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For structural designs, uncertainty is ubiquitous, ranging from simple models to 
complicated systems, especially in the design of the composite submersible hull. 
To deal with this problem, a method named uncertain interval optimization was 
introduced in recent decades. However, the existing interval optimization 
methods, such as the Nonlinear Interval Number Programming (NINP), which is 
based on the first-order Taylor expansion, are only suitable for small interval 
uncertainties. A large range of uncertainties will lead to a significant error. The 
key challenge becomes how to develop another effective type of interval 
optimization approach with enough efficient and reliable constraints. Therefore, 
this research performs a novel double-loop interval optimization approach using 
the Progressive TMRSM, the reliable constraints, and the MATLAB software to 
limit the constraints effectively. Nevertheless, double-loop optimization means a 
high computational cost even if a simulation such as the Finite Element Method 
(FEM) or experiment is used. To solve this difficulty, a surrogate method is 
introduced to replace the experiment or the FEM. Recently, there have been 
various surrogate approaches for structural engineering. Scholars always seek 
to attain more accurate and simpler models with fewer sample points. 
Determining how to create a better surrogate model with fewer and more reliable 
sample points and less other information becomes a critical and urgent topic. 
This research first updates the traditional Response Surface Method (RSM) to a 
new proposed Trigonometric Mixed Response Surface Method (TMRSM), which 
can obtain a more accurate surrogate model with fewer and more reliable 
sample points. However, the decision of the highest order of the TMRSM should 
be determined in advance by designers for some high-nonlinear complex 
structural problems. Another deficiency to be concerned about is how to 
determine the highest order of polynomials for the RSM surrogate model. Thus, 
a Progressive Trigonometric Mixed Response Surface Method (Progressive 
TMRSM) is put forward to determine the highest order for the TMRSM. This 
Progressive TMRSM consists of the t-test criterion, the determination coefficient, 



© C
OPYRIG

HT U
PM

 
ii 

and the mean relative error. The accuracy and the fitting performance of the 
TMRSM and the Progressive TMRSM have been verified by four well-known 
numerical functions. The results show that the Progressive TMRSM has the best 
accuracy and perfect fitting performance. Due to the complex pressure 
environment under the water and the uncertainty of the layup technology, the 
design process of the submersible is faced with several uncertain factors. But 
the optimization design considering the uncertain factors has not been studied 
by any scholars. How to apply interval optimization design in the field of 
submersible designs becomes another significant research issue. So, this 
research carries out an uncertain interval optimization design (the buckling 
properties and the failure criterion) for the composite submersible hull based on 
the interval optimization approach, the Progressive TMRSM, and the Finite 
Element Method (FEM) method by ANSYS software. This approach can obtain 
a better solution with a narrower deviation of the objectives compared with NINP. 
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Reka bentuk struktur, ketidakpastian ada di mana-mana, bermula daripada 
model mudah kepada sistem yang rumit, terutamanya dalam reka bentuk badan 
kapal tenggelam komposit. Untuk menangani masalah ini, kaedah yang 
dinamakan pengoptimuman selang tidak pasti telah diperkenalkan dalam 
beberapa dekad kebelakangan ini. Walau bagaimanapun, kaedah 
pengoptimuman selang sedia ada, seperti Pengaturcaraan Nombor Selang Tak 
Linear (NINP), yang berdasarkan pengembangan Taylor tertib pertama, hanya 
sesuai untuk ketidakpastian selang yang kecil. Pelbagai ketidakpastian yang 
besar akan membawa kepada ralat yang ketara. Cabaran utama ialah 
bagaimana untuk membangunkan satu lagi jenis pendekatan pengoptimuman 
selang yang berkesan dengan kekangan yang cekap dan boleh dipercayai. Oleh 
itu, penyelidikan ini melaksanakan pendekatan pengoptimuman selang dua 
gelung novel menggunakan TMRSM Progresif, kekangan yang boleh 
dipercayai, dan perisian MATLAB untuk mengehadkan kekangan dengan 
berkesan. Namun begitu, pengoptimuman gelung dua kali bermaksud kos 
pengiraan yang tinggi walaupun simulasi seperti Kaedah Elemen Terhad (FEM) 
atau eksperimen digunakan. Untuk menyelesaikan kesukaran ini, kaedah 
pengganti diperkenalkan untuk menggantikan eksperimen atau FEM. Baru-baru 
ini, terdapat pelbagai pendekatan pengganti untuk kejuruteraan struktur. 
Sarjana sentiasa berusaha untuk mencapai model yang lebih tepat dan lebih 
mudah dengan titik sampel yang lebih sedikit. Menentukan cara mencipta model 
pengganti yang lebih baik dengan titik sampel yang lebih sedikit dan lebih 
dipercayai serta kurang maklumat lain menjadi topik kritikal dan mendesak. 
Penyelidikan ini mula-mula mengemas kini Kaedah Permukaan Tindak Balas 
tradisional (RSM) kepada Kaedah Permukaan Tindak Balas Bercampur 
Trigonometri (TMRSM) baharu yang dicadangkan, yang boleh mendapatkan 
model pengganti yang lebih tepat dengan titik sampel yang lebih sedikit dan 
lebih dipercayai. Walau bagaimanapun, keputusan peringkat tertinggi TMRSM 
harus ditentukan terlebih dahulu oleh pereka bentuk untuk beberapa masalah 
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struktur kompleks bukan linear tinggi. Satu lagi kekurangan yang perlu 
dibimbangkan ialah bagaimana untuk menentukan susunan polinomial tertinggi 
untuk model pengganti RSM. Oleh itu, Kaedah Permukaan Tindak Balas 
Campuran Trigonometri Progresif (TMRSM Progresif) dikemukakan untuk 
menentukan susunan tertinggi bagi TMRSM. TMRSM Progresif ini terdiri 
daripada kriteria ujian-t, pekali penentuan, dan min ralat relatif. Ketepatan dan 
prestasi pemasangan TMRSM dan TMRSM Progresif telah disahkan oleh empat 
fungsi berangka yang terkenal. Keputusan menunjukkan bahawa TMRSM 
Progresif mempunyai ketepatan yang terbaik dan prestasi pemasangan yang 
sempurna. Oleh kerana persekitaran tekanan yang kompleks di bawah air dan 
ketidakpastian teknologi layup, proses reka bentuk tenggelam berhadapan 
dengan beberapa faktor yang tidak pasti. Tetapi reka bentuk pengoptimuman 
memandangkan faktor yang tidak pasti belum dikaji oleh mana-mana sarjana. 
Cara menggunakan reka bentuk pengoptimuman selang dalam bidang reka 
bentuk tenggelam menjadi satu lagi isu penyelidikan yang penting. Oleh itu, 
penyelidikan ini menjalankan reka bentuk pengoptimuman selang yang tidak 
pasti (sifat lengkokan dan kriteria kegagalan) untuk badan kapal selam komposit 
berdasarkan pendekatan pengoptimuman selang, TMRSM Progresif, dan 
kaedah Elemen Terhad (FEM) oleh perisian ANSYS. Pendekatan ini boleh 
mendapatkan penyelesaian yang lebih baik dengan sisihan objektif yang lebih 
sempit berbanding dengan NINP. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Background 

Terrestrial resources are becoming increasingly depleted as a result of resource 
development, while the ocean, as a treasure trove of vast reserves and abundant 
resources, has exceptionally high research and development values for its 
mineral, biological, and energy resources. Additionally, as there are some 
particular demands, such as exploring sunk ships and crashed planes, that is 
where the underwater submersible becomes important. This submersible 
technology has a wide range of applications in marine resource exploration, 
marine environment survey, seabed rescue, and specific search (Zereik et al., 
2018).  

 

Figure 1.1 : Underwater submersible diagram 
(Source : Cui, 2018) 
 
 
Chinese self-developed 4,500-meter deep-sea submersible "Hai Ma" has been 
successfully tested in the South China Sea Basin (Walden & Brown, 2004). 
Japan's submersible, named "Deep Sea 6500" can operate underwater for up to 
8 hours (Iwai et al., 1990). Russian "Peace 1" and "Peace 2" can reach a depth 
of 6,000 meters and can operate for 17-20 hours (Sagalevitch, 1998). The 
French "Nautilus" submersible can dive 6,000 meters, and it has completed 
shipwreck and hazardous waste searches, submarine ecological surveys, and 
other tasks (Boulègue, J., Iiyama, J. T., Charlou, J.-L., & Jedwab, 1987). The 
US "Alvin" manned submersible has completed 4500 submarine missions (S. 
Zhang et al., 2019). Therefore, Most of the world's maritime powers have begun 
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to invest heavily in marine detection, and underwater submersible technology 
has developed rapidly in recent decades (S. Zhang et al., 2019). 

Submersibles are becoming deeper dive, longer range, and faster to meet 
today's increasingly complex functional tasks. These requirements necessitate 
a submersible with a stronger structure, less weight, less resistance, and greater 
inner volume. Thus, the submersible hull should be able to carry a higher load 
in order to meet the strength under extreme pressure in the deep-water 
environment. 

Generally, the most common materials for high-pressure underwater vessels are 
high-strength steel, aluminum alloy, and titanium alloy (Moon et al., 2010). Ross 
(2006) also explained that the main materials for submersible pressure hull 
design are high-strength steels, aluminum alloys, and titanium alloys. A rising 
application of laminated composite material was recently introduced to improve 
corrosion resistance and reduce the weight-strength ratio compared with 
traditional metal material for submersible hulls (Davies et al., 2016; Moon et al., 
2010).  

Smith (1991) may be the first researcher to propose the use of composite 
material in the underwater vehicle design field. And immediately after that, the 
filament winding method was applied to the production of underwater 
submersibles first time (Hahn HT, Jensen DW, Claus SJ, Pai SP, 1994). With a 
great number of applications, the filament winding of cylinders focusing on 
mechanical properties such as buckling, biaxial compression, and failure has 
become a hot research topic (Davies et al., 2016). Therefore, the use of 
composite underwater submersible hulls can be considered a promising trend 
(Upputuri & Nimmagadda, 2020). 

1.2 Problem Statement 

A lot of scholars have made contributions to the research of composite 
submersible shells. Messager, Pyrz, Gineste, and  Chauchot (2002) described 
the optimal composite design for the deep submersible based on the Finite 
Element Method (FEM) and Experiments. Moreover, different orientation angles 
could affect the buckling feature of the composite shell. Kaneko, Ujihashi, 
Yomoda, and Inagi (2008) analyzed the impact of the pressurized composite 
cylinder in different failure conditions for free-from failure based on FEM. Moon 
et al. (2010) discussed composite cylinder's buckling and failure characteristics 
under external pressure, which was made by filament winding method using 
FEM and experiment testing. The results showed that the characteristics were 
mainly affected by the helical winding angles. 

Unfortunately, in practical engineering, hundreds and thousands of optimum 
calculations for the FEM or Experiments need lots of time, for example, hundreds 
of hours or a few weeks. In this case, Kemal Apalak, Yildirim, and Ekici (2008) 
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investigated layer optimization with three edge conditions for the maximum 
fundamental frequency of the composite plate using the Genetic Algorithm (GA) 
and Artificial Neural Network (ANN) model. This model, named the surrogate 
model (or the approximate model), was used to replace the FEM or experiment 
calculations. Mallela and Upadhyay (2016) performed a laminated composite 
design with the development of a computationally efficient analysis model based 
on ANN to predict the buckling of the composite shell under in-plane shear 
loading. 

Although these surrogate models provide a reasonable simulation response, 
more sample points need to be added to provide more precise results. An 
adaptive Response Surface Method (RSM) was created for high-dimensional 
design challenges that are based on the Latin Hypercube Design (LHD) by G. 
Wang (G. G. Wang, 2003). To update the decision function, Basudhar and 
Missoum (2008) created a precise approximation explicit-decision function 
based on an adaptive sample method. An adaptive Kriging model was used to 
improve computation outcomes by adding additional sample points by Cheng et 
al. (J. Cheng et al., 2014, 2015). Another sequential improvement criterion was 
performed to obtain the resilient optimization solution while also advancing the 
appropriateness of the Radial Basis Function (RBF) by Havinga (Havinga et al., 
2017). It is important to note that adding more sample points means not only a 
more accurate response but also a higher processing cost. 

Given such deficiencies, many researchers devise and implement more 
accurate surrogate models with fewer sample points. Kim (2005) and Youn 
(2004) combined the Moving Least Squares Method (MLSM) and sensitivity 
information to build a more accurate surrogate model. Li and Kim (2012) 
presented a doubly-weighted moving least squares approach that incorporates 
the normal weight factor of MLSM as well as the distance between the most 
likely failure spots. The RSM was implemented using the MLSM to reduce the 
computational burden by Kaymaz (2005) and Taflanidis (2012). Even if the 
aforementioned researchers did their best to construct an accurate surrogate 
model with a minimal number of sample points, sensitive data or other 
information is still required. Then Y. Lee and C. Lin proposed a novel RSM with 
trigonometric functions for composite laminated structures to improve the 
accuracy of the regression (Y. J. Lee & Lin, 2003; C. C. Lin & Lee, 2004). 
However, the regression with trigonometric functions only plays a global 
approximation over the whole domain rather than the local approximation. As a 
result, determining how to create a better surrogate model with fewer and more 
reliable sample points and less other information becomes a critical and urgent 
topic.  

It should be noted that all these abovementioned papers construct RSM models 
by second-order polynomials. Nevertheless, only simple quadratic RSM models 
may not be sufficient for high-nonlinear engineering problems. In practice, when 
a high-nonlinear complex structural problem is to be performed, the decision of 
the highest order of the polynomial should be determined in advance by 
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designers. Hence, another deficiency to be concerned about is how to determine 
the highest order of polynomials for the RSM surrogate model. 

In the traditional design of engineering optimization, deterministic parameters 
are typically adopted to evaluate structural behavior. However, uncertainty with 
respect to the actual values for parameters is widespread in practical 
engineering problems, ranging from simple models to large systems. Geometric 
dimensions, material qualities, stresses, boundary conditions, manufacturing 
tolerance, and so forth are examples of intrinsic uncertain elements in real-world 
situations (F. Li, Luo, Sun, et al., 2013; J. Wu et al., 2013, 2015). 

Since the 1960s, Moore and Cloud (2009) proposed an uncertain interval 
analysis that can calculate the upper bounds and lower bounds of the objective 
functions without the premise of probabilistic density function or a great number 
of data. Elishakoff (1994) and Ben-Haim (1994) may start to use this interval 
analysis for structural engineering to solve uncertain problems. Qiu (1998, 2001) 
used the anti-optimization technique to solve linear interval equations for small 
and large interval static displacement bounds of structural performance. A 
Nonlinear Interval Number Programming (NINP) method is proposed to 
transform the uncertain optimal situation into a deterministic optimization 
problem based on penalty functions and the first-order or second-order Taylor 
expansion method by Jiang (C. Jiang et al., 2014; C. Jiang, Han, Guan, et al., 
2007; C. Jiang, Han, Liu, et al., 2008). 
 

 

Figure 1.2 : The relationship between two interval values 
 
 
From the reviews, all these methods are performed with small interval deviations 
rather than large perturbations. Nonetheless, addressing simply tiny deviation 
problems in this research is insufficient because most engineering problems are 
high-nonlinear. For these large interval ranges, Li et al. devised a nested loop 
optimization approach for engineering design optimization based on Kriging 
approximate model in order to produce more exact and trustworthy results (F. 
Li, Luo, Rong, et al., 2013; F. Li, Luo, Sun, et al., 2013). A double-loop 
optimization was presented using Radial basis functions (RBF) in which the 
objective and constraints were rebuilt at each iteration step by Zhao (Z. Zhao et 
al., 2010). Cheng and Liu (2016) constructed a nested genetic algorithm (GA) 
direct interval ranking procedure with the Kriging model and the degree of 
Interval Constraint Violation (DICV) to solve the uncertain constraints problems 
by direct interval relationship. However, this direct interval ranking procedure 
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may lead to an error that the interval A  is larger than the interval B  when 

( ) ( )m A m B (See Figure 1.2). 

In order to treat the constraints for interval optimization, a penalty function is 
introduced by J. Cheng, C. Jiang and F. Li (J. Cheng et al., 2013; C. Jiang, Han, 
& Liu, 2007, 2008b; F. Li, Luo, Rong, et al., 2013; F. Li, Luo, Sun, et al., 2013). 
However, the use of the penalty function may not limit the constraints strictly. In 
conclusion, the key challenge becomes how to develop another effective type of 
interval optimization approach with enough efficient and reliable constraints. 

For the practical application, none of the scholars put their focus on the interval 
optimization design for the mechanical performance of the underwater 
submersible hull. Thus, how to apply uncertain interval optimization design in 
the field of submersible designs becomes another significant research issue. At 
last, the problem statements can be summarized as: 
 

1.  Determining how to create a better surrogate model with fewer and 
more reliable sample points and less other information becomes a 
critical and urgent topic. 

2.  Another deficiency to be concerned about is how to determine the 
highest order of polynomials for the RSM surrogate model. 

3.  The key challenge becomes how to develop another effective type of 
interval optimization approach with enough efficient and reliable 
constraints. 

4.  How to apply uncertain interval optimization design in the field of 
submersible designs becomes another significant research issue. 

 
 

1.3 Research Objectives 

This research aims to design a new interval optimization process for composite 
submersible hull applications based on the interval Progressive TMRSM. In 
order to fulfill this target, there are several objectives that need to be met below: 
 

1.  Update the traditional Response Surface Method (RSM) to a new 
proposed Trigonometric Mixed Response Surface Method (TMRSM), 
which can obtain a more accurate surrogate model with fewer and 
more reliable sample points. 

2.  Develop a Progressive TMRSM model, which can determine the 
highest order terms of the TMRSM as a surrogate model in the 
uncertain optimization. 

3.  Perform a novel double-loop interval optimization approach using the 
Progressive TMRSM, the reliable constraints, and the MATLAB 
software to limit the constraints effectively. 



© C
OPYRIG

HT U
PM

 
6 

4.  Carry out the optimization design (the buckling properties and the 
failure criterion) for the composite submersible hull based on the 
interval optimization approach, the Progressive TMRSM, and the 
Finite Element Method (FEM) method by ANSYS software. 

 
 

1.4 Research Contributions 

This research aims to solve an uncertain optimization structural problem based 
on a novel proposed Progressive TMRSM model and the interval optimization 
approach for submersible composite hulls. And this novel interval Progressive 
TMRSM model can iteratively ensure the highest order of the polynomial terms 
and obtain a more accurate model with fewer samples and less information. 
Then a double-loop interval optimization approach is performed to reduce the 
overestimation problem and save computational costs. The detailed 
contributions of this research are listed as follows: 
 

1.  A novel approximate method named the Trigonometric Mixed 
Response Surface Method (TMRSM) is proposed based on the 
Optimal Latin Hypercube Design (OLHD), the Moving Least Square 
Method (MLSM), and trigonometric functions. And this method will be 
proven to be more accurate than traditional RSM using MATLAB 
software. 

2.  A Progressive TMRSM is firstly put forward to decide the highest order 
of the polynomial based on the t-statistic test, the determination 
coefficient, and the mean relative error. 

3.  A new proposed interval optimization approach is presented to obtain 
enough efficient and reliable constraints. 

4.  The optimal process for the composite submersible hull is designed 
considering the orientation angles as variables and the layer 
thicknesses and underwater pressures as uncertain interval 
parameters. 

 
 

1.5 Scope and Limitations 

Throughout this research, the design of the composite submersible hull is only 
focused on the optimization design of the buckling performance and the failure 
criterion. Other optimal design properties, such as resistance, controllability, or 
vibration performance, are out of the scope of this research. Furthermore, the 
simulation of the critical buckling pressure and the Tsai-Wu failure criterion factor 
index is carried out by the ANSYS simulation rather than the actual experiment.  

In addition, the proposed interval optimization approach in this research is just 
one type of uncertain optimization in which the uncertain parameters are random 
in the interval bounds. Other uncertain optimization methods, such as 
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probabilistic and fuzzy optimization, are not included in this work. Moreover, the 
optimization algorithm utilizes mature algorithms (Sequential Quadratic 
Programming, SQP, and Particle Swarm Optimization, PSO). Some recent 
algorithms, such as the Whale Optimization Algorithm (WOA), the Grey Wolf 
Optimizer (GWO), Salp Swarm Algorithm (SSA), and the Bald Eagle Search 
Optimization Algorithm (BES), are also out of the scope of this study. 

For the surrogate approaches, both the proposed TMRSM and the Progressive 
TMRSM are the basis of the RSM, which may have a strong advantage over 
continuous functions. And these two models are suitable for problems with 
orientation angles. Nevertheless, ANN algorithms with wider practicability are 
beyond the scope of this research. 

1.6 Thesis Outline 

This research is organized by the layout style 2 of the Guide to Thesis 
Preparation, School of Graduate Studies, Universiti Putra Malaysia. This 
research will be arranged into six chapters. The overview description of this 
research is shown in Figure 1.3. The rest of the research can be listed as: 
 
Chapter 2: This chapter is to introduce the development of the literature review 
on the subject of this research. The review of the literature includes the sampling 
method, approximate method, and uncertain optimization method. 

Chapter 3: In this chapter, the simulation of the EFM can be expressed to work 
out the mechanical properties of the composite submersible hull. In this 
simulation, the buckling and the Tsai-Wu failure criterion of the composite 
submersible hull can be performed as the mechanical properties. Then a 
process of the OLHD samples can be established and settled based on ANSYS 
and Isight software. 

Chapter 4: A novel Trigonometric Mixed Response Surface Method (TMRSM) 
is proposed based on the OLHD, the MLSM, and the trigonometric functions 
using MATLAB software. Then a method that can determine the highest order 
of the polynomial named Progressive TMRSM can be put forward based on the 
t-statistic test, the determination coefficient, and the mean relative error. 

Chapter 5: This chapter establishes an interval optimization approach for the 
composite submersible hull design associated with the interval Progressive 
TMRSM model using MATLAB software. The design results and the analysis 
can be carried out in this part. 

Chapter 6: The conclusion of this research can be made in this chapter. And the 
significant points of this study are highlighted. Furthermore, suggestions for 
future research are also proposed to guide the direction of further research. 
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1.7 Summary 

This chapter introduces the background of this research. Then, the problem 
statements are proposed, following the background and research status. 
Furthermore, four research objectives and four research contributions are 
described based on the problem statements. After that, each research plan is 
listed in six chapters, including overview descriptions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



© C
OPYRIG

HT U
PM

 
144 

7 REFERENCES 

Abdulelah Al-Sudani, Z., Salih, S. Q., sharafati, A., & Yaseen, Z. M. (2019a). 
Development of multivariate adaptive regression spline integrated with 
differential evolution model for streamflow simulation. Journal of 
Hydrology, 573(March), 1–12. 
https://doi.org/10.1016/j.jhydrol.2019.03.004 

Abdulelah Al-Sudani, Z., Salih, S. Q., sharafati, A., & Yaseen, Z. M. (2019b). 
Development of multivariate adaptive regression spline integrated with 
differential evolution model for streamflow simulation. Journal of 
Hydrology, 573(February), 1–12. 
https://doi.org/10.1016/j.jhydrol.2019.03.004 

Abdulredha, M. M., Hussain, S. A., & Abdullah, L. C. (2020). Optimization of the 
demulsification of water in oil emulsion via non-ionic surfactant by the 
response surface methods. Journal of Petroleum Science and 
Engineering, 184(September 2019), 106463. 
https://doi.org/10.1016/j.petrol.2019.106463 

Abouhamze, M., & Shakeri, M. (2007). Multi-objective stacking sequence 
optimization of laminated cylindrical panels using a genetic algorithm 
and neural networks. Composite Structures, 81(2), 253–263. 
https://doi.org/10.1016/j.compstruct.2006.08.015 

Abueidda, D. W., Almasri, M., Ammourah, R., Ravaioli, U., Jasiuk, I. M., & Sobh, 
N. A. (2019). Prediction and optimization of mechanical properties of 
composites using convolutional neural networks. Composite Structures, 
227(April), 111264. https://doi.org/10.1016/j.compstruct.2019.111264 

Abyani, M., & Bahaari, M. R. (2020). A comparative reliability study of corroded 
pipelines based on Monte Carlo Simulation and Latin Hypercube 
Sampling methods. International Journal of Pressure Vessels and 
Piping, 181(February), 104079. 
https://doi.org/10.1016/j.ijpvp.2020.104079 

Adali, S., Lene, F., Duvaut, G., & Chiaruttini, V. (2003). Optimization of laminated 
composites subject to uncertain buckling loads. Composite Structures, 
62(3–4), 261–269. https://doi.org/10.1016/j.compstruct.2003.09.024 

Adali, S., Summers, E. B., & Verijenko, V. E. (1993). Optimisation of laminated 
cylindrical pressure vessels under strength criterion. Composite 
Structures, 25(1–4), 305–312. https://doi.org/10.1016/0263-
8223(93)90177-R 

Allaix, D. L., & Carbone, V. I. (2011). An improvement of the response surface 
method. Structural Safety, 33(2), 165–172. 
https://doi.org/10.1016/j.strusafe.2011.02.001 

 



© C
OPYRIG

HT U
PM

 
145 

Amaran, S., Sahinidis, N. V., Sharda, B., & Bury, S. J. (2016). Simulation 
optimization: a review of algorithms and applications. Annals of 
Operations Research, 240(1), 351–380. 
https://doi.org/10.1007/s10479-015-2019-x 

Amin, J. S., Souraki, B. A., Ghavami, M., & Tondro, H. (2011). Prediction of 
equilibrium water loss during osmotic dehydration in green bean using 
artificial neural network. 7th International Chemical Engineering 
Congress & Exihibition, 21–24. 

Ammeri, A;Hachicha, W.;Chabchoub, H.& Masmoudi, F. (2011). A 
COMPREHENSIVE LITTERATURE REVIEW OF MONO-OBJECTIVE 
SIMULATION OPTIMIZATION METHODS. Advances in Production 
Engineering & Management, 6(4), 291–302. 

Annoni, P., Bruggemann, R., & Saltelli, A. (2012). Random and quasi-random 
designs in variance-based sensitivity analysis for partially ordered sets. 
Reliability Engineering and System Safety, 107, 184–189. 
https://doi.org/10.1016/j.ress.2012.05.001 

Asadzadeh, S., & Khoshbayan, S. (2018). Multi-objective optimization of 
influential factors on production process of foamed concrete using Box-
Behnken approach. Construction and Building Materials, 170, 101–110. 
https://doi.org/10.1016/j.conbuildmat.2018.02.189 

B., L. Fox, I., & PARKE. (1968). Chebyshev polynomials in numerical analysis. 
Oxford University Press, 205(42s). 

Bahloul, R., Arfa, H., & Belhadjsalah, H. (2014). A study on optimal design of 
process parameters in single point incremental forming of sheet metal 
by combining Box-Behnken design of experiments, response surface 
methods and genetic algorithms. International Journal of Advanced 
Manufacturing Technology, 74(1–4), 163–185. 
https://doi.org/10.1007/s00170-014-5975-4 

Basudhar, A., & Missoum, S. (2008). Adaptive explicit decision functions for 
probabilistic design and optimization using support vector machines. 
Computers and Structures, 86(19–20), 1904–1917. 
https://doi.org/10.1016/j.compstruc.2008.02.008 

Ben-Haim, Y. (1994). Convex models of uncertainty: applications and 
implications. Erkenntnis, 41(2), 139–156. 

Bhosekar, A., & Ierapetritou, M. (2018). Advances in surrogate based modeling, 
feasibility analysis, and optimization: A review. Computers and 
Chemical Engineering, 108, 250–267. 
https://doi.org/10.1016/j.compchemeng.2017.09.017 

Bogoclu, C., Roos, D., & Nestorović, T. (2021). Local Latin hypercube refinement 
for multi-objective design uncertainty optimization. Applied Soft 
Computing, 112, 107807. https://doi.org/10.1016/j.asoc.2021.107807 



© C
OPYRIG

HT U
PM

 
146 

Bose, R. C., & Bush, K. A. (1952). Orthogonal arrays of strength two and three. 
The Annals of Mathematical Statistics, 508–524. 

Boulègue, J., Iiyama, J. T., Charlou, J.-L., & Jedwab, J. (1987). Nankai Trough 
, Japan Trench and Kuril Trench : geochemistry of FIuids sampled by 
submersible " Nautile ". 83, 363–375. 

Box, G. E.P., & Behnken, D. W. (1960). Some New Three Level Designs for the 
Study of Quantitative Variables. Technometrics, 2(4), 455–475. 
https://doi.org/10.1080/00401706.1960.10489912 

Box, George E P, & Hunter, J. S. (1957). Multi-factor experimental designs for 
exploring response surfaces. The Annals of Mathematical Statistics, 
28(1), 195–241. 

Caflisch, R. E., Morokoff, W. J., & Owen, A. B. (1997). Valuation of mortgage 
backed securities using Brownian bridges to reduce effective dimension 
(Vol. 24). Department of Mathematics, University of California, Los 
Angeles. 

Cawley, G. C., & Talbot, N. L. C. (2008). Efficient approximate leave-one-out 
cross-validation for kernel logistic regression. Machine Learning, 71(2–
3), 243–264. https://doi.org/10.1007/s10994-008-5055-9 

Chen, R. B., Hsieh, D. N., Hung, Y., & Wang, W. (2013). Optimizing Latin 
hypercube designs by particle swarm. Statistics and Computing, 23(5), 
663–676. https://doi.org/10.1007/s11222-012-9363-3 

Chen, S. H., & Wu, J. (2004). Interval optimization of dynamic response for 
uncertain structures with natural frequency constraints. Engineering 
Structures, 26(2), 221–232. 
https://doi.org/10.1016/j.engstruct.2003.09.012 

Chen, S., Lian, H., & Yang, X. (2002). Interval static displacement analysis for 
structures with interval parameters. International Journal for Numerical 
Methods in Engineering, 53(2), 393–407. 
https://doi.org/10.1002/nme.281 

CHENG, C.-S. (1980). Orthogonal arrays with variable numbers of symbols. The 
Annals of Statistics, 8(2), 447–453. 

Cheng, H., Garrick, D. J., & Fernando, R. L. (2017). Efficient strategies for leave-
one-out cross validation for genomic best linear unbiased prediction. 
Journal of Animal Science and Biotechnology, 8(1), 1–5. 
https://doi.org/10.1186/s40104-017-0164-6 

Cheng, J., Duan, G. F., Liu, Z. Y., Li, X. G., Feng, Y. X., & Chen, X. H. (2014). 
Interval multiobjective optimization of structures based on radial basis 
function, interval analysis, and NSGA-II. Journal of Zhejiang University: 
Science A, 15(10), 774–788. https://doi.org/10.1631/jzus.A1300311 



© C
OPYRIG

HT U
PM

 
147 

Cheng, J., Liu, Z., & Tan, J. (2013). Multiobjective optimization of injection 
molding parameters based on soft computing and variable complexity 
method. International Journal of Advanced Manufacturing Technology, 
66(5–8), 907–916. https://doi.org/10.1007/s00170-012-4376-9 

Cheng, J., Liu, Z., Wu, Z., Li, X., & Tan, J. (2015). Robust optimization of 
structural dynamic characteristics based on adaptive Kriging model and 
CNSGA. Structural and Multidisciplinary Optimization, 51(2), 423–437. 
https://doi.org/10.1007/s00158-014-1140-9 

Cheng, J., Liu, Z., Wu, Z., Tang, M., & Tan, J. (2016). Direct optimization of 
uncertain structures based on degree of interval constraint violation. 
Computers and Structures, 164, 83–94. 
https://doi.org/10.1016/j.compstruc.2015.11.006 

Chi, H. W., & Bloebaum, C. L. (1995). Mixed variable optimization using 
Taguchi’s orthogonal arrays. Proceedings of the ASME Design 
Engineering Technical Conference, 1(27), 501–508. 
https://doi.org/10.1115/DETC1995-0066 

Cho, I., Lee, Y., Ryu, D., & Choi, D. H. (2017). Comparison study of sampling 
methods for computer experiments using various performance 
measures. Structural and Multidisciplinary Optimization, 55(1), 221–
235. https://doi.org/10.1007/s00158-016-1490-6 

Choudhury, I. A., & El-Baradie, M. A. (1997). Surface roughness prediction in 
the turning of high-strength steel by factorial design of experiments. 
Journal of Materials Processing Technology, 67(1–3), 55–61. 
https://doi.org/10.1016/S0924-0136(96)02818-X 

Cressie, N. (1988). Spatial prediction and ordinary kriging. Mathematical 
Geology, 20(4), 405–421. https://doi.org/10.1007/BF00892986 

Cui, W. (2018). An Overview of Submersible Research and Development in 
China. Journal of Marine Science and Application, 17(4), 459–470. 
https://doi.org/10.1007/s11804-018-00062-6 

Dantzig, G. (1955). LINEAR PROGRAMMING UNDER UNCERTAINTY. 
Management Science, Volume 1, numbers 3, 4. 

Davies, P., Choqueuse, D., Bigourdan, B., & Chauchot, P. (2016). Composite 
Cylinders for Deep Sea Applications: An Overview. Journal of Pressure 
Vessel Technology, Transactions of the ASME, 138(6), 1–8. 
https://doi.org/10.1115/1.4033942 

de Leon-Delgado, H., Praga-Alejo, R. J., Gonzalez-Gonzalez, D. S., & Cantú-
Sifuentes, M. (2018). Multivariate statistical inference in a radial basis 
function neural network. Expert Systems with Applications, 93, 313–
321. https://doi.org/10.1016/j.eswa.2017.10.024 

 



© C
OPYRIG

HT U
PM

 
148 

Do, B., Ohsaki, M., & Yamakawa, M. (2021). Bayesian optimization for robust 
design of steel frames with joint and individual probabilistic constraints. 
Engineering Structures, 245(January), 112859. 
https://doi.org/10.1016/j.engstruct.2021.112859 

Dong, M., & Wang, N. (2011). Adaptive network-based fuzzy inference system 
with leave-one-out cross-validation approach for prediction of surface 
roughness. Applied Mathematical Modelling, 35(3), 1024–1035. 
https://doi.org/10.1016/j.apm.2010.07.048 

Ebrahimi, M., Azimi, E., Nasiri, M., & Azimi, Y. (2021). Hybrid PSO enhanced 
ANN model and central composite design for modelling and optimization 
of Low-Intensity magnetic separation of hematite. Minerals Engineering, 
170(May), 106987. https://doi.org/10.1016/j.mineng.2021.106987 

Elishakoff, I., Cai, G. Q., & Starnes, J. H. (1994). Non-linear buckling of a column 
with initial imperfection via stochastic and non-stochastic convex 
models. International Journal of Non-Linear Mechanics, 29(1), 71–82. 
https://doi.org/10.1016/0020-7462(94)90053-1 

Elishakoff, I., Haftka, R. T., & Fang, J. (1994). Structural design under bounded 
uncertainty-Optimization with anti-optimization. Computers and 
Structures, 53(6), 1401–1405. https://doi.org/10.1016/0045-
7949(94)90405-7 

Elishakoff, I., & Thakkar, K. (2014). Overcoming overestimation characteristic to 
classical interval analysis. AIAA Journal, 52(9), 2093–2097. 
https://doi.org/10.2514/1.J053152 

Elishakoff, Isaac, & Miglis, Y. (2012a). Novel parameterized intervals may lead 
to sharp bounds. Mechanics Research Communications, 44, 1–8. 
https://doi.org/10.1016/j.mechrescom.2012.04.004 

Elishakoff, Isaac, & Miglis, Y. (2012b). Overestimation-free computational 
version of interval analysis. International Journal for Computational 
Methods in Engineering Science and Mechanics, 13(5), 319–328. 
https://doi.org/10.1080/15502287.2012.683134 

Erdös, P., & Kac, M. (1947). On the number of positive sums of independent 
random variables. Bulletin of the American Mathematical Society, 
53(10), 1011–1020. 

Fang, H., Rais-Rohani, M., Liu, Z., & Horstemeyer, M. F. (2005). A comparative 
study of metamodeling methods for multiobjective crashworthiness 
optimization. Computers and Structures, 83(25–26), 2121–2136. 
https://doi.org/10.1016/j.compstruc.2005.02.025 

Fang, Hongbing, & Horstemeyer, M. F. (2006). Global response approximation 
with radial basis functions. Engineering Optimization, 38(4), 407–424. 
https://doi.org/10.1080/03052150500422294 



© C
OPYRIG

HT U
PM

 
149 

Fathallah, E., Qi, H., Tong, L., & Helal, M. (2014). Design optimization of 
composite elliptical deep-submersible pressure hull for minimizing the 
buoyancy factor. Advances in Mechanical Engineering, 2014. 
https://doi.org/10.1155/2014/987903 

Fathallah, E., Qi, H., Tong, L., & Helal, M. (2015). Design optimization of lay-up 
and composite material system to achieve minimum buoyancy factor for 
composite elliptical submersible pressure hull. Composite Structures, 
121, 16–26. https://doi.org/10.1016/j.compstruct.2014.11.002 

Ferrari, R., Froio, D., Rizzi, E., Gentile, C., & Chatzi, E. N. (2019). Model 
updating of a historic concrete bridge by sensitivity- and global 
optimization-based Latin Hypercube Sampling. Engineering Structures, 
179(December 2017), 139–160. 
https://doi.org/10.1016/j.engstruct.2018.08.004 

Figueira, G., & Almada-Lobo, B. (2014). Hybrid simulation-optimization 
methods: A taxonomy and discussion. Simulation Modelling Practice 
and Theory, 46, 118–134. https://doi.org/10.1016/j.simpat.2014.03.007 

Friedman, J. H. (1991). Multivariate Adaptive Regressive Splines. Stanford 
University, 19(1), 1–67. 

Fu, Chao, Zhu, W., Yang, Y., Zhao, S., & Lu, K. (2022). Surrogate modeling for 
dynamic analysis of an uncertain notched rotor system and roles of 
Chebyshev parameters. Journal of Sound and Vibration, 524(December 
2021), 116755. https://doi.org/10.1016/j.jsv.2022.116755 

Fu, Chunming, & Cao, L. (2019). An uncertain optimization method based on 
interval differential evolution and adaptive subinterval decomposition 
analysis. Advances in Engineering Software, 134(April), 1–9. 
https://doi.org/10.1016/j.advengsoft.2019.05.001 

Fu, Chunming, Liu, Y., & Xiao, Z. (2019). Interval differential evolution with 
dimension-reduction interval analysis method for uncertain optimization 
problems. Applied Mathematical Modelling, 69, 441–452. 
https://doi.org/10.1016/j.apm.2018.12.025 

Fu, H. Y., Xu, P. C., Huang, G. H., Chai, T., Hou, M., & Gao, P. F. (2012). Effects 
of aeration parameters on effluent quality and membrane fouling in a 
submerged membrane bioreactor using Box-Behnken response surface 
methodology. Desalination, 302, 33–42. 
https://doi.org/10.1016/j.desal.2012.06.018 

Gavin, H. P., & Yau, S. C. (2008). High-order limit state functions in the response 
surface method for structural reliability analysis. Structural Safety, 30(2), 
162–179. https://doi.org/10.1016/j.strusafe.2006.10.003 

Ghodousian, A., & Parvari, M. R. (2017). A modified PSO algorithm for linear 
optimization problem subject to the generalized fuzzy relational 
inequalities with fuzzy constraints (FRI-FC). Information Sciences, 418–
419, 317–345. https://doi.org/10.1016/j.ins.2017.07.032 



© C
OPYRIG

HT U
PM

 
150 

Gliszczyński, A., & Kubiak, T. (2017). Load-carrying capacity of thin-walled 
composite beams subjected to pure bending. Thin-Walled Structures, 
115(October 2016), 76–85. https://doi.org/10.1016/j.tws.2017.02.009 

Goswami, S., Ghosh, S., & Chakraborty, S. (2016). Reliability analysis of 
structures by iterative improved response surface method. Structural 
Safety, 60, 56–66. https://doi.org/10.1016/j.strusafe.2016.02.002 

Gunst, R. F., Myers, H., & Montgomery, D. C. (1996). Response Surface 
Methodology: Process and Product Optimization Using Designed 
Experiments. In Technometrics. 

Guo, J. yuan, Lu, W. xi, Yang, Q. chun, & Miao, T. sheng. (2019). The application 
of 0–1 mixed integer nonlinear programming optimization model based 
on a surrogate model to identify the groundwater pollution source. 
Journal of Contaminant Hydrology, 220(November 2018), 18–25. 
https://doi.org/10.1016/j.jconhyd.2018.11.005 

Hahn HT, Jensen DW, Claus SJ, Pai SP, H. P. (1994). Structural design criteria 
for filament-wound composite shells. NASA CR195125. 

Handscomb, D. C. (2003). Chevyshev POLYNOMIALS. In New York. 

Hang, Y., Qu, M., & Ukkusuri, S. (2011). Optimizing the design of a solar cooling 
system using central composite design techniques. Energy & Buildings, 
43(4), 988–994. https://doi.org/10.1016/j.enbuild.2010.12.024 

Hassan, M., Najaran, T., Reza, M., & Tootounchi, A. (2020). Probabilistic 
optimization algorithms for real-coded problems and its application in 
Latin hypercube problem. Expert Systems With Applications, 160, 
113589. https://doi.org/10.1016/j.eswa.2020.113589 

Havinga, J., van den Boogaard, A. H., & Klaseboer, G. (2017). Sequential 
improvement for robust optimization using an uncertainty measure for 
radial basis functions. Structural and Multidisciplinary Optimization, 
55(4), 1345–1363. https://doi.org/10.1007/s00158-016-1572-5 

Helton, J. C., & Davis, F. J. (2003). Latin hypercube sampling and the 
propagation of uncertainty in analyses of complex systems. Reliability 
Engineering and System Safety, 81(1), 23–69. 
https://doi.org/10.1016/S0951-8320(03)00058-9 

Hong, L. J., Bay, C. W., Kong, H., & Nelson, B. L. (2009). A BRIEF 
INTRODUCTION TO OPTIMIZATION VIA SIMULATION. 2002, 75–85. 

Hou, S., Dong, D., Ren, L., & Han, X. (2012). Multivariable crashworthiness 
optimization of vehicle body by unreplicated saturated factorial design. 
Structural and Multidisciplinary Optimization, 46(6), 891–905. 
https://doi.org/10.1007/s00158-012-0799-z 

 



© C
OPYRIG

HT U
PM

 
151 

Hou, S., Liu, T., Dong, D., & Han, X. (2014). Factor screening and multivariable 
crashworthiness optimization for vehicle side impact by factorial design. 
Structural and Multidisciplinary Optimization, 49(1), 147–167. 
https://doi.org/10.1007/s00158-013-0957-y 

Hu, Z., Bicker, R., & Marshall, C. (2007). Prediction of depth removal in leather 
surface grit blasting using neural networks and Box-Behnken design of 
experiments. International Journal of Advanced Manufacturing 
Technology, 32(7–8), 732–738. https://doi.org/10.1007/s00170-005-
0381-6 

Huang, D., Allen, T. T., Notz, W. I., & Zeng, N. (2006). Global optimization of 
stochastic black-box systems via sequential kriging meta-models. 
Journal of Global Optimization, 34(3), 441–466. 
https://doi.org/10.1007/s10898-005-2454-3 

Huang, Z., Wang, C., Chen, J., & Tian, H. (2011). Optimal design of aeroengine 
turbine disc based on kriging surrogate models. Computers and 
Structures, 89(1–2), 27–37. 
https://doi.org/10.1016/j.compstruc.2010.07.010 

Iwai, Y., Nakanishi, T., & Takauasii, K. (1990). SEA TRIALS AND SUPPORTING 
TECHNOLOGIES OF MANNED SUBMERSIBLE " SHINKAI 6500 ". 
December. 

Javidrad, F., Nazari, M., & Javidrad, H. R. (2018). Optimum stacking sequence 
design of laminates using a hybrid PSO-SA method. Composite 
Structures, 185(May 2017), 607–618. 
https://doi.org/10.1016/j.compstruct.2017.11.074 

Jiang, C., Han, X., Guan, F. J., & Li, Y. H. (2007). An uncertain structural 
optimization method based on nonlinear interval number programming 
and interval analysis method. Engineering Structures, 29(11), 3168–
3177. https://doi.org/10.1016/j.engstruct.2007.01.020 

Jiang, C., Han, X., & Liu, G. P. (2008a). A sequential nonlinear interval number 
programming method for uncertain structures. Computer Methods in 
Applied Mechanics and Engineering, 197(49–50), 4250–4265. 
https://doi.org/10.1016/j.cma.2008.04.027 

Jiang, C., Han, X., & Liu, G. P. (2008b). Uncertain optimization of composite 
laminated plates using a nonlinear interval number programming 
method. Computers and Structures, 86(17–18), 1696–1703. 
https://doi.org/10.1016/j.compstruc.2008.02.009 

Jiang, C., Han, X., & Liu, G. R. (2007). Optimization of structures with uncertain 
constraints based on convex model and satisfaction degree of interval. 
Computer Methods in Applied Mechanics and Engineering, 196(49–52), 
4791–4800. https://doi.org/10.1016/j.cma.2007.03.024 

 



© C
OPYRIG

HT U
PM

 
152 

Jiang, C., Han, X., Liu, G. R., & Liu, G. P. (2008). A nonlinear interval number 
programming method for uncertain optimization problems. European 
Journal of Operational Research, 188(1), 1–13. 
https://doi.org/10.1016/j.ejor.2007.03.031 

Jiang, C., Zhang, Z. G., Zhang, Q. F., Han, X., Xie, H. C., & Liu, J. (2014). A new 
nonlinear interval programming method for uncertain problems with 
dependent interval variables. European Journal of Operational 
Research, 238(1), 245–253. https://doi.org/10.1016/j.ejor.2014.03.029 

Jiang, Chao, Fu, C. M., Ni, B. Y., & Han, X. (2016). Interval arithmetic operations 
for uncertainty analysis with correlated interval variables. Acta 
Mechanica Sinica/Lixue Xuebao, 32(4), 743–752. 
https://doi.org/10.1007/s10409-015-0525-3 

Jin, R., Chen, W., & Simpson, T. W. (2001). Comparative studies of 
metamodelling techniques under multiple modelling criteria. Structural 
and Multidisciplinary Optimization, 23(1), 1–13. 
https://doi.org/10.1007/s00158-001-0160-4 

Kaneko, T., Ujihashi, S., Yomoda, H., & Inagi, S. (2008). Finite element method 
failure analysis of a pressurized FRP cylinder under transverse impact 
loading. Thin-Walled Structures, 46(7–9), 898–904. 
https://doi.org/10.1016/j.tws.2008.01.016 

Kang, F., Han, S., Salgado, R., & Li, J. (2015). System probabilistic stability 
analysis of soil slopes using Gaussian process regression with Latin 
hypercube sampling. Computers and Geotechnics, 63, 13–25. 
https://doi.org/10.1016/j.compgeo.2014.08.010 

Kar, D., Ghosh, M., Guha, R., Sarkar, R., Garcia-Hernandez, L., & Abraham, A. 
(2020). Fuzzy mutation embedded hybrids of gravitational search and 
Particle Swarm Optimization methods for engineering design problems. 
Engineering Applications of Artificial Intelligence, 95(July), 103847. 
https://doi.org/10.1016/j.engappai.2020.103847 

Kaymaz, I., & McMahon, C. A. (2005). A response surface method based on 
weighted regression for structural reliability analysis. Probabilistic 
Engineering Mechanics, 20(1), 11–17. 
https://doi.org/10.1016/j.probengmech.2004.05.005 

Kearns, M., & Ron, D. (1997). Algorithmic stability and sanity-check bounds for 
leave-one-out cross-validation. Proceedings of the Annual ACM 
Conference on Computational Learning Theory, 152–162. 
https://doi.org/10.1145/267460.267491 

Keivanian, F., & Chiong, R. (2022). A novel hybrid fuzzy–metaheuristic approach 
for multimodal single and multi-objective optimization problems. Expert 
Systems with Applications, 195(November 2021), 116199. 
https://doi.org/10.1016/j.eswa.2021.116199 



© C
OPYRIG

HT U
PM

 
153 

Kelesoglu, O. (2007). Fuzzy multiobjective optimization of truss-structures using 
genetic algorithm. Advances in Engineering Software, 38(10), 717–721. 
https://doi.org/10.1016/j.advengsoft.2007.03.003 

Kemal Apalak, M., Yildirim, M., & Ekici, R. (2008). Layer optimisation for 
maximum fundamental frequency of laminated composite plates for 
different edge conditions. Composites Science and Technology, 68(2), 
537–550. https://doi.org/10.1016/j.compscitech.2007.06.031 

Keskin, I., Dag, B., Sariyel, V., & Gokmen, M. (2009). Estimation of growth curve 
parameters in Konya Merino sheep. South African Journal of Animal 
Sciences, 39(2), 163–168. 

Kim, C., Wang, S., & Choi, K. K. (2005). Efficient response surface modeling by 
using moving least-squares method and sensitivity. AIAA Journal, 
43(11), 2404–2411. https://doi.org/10.2514/1.12366 

Kim, T. U., & Sin, H. C. (2001). Optimal design of composite laminated plates 
with the discreteness in ply angles and uncertainty in material properties 
considered. Computers and Structures, 79(29–30), 2501–2509. 
https://doi.org/10.1016/S0045-7949(01)00133-X 

Kolakowski, Z. (2003). On some aspects of the modified TSAI-WU criterion in 
thin-walled composite structures. Thin-Walled Structures, 41(4), 357–
374. https://doi.org/10.1016/S0263-8231(02)00112-X 

Kollar, L. P., & Springer, G. S. (2003). Mechanics of composite Structures. 
Cambridge university press. 

Krige, D. G. (1951). A Statistical Approach to Some Basic Mine Valuation 
Problems on the Witwatersrand. Doctoral Dissertation, University of the 
Witwatersrand. https://doi.org/10.2307/3006914 

Lan, Z., & Gong, B. (2020). Uncertainty analysis of key factors affecting fracture 
height based on box-behnken method. Engineering Fracture 
Mechanics, 228(September 2019), 106902. 
https://doi.org/10.1016/j.engfracmech.2020.106902 

Lee, G. C., Kweon, J. H., & Choi, J. H. (2013). Optimization of composite 
sandwich cylinders for underwater vehicle application. Composite 
Structures, 96, 691–697. 
https://doi.org/10.1016/j.compstruct.2012.08.055 

Lee, T. S., & Chen, I. F. (2005). A two-stage hybrid credit scoring model using 
artificial neural networks and multivariate adaptive regression splines. 
Expert Systems with Applications, 28(4), 743–752. 
https://doi.org/10.1016/j.eswa.2004.12.031 

Lee, T. S., Chiu, C. C., Chou, Y. C., & Lu, C. J. (2006). Mining the customer 
credit using classification and regression tree and multivariate adaptive 
regression splines. Computational Statistics and Data Analysis, 50(4), 
1113–1130. https://doi.org/10.1016/j.csda.2004.11.006 



© C
OPYRIG

HT U
PM

 
154 

Lee, Y. J., & Lin, C. C. (2003). Regression of the response surface of laminated 
composite structures. Composite Structures, 62(1), 91–105. 
https://doi.org/10.1016/S0263-8223(03)00095-3 

Lefort, V., Knibbe, C., Beslon, G., & Favrel, J. (2006). Simultaneous optimization 
of weights and structure of an RBF neural network. Lecture Notes in 
Computer Science (Including Subseries Lecture Notes in Artificial 
Intelligence and Lecture Notes in Bioinformatics), 3871 LNCS, 49–60. 
https://doi.org/10.1007/11740698_5 

Li, F., Luo, Z., Rong, J., & Zhang, N. (2013). Interval multi-objective optimisation 
of structures using adaptive Kriging approximations. Computers and 
Structures, 119, 68–84. 
https://doi.org/10.1016/j.compstruc.2012.12.028 

Li, F., Luo, Z., & Sun, G. (2011). Reliability-based multiobjective design 
optimization under interval uncertainty. CMES - Computer Modeling in 
Engineering and Sciences, 74(1), 39–64. 

Li, F., Luo, Z., Sun, G., & Zhang, N. (2013). An uncertain multidisciplinary design 
optimization method using interval convex models. Engineering 
Optimization, 45(6), 697–718. 
https://doi.org/10.1080/0305215X.2012.690871 

Li, H., Chen, J., & Xiao, Y. (2013). Multi-objective optimization for laminated steel 
sheet forming process based on desirability function approach and 
reliability analysis. Engineering Computations (Swansea, Wales), 30(8), 
1107–1127. https://doi.org/10.1108/EC-08-2012-0179 

Li, Jian, Wang, H., & Kim, N. H. (2012). Doubly weighted moving least squares 
and its application to structural reliability analysis. Structural and 
Multidisciplinary Optimization, 46(1), 69–82. 
https://doi.org/10.1007/s00158-011-0748-2 

Li, Junhong, Sun, Y., Wang, Y., & Sun, J. (2022). Optimization of squeeze 
casting process of gearbox cover based on FEM and Box-Behnken 
design. International Journal of Advanced Manufacturing Technology, 
118(9–10), 3421–3430. https://doi.org/10.1007/s00170-021-08099-8 

Li, M., & Azarm, S. (2008). Multiobjective collaborative robust optimization with 
interval uncertainty and interdisciplinary uncertainty propagation. 
Journal of Mechanical Design, Transactions of the ASME, 130(8), 
0814021–08140211. https://doi.org/10.1115/1.2936898 

Li, M., Azarm, S., Williams, N., Al Hashimi, S., Almansoori, A., & Al Qasas, N. 
(2009). Integrated multi-objective robust optimization and sensitivity 
analysis with irreducible and reducible interval uncertainty. Engineering 
Optimization, 41(10), 889–908. 
https://doi.org/10.1080/03052150902853005 

 



© C
OPYRIG

HT U
PM

 
155 

Li, Q., Qiu, Z., & Zhang, X. (2017). Eigenvalue analysis of structures with interval 
parameters using the second-order Taylor series expansion and the 
DCA for QB. Applied Mathematical Modelling, 49, 680–690. 
https://doi.org/10.1016/j.apm.2017.02.041 

Li, Z. M., & Qiao, P. (2015). Buckling and postbuckling of anisotropic laminated 
cylindrical shells under combined external pressure and axial 
compression in thermal environments. Composite Structures, 119, 709–
726. https://doi.org/10.1016/j.compstruct.2014.09.039 

Liefvendahl, M., & Stocki, R. (2006). A study on algorithms for optimization of 
Latin hypercubes. Journal of Statistical Planning and Inference, 136(9), 
3231–3247. https://doi.org/10.1016/j.jspi.2005.01.007 

Lin, C. C., & Lee, Y. J. (2004). Stacking sequence optimization of laminated 
composite structures using genetic algorithm with local improvement. 
Composite Structures, 63(3–4), 339–345. 
https://doi.org/10.1016/S0263-8223(03)00182-X 

Lin, Y., Yang, Q., & Guan, G. (2019). Automatic design optimization of SWATH 
applying CFD and RSM model. Ocean Engineering, 172(November 
2018), 146–154. https://doi.org/10.1016/j.oceaneng.2018.11.044 

Liu, R., Niu, X., Fan, J., Mu, C., & Jiao, L. (2015). An orthogonal predictive 
model-based dynamic multi-objective optimization algorithm. Soft 
Computing, 19(11), 3083–3107. https://doi.org/10.1007/s00500-014-
1470-y 

Liu, Y., & Bai, X. (2013). Studying interconnections between two classes of two-
stage fuzzy optimization problems. Soft Computing, 17(4), 569–578. 
https://doi.org/10.1007/s00500-012-0925-2 

Liu, Z. Z., Wang, T. S., & Li, J. F. (2015). A trigonometric interval method for 
dynamic response analysis of uncertain nonlinear systems. Science 
China: Physics, Mechanics and Astronomy, 58(4). 
https://doi.org/10.1007/s11433-014-5641-8 

Lopatin, A. V., & Morozov, E. V. (2017). Buckling of composite cylindrical shells 
with rigid end disks under hydrostatic pressure. Composite Structures, 
173, 136–143. https://doi.org/10.1016/j.compstruct.2017.03.109 

Luo, J., & Sun, Y. (2020). Optimization of process parameters for the 
minimization of surface residual stress in turning pure iron material using 
central composite design. Measurement, 163, 108001. 
https://doi.org/10.1016/j.measurement.2020.108001 

Lv, M., Li, J., Niu, X., & Wang, J. (2022). Novel deterministic and probabilistic 
combined system based on deep learning and self-improved 
optimization algorithm for wind speed forecasting. Sustainable Energy 
Technologies and Assessments, 52(PB), 102186. 
https://doi.org/10.1016/j.seta.2022.102186 



© C
OPYRIG

HT U
PM

 
156 

Mallela, U. K., & Upadhyay, A. (2016). Buckling load prediction of laminated 
composite stiffened panels subjected to in-plane shear using artificial 
neural networks. Thin-Walled Structures, 102, 158–164. 
https://doi.org/10.1016/j.tws.2016.01.025 

McKay, M. D., Beckman, R. J., & Conover, W. J. (1979). Comparison of three 
methods for selecting values of input variables in the analysis of output 
from a computer code. Technometrics, 21(2), 239–245. 
https://doi.org/10.1080/00401706.1979.10489755 

Meckesheimer, M., Booker, A. J., Barton, R. R., & Simpson, T. W. (2002). 
Computationally inexpensive metamodel assessment strategies. AIAA 
Journal, 40(10), 2053–2060. https://doi.org/10.2514/2.1538 

Messager, T., Pyrz, M., Gineste, B., & Chauchot, P. (2002). Optimal laminations 
of thin underwater composite cylindrical vessels. Composite Structures, 
58(4), 529–537. https://doi.org/10.1016/S0263-8223(02)00162-9 

Methods, C., Mech, A., Meng, Z., Pang, Y., Pu, Y., & Wang, X. (2020). New 
hybrid reliability-based topology optimization method combining fuzzy 
and probabilistic models for handling epistemic and aleatory 
uncertainties. Computer Methods in Applied Mechanics and 
Engineering, 363, 112886. https://doi.org/10.1016/j.cma.2020.112886 

Möller, B., & Beer, M. (2008). Engineering computation under uncertainty - 
Capabilities of non-traditional models. Computers and Structures, 
86(10), 1024–1041. https://doi.org/10.1016/j.compstruc.2007.05.041 

Moon, C. J., Kim, I. H., Choi, B. H., Kweon, J. H., & Choi, J. H. (2010). Buckling 
of filament-wound composite cylinders subjected to hydrostatic pressure 
for underwater vehicle applications. Composite Structures, 92(9), 2241–
2251. https://doi.org/10.1016/j.compstruct.2009.08.005 

Moore, R. E., Kearfott, R. B., & Cloud, M. J. (2009). Introduction to interval 
analysis (Vol. 110). Siam. 

Morris, M. D., & Mitchell, T. J. (1995a). Exploratory designs for computational 
experiments. Journal of Statistical Planning and Inference, 43(3), 381–
402. 

Morris, M. D., & Mitchell, T. J. (1995b). Exploratory designs for computational 
experiments. Journal of Statistical Planning and Inference, 43(3), 381–
402. https://doi.org/10.1016/0378-3758(94)00035-T 

Muscolino, G., & Sofi, A. (2012). Stochastic analysis of structures with uncertain-
but-bounded parameters via improved interval analysis. Probabilistic 
Engineering Mechanics, 28, 152–163. 
https://doi.org/10.1016/j.probengmech.2011.08.011 

Niven, I. (1961). Uniform distribution of sequences of integers. Transactions of 
the American Mathematical Society, 98(1), 52–61. 



© C
OPYRIG

HT U
PM

 
157 

Oberkampf, W., & Trucano, T. (2000). Validation methodology in computational 
fluid dynamics. Fluids 2000 Conference and Exhibit, 2549. 

Olsson, A., Sandberg, G., & Dahlblom, O. (2003). On Latin hypercube sampling 
for structural reliability analysis. Structural Safety, 25(1), 47–68. 
https://doi.org/10.1016/S0167-4730(02)00039-5 

Owen, A. B. (1992). Randomly orthogonal arrays for computer experiments, 
integration and visualization (pp. 439–452). Statistica Sinica. 

Owen, J. R. K. and A. B., & 1. (1996). Computer experiment. Handbook of 
Statistics, 13, 261–308. 

Özmen, A., & Weber, G. W. (2014). RMARS: Robustification of multivariate 
adaptive regression spline under polyhedral uncertainty. Journal of 
Computational and Applied Mathematics, 259(PART B), 914–924. 
https://doi.org/10.1016/j.cam.2013.09.055 

Pan, G., Ye, P., Wang, P., & Yang, Z. (2014). A sequential optimization sampling 
method for metamodels with radial basis functions. Scientific World 
Journal, 2014. https://doi.org/10.1155/2014/192862 

Pandey, N., & Thakur, C. (2020). Statistical Comparison of Response Surface 
Methodology – Based Central Composite Design and Hybrid Central 
Composite Design for Paper Mill Wastewater Treatment by 
Electrocoagulation. Process Integration and Optimization for 
Sustainability, 4(4), 343–359. 

Parnianifard, A., Azfanizam, A. S., Ariffin, M. K. A., Ismail, M. I. S., & Ale 
Ebrahim, N. (2019). Recent developments in metamodel based robust 
black-box simulation optimization: An overview. Decision Science 
Letters, 8(1), 17–44. https://doi.org/10.5267/j.dsl.2018.5.004 

Pawlak, M., & Rafajłowicz, E. (2009). Quasi-random sampling for signal 
recovery. Nonlinear Analysis, Theory, Methods and Applications, 
71(10), 4357–4363. https://doi.org/10.1016/j.na.2009.02.079 

Pham, T. D., & Hong, W. (2022). Genetic algorithm using probabilistic-based 
natural selections and dynamic mutation ranges in optimizing precast 
beams. Computers and Structures, 258, 106681. 
https://doi.org/10.1016/j.compstruc.2021.106681 

Pishvaee, M. S., & Fazli Khalaf, M. (2016). Novel robust fuzzy mathematical 
programming methods. Applied Mathematical Modelling, 40(1), 407–
418. https://doi.org/10.1016/j.apm.2015.04.054 

Pistone, G., & Rogantin, M. P. (2008). Indicator function and complex coding for 
mixed fractional factorial designs. Journal of Statistical Planning and 
Inference, 138(3), 787–802. https://doi.org/10.1016/j.jspi.2007.02.007 

 



© C
OPYRIG

HT U
PM

 
158 

Pitton, S. F., Ricci, S., & Bisagni, C. (2019). Buckling optimization of variable 
stiffness cylindrical shells through artificial intelligence techniques. 
Composite Structures, 230, 111513. 
https://doi.org/10.1016/j.compstruct.2019.111513 

Practice, T., & Fu, M. C. (2002). d Optimization for Simulation : 

Qader, B. S., Supeni, E. E., Ariffin, M. K. A., & Talib, A. R. A. (2019). RSM 
approach for modeling and optimization of designing parameters for 
inclined fins of solar air heater. Renewable Energy, 136, 48–68. 
https://doi.org/10.1016/j.renene.2018.12.099 

Qasem, S. N., & Shamsuddin, S. M. (2011a). Memetic elitist Pareto differential 
evolution algorithm based radial basis function networks for 
classification problems. Applied Soft Computing Journal, 11(8), 5565–
5581. https://doi.org/10.1016/j.asoc.2011.05.002 

Qasem, S. N., & Shamsuddin, S. M. (2011b). Radial basis function network 
based on time variant multi-objective particle swarm optimization for 
medical diseases diagnosis. Applied Soft Computing Journal, 11(1), 
1427–1438. https://doi.org/10.1016/j.asoc.2010.04.014 

Qiu, Z., & Elishakoff, I. (1998). Antioptimization of structures with large uncertain-
but-non-random parameters via interval analysis. Computer Methods in 
Applied Mechanics and Engineering, 152(3–4), 361–372. 

Qiu, Z., & Elishakoff, I. (2001). Anti-optimization technique - A generalization of 
interval analysis for nonprobabilistic treatment of uncertainty. Chaos, 
Solitons and Fractals, 12(9), 1747–1759. 
https://doi.org/10.1016/S0960-0779(00)00102-8 

Qiu, Z., Ma, L., & Wang, X. (2009). Non-probabilistic interval analysis method 
for dynamic response analysis of nonlinear systems with uncertainty. 
Journal of Sound and Vibration, 319(1–2), 531–540. 
https://doi.org/10.1016/j.jsv.2008.06.006 

Qiu, Z., & Wang, X. (2003). Comparison of dynamic response of structures with 
uncertain-but-bounded parameters using non-probabilistic interval 
analysis method and probabilistic approach. International Journal of 
Solids and Structures, 40(20), 5423–5439. 
https://doi.org/10.1016/S0020-7683(03)00282-8 

Qu, X., Venter, G., & Haftka, R. T. (2004). New formulation of minimum-bias 
central composite experimental design and Gauss quadrature. 
Structural and Multidisciplinary Optimization, 28(4), 231–242. 
https://doi.org/10.1007/s00158-004-0433-9 

Rafajłowicz, E., & Schwabe, R. (2006). Halton and Hammersley sequences in 
multivariate nonparametric regression. Statistics and Probability Letters, 
76(8), 803–812. https://doi.org/10.1016/j.spl.2005.10.014 



© C
OPYRIG

HT U
PM

 
159 

Rao, P. M. V, & Rao, V. V. S. (2010). Degradation model based on Tsai-Hill 
factors to model the progressive failure of fiber metal laminates. 
https://doi.org/10.1177/0021998310387682 

Rasmussen, C., C. W. (2006). Gaussian processes for machine learning. 
https://doi.org/10.1142/S0129065704001899 

Recioui, A. (2014). Optimization of Antenna Arrays Using Different Strategies 
Based on Taguchi Method. Arabian Journal for Science and 
Engineering, 39(2), 935–944. https://doi.org/10.1007/s13369-013-0644-
8 

Ren, Y., & Xiang, J. (2014). Crashworthiness uncertainty analysis of typical civil 
aircraft based on Box-Behnken method. Chinese Journal of 
Aeronautics, 27(3), 550–557. https://doi.org/10.1016/j.cja.2014.04.020 

Rippat, S. (1986). Numerical procedures for surface. SIAM Journal on Scientific 
and Statistical Computing, 7(2), 639–660. 

Rizk-Allah, R. M. (2019). An improved sine–cosine algorithm based on 
orthogonal parallel information for global optimization. Soft Computing, 
23(16), 7135–7161. https://doi.org/10.1007/s00500-018-3355-y 

Roshanian, J., & Ebrahimi, M. (2013). Latin hypercube sampling applied to 
reliability-based multidisciplinary design optimization of a launch 
vehicle. Aerospace Science and Technology, 28(1), 297–304. 
https://doi.org/10.1016/j.ast.2012.11.010 

Ross, C. T. F. (2006). A conceptual design of an underwater vehicle. Ocean 
Engineering, 33(16), 2087–2104. 
https://doi.org/10.1016/j.oceaneng.2005.11.005 

Sagalevitch, A. (1998). Experience of the use of manned submersibles in P . P 
. Shirshov Institute of Oceanology of Russian Academy of Sciences. 
403–407. 

Saleem, M. M., & Somá, A. (2015). Design of experiments based factorial design 
and response surface methodology for MEMS optimization. 
Microsystem Technologies, 21(1), 263–276. 
https://doi.org/10.1007/s00542-014-2186-8 

Santoro, R., Muscolino, G., & Elishakoff, I. (2015). Optimization and anti-
optimization solution of combined parameterized and improved interval 
analyses for structures with uncertainties. Computers and Structures, 
149, 31–42. https://doi.org/10.1016/j.compstruc.2014.11.006 

Schuëller, G. I., & Jensen, H. A. (2008). Computational methods in optimization 
considering uncertainties - An overview. Computer Methods in Applied 
Mechanics and Engineering, 198(1), 2–13. 
https://doi.org/10.1016/j.cma.2008.05.004 



© C
OPYRIG

HT U
PM

 
160 

Science, N., Phenomena, C., Yan, D., Zheng, Y., Liu, W., Chen, T., & Chen, Q. 
(2022). Interval uncertainty analysis of vibration response of 
hydroelectric generating unit based on Chebyshev polynomial. Chaos, 
Solitons and Fractals: The Interdisciplinary Journal of Nonlinear 
Science, and Nonequilibrium and Complex Phenomena, 155, 111712. 
https://doi.org/10.1016/j.chaos.2021.111712 

Sevastianov, P. (2007). Numerical methods for interval and fuzzy number 
comparison based on the probabilistic approach and Dempster-Shafer 
theory. Information Sciences, 177(21), 4645–4661. 
https://doi.org/10.1016/j.ins.2007.05.001 

Shahabad, P. K., Anamagh, M. R., & Bediz, B. (2022). Design of laminated 
conical shells using spectral Chebyshev method and lamination 
parameters. Composite Structures, 281(November 2021), 114969. 
https://doi.org/10.1016/j.compstruct.2021.114969 

Shan, S., & Wang, G. G. (2010). Metamodeling for high dimensional simulation-
based design problems. Journal of Mechanical Design, Transactions of 
the ASME, 132(5), 0510091–05100911. 
https://doi.org/10.1115/1.4001597 

Shang, X., Chao, T., Ma, P., & Yang, M. (2020). An efficient local search-based 
genetic algorithm for constructing optimal Latin hypercube design. 
Engineering Optimization, 52(2), 271–287. 
https://doi.org/10.1080/0305215X.2019.1584618 

Shen, K., & Pan, G. (2019). Buckling Optimization of Composite Cylinders for 
Underwater Vehicle Applications Under Tsai-Wu Failure Criterion 
Constraint. Journal of Shanghai Jiaotong University (Science), 24(4), 
534–544. https://doi.org/10.1007/s12204-019-2087-1 

Shiroud, B., Oliaei, E., & Shayesteh, H. (2017). Simulation of mechanical 
behavior and optimization of simulated injection molding process for 
PLA based antibacterial composite and nanocomposite bone screws 
using central composite design. Journal of the Mechanical Behavior of 
Biomedical Materials, 65, 160–176. 
https://doi.org/10.1016/j.jmbbm.2016.08.008 

Simpson, T. W., Mauery, T. M., Korte, J. J., & Mistree, F. (2001). Kriging models 
for global approximation in simulation-based multidisciplinary design 
optimization. AIAA Journal, 39(12), 2233–2241. 
https://doi.org/10.2514/2.1234 

Sivula, T., Magnusson, M., Matamoros, A. A., & Vehtari, A. (2020). Uncertainty 
in Bayesian Leave-One-Out Cross-Validation Based Model 
Comparison. March. http://arxiv.org/abs/2008.10296 

Smith, C. S. (1991). Design of submersible pressure hulls in composite 
materials. Marine Structures, 4(2), 141–182. 
https://doi.org/10.1016/0951-8339(91)90018-7 



© C
OPYRIG

HT U
PM

 
161 

Su, Y., Fu, G., Wan, B., Yu, T., Zhou, W., & Wang, X. (2019). Fatigue reliability 
design for metal dual inline packages under random vibration based on 
response surface method. Microelectronics Reliability, 100–101(May), 
113404. https://doi.org/10.1016/j.microrel.2019.113404 

Subasi, A., Sahin, B., & Kaymaz, I. (2016). Multi-objective optimization of a 
honeycomb heat sink using Response Surface Method. International 
Journal of Heat and Mass Transfer, 101, 295–302. 
https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.012 

Sun, G., Li, G., Gong, Z., He, G., & Li, Q. (2011). Radial basis functional model 
for multi-objective sheet metal forming optimization. Engineering 
Optimization, 43(12), 1351–1366. 
https://doi.org/10.1080/0305215X.2011.557072 

Taflanidis, A. A., & Cheung, S. (2012). Stochastic sampling using moving least 
squares response surface approximations. Probabilistic Engineering 
Mechanics, 28, 216–224. 
https://doi.org/10.1016/j.probengmech.2011.07.003 

Tang, J. F., Wang, D. W., Fung, R. Y. K., & Yung, K.-L. (2004). Understanding 
of fuzzy optimization: theories and methods. Journal of Systems 
Science and Complexity, 17(1), 117–136. 

Tekin, E., & Sabuncuoglu, I. (2004). Simulation optimization: A comprehensive 
review on theory and applications. IIE Transactions (Institute of 
Industrial Engineers), 36(11), 1067–1081. 
https://doi.org/10.1080/07408170490500654 

Trinca, L. A., & Gilmour, S. G. (2000). An algorithm for arranging response 
surface designs in small blocks. Computational Statistics and Data 
Analysis, 33(1), 25–43. https://doi.org/10.1016/S0167-9473(99)00033-
X 

Upputuri, H. B., & Nimmagadda, V. S. (2020). Optimization of drilling process 
parameters used in machining of glass fiber reinforced epoxy 
composite. Materials Today: Proceedings, 23(xxxx), 594–599. 
https://doi.org/10.1016/j.matpr.2019.05.415 

Vandewoestyne, B., & Cools, R. (2010). On the convergence of quasi-random 
sampling/importance resampling. Mathematics and Computers in 
Simulation, 81(3), 490–505. 
https://doi.org/10.1016/j.matcom.2009.09.004 

Varaee, H., Shishegaran, A., & Reza, M. (2021). The life-cycle cost analysis 
based on probabilistic optimization using a novel algorithm. Journal of 
Building Engineering, 43(July), 103032. 
https://doi.org/10.1016/j.jobe.2021.103032 

 



© C
OPYRIG

HT U
PM

 
162 

Vehtari, A., Mononen, T., Tolvanen, V., Sivula, T., & Winther, O. (2016). 
Bayesian leave-one-out cross-validation approximations for Gaussian 
latent variable models. Journal of Machine Learning Research, 17, 1–
38. 

Vehtari, A., Simpson, D. P., Yao, Y., & Gelman, A. (2019). Limitations of 
“Limitations of Bayesian Leave-one-out Cross-Validation for Model 
Selection.” Computational Brain and Behavior, 2(1), 22–27. 
https://doi.org/10.1007/s42113-018-0020-6 

Victoire, T. A. A., & Jeyakumar, A. E. (2004). Hybrid PSO-SQP for economic 
dispatch with valve-point effect. Electric Power Systems Research, 
71(1), 51–59. https://doi.org/10.1016/j.epsr.2003.12.017 

Vosoughi, A. R., & Gerist, S. (2014). New hybrid FE-PSO-CGAs sensitivity base 
technique for damage detection of laminated composite beams. 
Composite Structures, 118(1), 68–73. 
https://doi.org/10.1016/j.compstruct.2014.07.012 

Vu-Bac, N., Lahmer, T., Zhuang, X., Nguyen-Thoi, T., & Rabczuk, T. (2016). A 
software framework for probabilistic sensitivity analysis for 
computationally expensive models. Advances in Engineering Software, 
100, 19–31. https://doi.org/10.1016/j.advengsoft.2016.06.005 

Walden, B. B., & Brown, R. S. (2004). A replacement for the Alvin submersible. 
Marine Technology Society Journal, 38(2), 85–91. 
https://doi.org/10.4031/002533204787522721 

Wang, G. G. (2003). Adaptive response surface method using inherited Latin 
hypercube design points. Journal of Mechanical Design, Transactions 
of the ASME, 125(2), 210–220. https://doi.org/10.1115/1.1561044 

Wang, G. G., & Shan, S. (2007). Review of metamodeling techniques in support 
of engineering design optimization. Journal of Mechanical Design, 
Transactions of the ASME, 129(4), 370–380. 
https://doi.org/10.1115/1.2429697 

Wang, K., & Zheng, Y. J. (2012). A new particle swarm optimization algorithm 
for fuzzy optimization of armored vehicle scheme design. Applied 
Intelligence, 37(4), 520–526. https://doi.org/10.1007/s10489-012-0345-
0 

Wang, L., Xiong, C., Wang, X., Xu, M., & Li, Y. (2018). A dimension-wise method 
and its improvement for multidisciplinary interval uncertainty analysis. 
Applied Mathematical Modelling, 59, 680–695. 
https://doi.org/10.1016/j.apm.2018.02.022 

Wang, Xiaoou, Liu, Y., & Antonsson, E. K. (1999). Fitting functions to data in 
high dimensional design space. Proceedings of the ASME Design 
Engineering Technical Conference, 1(Lm), 623–630. 
https://doi.org/10.1115/DETC99/DAC-8622 



© C
OPYRIG

HT U
PM

 
163 

Wang, Xuzhu, & Kerre, E. E. (2001a). Reasonable properties for the ordering of 
fuzzy quantities (I). Fuzzy Sets and Systems, 118(3), 387–405. 
https://doi.org/10.1016/S0165-0114(99)00063-9 

Wang, Xuzhu, & Kerre, E. E. (2001b). Reasonable properties for the ordering of 
fuzzy quantities (II). Fuzzy Sets and Systems, 118(3), 387–405. 
https://doi.org/10.1016/S0165-0114(99)00063-9 

Weber, G. W., Batmaz, I., Köksal, G., Taylan, P., & Yerlikaya-Özkurt, F. (2012). 
CMARS: A new contribution to nonparametric regression with 
multivariate adaptive regression splines supported by continuous 
optimization. Inverse Problems in Science and Engineering, 20(3), 371–
400. https://doi.org/10.1080/17415977.2011.624770 

Wei, X., Wu, Y. Z., & Chen, L. P. (2012). A new sequential optimal sampling 
method for radial basis functions. Applied Mathematics and 
Computation, 218(19), 9635–9646. 
https://doi.org/10.1016/j.amc.2012.02.067 

Wen, Y., Yue, X., Hunt, J. H., & Shi, J. (2018). Feasibility analysis of composite 
fuselage shape control via finite element analysis. Journal of 
Manufacturing Systems, 46, 272–281. 
https://doi.org/10.1016/j.jmsy.2018.01.008 

Wen, Y., Yue, X., Hunt, J. H., & Shi, J. (2019). Virtual assembly and residual 
stress analysis for the composite fuselage assembly process. Journal of 
Manufacturing Systems, 52(October 2018), 55–62. 
https://doi.org/10.1016/j.jmsy.2019.04.001 

Wetter, M., & Wright, J. (2004). A comparison of deterministic and probabilistic 
optimization algorithms for nonsmooth simulation-based optimization. 
Building and Environment, 39, 989–999. 
https://doi.org/10.1016/j.buildenv.2004.01.022 

Witek-Krowiak, A., Chojnacka, K., Podstawczyk, D., Dawiec, A., & Pokomeda, 
K. (2014). Application of response surface methodology and artificial 
neural network methods in modelling and optimization of biosorption 
process. Bioresource Technology, 160, 150–160. 
https://doi.org/10.1016/j.biortech.2014.01.021 

Wu, H. C. (2007). The Karush-Kuhn-Tucker optimality conditions for the 
optimization problem with fuzzy-valued objective function. Mathematical 
Methods of Operations Research, 66(2), 203–224. 
https://doi.org/10.1007/s00186-007-0156-y 

Wu, J., Gao, J., Luo, Z., & Brown, T. (2016). Robust topology optimization for 
structures under interval uncertainty. Advances in Engineering 
Software, 99, 36–48. https://doi.org/10.1016/j.advengsoft.2016.05.002 

 



© C
OPYRIG

HT U
PM

 
164 

Wu, J., Luo, Z., Li, H., & Zhang, N. (2017). A new hybrid uncertainty optimization 
method for structures using orthogonal series expansion. Applied 
Mathematical Modelling, 45, 474–490. 
https://doi.org/10.1016/j.apm.2017.01.006 

Wu, J., Luo, Z., Zhang, N., & Zhang, Y. (2015). A new interval uncertain 
optimization method for structures using Chebyshev surrogate models. 
Computers and Structures, 146, 185–196. 
https://doi.org/10.1016/j.compstruc.2014.09.006 

Wu, J., Luo, Z., Zhang, Y., & Zhang, N. (2014). An interval uncertain optimization 
method for vehicle suspensions using Chebyshev metamodels. Applied 
Mathematical Modelling, 38(15–16), 3706–3723. 
https://doi.org/10.1016/j.apm.2014.02.012 

Wu, J., Zhang, Y., Chen, L., & Luo, Z. (2013). A Chebyshev interval method for 
nonlinear dynamic systems under uncertainty. Applied Mathematical 
Modelling, 37(6), 4578–4591. 
https://doi.org/10.1016/j.apm.2012.09.073 

Xia, B., Yu, D., & Liu, J. (2013). Interval and subinterval perturbation methods 
for a structural-acoustic system with interval parameters. Journal of 
Fluids and Structures, 38, 146–163. 
https://doi.org/10.1016/j.jfluidstructs.2012.12.003 

Xing, Z., Qu, R., Zhao, Y., Fu, Q., Ji, Y., & Lu, W. (2019). Identifying the release 
history of a groundwater contaminant source based on an ensemble 
surrogate model. Journal of Hydrology, 572(January), 501–516. 
https://doi.org/10.1016/j.jhydrol.2019.03.020 

Xu, S., Feng, N., Liu, K., Liang, Y., & Liu, X. (2021). A weighted fuzzy process 
neural network model and its application in mixed-process signal 
classification. Expert Systems with Applications, 172(April 2019), 
114642. https://doi.org/10.1016/j.eswa.2021.114642 

Yang, L., Wang, J., Sun, X., & Xu, M. (2019). Multi-objective optimization design 
of spiral demister with punched holes by combining response surface 
method and genetic algorithm. Powder Technology, 355, 106–118. 
https://doi.org/10.1016/j.powtec.2019.07.030 

Yang, X., Tartakovsky, G., & Tartakovsky, A. (2018). Physics-Information-Aided 
Kriging: Constructing Covariance Functions using Stochastic Simulation 
Models. ArXiv Preprint ArXiv:1809.03461. 
http://arxiv.org/abs/1809.03461 

Yen, G. G. (2006). Multi-objective evolutionary algorithm for radial basis function 
neural network design. Studies in Computational Intelligence, 16, 221–
239. https://doi.org/10.1007/11399346_10 

 



© C
OPYRIG

HT U
PM

 
165 

Yilmaz, I., & Kaynar, O. (2011). Multiple regression, ANN (RBF, MLP) and 
ANFIS models for prediction of swell potential of clayey soils. Expert 
Systems with Applications, 38(5), 5958–5966. 
https://doi.org/10.1016/j.eswa.2010.11.027 

Yin, X., & Chen, W. E. I. (2006). Enhanced Sequential Optimization and 
Reliability Assessment method for probabilistic optimization with varying 
design variance. Structure and Infrastructure Engineering, 2, 261–275. 
https://doi.org/10.1080/15732470600590317 

Yondo, R., & Andr, E. (2018). Progress in Aerospace Sciences A review on 
design of experiments and surrogate models in aircraft real-time and 
many-query aerodynamic analyses Probability of Improvement 
Prediction Error Sum of Squares. 96(March 2017), 23–61. 
https://doi.org/10.1016/j.paerosci.2017.11.003 

Youn, B. D., & Choi, K. K. (2004). A new response surface methodology for 
reliability-based design optimization. Computers and Structures, 82(2–
3), 241–256. https://doi.org/10.1016/j.compstruc.2003.09.002 

Yu, J., Wang, Q., Zhang, Z., & Li, X. (2017). Multi-objective optimizations of 
multidirectional forming mold based on fractional factorial design. 
International Journal of Advanced Manufacturing Technology, 88(1–4), 
1151–1160. https://doi.org/10.1007/s00170-016-8844-5 

Yue, R. X. (2001). A comparison of random and quasirandom points for 
nonparametric response surface design. Statistics and Probability 
Letters, 53(2), 129–142. https://doi.org/10.1016/S0167-7152(01)00065-
7 

Zadeh, L. A. (1965). Electrical engineering at the crossroads. IEEE Transactions 
on Education, 8(2), 30–33. 

Zereik, E., Bibuli, M., Mišković, N., Ridao, P., & Pascoal, A. (2018). Challenges 
and future trends in marine robotics. Annual Reviews in Control, 46, 
350–368. https://doi.org/10.1016/j.arcontrol.2018.10.002 

Zhang, D., Han, X., Jiang, C., Liu, J., & Li, Q. (2017). Time-dependent reliability 
analysis through response surface method. Journal of Mechanical 
Design, Transactions of the ASME, 139(4), 1–12. 
https://doi.org/10.1115/1.4035860 

Zhang, J., Xiao, M., Gao, L., & Fu, J. (2018). A novel projection outline based 
active learning method and its combination with Kriging metamodel for 
hybrid reliability analysis with random and interval variables. Computer 
Methods in Applied Mechanics and Engineering, 341, 32–52. 
https://doi.org/10.1016/j.cma.2018.06.032 

 

 



© C
OPYRIG

HT U
PM

 
166 

Zhang, S., He, W., Chen, D., Chu, J., & Fan, H. (2019). A dynamic human 
reliability assessment approach for manned submersibles using PMV-
CREAM. International Journal of Naval Architecture and Ocean 
Engineering, 11(2), 782–795. 
https://doi.org/10.1016/j.ijnaoe.2019.03.002 

Zhang, W. G., & Goh, A. T. C. (2013). Multivariate adaptive regression splines 
for analysis of geotechnical engineering systems. Computers and 
Geotechnics, 48, 82–95. 
https://doi.org/10.1016/j.compgeo.2012.09.016 

Zhang, W., & Goh, A. T. C. (2016). Multivariate adaptive regression splines and 
neural network models for prediction of pile drivability. Geoscience 
Frontiers, 7(1), 45–52. https://doi.org/10.1016/j.gsf.2014.10.003 

Zhang, W., Wu, C., Li, Y., Wang, L., & Samui, P. (2021). Assessment of pile 
drivability using random forest regression and multivariate adaptive 
regression splines. Georisk, 15(1), 27–40. 
https://doi.org/10.1080/17499518.2019.1674340 

Zhang, Y. (2019). An accurate and stable RBF method for solving partial 
differential equations. Applied Mathematics Letters, 97, 93–98. 
https://doi.org/10.1016/j.aml.2019.05.021 

Zhao, K., Xue, H., Yang, F., & Zhao, L. (2019). Probability prediction of crack 
growth rate of environmentally assisted cracks of nickel-based alloys 
based on Latin hypercube sampling. International Journal of Pressure 
Vessels and Piping, 172(March), 391–396. 
https://doi.org/10.1016/j.ijpvp.2019.04.005 

Zhao, L., Choi, K. K., Lee, I., & Gorsich, D. (2013). Conservative Surrogate 
Model using Weighted Kriging Variance for Sampling-based RBDO. 
Journal of Mechanical Design, 135(9), 91003. 
https://doi.org/10.1090/dimacs/029/20 

Zhao, M., & Cui, W. C. (2007). Application of the optimal Latin hypercube design 
and radial basis function network to collaborative optimization. Journal 
of Marine Science and Application, 6(3), 24–32. 
https://doi.org/10.1007/s11804-007-7012-6 

Zhao, R., Wang, Y., Hu, P., Jelodar, H., Yuan, C., Li, Y. C., Masood, I., & 
Rabbani, M. (2019). Selfish herds optimization algorithm with orthogonal 
design and information update for training multi-layer perceptron neural 
network. In Applied Intelligence (Vol. 49, Issue 6). Applied Intelligence. 
https://doi.org/10.1007/s10489-018-1373-1 

Zhao, Z., Han, X., Jiang, C., & Zhou, X. (2010). A nonlinear interval-based 
optimization method with local-densifying approximation technique. 
Structural and Multidisciplinary Optimization, 42(4), 559–573. 
https://doi.org/10.1007/s00158-010-0501-2 



© C
OPYRIG

HT U
PM

 
167 

ZHENG, G., & YANG, X. (2019). Studies of the resistance optimization of 
underwater vehicle based on multiple-speed approximate model. 
MATEC Web of Conferences, 272, 1029. 

Zhou, J., Cheng, S., & Li, M. (2012). Sequential quadratic programming for 
robust optimization with interval uncertainty. Journal of Mechanical 
Design, Transactions of the ASME, 134(10), 1–13. 
https://doi.org/10.1115/1.4007392 

Zhou, Y. T., Jiang, C., & Han, X. (2006). Interval and subinterval analysis 
methods of the structural analysis and their error estimations. 
International Journal of Computational Methods, 3(2), 229–244. 
https://doi.org/10.1142/S0219876206000771 

Zu, L., Koussios, S., & Beukers, A. (2010). Shape optimization of filament wound 
articulated pressure vessels based on non-geodesic trajectories. 
Composite Structures, 92(2), 339–346. 
https://doi.org/10.1016/j.compstruct.2009.08.013 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 




