type of modulation being used, because different modulations 
respond differently to multipath conditions. Therefore, a propagation model 
should consider all propagation effects such as large-scale path loss, shadowing, 
multipath fading, fixed losses and indoor losses for link budget estimates. Link 
budget performance of RPW system can be appropriately evaluated as an 
LPWAN using a propagation model that takes all these factors into account. 
 

In view of the research gap stated above, this thesis has proposed a reliable high-
data rate RPW system that employs Rotating Polarization Multilevel Phase-Shift 
Keying (RP-MPSK) modulation by combining RPW with MPSK modulation. A 
novel Quaternion RPW (Q-RPW) model has also been proposed for performance 
analysis of RP-MPSK modulation. A comprehensive link budget analysis is 
carried out to investigate its performance as an LPWAN in terms of enhanced 
coverage, low power, and improved reliability. The system exploits sub-GHz 
ISM band and requires minimal infrastructure. 
 

1.4 Aims and Objectives 
 

The aim of this thesis is to enhance and evaluate the performance of RPW and 
validate its use as an LPWAN for critical IoT applications The objectives of this 
thesis are: 
 

1. To propose and design a novel RP-MPSK modulator and demodulator and 
analyze the Bit Error Rate (BER) of RPW system under noise, multipath and 
interference conditions. 

2. To propose novel Q-RPW model for RPW system with RP-MPSK 
modulation. 

3. To analyze link budget performance of RPW with RP-MPSK modulation 
considering large scale path loss, shadowing and multipath fading to 
determine Received Signal Strength (RSS) and maximum range in urban, 
suburban and rural areas. 
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1.5 Scope of Research 
 

Research topic is selected by narrowing down the broader perspectives of IoT to 
performance characteristics and factors, enabling technologies, PHY techniques, 
channel models and link budget (Figure 1.1). Only ISM band LPWAN is 
considered for performance comparison. For the simulation purpose, 
information symbols are taken to be uniformly distributed while channel 
coefficients follow normal distribution to introduce Rayleigh fading. Flat fading 
with single-tap impulse response in the absence of Line-of-Sight (LoS) is 
assumed and the receiver has perfect knowledge of the wireless channel. Known 
values of the fixed obstacle loss and indoor propagation loss are considered. 
Communication performance is evaluated for a point-to-point Physical Layer 
(PHY). To validate the performance analysis, only 868 MHz ISM carrier 
frequency with a channel bandwidth of 125 kHz is considered unless otherwise 
specified. A BER of 10-5 for uncoded modulation is considered under multipath 
conditions to limit the time of simulation and comparison with available BERs 
of other LPWANs. The probability of edge user or fringe coverage is 0.95. No 
preamble is considered and no error detection and correction is employed. 
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Figure 1.1: Outlines of research topic 
 

1.6 Novelty and Contributions 
 

A novel pair of Quaternary Phase-Shift Keying (QPSK) modulators has been 
proposed to be specifically used in RPW communication. This was inspired by 
the fundamental idea of RPW where two BPSK modulations with orthogonal 
carriers were used. Extending it to QPSK multi-level modulation was a challenge 
as the simple RPW modulation already employs quadrature carriers. Therefore, 
two non-identical QPSK modulators with complementary constellations are 
proposed such that the two carriers being used are orthogonal in phase. Another 
aspect of novelty is the proposed efficient Q-RPW model as it successfully 
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exploits quaternion model for dual-polarized systems to bring an incremental 
rotation in the linear polarization over a symbol period. 
 

This thesis has made three contributions to RPW technology. First, an RP-MPSK 
modulator and demodulator is proposed and designed based on the novel 
complementary QPSK modulators. Secondly, Q-RPW is proposed, and its 
mathematical treatment is provided for simulation of RP-MPSK transmission. 
Finally, a generalized approach for link budget analysis is also provided to 
incorporate shadowing and multipath fading margins in LPWAN systems. 
 

1.7 Thesis Organization 
 

The remaining part of thesis is organized as follows: 
 
Chapter 2 is a comprehensive literature review on leading LPWAN solutions, 
their PHY technologies, polarization-based modulations, and link budget 
analysis of LPWANs. The existing RPW system is also completely described. 
 

Chapter 3 elaborates the methods applied in this thesis. System modeling and 
simulation method is illustrated. Methodology is explained from three aspects: 
RP-MPSK modulation, Q-RPW model and link budget analysis. The proposed 
novel pair of QPSK modulators and its extension to RP-MPSK is described. The 
chapter also covers the proposed Q-RPW model for RP-MPSK transmission, 
comprising transmitter model and receiver model. Link budget analysis has also 
been discussed based on large-scale path loss, shadowing and multipath fading. 
To support the proposed solution, a comprehensive mathematical treatment is 
provided. 
 

Chapter 4 is dedicated for results and discussion. It comprises three sections. The 
first two sections present the results of error performance of RP-MPSK 
modulation using Q-RPW model and its link budget analysis, respectively. In 
the last section, the results have been discussed to highlight the significance of 
proposed solution, especially in the context of LPWANs. 
 

Chapter 5 concludes the thesis with recommendations for future work and the 
research directions. 
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