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Variable traffic vibration loads on overcrossing and bridges are the cause of 
damages in essential load-bearing components could consequently lead to 
damage or failure of the bridge. Nowadays, the fluid viscous dampers are the 
most conventional energy dissipation system to implement in bridges. However, 
the viscous dampers are the passive type control system and its function is the 
same for an entire operation time of the device. Since the applied vibration in 
the bridge is dependent on various traffic loads (heavy, medium, and low traffic), 
it is required to change the function of the damper.  
 
 
In this research, a Semi-active Bypass Viscous Damper is developed by utilizing 
a pair of external fluid flow patches as bypass valves to the sides of the viscous 
damper cylinder to flow the fluid from two chambers of the cylinder during the 
movement of the piston. Two flow control valves have been implemented in the 
device to control the flow pressure of the fluid passing through the bypass valve 
during the functioning of the damper device. Therefore, the function of the 
damper device is adjustable by changing the flow control valves positions within 
a range upon the displacement of the structure.   
 
 
The analytical model of the proposed bypass viscous damper is developed and 
the performance of the device under different loading conditions has been 
formulated according to the control valves position and fluid pressure inside the 
cylinder. Then the finite volume model of the moving fluid inside the device has 
been developed and the function of the device evaluated through Computational 
Fluid Dynamics (CFD) analysis.   
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In the next step, the prototype of the damper and the control panel has been 
fabricated and synchronized to perform the real-time control of the damper. Then 
the experimental tests have been conducted using a dynamic actuator. 
 
 
The numerical analysis and experimental test results for the prototype revealed 
that the developed device is capable of developing a wide range of damping 
levels and there is a desirable agreement between numerical predictions and 
experimental results.  
 
 
Thereafter, in order to examine the effect of the application of the semi-active 
control system in the bridge structures, the proposed system was implemented 
in the 19/5 California overcrossing bridge. The considered bridge equipped with 
the damper device is modeled using the finite element method and it is subjected 
to the passing vehicle loadings. The results showed that the bridge's response 
is dramatically improved with the implementation of the developed damper 
systems by reducing the peak displacement of the structure up to 70 percent by 
the mean of the semi-active control system while the control valves have been 
set to be 50 percent of the operational level of the device.  
 
 
Afterward, to develop a real-time control system, a Fuzzy control algorithm has 
been developed and implemented to the numerical model. The fuzzy control 
algorithm is designed based on the formulated performance and it is introduced 
according to the American AASHTO standard code for minimum, maximum 
allowable, and extreme traffic loads applying to the bridge.  
 
 
Then, to enhance the function of the semi-active system in a real-time control 
system, a MATLAB Simulink code was developed, and the control system with 
a semi-active Fuzzy control loop was implemented in a 3-story concrete frame 
structure subjected to a seismic load. The resultant data from this numerical 
study revealed that the developed semi-active Fuzzy control system works 
effectively to control the maximum displacement of the structure under seismic 
loads. Although the number and location of the installed dampers are very 
important and should be designed properly to obtain the desirable displacement 
control. 
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Beban getaran lalu lintas yang berubah-ubah diatas lintasan dan jambatan 
adalah punca keletihan dan kerosakan pada komponen galas beban penting 
seperti galas getah akan menyebabkan kerosakam atau kegagalan jambatan 
tersebut. Pada masa kini, penyerap likat bendalir adalah sistem pelepasan 
tenaga yang paling konvensional untuk diaplikasikan di jambatan. Walau 
bagaimanaapun, penyerap likat adalah sistem kawalan jenis pasif dan ianya 
berfungsi sama untuk kesuluruhan masa operasi peranti. Memandangkan, 
getaran yang digunakan di jambatan bergantung pada pelbagai beban lalu lintas 
(lalu lintas berat, sederhana, dan rendah), ianya perlu menukar fungsi penyerap. 
Dalam penyelidikan ini, Penyerap Likat Pintas Separuh Aktif dimajukan dengan 
menggunakan sepasang tompok aliran bendalir luaran sebagai injap pintasan 
ke sisi silinder penyerap likat untuk mengalirkan bendalir daripada dua ruang 
silinder semasa pergerakan omboh. Dua injap kawalan aliran telah diaplikasikan 
didalam peranti untuk mengawal tekanan aliran bendalir yang melalui injap 
pintasan semasa penyerap peranti itu berfungsi. Oleh itu, fungsi peranti boleh 
dilaraskan dengan menukar kedudukan injap kawalan aliran dalam julat anjakan 
struktur yang ditetapkan. 
 
 
Model analitikal peranti yang dicadangkan dimajukan dan prestasi peranti 
tersebut dalam keadaan pemuatan yang berbeza telah dirumuskan mengikut 
kedudukan kawalan injap dan tekanan bendalir di dalam silinder. Selepas itu, 
model volum terhingga bendalir bergerak di dalam peranti telah dimajukan dan 
fungsi peranti dinilai melalui analisis Dinamik Bendalir Pengiraan (CFD). 
 
 
Dalam langkah seterusnya, prototaip peranti dan panel kawalan telah direka dan 
disegerakkan untuk melaksanakan kawalan masa nyata penyerap tersebut. 
Selepas itu, ujian eksperimen dilakukan menggunakan penggerak dinamik. 
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Analisis berangka dan keputusan ujian eksperimen untuk prototaip 
mendedahkan bahawa peranti yang dimajukan mampu membangunkan 
pelbagai tahap penyerap dan terdapat persetujuaan yang wajar diantara 
ramalan berangka dan keputusan eksperimen. 
 
 
Oleh yang demikian, untuk mengkaji kesan penggunaan peranti didalam stuktur 
jambatan, peranti yang dicadangkan diaplikasikan di lintasan jambatan 19/5. 
Jambatan yang dipertimbangkan telah dilengkapi dengan peranti yang 
dimodelkan menggunakan kaedah elemen terhingga dan ianya tertakluk kepada 
muatan kenderaan yang lalu. Keputusan menunjukkan bahawa tindak balas 
jambatan bertambah baik secara mendadak dengan pelaksanaan sistem 
penyerap yang dimajukan dengan mengurangkan anjakan puncak struktur 
sebanyak kira-kira 70 peratus dengan purata min enam penyerap manakala 
injap kawalan telah ditetapkan kepada 50 peratus daripada tahap operasi 
peranti. 
 
 
Selepas itu, untuk memajukan sistem kawalan masa nyata, algoritma kawalan 
Fuzzy telah dimajukan dan diaplikasikan kepada model berangka. Algoritma 
kawalan Fuzzy telah direka bentuk berdasarkan prestasi yang dirumuskan dan 
telah diperkenalkan mengikut kod standard AASHTO Amerika untuk kod 
minimum, maksimum yang dibenarkan dan lalu lintas beban yang melampau 
yang dikenakan pada jambatan. 
 
 
Kemudian, untuk meningkatkan fungsi separa aktif dalam sistem kawalan masa 
nyata, kod MATLAB Simulink telah dimajukan, dan peranti dengan gelung 
kawalan Fuzzy separa aktif telah diaplikasikan dalam struktur rangka konkrit 3 
tingkat yang telah dikenakan beban seismik. Data terhasil daripada kajian 
berangka mendedahkan bahawa sistem kawalan Fuzzy separa aktif yang 
dimajukan berfungsi dengan berkesan untuk mengawal anjakan maksimum 
struktur di bawah beban seismik. Walaupun bilangan dan lokasi peranti yang 
dipasang adalah sangat penting dan harus direka bentuk dengan betul untuk 
mendapatkan kawalan anjakan yang diingini. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Introduction 

Most of the time, highway over crossings, bridges, and building damage are the 
result of underestimating excessive seismic displacements and the large 
dynamic forces applied to the structure during their life spans. On the other hand, 
conclusive evidence shows highway bridges are routinely subjected to larger 
than anticipated vehicle loads that may shorten the useful service life of these 
vital structures. Given the abundance of bridge failures, many research 
programs were conducted to improve the dynamic behavior of structures. With 
the help of strong-motion records, enhancements have been achieved in the 
design, analysis, and also retrofit programs of bridge structures.  

Although provisions for bridge failure have been defined in the design procedure 
(Xiang et al., 2019) but still the development of more reliable techniques is 
required. The increasing need for safer bridges has led to the implementation of 
various control techniques including passive, active, and semi-active methods 
to mitigate structural sway in bridges and buildings. Since passive systems have 
fixed performance and the outcome resultant force is not adjusted according to 
the required response of the structure, active and semi-active control systems 
as a practical possibility for vibration control mostly have been considered.  

Active control of the bridge structure by using a control surface system with 
winglets was presented by Phan (2020) which helps a long suspension bridge 
reach a stable state of flutter and buffeting. 

Semi-active control systems are a class of active control systems that use the 
motion of the structure to develop the control forces and the required external 
energy is smaller amounts in comparison with the active control method. Battery 
power can be sufficient to make a semi-active system operative for real-time 
control.  

Recently, the automotive semi-active suspension (SAS) system with the 
nonlinear hydraulic adjustable damper has been used in automobiles (Ma et al., 
2019). The concept of the application of a semi-active control to bridges was 
described by Peng et al. (2022). They discussed the possibility of outfitting 
bridges with semi-active dampers to provide vibration control. 
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Table 1.1 : Restrainer systems, methods and the research gap 
 
Restrainer 
System 

Methods Research Gap 

Stiffness-Based 
Restrainer 

Tie-plate Steel Restrainer, 
Concrete Shear Keys, High 
Resistance Steel Cables, FRP 
Cables 

Residual Displacement, 
Additional Stiffness, No 
Energy Dissipation. 

Self-Centring 
Restrainer 

SMA devices, Pre-load Spring 
Damper, pre-tensioned tendons 
and energy dissipators, steel dual-
core prestressed tensioning 
members, viscous damper with 
imposed preloads. 

Costly, Temperature 
Dependency, Frequent 
Maintenance, Complex 
design and Manufacturing, 
Low Energy Dissipation. 

Passive 
Vibration 
Energy 
Dissipation 
Restrainers 

Metallic Dampers (Straight and 
tapered Steel Rods, X-shape, 
Triangular, U and E Steel Plates, 
Steel Pipes, Tunned Liquid 
Dampers, Viscoelastic Dampers, 
Fluid Viscous Damper, Viscous 
Wall Dampers, 

limited Energy Dissipation 
Capacity, Not adjustable 
with Changing of Dynamic 
Forces, Not Accurate 
Vibration Control. 

Active Vibration 
Energy 
Dissipation 
System 

Quadratic Regulator System, 
Closed Hydraulic System 

Large External Power 
Source, Actuator’s Failure, 
Additional Energy 

Semi-active 
Control 
Systems 

MR, ER, Pisoelectricity friction 
Dampers 

Very Expensive 
Technology, Sensitive to 
Temperature Variations 

 
 
According to the interaction between vehicle, loads, and the structure, the control 
methods can be categorized into three main categories, stiffness-based 
restrainers, energy dissipation restrainers, and self-centering restrainers. 

These restrainer systems with particular methods and the research gaps that 
may limit a wider implementation of these restrainers in bridge structures have 
been listed in Table 1-1. In between, passive fluid viscous dampers as an energy 
dissipation restrainer method, when properly specified and designed, have 
served as a structure’s primary defense to prevent catastrophic damage and 
costly repairs.   

The successfulness of the control system quite depends on the primary design 
of the factors and parameters of the whole system, not only the device itself but 
also the configuration of the hydraulic circuit, control algorithm, and also time 
delay considerations. 

However, seismic activities are highly doubtful concerning scale and nature, the 
semi-active fluid viscous damper is capable of developing a wide range of 
damping levels between design upper and lower bound. So that the decrease in 
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the structural reaction will be promising and obtained through transferring some 
of the structural shaking energy to supplementary dampers added to the main 
building.  

1.2 Statement of the problem 

Nowadays, the fluid viscous dampers are the most conventional energy 
dissipation system which is implemented in the bridges to prevent any excessive 
movements on the structure due to traffic loads. However, the vibration on the 
bridge structure depends on the traffic load which is variable and continually 
changes, therefore, it is required to adopt the function of the damper device 
according to the applied excitation to effectively protect the bridges against 
frequent and severer vibrations.  Hence, to adjust the function of viscous 
dampers according to the required response of the structure, two different 
systems have been developed recently, "variable damping" and "variable 
stiffness" semi-active viscous damper devices. For the first category, the device 
is designed so that the damping characteristics are adjustable during the 
operation, whereas in the second group, only the stiffness of the device changes. 
However, these developed semi-active systems, are not able to meet all the 
precise control requirements for the research gaps listed as follow: 

• Semi-Active Variable Stiffness System: this system has been examined
with On-off Operation within the configuration of the lock mechanism of
one bracing system. The developed system applied a small change in
Stiffness and provided a limited control band. (Kobori, 1999)

• Semi-Active Variable Damping System: this device has been developed
by using a bypass hydraulic system with the on-off operation, and LRQ
and COC control algorithm, the performance is stable for a specific
range of velocity amplitude of the excitation. Time delay, costly hydraulic
circuit, and maximum 4 valve positions limited the device function.
(Oliveira and Morais, 2012).

Hence, this study proposes a new semi-active variable stiffness and damping 
control system to control the vibration behavior of the bridge structure while 
subjected to changing traffic loads.  

This control system consists of a fluid damper, a programmable logic controller 
(PLC), pressure transmitters, and displacement sensors. The proposed Semi-
Active control system consists of a hydraulic cylinder with a pair of external 
bypass pipes with motorized electric flow control valves which are installed in 
the middle of pipes to control the flow rate of the fluid from one chamber of the 
hydraulic cylinder to another. A programmable logic controller (PLC) is 
implemented to manage the operation of both motorized valves according to the 
movement of the bridge which is measured through displacement sensors.  
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Therefore, the pressure inside the hydraulic cylinder is controllable and the 
function of the device is adaptive so that the integrated control system can 
perform a real-time control during its operation.  

This damper device is mainly originated from a passive fluid viscous damper and 
dissipates energy on the principle of head loss phenomena caused by fluid 
resistance while flowing through different sections. The damper adjusts the 
proper damping and stiffness, simultaneously, within a range, without shifting 
the ratio of the natural frequency of the structure. The device is low-cost and 
low-maintenance and is able to absorb a relatively high level of energy 
throughout the excitation event. This semi-active control damper can operate 
and provide real-time control during different conditions. 

1.3 Objectives of the study 

The proposed vibration control system will be used to mitigate the vibration 
energy caused by vehicular traffic, wind, earthquake, and other dynamic 
excitations. The emphasis of the work is proposing a new technique for the 
reduction of the vibration, through the development of a synchronized hardware 
and software system that can be added to the design of a new structure or 
retrofitted to existing ones to extend their service life. Thus, specific objectives 
that contribute to this aim include: 
 

1) To develop a new semi-active variable stiffness and damping control 
system consisting of a fluid Damper, a programmable logic controller 
(PLC), pressure transmitters, and displacement sensors to control 
bridge structures subjected to traffic loads. 

2) To develop a finite volume model to measure the fluid characteristics, 
pressure, and velocity, inside the damper device and simulate the 
resultant force as an output performance and optimize the design of the 
device components. 

3) To validate the numerical results, through manufacturing the lab-size 
prototype and conducting the experimental tests using the dynamic 
actuator. 

4) To minimize the displacement response of the deck of the bridge 
structure due to traffic loads by developing a control algorithm. 

 
 
1.4 Hypothesis 

Implementing the semi-active vibration dissipation system able to dissipate 
bridge vibration effectively to protect the bridge structure since it is adopting its 
own performance according to the applied vibrations through the smart 
controller. 
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1.5 Scope and limitation of work  

To ensure that the above objectives are achieved, the present study is organized 
as follow: 
 

1) To develop the finite element model of the bridge-damper, the Newton 
Raphson method, along with implicit numerical integration methods 
were utilized to provide a solution of the nonlinear system. The analysis 
has been done using the commercial software ANSYS 2019 R1. To 
define the dynamic and structural parameters of the damper the Maxwell 
model has been used through implementing spring elements by 
assuming that the properties can be represented by a spring and a 
dashpot connected in series.  

2) To analyze the bridge, the traffic load conditions have been considered 
according to The American Association of State Highway and 
Transportation Officials standards (AASHTO,1996). 

3) The fabrication process of the proposed devices is established based 
on the availability of materials, simplicity of manufacturing, and 
university test equipment capacity. 

4) The geometry, boundary condition, and material specifications of the 
device have been defined according to the design of the prototype for 
testing by using a hydraulic jack. 

5) According to the limitation of the test equipment, the maximum excitation 
force has been considered to be equal to 300 kN. A horizontal electro-
hydraulic actuator was used to implement a saw-tooth displacement 
pattern. To evaluate the damper device accurately, three or more cycles 
of loading were applied at a predefined condition (JSSI Manual, 2003). 

6) For analytical prediction and experimental testing, the temperature is set 
to 30 degrees Celsius, which is the same as the ambient temperature. 
However, to maintain the desired temperature during the experimental 
test, sufficient rest time has been considered in between each cycle test 
to avoid any temperature rise. 

7) The prototype for the control system has been fabricated according to 
the ISO9002 industry-standard procedures to offer quality assurance. 
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1.6 Organization of Dissertation 

A brief narrative of the remaining chapters is presented as follow: 
 
Chapter 2 provides a background review and current status on the development 
of different bridge restrainer methods including passive, semi-active, and active 
control systems. Different materials and configurations for innovative semi-
active fluid dampers are presented to demonstrate a thorough understanding of 
the existing knowledge in this field. 

Chapter 3 presents the research methodology of the current study, including the 
initial design of the device, hydraulic circuit, and control algorithm. Then the 
whole procedure of the parametric study, finite element simulations, and 
numerical analysis was discussed. Moreover, the process of fabrication of 
prototypes and experimental test setups is also introduced.  

Chapter 4 extensively reports the initial assessment results and the numerical 
and experimental evaluation of the Viscous Bypass Damper under dynamic 
loading.  

Chapter 5 summarizes the present study and provides its general and specific 
conclusions. The scope of future works and recommendations are also 
discussed. 
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