
© C
OPYRIG

HT U
PMDEVELOPMENT OF HYBRID RUBBER-CONCRETE ISOLATION SLAB 

SYSTEM FOR 3D VIBRATIONS

By

FAYYADH NAHAL KAMIL FAYYADH

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in 
Fulfilment of the Requirements for the Degree of Doctor of Philosophy

July 2021

 FK 2021 117



© C
OPYRIG

HT U
PM

COPYRIGHT

All materials contained within the thesis, including without limitation text, logos, icons, 
photographs and all other artwork, are copyright material of Universiti Putra Malaysia 
unless otherwise stated. Any material contained within the thesis can be used for non-
commercial purposes. Commercial use of materials may only be made with the express, 
prior and written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia



© C
OPYRIG

HT U
PM

i

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of 
the requirements for the degree of Doctor of Philosophy

DEVELOPMENT OF HYBRID RUBBER-CONCRETE ISOLATION SLAB 
SYSTEM FOR 3D VIBRATIONS

By

FAYYADH NAHAL KAMIL FAYYADH

July 2021

Chairman :Associate Professor Farzad Hejazi, PhD
Faculty :Engineering

Nowadays, by utilizing structures with various machines and application of structures 
for operation of variety of trains, trucks or rotary mechanical machineries, the structural 
components are subjected to multi-directional vibrations as vertical and horizontal cyclic 
oscillations. The slabs are the main structural components which the dynamic loads, due 
to vibration generator machines, are imposed to it, and then the load is transferring to the 
foundation through the girders and columns. Recently, application of the rubber bearings 
as base isolator systems to dissipate imposed dynamic loads to the structure is frequently 
considered by design engineers. However, in order to implement the base isolation, it is 
required to construct each level of building as separated story which highly leads to 
reduce the lateral strength and stiffness of structure. Moreover, rotary machines induce 
3D vibrations and the floating slab system, which implements rubber bearings with 
compression damping properties, is effective only for damping vertical vibrations rather 
than horizontal vibrations. Additionally, Regulation No.5 of the Malaysian Regulations 
for Factories and Machinery (1983) highlighted that any vibrating machinery should not 
be installed in floors higher than the ground level unless such floor is designed to support 
the load so imposed thereon. Therefore, the present research aimed to propose a hybrid 
rubber-concrete isolation slab system (HRCISS) by developing a floating slab system 
with implementing of high damping rubber in the intermediate layer of concrete slabs. 
The proposed HRCISS is composed of two upper and lower concrete slab panels with 
an intermediate layer of square-plan HDR bearings. The initial design details of HRCISS 
are developed and the performance of the system in reducing the vibrations in both 
horizontal and vertical directions and the applicability to diminish 3D vibrations is 
investigated through finite element simulation.

After finalizing the design, two prototypes for HRCISS have been manufactured and 
tested separately, each specimen at a time, under horizontal and vertical cyclic loads by 
using dynamic actuators in order to evaluate the performance of system and validate the 
numerical simulation. In order to assess the efficiency of the hybrid system in damping 
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3D vibrations, it is applied in a half-scale 3-story, 1-bay building and the capability of 
the system to protect the building from interior vibrations, i.e. machine vibrations as well 
as its ability to protect the machines from exterior vibrations, such as earthquakes, have 
been evaluated. The results have shown the effectiveness of the HRCISS in reducing 
deformations when compared to the conventional 3-story building. Furthermore, 
utilizing structure with the hybrid system appeared more effective in minimizing lateral 
drifts and inter-story drifts when it’s installed in lower levels with average 87.33% and 
75.8% drop in lateral drift and inter-story drift with respect to the conventional buildings, 
as well as the remarkable reduction in deflection of the structural slab with 11.1% 
reduction. The similar results achieved when the 3-story building is imposed to ground 
motion at the base level as the HRCISS seemed more efficient in reducing the lateral 
drifts when it’s equipped in the first story, working as a TMD system. Also, the floating 
slab displaced in less amplitudes in comparison to the structural slab beneath for all the 
three components of the earthquake, indicating the rubber functioning as a BI system.

It can be concluded that the HDR bearings in the HRCISS are influential in controlling 
3D vibrations and protecting the structural building from interiorly and exteriorly 
induced vibrations and hence, the capability to widen the application of vibrating 
machines in higher stories.     
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 
memenuhi keperluan untuk ijazah Doktor Falsafah

PEMBANGUNAN SISTEM PAPAK PENGASINGAN GETAH-KONKRIT 
HIBRID UNTUK GETARAN 3D

Oleh

Julai 2021

Pengerusi
Fakulti

:Profesor Farzad Hejazi, PhD
:Kejuruteraan

Kini, melalui penggunaan struktur dengan pelbagai jentera dan aplikasi struktur bagi 
operasi pelbagai jenis tren, truk atau jentera mekanikal berputar, komponen struktural 
tertakluk kepada getaran multiarah sebagai ayunan siklik menegak dan mendatar. 
Papak merupakan komponen struktural utama di mana beban dinamik, akibat mesin 
generator getaran, yang dikenakan ke atasnya, dan kemudian beban tersebut diubah 
kepada asas melalui galang dan kolum. Kebelakangan ini, aplikasi bering getah 
sebagai sistem isolator asas bagi menghilankan beban dinamik yang dikenakan 
kepada struktur tersebut kerap diambil kira oleh jurutera reka bentuk. Walau 
bagaimanapun, bagi melaksanakan isolasi asas tersebut, adalah perlu untuk 
mengkonstruksi setiap aras bangunan sebagai tingkat berasingan yang amat 
membawa kepada pengurangan kekuatan lateral dan kekakuan struktur. Tambahan 
pula, jentera berputar mencetuskan getaran 3D dan sistem papak terapung, yang 
mengimplementasi bering getah dengan sifat peredam mampat, adalah efektif hanya 
bagi getaran menegak peredam dan bukannya getaran mendatar. Di samping itu, 
Peraturan No.5 Peraturan bagi Kilang dan Jentera Malaysia (1983) menegaskan 
bahawa sebarang jentera yang bergetar tidak seharusnya dipasang di lantai yang lebih 
tinggi daripada aras bumi kecuali lantai tersebut telah direka bentuk bagi menyokong 
beban yang dikenakan dan sebagainya. Oleh sebab itu, penyelidikan ini bertujuan 
untuk mengesyorkan sistem papak isolasi getah konkrit hibrid (HRCISS) dengan 
membangunkan sistem papak terapung dengan pengimplementasian getah peredam 
yang tinggi pada lapisan papak konkrit pertengahn. HRCISS yang disyorkan terdiri 
daripada dua panel papak atas dan bawah dengan lapisan papak HDR plan segiempat 
sama pertengahan. Reka bentuk mendalam awal bagi HRCISS yang disyorkan telah 
dibangunkan dan prestasi sistem yang disyorkan dalam pengurangan getaran pada 
kedua-dua arah mendatar dan menegak dan keterterapan bagi menghapuskan getaran 
3D telah diselidiki melalui simulasi elemen finit. Selepas memuktamadkan reka
bentuk tersebut, dua prototaip bagi HRCISS telah dihasilkan dan diuji secara 
berasingan, setiap spesimen pada satu masa, di bawah beban siklik mendatar dan 
menegak menggunakan penggerak dinamik bagi menilai prestasi sistem yang 
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disyorkan dan bagi mengesahkan simulasi numerikal.

Bagi menilai kecekapan sistem hibrid pada getaran 3D peredam, ia diaplikasikan 
dalam 3 tingkat separuh skala, bangunan 1 petak dan keupayaan sistem yang 
disyorkan untuk melindungi bangunan daripada getaran dalaman, iaitu getaran jentera 
di samping kebolehannya untuk melindungi daripada getaran luaran, seperti gempa 
bumi, telah dinilai. Dapatan menunjukkan bahawa keberkesanan HRCISS dalam 
pengurangan kecelaan ketika dibandingkan dengan bangunan 3 tingkat konvensional. 
Di samping itu, menggunakan struktur dengan sistem hibrid didapati lebih efektif 
dalam meminimumkan hanyut lateral dan hanyut antara tingkat ketika ianya dipasang 
di aras bawah dengan penurunan rata-rata 87.33% dan 75.8% pada hanyut lateral dan 
hanyut antara tingkat, di samping pengurangan yang ketara dalam pesongan papak 
structural dengan pengurangan 11.1%.Dapatan yang serupa juga dikesan ketika 
bangunan 3 tingkat dikenakan gerakan bumi  pada aras asas disebabkan HRCISS 
didapati lebih efisien dalam mengurangi hanyut lateral ketika ia dilaraskan dalam 
tingkat pertama, bekerja sebagai sistem TMD. Di samping itu, papak terapung yang 
disesar dalam amplitud yang rendah berbanding dengan papak struktural di bawah 
semua tiga komponen gempa bumi, memperlihatkan pemfungsian getah sebagai 
sistem BI.

Kesimpulannya, bering HDR dalam HRCISS adalah efektif dalam mengawal getaran 
3D dan melindungi bangunan struktural daripada getaran terarah secara interior dan 
eksterior dan oleh itu, keupayaan untuk memperluas pengaplikasian getaran jentera 
pada tingkat yang lebih tinggi.
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CHAPTER 1  

INTRODUCTION 
 
 
1.1 Definition 

Isolation is one of the most preferred systems that are commonly used to eliminate 
vibrations on structural elements in various constructions. The concept of the isolation 
process is providing flexible devices that add up to the flexibility of the whole system, 
decoupling two main parts of the construction by dissipating the energy and mitigating 
vibrations transfer from one part to the other. This discontinuity, caused by the isolation 
bearings, reduces the demand of dynamic loads rather than increasing the system’s 
resistance. 

In an isolation system, the essential features are flexibility and energy dissipation 
capacity, as the formal is capable of increasing the fundamental period of the system by 
shifting it out of the dominant period of the effective dynamic loadings while the latter 
is responsible for increasing the damping and hence, reducing the deformations in the 
system.  

1.2 Background 

In general, vibrations that affect the buildings can either be in horizontal or vertical 
directions according to the source of the vibration. Examples on horizontal vibration are 
earthquakes, wind, waves and machinery equipment. Vertical vibrations on the other 
hand, are generated from several sources of loading, i. e. traffic vehicles, movement of 
individuals, machinery motion and vertical component of ground motion. The effects of 
these cyclic loads on buildings and their structural membranes have been well 
investigated over decades. For example, slab panels which are the horizontal diaphragms 
of the buildings that are supported on columns, beams or walls and transfer loads in the 
building through the vertical membranes, have been widely studied under lateral and 
vertical loadings and the performance has been assessed based on the damage occurring 
in the slab-column/ slab-wall connections (Smadi et al., 2008, Almeida et al., 2016, 
Emitiaz et al., 2017, Abdul Hamid and Masrom, 2012, Foglar and Göringe, 2015 and 
Daud et al., 2015). However, these connections are weak under large cyclic vibrations 
(Rha et al., 2014) and thus there has been a need to dissipate such vibrations and 
eliminate their effects on the structure in order to prevent possible deterioration, 
especially in the vertical diaphragms that are weak against lateral vibrations. Many 
solutions to reduce these vibrations have been used, most commonly, base-isolation, 
mid-story isolation and TMD systems in terms of lateral vibrations. 
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Base-isolation system is effective in decoupling structures from the ground motion 
during earthquakes by providing sufficient flexibility to the structure via the use of 
isolators in the base layer, disconnecting the superstructure from the substructure 
beneath. These isolators provide damping which dissipate lateral vibrations transmitting 
from ground to the superstructure through the isolator materials (Fan F-G et al., 1990, 
Ramkrisna et al., 2006, Gaibaulung and Subramanian, 2016, Karabork and Turan, 2011 
and Gowardhan and Deosarkar, 2015). The other approach of isolation against horizontal 
movements is the mid-story isolation system in the multi-story buildings. It’s gaining 
popularity rather than the base-isolation system for being more feasible and 
architecturally attractive, especially in high populated regions with buildings close to 
each other which do not offer much space in the base level, thus favoring the mid-story 
system (Su and Ahmadi, 1992, Huang et al., 2008, Ryan and Earl, 2010, Wu et al., 2019). 
While, tuned mass damper (TMD) system is the use of an isolated body structure 
functioning as a tuned mass to damp vibrations, most notably under wind loads, that 
keep the building stiff unlike base and mid-story isolation which make the building 
flexible to resist ground motions (Warburton 1982, Villaverde et al., 2005, Melkumyan, 
2014, Angelis De et al., 2012, Chey et al., 2013 and Fabrizio et al., 2017). 

On the other hand, in terms of vertical vibrations, various methods have been studied 
and tested in the past to diminish such vibrations, including the separation of the 
structural membranes from the effective vibrating objects using isolators that are inserted 
below the vibrating structures and above the structure beneath which is directly bonded 
to the rest of the building that needs to be protected from damage. Of the many ways of 
isolation against vertical vibration, floating floors, floating-slab track are the most 
preferred tools. Their concept is to lift slab panels that are attached directly to the moving 
body from the floor slab beneath by providing resilient layer between the two slabs which 
works as dissipation tool to eliminate the vibrations and mitigate energy generated from 
the vibrating objects and prevent them from passing to the substructure and buildings 
near the vibration region in order to protect the surrounding constructions from 
deterioration due to the affecting vibration that its period might coincide with the natural 
period of the buildings nearby which can cause them to collapse (Xu et al., 2015, He et 
al., 2018, Jin et al., 2017, Kim et al., 2018, Hui and Ng, 2007 and Mukherjee, 2017). 

The two mentioned systems are used separately, each system for specific type of 
vibrations. However, in most cases, induced vibrations may have influence on buildings 
in all directions. Various approaches have been utilized and the one that is most feasible 
and commonly implemented is the 3D isolation system which employs multiple isolation 
systems to perform in combination under lateral and vertical motions. For the cases of 
isolation under lateral or vertical vibrations, the most commonly utilized devices are 
made of rubber materials, which are hyperelastic materials showing some viscoelastic 
characteristics that provide sufficient flexibility to decouple structural elements and 
dissipate vibrations that are generated due to the dynamic forces acting on the structure 
as well as mitigating the potential of these vibrations to cause damage. A favorable 
material and commonly used over the years in isolation against horizontal cyclic loads, 
especially under seismic motion, are lead rubber bearings LRB and high damping rubber 
bearings HDB (Naeim and Kelly, 1999; Yoshida et al., 2004; Bhuiyan, 2009; Hwang, 
2002; Yoshida et al., 2004; Grant et al., 2004; Bhuiyan et al., 2009; and Castellano et al., 
2015). 
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Whereas, various types of rubber bearings have been in mounting use for the vertical 
isolation. However, in case of three-dimensional isolation, a combined system of 
isolators is in use, namely, dampers for vertical isolation and rubber bearings for 
horizontal isolation (Wong et al., 2013, Suhara et al., 2008, Okamura et al., 2005, Zhou 
et al., 2016, Shun and Lin, 2008, Takahashi et al., 2008, Xu et al., 2019, Kitayama et al., 
2017). 

1.3 Problem Statement 

Isolation of a whole building against applied dynamic loads can be highly expensive. 
The modified approach of isolation is proposed to be used as an alternative technique in 
order to protect the structure from such loads of a specific installed equipment (i.e. 
machinery) that might induce vibrations to the structural element (slab panel), beneath, 
in both vertical and horizontal directions. The rubber isolators, such as high damping 
rubber (HDR) bearings are functioning mostly for lateral vibration as in case of seismic 
and wind motion and have been rarely utilized for vertical vibration control despite 
showing a sufficient degree of isolation. 

On the other hand, rubber pads in floating slab systems are utilized specifically for 
isolating vertical vibrations, and the resilient layer used in such systems, which 
implements types that differ from damping rubber, is efficient in acoustic insulation 
rather than vibration isolation. In addition, many vehicles and rotary machines induce 
vibrations in both directions on the structural membranes in which they’re installed to or 
nearby. This can generate vibrations with high frequencies that can be damaging to the 
structure which will decrease the life span of the building and may cause discomfort to 
the individuals within the building, and must be diminished at the machine base by 
decreasing the transmissibility value. For this reason, advanced and complex instruments 
are used for isolation of multidirectional vibrations which comprise more than one 
isolation system to eliminate deformations, and their application is highly costing, time 
consuming and complicated in manufacturing and installment. 

By considering of discussed issues related to the ordinary isolation systems for 
horizontal, vertical (machine-induced) and combined 3D (seismic) vibrations, there’s a 
need to implement an effective system to minimize the number of required systems for 
isolation to a single system with proper potential to dissipate vibration energy and 
diminish vibrations in the three directions as well as the capability to be equipped in 
existing constructions with reasonable cost and easy installation. The high damping 
rubber is selected as the isolation material since it offers low stiffness in the horizontal 
direction and a higher stiffness in the vertical direction to carry the machine’s weight. 
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1.4 Research Questions and Hypothesis 

The current research aims to answer the question: 

1- Since HDR proved its ability to diminish horizontal ground motion, is it able to 
exploit this property in order to eliminate machine-induced horizontal vibrations? 

2- Could modified HDR bearings become a more efficient replacement to ordinary 
rubber bearings in damping vertical vibrations of machinery and seismic sources? 

3- Are the HDR bearings sufficient in higher levels of a multistory building rather than 
the rigid floor of the ground level? 

4- The hypothesis of this study, based on the research background and questions, can 
be formulated as: 

By applying High Damping Rubber bearings in a floating slab system, they have the 
potential to eliminate deformations in the horizontal and vertical directions, caused by 
interior and exterior vibrations from machinery and ground motion, respectively. In 
addition, the varying thickness of the rubber layer could affect the performance of the 
floating slab system in a multistory building to reduce displacements on the structural 
slab as well as the ability to protect certain installed machines from vibrations in more 
than one direction. 

1.5 Research Objectives 

1- To design a single isolation system of hybrid rubber-concrete slab panels for 
controlling horizontal and vertical vibrations. 

2- To investigate the dynamic response of the proposed hybrid rubber-concrete isolation 
slab system under horizontal and vertical cyclic displacements through FEM and to 
verify the design by manufacturing the prototype and conducting experimental tests 
using dynamic actuators. 

3- To evaluate the deformation reduction capability of the hybrid rubber-concrete 
isolation slab system in the horizontal and vertical directions, with varying shape 
factors, in a multistory structure subjected to interior machine vibrations and seismic 
excitations through finite element study. 
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1.6 Scope of Study and Limitations 

For the scope of the current study, RC slab panels have been considered and square-
sectioned bearings of high damping rubber (HDR) were implemented for the isolation 
layer. FEM and experimental tests have been conducted, only cyclic loading was used 
using the experimental testing, whereas cyclic and seismic loadings have been applied 
on the research specimens throughout the study. Multistory buildings of RC flat slabs 
and columns have been studied to investigate the cyclic and seismic loadings, as well as 
to investigate the shape factor effect.  

Moreover, shape factors of no more than 2 and no less than 0, have been utilized. 
Furthermore, interior vibrations were represented by horizontal cyclic and vertical half-
cyclic displacement-controlled loadings, while exterior vibrations were represented by 
3D components of El Centro 1940 Earthquake with 10 seconds duration. Whereas, 
limitations for this research are: the laboratory horizontal actuator can only push and pull 
below 100 mm horizontally. Hence, the horizontal cyclic displacement protocol should 
be designed for less than 100 mm amplitude for experimental testing and verification. 
On the other hand, the vertical actuator movement in limited to maximum of 50 mm and 
is restricted from upward movement, which means it only pushes downwards and release 
up to the zero point. Thus, the vertical displacement protocol is a half-cyclic protocol 
that’s designed for a maximum amplitude below 50 mm. 

The dimensions of structural (lower) slab of the research isolation system prototype are 
limited by the strong floor bolts of the experimental laboratory which are aligned 500 
mm apart, longitudinally and transversely. This leads to multiples of 500 mm for the 
lower slab dimensions of 1500 mm x 1500 mm, and the 100 mm height is due to the 
elevation of the actuator which is connected to the floor. Whereas, the floating (upper) 
slab dimensions are limited to 800 mm x 800 mm x 100 mm to avoid contacting with 
the strong floor bolts of 150 mm height, due to the lateral motion when the specimen is 
subjected to the horizontal actuator movement. 

The horizontal and vertical cyclic tests are not conducted simultaneously due to the 
difficulty in linking the two orthogonal actuators into one specimen at the same point. 
This leads to the conduction of each test separately and the need to implement two 
identical specimens. The study focuses only on harmonic loads rather than impact loads 
despite the applicability of the latter. Also, in this study, ageing factor isn’t considered, 
and natural type of rubber is studied. In addition, higher velocities and different load 
frequencies were not considered throughout the research. Application of the HRCISS in 
a multistory building is conducted through FEM only, since these buildings require 
horizontal and vertical actuators of larger scales. 
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1.7 Thesis Content 

This research work will be divided into several sections. In first section, and introduction 
to the general isolation systems used against both lateral and vertical vibrations is 
displayed with background and review of the most recent methods implemented for each 
type of vibration in addition to demonstrating the advantages and disadvantages of the 
common isolators as well as highlighting the gaps of the past research works with 
illustration of the possible benefits of the new proposed system. Afterwards, stating the 
problems and questions of this research and the objectives related to solving these 
problems. In the second chapter, a literature of the most related work, to this research, 
over the past years is reviewed assuring the existence of the gaps that this research work 
attempts to cover and highlighting the issues that need to be solved. In the third chapter, 
the methods in which the new hybrid rubber-concrete isolation slab system are 
explained. Model design in both numerical and experimental work will be discussed and 
the dimensions and material properties used in the model as well as the ways of 
connecting parts of the model are displayed. In addition, the setup and test protocol will 
be illustrated as well as. Furthermore, the design of a 3-story, 1-bay building will be 
presented with the equipment of the HRCISS in different story elevations and different 
shape factor values. 

In chapter 4, the results for both numerical and experimental tests will be shown in these 
and discussed and comparisons between the two types of the results will be explained. 
Then, the FEM results of the HRCISS application in the multistory flat slab building will 
be demonstrated and the controlled deformation with the use of HRCISS will be 
compared with conventional buildings. Additionally, the shape factor effect will also be 
discussed by comparing the different outcomes in terms of damping, stiffness, and 
deformation, for five shape factor values.  

Lastly, conclusions will be driven in chapter 5, based on all the data obtained and 
explained in previous chapters and recommendations for future works will be given at 
the end of the chapter. 

1.8 Summary 

In the beginning, vibrations and their control methods have been introduced with a brief 
presentation of their background studied. Then, a statement of the problem, based on the 
gap found in the literature, was made and the objectives were determined. The scope of 
the study with its limitations have also been displayed, in order to detect the criteria for 
the design of the proposed hybrid rubber-concrete isolation slab system for the current 
research. 
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