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ABSTRACT
Background: Despite extensive knowledge of tuberculosis (TB) and its control, there
remains a significant gap in understanding the comprehensive impact of the COVID-
19 pandemic on TB incidence patterns. This study aims to explore the impact of
COVID-19 on the pattern of pulmonary tuberculosis in China and examine the
application of time series models in the analysis of these patterns, providing valuable
insights for TB prevention and control.
Methods:We used pre-COVID-19 pulmonary tuberculosis (PTB) data (2007–2018)
to fit SARIMA, Prophet, and LSTM models, assessing their ability to predict PTB
incidence trends. These models were then applied to compare the predicted PTB
incidence patterns with actual reported cases during the COVID-19 pandemic
(2020–2023), using deviations between predicted and actual values to reflect the
impact of COVID-19 countermeasures on PTB incidence.
Results: Prior to the COVID-19 outbreak, PTB incidence in China exhibited a steady
decline with strong seasonal fluctuations, characterized by two annual peaks—one in
March and another in December. These seasonal trends persisted until 2019. During
the COVID-19 pandemic, there was a significant reduction in PTB cases, with actual
reported cases falling below the predicted values. The disruption in PTB incidence
appears to be temporary, as 2023 data indicate a gradual return to pre-pandemic
trends, though the incidence rate remains slightly lower than pre-COVID levels.
Additionally, we compared the fitting and forecasting performance of the SARIMA,
Prophet, and LSTM models using RMSE (root mean squared error), MAE (mean
absolute error), and MAPE (mean absolute percentage error) indexes prior to the
COVID-19 outbreak. We found that the Prophet model had the lowest values for all
three indexes, demonstrating the best fitting and prediction performance.
Conclusions: The COVID-19 pandemic has had a temporary but significant impact
on PTB incidence in China, leading to a reduction in reported cases during the
pandemic. However, as pandemic control measures relax and the healthcare system
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stabilizes, PTB incidence patterns are expected to return to pre-COVID-19 levels.
The Prophet model demonstrated the best predictive performance and proves to be a
valuable tool for analyzing PTB trends and guiding public health planning in the
post-pandemic era.

Subjects Epidemiology, Global Health, Infectious Diseases, Public Health, COVID-19
Keywords Tuberculosis, COVID-19, Time series analysis, Incidence patterns, China, SARIMA
model, Prophet model, LSTM networks, Infectious disease trends

INTRODUCTION
Globally, tuberculosis (TB) remains one of the top 10 causes of death and the leading cause
of mortality from a single infectious agent, surpassing HIV/AIDS. In 2022, approximately
10.6 million people contracted TB, and 1.3 million died from the disease (Falzon et al.,
2023; World Health Organization (WHO), 2023). China, with its large population, faces
significant challenges in controlling TB, particularly in managing multidrug-resistant TB
(MDR-TB), which complicates treatment efforts. One study highlighted the spread of
MDR-TB within households and schools in China during the COVID-19 pandemic,
emphasizing the need for strengthened TB detection and control measures (Li et al.,
2023b). Although China has made progress in reducing TB incidence through improved
diagnostic techniques and treatment protocols, regional disparities persist, particularly in
areas heavily impacted by MDR-TB (Long et al., 2021). The long-term impact of COVID-
19 on these efforts remains a concern, as the pandemic stressed healthcare systems and
potentially hindered TB management strategies (Ledesma et al., 2023; Zumla et al., 2020).

The COVID-19 pandemic introduced both positive and negative effects on TB control.
On one hand, containment measures such as lockdowns and social distancing reduced
transmission by limiting social interactions (Zhang et al., 2023). On the other hand, delays
in TB diagnosis, treatment, and notifications due to overwhelmed healthcare systems
posed serious risks (Soko et al., 2021). Disruptions in health services in China led to a
significant drop in TB case notifications, raising concerns about undiagnosed cases that
could increase future TB morbidity (Fei et al., 2020; Ledesma et al., 2023).

Predictive models play a crucial role in understanding TB trends, particularly in light of
pandemic disruptions. Time series models can capture trends and predict future changes in
variables, making them widely applicable in TB forecasting. The autoregressive integrated
moving average (ARIMA) model is the most classic time series model, and the seasonal
autoregressive integrated moving average (SARIMA) extends it by accounting for
seasonality and periodic trends. Although ARIMA does not require special assumptions
about the data, its limited ability to model nonlinear components can lead to overfitting
(Brown, Bateson & McDonnell, 2008; Sembiring, Wahyuni & Sediyono, 2024). Recent
studies suggest that ARIMA performs better in infectious disease forecasting than some
machine learning-based models, such as grey forecasting models (Wang, Shen & Jiang,
2018), thus maintaining its relevance in disease prediction. The Prophet model, introduced
by Facebook in 2017, is another time series forecasting algorithm capable of incorporating
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holiday effects and handling missing or anomalous data, providing a more flexible and
generalizable solution compared to traditional models (Xie et al., 2021). long short-term
memory (LSTM), a variant of recurrent neural networks (RNN), is a deep learning
algorithm known for its ability to model complex sequential dependencies (Sembiring,
Wahyuni & Sediyono, 2024). It has been widely used in tasks requiring high performance,
particularly for addressing sequence-related problems and mitigating gradient vanishing
issues in time series data (Wahyuni et al., 2022). Given their distinct strengths, this study
applies all three predictive models—SARIMA, Prophet, and LSTM—to balance potential
biases in evaluating TB incidence trends before and after the COVID-19 outbreak in China.

In most studies employing time series models for disease forecasting, researchers have
focused primarily on model fitting, prediction, and performance evaluation. However, in
this study, we aim to go beyond mere forecasting by applying these predictive models to
analyze changes in pulmonary tuberculosis (PTB) incidence patterns. Considering the
complex interactions between COVID-19 and TB, this study aims to assess the
performance of different time series models in predicting PTB trends before, during, and
after the COVID-19 pandemic in China. Additionally, this study explores the potential
impact of the pandemic on PTB incidence patterns and highlights the utility of time series
models in analyzing PTB trends. The insights gained will fill knowledge gaps about the
long-term impact of COVID-19 on PTB and provide a scientific basis for selecting
predictive tools for future PTB incidence forecasting and public health strategies.

MATERIALS AND METHODS
Data source and preparation
This study analyzed monthly PTB incidence data obtained from the National Health
Commission of the People’s Republic of China (http://www.nhc.gov.cn/), covering the
period from January 2007 to December 2023. The dataset included reports from 31
provinces, municipalities, and autonomous regions in China. Data quality was rigorously
checked to ensure accuracy and consistency. Missing values were handled using linear
interpolation, a suitable approach for time series data. Outliers were detected via Z-scores
and adjusted using winsorizing to minimize their impact on model accuracy without
distorting the overall trends. Population data for each year were used to calculate annual
incidence rates per 100,000 individuals. The study design and methodology are illustrated
in Fig. 1, which provides an overview of the time series models (SARIMA, Prophet,
and LSTM) used to predict PTB incidence in China based on pre-COVID-19 data
(2007–2019). Detailed monthly incidence and mortality data for pulmonary tuberculosis
from 2007 to 2023 are available in Table S1.

Descriptive statistical analysis
A descriptive statistical analysis was performed to explore trends in PTB incidence over
time. The annual incidence rate was calculated by dividing the total number of reported
PTB cases each year by the population for that year and multiplying by 100,000 to express
the rate per 100,000 people. Line charts were generated to visualize these trends over time,
and the annual percentage change (APC) was calculated using the formula:
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APC ¼ Current Year Value� Previous Year Value
Previous Year Value

� �
� 100%

This measure enabled precise year-over-year comparisons of PTB incidence, with
particular attention to fluctuations caused by the COVID-19 pandemic.

Model training and forecasting
SARIMA model
The SARIMA model was employed to capture both seasonal and non-seasonal patterns in
PTB data (Boshnakov & Halliday, 2024). SARIMA is denoted as SARIMA(p, d, q)(P, D,
Q)s, where p is the autoregressive order, d is the differencing order, and q is the moving
average order. P, D, and Q represent their seasonal counterparts, and s is the seasonal
period, set to 12 months. Model parameters were selected using autocorrelation function
(ACF) and partial autocorrelation function (PACF) plots, with the Akaike Information
Criterion (AIC) guiding final model selection. This model was chosen for its robustness in
handling seasonality in TB trends (Zhao et al., 2023). The SARIMA model is
mathematically represented as:�
1� f1 B� f2 B

2 � � � � fp B
p
�
1� �1B

s � � � � � �pB
ps

� �
yt
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2 � � � þ hq B

q
� �

1þ�1B
s þ � � � þ�QB

Qs
� �
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where B is the backshift operator, and et is white noise.

PTB data from the National Health Commission of the
People’s Republic of China (from 2007 to 2023)

PTB incidence before COVlD-19 outbreak from
Jan, 2007 to Dec, 2019

PTB incidence after COVlD-19 outbreak from
Jan, 2020 to Dec, 2023

Build Time Series model and analyze its
performance

(Data from 2007 to 2018 were used as training sets,

and data from 2019 were used as validation sets)

Analysis of the incidence pattern of pulmonary tuberculosis before and after the outbreak of COVID-19

Post-COVID-19 PTB Patterns

Build Time Series model
(Data from 2007 to 2019 were used as

modelling data to predict PTB incidence

from 2020 to 2023)

Compare the difference between actual and
predicted values

(from Jan, 2020 to Dec, 2023)

Pre-COVID-19 PTB Patterns

Figure 1 Methodology for predicting pulmonary tuberculosis (PTB) incidence using time series
models. Methodology for predicting PTB incidence in China, employing SARIMA, Prophet, and
LSTM time series models with data from 2007 to 2019. Expected PTB incidence without pandemic
influence is represented by predicted values, compared against actual cases during the COVID-19 period
(2020–2023). Deviations indicate the pandemic’s impact on PTB transmission and reporting, under-
scoring COVID-19 as a key variable affecting incidence trends.

Full-size DOI: 10.7717/peerj.18573/fig-1
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Prophet model
The Prophet model, developed by Facebook, was used due to its flexibility in handling time
series data with missing values and outliers (Taylor & Letham, 2018). The model
decomposes time series into trend, seasonal, and holiday components, making it
particularly suited for capturing complex seasonal patterns in PTB incidence. The model
accounted for known holidays and significant public health events, such as lockdowns,
which could affect TB trends. The Prophet model is represented as:

y tð Þ ¼ g tð Þ þ s tð Þ þ h tð Þ þ e tð Þ
where g tð Þ represents the trend component, s tð Þ the seasonal component, h tð Þ the holiday
effects, and e tð Þ is the error term.

LSTM networks
The LSTM networks, a type of recurrent neural network (RNN), were employed to model
complex non-linear dependencies in the sequential PTB data (Sembiring, Wahyuni &
Sediyono, 2024). LSTM is particularly effective in capturing long-term temporal
dependencies and patterns in time series data. The LSTM architecture used multiple
hidden layers to capture the intricate temporal patterns of the PTB incidence. The model
was trained using the Keras library in Python, with normalized input sequences to improve
the training process. LSTM operations are defined by the following equations:

it ¼ r Wi � ht�1; xt½ � þ bið Þ

ft ¼ r Wf � ht�1; xt½ � þ bf
� �

ot ¼ r Wo � ht�1; xt½ � þ boð Þ

eCt ¼ tanh WC � ht�1; xt½ � þ bCð Þ

Ct ¼ ft � Ct�1 þ it � eCt

ht ¼ ot � tanh Ctð Þ
where it , ft , ot are the input, forget, and output gates, respectively; Ct is the cell state; and ht
is the hidden state.

Model evaluation
The accuracy of the models was assessed using the following metrics:

. Root mean square error (RMSE): Measures the average magnitude of the forecast
errors.

. Mean absolute error (MAE): Provides the average absolute forecast errors.

. Mean absolute percentage error (MAPE): Expresses forecast accuracy as a percentage,
with values between 0% and 10% indicating high accuracy (Lewis, 1982; Wang et al.,
2019). The lower the MAPE, the better the model’s prediction performance.
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Residual analysis, including the Ljung-Box test, was conducted to ensure the robustness
of the models. These metrics provided a comprehensive evaluation of model performance
across SARIMA, Prophet, and LSTM models.

Statistical analysis
All data analysis and modeling were conducted using R (version 4.2.2; R Core Team, 2022)
for the SARIMA and Prophet models and Python (version 3.12 with TensorFlow/Keras)
for the LSTM model. The analysis focused on evaluating model fit, forecast accuracy, and
residual patterns to ensure reliability in predictions.

Ethics statement
This study utilized publicly available data from the National Health Commission of the
People’s Republic of China, aggregated at a national level and without personally
identifiable information. Therefore, ethical approval and informed consent were not
required. Data handling followed ethical guidelines to maintain data integrity and
confidentiality.

RESULTS
National trends in pulmonary tuberculosis incidence (2007–2023)
From January 2007 to December 2023, China reported a total of 19,840,536 PTB cases,
with an average of 97,257.53 cases per month. Over this 17-year period, the annual
incidence rate steadily declined from 88.55 per 100,000 in 2007 to an estimated 37.24 per
100,000 in 2023 (Fig. 2, Table 1). This consistent decline reflects significant improvements
in PTB control measures, including enhanced diagnosis, treatment, and prevention
strategies nationwide.

The most notable reduction occurred between 2020 and 2022, coinciding with the
COVID-19 pandemic. Public health interventions, such as lockdowns, social distancing,
and reduced mobility, likely contributed to a reduction in PTB transmission. In 2019,
China reported 1,034,760 cases (55.55 per 100,000), which dropped to 876,576 cases (47.76
per 100,000) in 2020—a 15.25% reduction in case numbers and a 14.05% decrease in the
incidence rate.

This downward trend continued through 2021 and 2022, with cases decreasing further
to 712,586 and the incidence rate falling to 39.76 per 100,000. However, in 2023, PTB cases
rebounded to 773,512, reflecting an 8.55% increase from 2022. Despite this rise in case
numbers, the incidence rate continued to decline slightly to an estimated 37.24 per 100,000
(a 6.34% decrease), possibly due to the increasing population. This divergence, where the
number of cases increases while the incidence rate decreases, suggests a shift in
post-pandemic PTB dynamics that may warrant further investigation.

Pre-pandemic pattern and seasonality of pulmonary tuberculosis
cases (2007–2018)
From January 2007 to December 2018, China reported a total of 15,636,118 PTB cases,
with an average monthly incidence of 108,584.15 cases. During this period, the annual
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incidence rate steadily declined from 88.55 per 100,000 in 2007 to 59.27 per 100,000 by
2018 (Fig. 3A, Table 1). This decline reflects the sustained public health efforts, including
enhanced PTB diagnostic techniques and improved access to treatment.

Figure 2 Time series of pulmonary tuberculosis (PTB) incidence in China from January 2007 to
December 2023. Full-size DOI: 10.7717/peerj.18573/fig-2

Table 1 Annual pulmonary tuberculosis (PTB) incidence and year-over-year percentage change in
China (2007–2023).

Year Cases Incidence (per 100,000) Annual case change (%) Annual incidence change (%)

2007 1,499,264 88.55 – –

2008 1,533,475 88.52 2.28 −0.03

2009 1,482,869 81.09 −3.30 −8.39

2010 1,392,210 74.27 −6.11 −8.41

2011 1,357,922 71.09 −2.46 −4.28

2012 1,371,468 70.62 1.00 −0.66

2013 1,298,123 66.80 −5.35 −5.41

2014 1,190,246 65.63 −8.32 −1.75

2015 1,154,156 63.42 −3.03 −3.37

2016 1,121,019 61.00 −2.87 −3.81

2017 1,124,707 60.53 0.33 −0.77

2018 1,110,659 59.27 −1.25 −2.08

2019 1,034,760 55.55 −6.83 −6.27

2020 876,576 47.76 −15.25 −14.05

2021 828,074 45.37 −5.54 −5.00

2022 712,586 39.76 −13.96 −12.36

2023 773,512 37.24 (estimated) 8.55% −6.34%

Zhang et al. (2024), PeerJ, DOI 10.7717/peerj.18573 7/25

http://dx.doi.org/10.7717/peerj.18573/fig-2
http://dx.doi.org/10.7717/peerj.18573
https://peerj.com/


The analysis of the ACF and PACF for the original series (Fig. 4) revealed that
the autocorrelation and partial autocorrelation values peaked when the lag was set at
12 months, exceeding the boundary limits. This suggests strong seasonality in the
data, with a periodic cycle of 12 months, indicating that PTB incidence follows an
annual pattern.

To further explore these trends, we applied LOESS smoothing to decompose the
incidence data into trend, seasonal, and irregular components (Fig. 3B). The trend
component confirmed a steady decline in cases over time, while the seasonal component
revealed recurring peaks in March and December. These seasonal peaks were likely driven
by factors such as increased human mobility during these periods and the heightened
prevalence of respiratory infections, which could contribute to higher PTB transmission
rates.

In addition, we plotted monthly and seasonal trends in Figs. 3C and 3D. The monthly
subseries plot and seasonal plot demonstrated a similar downward trend across most
months, with the exception of January and February, where no significant pattern was

Figure 3 The monthly incidence of pulmonary tuberculosis (PTB) in China from January 2007 to December 2018. (A) The original time series
of monthly reported PTB cases from 2007 to 2018, showing both the overall trend and seasonal fluctuations. (B) The decomposition of the time series
using LOESS smoothing, separating the data into seasonal, trend, and irregular components. The seasonal component highlights the recurring
patterns within each year, while the trend indicates a gradual decline in PTB cases over the period, and the remainder represents the irregular
fluctuations in the data. (C) Monthly subsequences, where the PTB cases for each month across the years 2007 to 2018 are connected (e.g., all January
values are connected, all February values are connected, and so on). The horizontal lines in each subsequence represent the average values for each
month, providing a clearer view of seasonal patterns. (D) The seasonal variation in PTB incidence across different years, showing that spring (March
to May) consistently exhibits the highest incidence rates, while lower rates are observed in January, February, and October. The colors indicate
different years, showing the overall declining trend across the study period. Full-size DOI: 10.7717/peerj.18573/fig-3
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observed. Notably, January, February, and October consistently had the lowest number of
cases each year, while the incidence rate was highest from March to May. Two annual
peaks were identified: a more pronounced peak during the spring months (March to May)
and a secondary peak in December. These findings strongly support the existence of
seasonal characteristics in PTB transmission, with the spring season being the most critical
period for high PTB incidence.

Model construction and performance analysis
We used monthly PTB case data from January 2007 to December 2018 to train three
different models—SARIMA, Prophet, and LSTM—aimed at capturing the pre-COVID-19
pattern of PTB incidence in China. These models were chosen for their complementary
strengths: SARIMA for handling seasonal trends, Prophet for its flexibility with irregular
patterns and handling of holidays, and LSTM for modeling complex non-linear
dependencies in time series data.

The models were trained on the 2007–2018 data, and subsequently, they were employed
to forecast PTB incidence for the period from January to December 2019. The predicted
values from each model were then compared with the actual PTB incidence data for 2019,
allowing us to assess model fit and forecast accuracy. This comparison served as a
cross-validation of the models’ ability to predict PTB incidence trends, providing insights
into the forecasting performance of each model.

Figure 4 ACF and PACF plots of the original incidence series from 2007 to 2018. (A) The auto-
correlation function (ACF) for the differenced time series of pulmonary tuberculosis (PTB) incidence,
indicating a strong seasonal component with a 12-month lag. (B) The partial autocorrelation function
(PACF) of the same series, which also highlights the significant seasonal influence at a 12-month lag. The
blue dotted lines represent the boundaries for statistical significance. When the vertical lines fall within
the dotted lines, the corresponding autocorrelation or partial autocorrelation value is considered not
significantly different from zero, meaning there is no significant correlation at that lag.

Full-size DOI: 10.7717/peerj.18573/fig-4
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SARIMA model
Using monthly PTB incidence data from 2007 to 2018, we developed a seasonal
autoregressive integrated moving average (SARIMA) model to account for both the
declining trend and seasonal fluctuations in the data, with a seasonality period of 12
months (s = 12) (Fig. 3). The original time series was differenced once to account for both
seasonal and non-seasonal components, producing a stationary series (Fig. 5). Stationarity
was confirmed using the augmented Dickey-Fuller (ADF) test (ADF = −7.824, P = 0.01),
indicating that the series was suitable for modeling.

ACF and PACF plots of the differenced series (Fig. 6) were used to guide the selection of
SARIMA model parameters. Through this analysis, we determined that p = 0 and q ¼ 1
were optimal for the non-seasonal component, while seasonal P and Q were tested up to a
maximum of 2. A total of five candidate models were evaluated based on parameter
estimation and model diagnostics, with particular focus on the AIC and the Box-Ljung test
for residual autocorrelation (Table 2).

The SARIMA (0,1,1)(2,1,2)12 model was selected as the best-performing model, with an
AIC of 2,708.854 and a BIC of 2,726.673. The Box-Ljung test result (v2 = 2.022, P = 0.155)
confirmed that the residuals of the model were white noise, indicating no significant
autocorrelation and a good model fit. This model was subsequently used to forecast PTB
incidence from January to December 2019 (Fig. 7 and Table S2).

Prophet model
We constructed a Prophet model using the same monthly PTB incidence data from 2007
to 2018. Prophet was selected for its flexibility in handling time series data with
irregularities, as well as its ability to incorporate holiday and seasonality effects. The model
incorporated an annual periodicity with multiplicative seasonal effects to account for the
clear seasonal trends observed in the TB incidence data.

Figure 5 Differenced time series of pulmonary tuberculosis (PTB) incidence in China from January
2007 to December 2018. The PTB incidence time series after applying both first-order non-seasonal and
seasonal differencing to remove trends and seasonal effects. The differencing process resulted in a sta-
tionary series, which is a prerequisite for SARIMA modeling. The stationary series allows for the
identification of autoregressive and moving average parameters in the SARIMA model, essential for
accurate forecasting. Full-size DOI: 10.7717/peerj.18573/fig-5
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Model performance was evaluated using key metrics: RMSE, MAE, and MAPE,
providing a comprehensive assessment of the goodness-of-fit. These metrics allowed for a
direct comparison with the other models. The Prophet model successfully captured both
the overall trend and seasonal fluctuations in PTB incidence, demonstrating good fit across
all evaluation metrics.

Once trained, the model was applied to forecast PTB incidence for 2019. The predicted
values were compared against actual incidence data, and the results, including forecast
accuracy, are shown in Fig. 7, Tables 3 and S2. Overall, the Prophet model’s ability to

Figure 6 ACF and PACF Plots of differenced pulmonary tuberculosis (PTB) incidence data (2007–
2018). (A) The autocorrelation function (ACF) plot, and (B) the partial autocorrelation function (PACF)
plot of the differenced PTB incidence time series from 2007 to 2018. These plots help determine the
appropriate autoregressive (AR) and moving average (MA) terms for the SARIMA model by identifying
the lags with significant correlations. The blue dotted lines represent the significance thresholds: when the
vertical lines fall within the dotted lines, the corresponding autocorrelation or partial autocorrelation is
not significantly different from zero, indicating no significant correlation at that lag.

Full-size DOI: 10.7717/peerj.18573/fig-6

Table 2 SARIMA model candidate parameters and Box-Ljung test results.

SARIMA model Model parameters Ljung-Box (Q) test

MA1 SAR1 SAR2 SMA1 SMA2 AIC BIC v2 P

(0,1,1)(0,1,1)12 −0.8731 – – −0.7260 – 2,717.070 2,725.980 3.411 0.065

(0,1,1)(0,1,2)12 −0.8726 – – −0.7314 0.0080 2,719.066 2,730.946 3.416 0.065

(0,1,1)(1,1,1)12 −0.8728 −0.0049 – −0.7235 – 2,719.068 2,730.948 3.413 0.065

(0,1,1)(1,1,2)12 −0.8685 −0.6968 – 0.1319 −0.7107 2,714.129 2,728.978 2.022 0.155

(0,1,1)(2,1,2)12 −0.8453 −0.8222 −0.3853 0.1653 −0.4198 2,708.854 2,726.673 2.022 0.155
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handle complex seasonality patterns and irregularities proved effective in modeling PTB
trends.

LSTM model
An LSTMmodel was developed using the same monthly PTB incidence data from 2007 to
2018. The hyperparameters, including the learning rate, the number of neurons in hidden
layers, and the number of training epochs, were optimized through multiple trials to
minimize the prediction error, specifically focusing on RMSE.

The initial learning rate was tested within the range of 0.001 to 0.010, the number of
neurons in the hidden layers ranged from 10 to 500, and the number of training epochs
was varied between 50 and 500. After fine-tuning, the optimal configuration was

Figure 7 Model fitting and forecasting performance of SARIMA, Prophet, and LSTMModels (2007–2019). The fitted and forecasted pulmonary
tuberculosis (PTB) incidence in China from three different time series models—SARIMA, Prophet, and LSTM—against the actual incidence data.
The red line represents the actual PTB cases, while the green line shows the model-fitted values for the pre-COVID-19 period (2007–2019) and the
forecasts for 2019. The black dashed line marks the end of the pre-pandemic period. The shaded area represents the 95% confidence interval for the
predictions, with a visible range for the SARIMA and Prophet models. However, the confidence interval for the LSTM model is too narrow to be
displayed in the figure (details in Table S1). All three models show a good fit with the actual data before 2020, but deviations appear when forecasting
for the pandemic period. Full-size DOI: 10.7717/peerj.18573/fig-7
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determined to be a learning rate of 0.005, 300 neurons in the hidden layer, and 100 training
epochs. This configuration yielded the lowest RMSE, indicating the highest predictive
accuracy.

The optimized LSTM model was then applied to forecast PTB incidence for 2019. The
predicted results were compared against the actual incidence data, with performance
metrics and comparisons presented in Fig. 7, Tables 3 and S2. The LSTMmodel’s ability to
capture complex non-linear dependencies in the PTB incidence data proved beneficial in
modeling long-term trends.

Model fit and forecast performance
All three models—SARIMA, Prophet, and LSTM—provided fits that closely aligned with
the actual PTB incidence data from 2007 to 2018 (Fig. 7 and Table S2). The RMSE, MAE,
and MAPE values for each model’s fit are presented in Table 3. Among the models,
Prophet achieved the lowest MAPE, indicating the best overall fit for the historical data,
followed closely by SARIMA.

For cross-validation, we forecasted PTB incidence for 2019 using the fitted models and
compared the predicted values to the actual PTB incidence data (Table 4). The forecast
errors, as measured by RMSE, MAE, and MAPE, are summarized in Table 3. Prophet once
again performed the best, with the lowest MAPE of 9.035%, outperforming SARIMA and
LSTM. However, all three models exhibited higher forecast errors for December 2019, with
predictions deviating significantly from the actual values. This discrepancy could be linked
to the early stages of the COVID-19 outbreak, as December 2019 marks the initial
emergence of the virus in China, which may have begun to influence PTB transmission
patterns.

Table 3 Model fit and forecasting performance of SARIMA, Prophet, and LSTM models for
pulmonary tuberculosis (PTB) incidence (2007–2019).

Model

SARIMA Prophet LSTM

Fitting with raw data from 2007 to 2018

RMSE 6,430.866 5,959.531 7,838.875

MAE 4,596.061 4,074.616 5,302.792

MAPE (%) 4.348 3.826 5.054

Forecasts from Jan. to Dec. 2019

RMSE 9,642.753 9,343.566 10,297.872

MAE 7,349.507 6,448.821 7,832.98

MAPE (%) 9.892 9.035 10.681

Forecasts from Jan. to Nov. 2019

RMSE 8,153.804 7,568.164 9,096.35

MAE 6,235.123 5,177.374 6,814.514

MAPE (%) 7.907 6.850 8.851

Zhang et al. (2024), PeerJ, DOI 10.7717/peerj.18573 13/25

http://dx.doi.org/10.7717/peerj.18573/supp-2
http://dx.doi.org/10.7717/peerj.18573/supp-2
http://dx.doi.org/10.7717/peerj.18573
https://peerj.com/


Given these findings, we proceed to evaluate how the models performed during the
COVID-19 pandemic, when public health measures significantly altered PTB transmission
patterns.

Analysis of post-COVID-19 pulmonary tuberculosis patterns
Trends in pulmonary tuberculosis incidence in China (2020–2023)

Following the onset of the COVID-19 pandemic, both the number of PTB cases and the
incidence rate in China declined significantly (Fig. 2). In 2019, there were 1,034,760
reported cases, with an incidence rate of 55.55 per 100,000. By 2020, the number of cases
had dropped to 876,576 (an incidence rate of 47.76 per 100,000), representing a 15.25%
decline in case numbers and a 14.05% reduction in the incidence rate.

This downward trend continued through 2021 and 2022, with the number of cases
falling to 828,074 and 712,586, respectively. Correspondingly, the incidence rates declined
to 45.37 per 100,000 in 2021 and 39.76 per 100,000 in 2022.

As shown in Table 1, the average annual decline in PTB incidence before the pandemic
(2007–2019) was 3.85% in case numbers and 3.68% in incidence rate. During the COVID-
19 pandemic (2020–2022), these declines accelerated sharply, averaging 11.58% for case
numbers and 10.80% for the incidence rate. This indicates a significant disruption in PTB
transmission patterns likely driven by pandemic-related public health measures, such as
lockdowns, reduced mobility, and healthcare system strain.

However, in 2023, PTB incidence began to show signs of recovery. Case numbers rose to
773,512, marking an 8.55% increase from 2022, while the incidence rate continued to
decline slightly to 37.24 per 100,000, representing a 6.34% decrease. These data suggest a
post-pandemic shift in PTB dynamics, where case numbers are starting to rebound, but the
overall incidence rate remains below pre-pandemic levels. This divergence may reflect both

Table 4 Deviations between actual and predicted pulmonary tuberculosis (PTB) incidence in China using three models (January–December
2019).

Time Actual value SARIMA Prophet LSTM

Predicted value Relative error (%) Predicted value Relative error (%) Predicted value Relative error (%)

Jan-19 88,597 83,811.72 −5.40 78,971.98 −10.86 88,970.73 0.42

Feb-19 73,096 79,278.94 8.46 76,735.37 4.98 88,826.54 21.52

Mar-19 97,866 108,367.48 10.73 102,106.07 4.33 96,946.64 −0.94

Apr-19 101,191 100,545.76 −0.64 101,423.45 0.23 93,366.38 −7.73

May-19 96,106 97,495.35 1.45 95,882.78 −0.23 92,888.10 −3.35

Jun-19 99,555 88,822.17 −10.78 94,126.23 −5.45 89,652.52 −9.95

Jul-19 93,318 90,259.47 −3.28 92,589.99 −0.78 89,943.43 −3.62

Aug-19 84,304 89,700.10 6.40 89,703.81 6.41 87,408.87 3.68

Sep-19 80,973 83,739.76 3.42 84,803.38 4.73 84,006.01 3.75

Oct-19 75,123 78,661.82 4.71 78,159.34 4.04 82,368.28 9.64

Nov-19 61,753 81,342.03 31.72 82,320.68 33.31 81,986.30 32.76

Dec-19 61,788 81,395.71 31.73 82,222.74 33.07 80,824.10 30.81
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the lingering effects of COVID-19 on PTB transmission and potential changes in
healthcare service availability or case detection rates.

Analysis of post-COVID-19 pulmonary tuberculosis patterns using time
series models
To further explore the impact of COVID-19 on PTB incidence, we applied SARIMA,
Prophet, and LSTM models to analyze both the pre- and post-COVID-19 periods. First,
these models were trained using monthly PTB case data from January 2007 to December
2019, and performance was evaluated using RMSE, MAE, and MAPE. As shown in Fig. 8,
Tables 5 and S3, all three models captured the trend in PTB incidence effectively, with
RMSE values of 6,660.49 for SARIMA, 6,265.33 for Prophet, and 8,205.52 for LSTM. The

Figure 8 Forecasting performance of SARIMA, Prophet, and LSTM models for pulmonary tuberculosis (PTB) incidence during COVID-19
(2020–2023). The forecasting performance of SARIMA, Prophet, and LSTM models for PTB incidence during the COVID-19 pandemic from 2020
to 2023. The red line represents the actual PTB cases, while the green line represents the forecasted values from each model. The grey-shaded areas
show the 95% confidence intervals for the forecasts, providing a measure of uncertainty around the predicted values. Due to the narrow confidence
intervals of the LSTM model, the shading is not visible in the figure (refer to Table S2 for details). The dashed line indicates the end of the
pre-pandemic period (2019), with the forecasting period starting in 2020. Full-size DOI: 10.7717/peerj.18573/fig-8
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MAPE values for SARIMA, Prophet, and LSTM were 4.712%, 4.293%, and 5.628%,
respectively, indicating stable pre-pandemic performance.

Next, the models were used to forecast PTB incidence from January 2020 to December
2023, and the predicted values were compared with the actual data. As shown in Fig. 8,
Tables 5 and S3, there were significant deviations between the predicted and actual values
during the forecast period. The RMSE, MAE, and MAPE values for the 2020–2023 period
were notably higher than those for the pre-pandemic period, indicating a decline in
predictive accuracy during COVID-19. This suggests that the pandemic introduced factors
not accounted for by the models, such as disruptions in healthcare access and behavioral
changes due to COVID-19 containment measures.

To better understand the deviations in PTB incidence patterns before and after the
COVID-19 outbreak, we divided the forecast period into two stages: Stage 1 (January 2020
to December 2022) and Stage 2 (January 2023 to December 2023). During Stage 1, all three
models exhibited higher RMSE and MAPE values, reflecting greater discrepancies between
predicted and actual values during the peak of the pandemic. In contrast, Stage 2 saw a
reduction in RMSE and MAPE values, approaching pre-pandemic levels (Tables 3 and 5),
suggesting that the predictive performance of the models improved as PTB incidence
began to return to pre-pandemic patterns.

Furthermore, we calculated the error values between the predicted and actual PTB
incidence for each model across both stages (Fig. 9 and Table S4). Notably, larger
fluctuations in error values were observed in Stage 1, particularly in February 2020 and

Table 5 Forecast performance of SARIMA, Prophet, and LSTM models for pulmonary tuberculosis
(PTB) incidence during the COVID-19 pandemic (2020–2023).

Model

SARIMA Prophet LSTM

Fitting with raw data from 2007 to 2019

RMSE 6,660.490 6,265.326 8,205.523

MAE 4,773.484 4,364.737 5,640.628

MAPE(%) 4.712 4.293 5.628

Forecasts from 2020 to 2023

RMSE 8,931.543 11,366.453 8,773.820

MAE 6,866.618 13,117.370 5,927.995

MAPE(%) 11.477 19.032 10.365

Forecasts from 2020 to 2022

RMSE 9,593.856 14,068.800 8,971.01

MAE 7,528.183 12,019.408 5,676.999

MAPE(%) 12.808 20.402 10.520

Forecasts from Jan. to Dec. 2023

RMSE 6,554.660 9,719.462 8,153.698

MAE 4,881.923 9,407.580 6,680.980

MAPE(%) 7.481 14.923 9.899
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December 2022, where all three models—SARIMA, Prophet, and LSTM—showed peak
discrepancies between predicted and actual values.

These findings indicate that while PTB incidence patterns were significantly disrupted
during the COVID-19 pandemic, they began to stabilize in 2023. The improved
performance of the models in Stage 2 suggests that the effects of COVID-19 on PTB
transmission may be temporary, and PTB patterns are gradually returning to
pre-pandemic norms.

DISCUSSION
Impact of COVID-19 on tuberculosis incidence in China
TB remains a significant public health challenge in China, which is one of the 30 high TB
burden countries globally (World Health Organization (WHO), 2023). Despite ongoing
efforts, the COVID-19 pandemic introduced new variables into the TB control landscape,
disrupting diagnostic and treatment pathways and altering transmission dynamics (Zhou
et al., 2023). Public health measures implemented to contain COVID-19, such as
lockdowns, social distancing, and enhanced hygiene practices, significantly impacted the
transmission of TB and other infectious diseases (Namgung et al., 2023; Song et al., 2022;
Tian et al., 2020). A study from Shantou, China, reported that these measures led to a

Figure 9 Relative errors of pulmonary tuberculosis (PTB) forecasts in China from January 2020 to December 2023. The relative errors between
the actual and forecasted PTB incidence in China from January 2020 to December 2023 using the SARIMA, Prophet, and LSTMmodels. The red line
represents the relative error (%) for each model, indicating the deviation of the forecasted values from the actual cases. The dashed vertical line marks
the transition into 2023, highlighting the post-pandemic period. The relative error peaks observed in all models suggest periods of significant
deviation, particularly during 2022 and the transition into 2023, potentially reflecting the impact of the relaxation of COVID-19 control measures on
TB reporting and healthcare services. Full-size DOI: 10.7717/peerj.18573/fig-9
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substantial reduction in TB incidence, especially among older adults and certain
occupations like agriculture and the unemployed, underscoring the indirect effects of
COVID-19 interventions on TB transmission (Su et al., 2024).

This reduction in TB cases during the pandemic is consistent with other studies that
have explored the broader impact of COVID-19 on infectious diseases (Li et al., 2023b;
Nash et al., 2022). A national-level study in China found that both TB incidence and
mortality decreased significantly at the onset of the pandemic (Zhang et al., 2023).
However, it remains unclear whether this reduction reflects a true decline in TB
transmission or whether it is partly due to delays in diagnosis and interruptions in
healthcare services. For example, some findings suggest that healthcare access was
restricted during the pandemic, reducing opportunities for TB diagnosis and treatment
(Morrison et al., 2023).

As COVID-19 control measures relaxed in 2023, TB incidence began to show signs of
recovery, yet the overall incidence rate remained below pre-pandemic levels. This
highlights the need for further research into the long-term effects of the pandemic on TB
transmission, including how changes in healthcare-seeking behavior and service delivery
may have influenced TB trends (Zhou et al., 2023). Studies using time series analysis, such
as the one from Guizhou, China, which observed prolonged declines in TB incidence even
after the initial COVID-19 wave, suggest that some of the pandemic’s effects on TB
transmission may be long-lasting (Zhou et al., 2023).

Pre-COVID-19 PTB patterns and seasonality
Before the COVID-19 outbreak, the incidence of PTB in China exhibited a distinct
seasonal pattern, with two notable annual peaks: one in March and a smaller secondary
peak in December. This pattern is likely linked to increased human mobility following the
“Spring Festival” and a rise in respiratory infections during this period, both of which may
facilitate TB transmission. Similar seasonal patterns have been observed in other
respiratory diseases, further validating this finding (Wang et al., 2020).

Our results align with previous studies, such as those by Li et al. (2013) and Luo et al.
(2014), which emphasized the “Spring Festival Effect” as a key factor influencing TB
incidence during these months. The spring peak is positively correlated with rising
temperatures, which may enhance the survival of Mycobacterium tuberculosis in
aerosols (Wang et al., 2020). This effect is particularly pronounced in areas with cooler
spring climates, where the post-winter surge in TB transmission is more evident
(Luo et al., 2014).

Conversely, the summer months, particularly June and July, saw a noticeable decline in
TB cases. This trend could be attributed to the inhibitory effects of high temperatures on
bacterial survival, especially in regions like Xinjiang and Tibet, where temperatures often
exceed 37 �C (Wang et al., 2021). Additionally, environmental factors such as air pollutants
and varying levels of humidity may further influence the seasonal transmission of TB, as
observed in the study byWang et al. (2021), which found that PM10 concentrations had a
significant effect on TB incidence in Shijiazhuang, China.
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These findings underscore the importance of understanding the climatic and cultural
factors that contribute to the seasonality of TB in China, particularly in the context of
public health planning and targeted interventions during high-risk periods.

Post-COVID-19 PTB patterns and disruptions
Initially, we used data from 2007 to 2018 to construct SARIMA, Prophet, and LSTM
models to predict the incidence of PTB in 2019. Models with a MAPE between 0% and
10% are considered highly accurate in capturing data trends. The MAPE for the three
models ranged from 3% to 6% for fitting and from 6% to 9% for predictions (excluding
December 2019, Table 3), indicating strong predictive performance before the onset of
COVID-19.

Next, we applied these models (trained on pre-pandemic data) to forecast PTB
incidence from January 2020 to December 2023. We observed significant deviations
between predicted and actual values, with actual TB incidence markedly lower than
predicted, consistent with findings from studies such as Ge et al. (2024), who observed
delays in TB diagnosis during the pandemic in Eastern China. This pattern mirrors the
results seen in other infectious diseases like hepatitis E and pertussis, where COVID-19
countermeasures significantly reduced transmission (Qin et al., 2024). The time series
models revealed substantial deviations, demonstrating the collateral impact of public
health interventions for COVID-19 on TB transmission.

Two key policy shifts in China’s COVID-19 response significantly influenced these
deviations. First, in January 2020, the Chinese central government implemented
emergency control measures, launching a Level-1 public health emergency response across
more than 30 provinces. Wuhan was locked down, effectively curbing population
movement (The State Council Information Office of the People’s Republic of China, 2020).
Second, in December 2022, the National Health Commission downgraded COVID-19
from Category A to Category B, placing it on par with TB in terms of prevention and
control, signaling the post-pandemic transition (National Health Commission of the
People’s Republic of China, 2022). Our analysis shows that the prediction deviations were
largest during the strictest COVID-19 measures (2020–2022), particularly during Wuhan’s
lockdown and the policy shift in December 2022. These large deviations can be attributed
to disruptions in TB diagnosis and reporting, delayed healthcare access, and reduced TB
service capacity, as also highlighted by Zhang et al. (2022) in their study on TB services in
Tianjin. Xie et al. (2022) similarly noted that diagnostic delays during the pandemic led to
missed or delayed TB diagnoses.

Interestingly, our models indicated smaller prediction errors during May 2020 to
November 2022, reflecting a reduction in the disruptive effects of the pandemic on TB
transmission as public health measures became more normalized. The error peaks in
February 2020 and December 2022 correspond with the early lockdown phase and the
major policy transition, highlighting periods where TB control efforts were most disrupted.

Post-2023, as COVID-19 management moved to Category B and restrictions were
relaxed, TB cases rebounded, surpassing model predictions. The relaxation of strict
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COVID-19 measures, the restoration of routine healthcare services, and the identification
of delayed TB cases likely contributed to this resurgence. Similar findings were reported by
Li et al. (2023a), who noted a rebound in TB incidence as healthcare services normalized
after the pandemic. Our analysis confirms that the temporary impact of COVID-19 on TB
transmission has begun to reverse, with PTB incidence gradually returning to
pre-pandemic levels.

Overall, these findings suggest that the effects of COVID-19 on TB transmission in
China may have been temporary, with the TB incidence pattern stabilizing as healthcare
services resumed normal operations. As highlighted by Wang et al. (2021), ongoing
vigilance is necessary to ensure that future disruptions to TB services are minimized.

Limitations and future directions
While this study provides valuable insights into the impact of COVID-19 on TB trends in
China, several limitations should be acknowledged. First, the primary limitation is that we
only used case numbers and incidence rates as quantitative measures of COVID-19’s
impact on TB. This approach did not directly account for additional sociological factors,
such as healthcare accessibility, public health system disruptions, and changes in
population behavior during the pandemic. Future studies could benefit from incorporating
a broader set of indicators, including health service availability and access, diagnostic
delays, and population movement, using multivariate time series models to provide a more
comprehensive understanding of these dynamics.

Second, our analysis focused on the national level, which may obscure regional
disparities. Areas with high TB burdens, such as Xinjiang and Tibet, may have experienced
the pandemic’s effects on TB transmission differently. Future research should aim to
investigate these localized impacts, allowing for more tailored public health interventions.
As noted in the studies by Zhang et al. (2023) and Fei et al. (2020), the pandemic may have
exacerbated regional inequalities in healthcare access, further affecting TB outcomes.

Third, as with the studies by Zhang et al. (2023) and Fei et al. (2020), the study is limited
by potential underreporting and delays in diagnosis during the pandemic. The reduction in
reported TB cases during the pandemic may reflect not only reduced transmission but also
disruptions in TB services, such as delayed or missed diagnoses, as patients may have
avoided healthcare facilities due to COVID-19-related fears. Thus, this study cannot
definitively distinguish between a true decrease in TB transmission and a decline in
diagnosis and reporting.

Regarding the time series models, the evaluation of models pre-COVID-19 (with the
2007–2018 data as the training set and 2019 as the validation set) indicated that the
Prophet model had the lowest MAPE, demonstrating the best overall performance for
fitting and forecasting. While both SARIMA and LSTM models performed well in
capturing TB trends in China, the SARIMA model required a more complex modeling
process and parameter selection. The LSTM model, though advantageous in capturing
long-term dependencies, was prone to overfitting, especially on smaller datasets, limiting
its generalization capacity. Additionally, LSTM models may encounter irregularities, such
as sudden interruptions in data patterns caused by external factors like the COVID-19
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pandemic, due to their heavy reliance on historical data for predicting future trends (Chen
et al., 2024). In contrast, the Prophet model proved more efficient by automatically
capturing seasonality and trend parameters and offering superior performance with a
simpler modeling process.

The optimization of LSTM models has been a key factor in improving prediction
accuracy for various infectious diseases, including COVID-19 and TB. For instance,
Sembiring, Wahyuni & Sediyono (2024) reported significant improvements in model
performance when adjustments were made to the output gates and hidden states. Our
study similarly benefited from fine-tuning LSTM parameters, which allowed it to model
non-linear dependencies more effectively. This is consistent with findings by Wahyuni
et al. (2022), who demonstrated that LSTM models generally outperform SARIMA and
Prophet when larger datasets are available. Despite its complexity, the LSTM model in our
study provided robust results, validating the use of advanced neural networks for time
series forecasting. However, given Prophet’s performance in this study, future research
could explore its application for predicting other infectious diseases in China.

As TB control strategies continue to evolve in the post-pandemic era, time series models
will remain crucial in forecasting disease trends and guiding public health interventions.
This study also highlights the importance of developing adaptive healthcare systems that
can swiftly respond to external shocks, such as pandemics, ensuring minimal disruption to
critical disease control efforts.

CONCLUSIONS
Our study demonstrates that while the COVID-19 pandemic introduced a significant,
albeit temporary, disruption to TB incidence in China, long-term TB trends are expected
to return to pre-pandemic levels as healthcare systems stabilize and public health
interventions continue. The pandemic-induced decline in reported TB cases, as observed
in 2020–2022, was largely influenced by public health measures such as lockdowns and
healthcare system strain. However, as these measures were lifted and healthcare services
were restored, TB incidence began to rebound in 2023, although the incidence rate remains
slightly below pre-pandemic levels.

The application of time series models—SARIMA, Prophet, and LSTM—proved effective
in predicting TB trends, with the Prophet model demonstrating the highest predictive
accuracy. This study’s findings emphasize the utility of the Prophet model in real-time
monitoring and public health planning, particularly during the post-pandemic recovery
phase. As TB incidence stabilizes, continued surveillance using time series models will be
critical for early detection of outbreaks. These results also underline the importance of
developing adaptable healthcare systems capable of rapidly responding to external shocks
like pandemics, ensuring minimal disruption to essential disease control efforts.
Additionally, the temporary impact of COVID-19 on TB transmission indicates that
models like Prophet could be pivotal in preparing for similar disruptions in the future.

While the LSTMmodel showed potential, its performance was limited by overfitting on
smaller datasets, indicating that LSTM models may require larger datasets for optimal
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performance. Future research could focus on optimizing LSTM parameters to enhance its
accuracy in predicting non-linear trends in infectious diseases.

As TB incidence stabilizes post-pandemic, continuous monitoring and the application
of time series models will be critical in guiding evidence-based strategies for TB control in
China and globally. Future research should focus on improving predictive accuracy by
incorporating additional sociological and healthcare-related factors, and exploring
regional disparities in TB incidence. The evolving nature of public health challenges
requires adaptive healthcare systems that can swiftly respond to disruptions while ensuring
minimal impact on essential disease control efforts.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the National Natural Science Foundation of China (Grant No.
72264021) and the Key Projects of Philosophy and Social Sciences Research, Ministry of
Education (21JZD039). The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
National Natural Science Foundation of China: 72264021.
Key Projects of Philosophy and Social Sciences Research, Ministry of Education:
21JZD039.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
. Jiarui Zhang conceived and designed the experiments, performed the experiments,
authored or reviewed drafts of the article, and approved the final draft.

. Zhong Sun conceived and designed the experiments, performed the experiments,
authored or reviewed drafts of the article, and approved the final draft.

. Qi Deng analyzed the data, prepared figures and/or tables, and approved the final draft.

. Yidan Yu analyzed the data, prepared figures and/or tables, and approved the final draft.

. Xingyue Dian analyzed the data, prepared figures and/or tables, and approved the final
draft.

. Juan Luo analyzed the data, prepared figures and/or tables, and approved the final draft.

. Thilakavathy Karuppiah analyzed the data, authored or reviewed drafts of the article, and
approved the final draft.

. Narcisse Joseph analyzed the data, authored or reviewed drafts of the article, and
approved the final draft.

. Guozhong He conceived and designed the experiments, authored or reviewed drafts of
the article, and approved the final draft.

Zhang et al. (2024), PeerJ, DOI 10.7717/peerj.18573 22/25

http://dx.doi.org/10.7717/peerj.18573
https://peerj.com/


Data Availability
The following information was supplied regarding data availability:

The detailed monthly incidence and mortality data for pulmonary tuberculosis from
2007 to 2023 are available in the Supplemental File.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.18573#supplemental-information.

REFERENCES
Boshnakov GN, Halliday J. 2024. SARIMA: simulation and prediction with seasonal ARIMA

models. Available at https://cran.r-project.org/web//packages/sarima/sarima.pdf (accessed 26
March 2024).

Brown JS, Bateson TF, McDonnell WF. 2008. Effects of exposure to 0.06 ppm ozone on FEV1 in
humans: a secondary analysis of existing data. Environmental Health Perspectives
116(8):1023–1026 DOI 10.1289/ehp.11396.

Chen J, Liu L, Huang J, Jiang Y, Yin C, Zhang L, Li Z, Lu H. 2024. LSTM-based prediction model
for tuberculosis among HIV-infected patients using structured electronic medical records: a
retrospective machine learning study. Journal of Multidisciplinary Healthcare 17:3557–3573
DOI 10.2147/JMDH.S467877.

Falzon D, Zignol M, Bastard M, Floyd K, Kasaeva T. 2023. The impact of the COVID-19
pandemic on the global tuberculosis epidemic. Frontiers in Immunology 14:1234785
DOI 10.3389/fimmu.2023.1234785.

Fei H, Yinyin X, Hui C, Ni W, Xin D, Wei C, Tao L, Shitong H, Miaomiao S, Mingting C,
Keshavjee S, Yanlin Z, Chin DP, Jianjun L. 2020. The impact of the COVID-19 epidemic on
tuberculosis control in China. The Lancet Regional Health—Western Pacific 3(13):100032
DOI 10.1016/j.lanwpc.2020.100032.

Ge R, Zhu G, Tian M, Hou Z, Pan W, Feng H, Liu K, Xiao Q, Chen Z. 2024. Analysis on time
delay of tuberculosis among adolescents and young adults in Eastern China. Frontiers in Public
Health 12:1376404 DOI 10.3389/fpubh.2024.1376404.

Ledesma JR, Basting A, Chu HT, Ma J, Zhang M, Vongpradith A, Novotney A, Dalos J,
Zheng P, Murray CJL, Kyu HH. 2023. Global-, regional-, and national-level impacts of the
COVID-19 pandemic on tuberculosis diagnoses, 2020–2021. Microorganisms 11(9):2191
DOI 10.3390/microorganisms11092191.

Lewis CD. 1982. Industrial and business forecasting methods: a practical guide to exponential
smoothing and curve fitting. London, Boston: Butterworth Scientific.

Li T, Du X, Kang J, Luo D, Liu X, Zhao Y. 2023a. Patient, diagnosis, and treatment delays among
tuberculosis patients before and during COVID-19 epidemic—China, 2018–2022. China CDC
Weekly 5:259–265 DOI 10.46234/ccdcw2023.047.

Li Y, Li X, Lan X, Xue C, Zhang B, Wang Y. 2023b. Impact of COVID-19 on epidemic trend of
hepatitis C in Henan Province assessed by interrupted time series analysis. BMC Infectious
Diseases 23(1):691 DOI 10.1186/s12879-023-08635-9.

Li XX, Wang LX, Zhang H, Du X, Jiang SW, Shen T, Zhang YP, Zeng G. 2013. Seasonal
variations in notification of active tuberculosis cases in China, 2005–2012. PLOS ONE
8(7):e68102 DOI 10.1371/journal.pone.0068102.

Zhang et al. (2024), PeerJ, DOI 10.7717/peerj.18573 23/25

http://dx.doi.org/10.7717/peerj.18573#supplemental-information
http://dx.doi.org/10.7717/peerj.18573#supplemental-information
http://dx.doi.org/10.7717/peerj.18573#supplemental-information
https://cran.r-project.org/web//packages/sarima/sarima.pdf
http://dx.doi.org/10.1289/ehp.11396
http://dx.doi.org/10.2147/JMDH.S467877
http://dx.doi.org/10.3389/fimmu.2023.1234785
http://dx.doi.org/10.1016/j.lanwpc.2020.100032
http://dx.doi.org/10.3389/fpubh.2024.1376404
http://dx.doi.org/10.3390/microorganisms11092191
http://dx.doi.org/10.46234/ccdcw2023.047
http://dx.doi.org/10.1186/s12879-023-08635-9
http://dx.doi.org/10.1371/journal.pone.0068102
http://dx.doi.org/10.7717/peerj.18573
https://peerj.com/


Long Q, Guo L, Jiang W, Huan S, Tang S. 2021. Ending tuberculosis in China: health system
challenges. The Lancet Public Health 6(12):e948–e953 DOI 10.1016/s2468-2667(21)00203-6.

Luo T, Sumi A, Zhou D, Kobayashi N, Mise K, Yu B, Kong D, Wang J, Duan Q. 2014.
Seasonality of reported tuberculosis cases from 2006 to 2010 in Wuhan, China. Epidemiology
and Infection 142(10):2036–2048 DOI 10.1017/S0950268813003142.

Morrison H, Perrin F, Dedicoat M, Ahmed R, Brown J, Loughenbury M, Paul S, Souto M,
Ward R, Lipman M. 2023. Impact of COVID-19 on NHS tuberculosis services: results of a
UK-wide survey. Journal of Infection 87(1):59–61 DOI 10.1016/j.jinf.2023.04.004.

Namgung SH, Jung J, Kim SK, Kim EO, Jo KW, Shim TS, Kim SH. 2023. Incidence of
tuberculosis infection in healthcare workers in high-risk departments for tuberculosis after
universal wearing of KF94 mask during COVID-19 pandemic. Journal of Infection
87(4):344–345 DOI 10.1016/j.jinf.2023.03.017.

Nash K, Lai J, Sandhu K, Chandan JS, Shantikumar S, Ogunlayi F, Coleman PC. 2022. Impact of
national COVID-19 restrictions on incidence of notifiable communicable diseases in England:
an interrupted time series analysis. BMC Public Health 22:2318
DOI 10.1186/s12889-022-14796-0.

National Health Commission of the People’s Republic of China. 2022. Notice on printing and
distributing the overall scheme for the implementation of class B management for COVID-19
infection. Available at http://www.nhc.gov.cn/xcs/zhengcwj/202212/
e97e4c449d7a475794624b8ea12123c6.shtml (accessed 26 December 2022).

Qin Y, Peng H, Li J, Gong J. 2024. Collateral effects of COVID-19 countermeasures on hepatitis E
incidence pattern: a case study of china based on time series models. BMC Infectious Diseases
24(1):355 DOI 10.1186/s12879-024-09243-x.

R Core Team. 2022. R: a language and environment for statistical computing. Version 4.2.2.
Vienna: R Foundation for Statistical Computing. Available at https://www.r-project.org.

Sembiring I, Wahyuni SN, Sediyono E. 2024. LSTM algorithm optimization for COVID-19
prediction model. Heliyon 10(4):e26158 DOI 10.1016/j.heliyon.2024.e26158.

Soko RN, Burke RM, Feasey HRA, Sibande W, Nliwasa M, Henrion MYR, Khundi M, Dodd PJ,
Ku CC, Kawalazira G, Choko AT, Divala TH, Corbett EL, MacPherson P. 2021. Effects of
coronavirus disease pandemic on tuberculosis notifications, Malawi. Emerging Infectious
Diseases 27(7):1831–1839 DOI 10.3201/eid2707.210557.

Song S, Wang P, Li J, Nie X, Liu L, Liu S, Yin X, Lin A. 2022. The indirect impact of control
measures in COVID-19 pandemic on the incidence of other infectious diseases in China. Public
Health in Practice 4(4):100278 DOI 10.1016/j.puhip.2022.100278.

Su Y, Chang Q, Chen R, Chen Z, Lin J, Fu H, Cao Z, Li L, Liu S. 2024. Impact of COVID-19
pandemic responses on tuberculosis incidence: insights from Shantou, China. BMC Public
Health 24:1454 DOI 10.1186/s12889-024-18956-2.

Taylor SJ, Letham B. 2018. Forecasting at scale. The American Statistician 72(1):37–45
DOI 10.1080/00031305.2017.1380080.

The State Council Information Office of the People’s Republic of China. 2020. China’s action
against COVID-19 white paper. Available at https://www.gov.cn/zhengce/2020-06/07/content_
5517737.htm (accessed 7 June 2020).

Tian H, Liu Y, Li Y, Wu CH, Chen B, Kraemer MUG, Li B, Cai J, Xu B, Yang Q, Wang B,
Yang P, Cui Y, Song Y, Zheng P, Wang Q, Bjornstad ON, Yang R, Grenfell BT, Pybus OG,
Dye C. 2020. An investigation of transmission control measures during the first 50 days of the
COVID-19 epidemic in China. Science 368(6491):638–642 DOI 10.1126/science.abb6105.

Zhang et al. (2024), PeerJ, DOI 10.7717/peerj.18573 24/25

http://dx.doi.org/10.1016/s2468-2667(21)00203-6
http://dx.doi.org/10.1017/S0950268813003142
http://dx.doi.org/10.1016/j.jinf.2023.04.004
http://dx.doi.org/10.1016/j.jinf.2023.03.017
http://dx.doi.org/10.1186/s12889-022-14796-0
http://www.nhc.gov.cn/xcs/zhengcwj/202212/e97e4c449d7a475794624b8ea12123c6.shtml
http://www.nhc.gov.cn/xcs/zhengcwj/202212/e97e4c449d7a475794624b8ea12123c6.shtml
http://dx.doi.org/10.1186/s12879-024-09243-x
https://www.r-project.org
http://dx.doi.org/10.1016/j.heliyon.2024.e26158
http://dx.doi.org/10.3201/eid2707.210557
http://dx.doi.org/10.1016/j.puhip.2022.100278
http://dx.doi.org/10.1186/s12889-024-18956-2
http://dx.doi.org/10.1080/00031305.2017.1380080
https://www.gov.cn/zhengce/2020-06/07/content_5517737.htm
https://www.gov.cn/zhengce/2020-06/07/content_5517737.htm
http://dx.doi.org/10.1126/science.abb6105
http://dx.doi.org/10.7717/peerj.18573
https://peerj.com/


Wahyuni SN, Sediono E, Sembiring I, Nahar Khanom N. 2022. Comparative analysis of time
series prediction model for forecasting COVID-19 trend. Indonesian Journal of Electrical
Engineering and Computer Science 28(1):600–610 DOI 10.11591/ijeecs.v28.i1.pp600-610.

Wang W, Guo W, Cai J, Guo W, Liu R, Liu X, Ma N, Zhang X, Zhang S. 2021. Epidemiological
characteristics of tuberculosis and effects of meteorological factors and air pollutants on
tuberculosis in Shijiazhuang, China: a distribution lag non-linear analysis. Environmental
Research 195(Suppl. 1):110310 DOI 10.1016/j.envres.2020.110310.

Wang YW, Shen ZZ, Jiang Y. 2018. Comparison of ARIMA and GM(1,1) models for prediction of
hepatitis B in China. PLOS ONE 13(9):e0201987 DOI 10.1371/journal.pone.0201987.

Wang Y, Xu C, Ren J, Wu W, Zhao X, Chao L, Liang W, Yao S. 2020. Secular seasonality and
trend forecasting of tuberculosis incidence rate in China using the advanced error-trend-
seasonal framework. Infection and Drug Resistance 13:733–747 DOI 10.2147/idr.S238225.

Wang Y, Xu C, Zhang S, Wang Z, Yang L, Zhu Y, Yuan J. 2019. Temporal trends analysis of
tuberculosis morbidity in mainland China from 1997 to 2025 using a new SARIMA-NARNNX
hybrid model. BMJ Open 9(7):e024409 DOI 10.1136/bmjopen-2018-024409.

World Health Organization (WHO). 2023. Global tuberculosis report 2023. Available at https://
www.who.int/publications/i/item/9789240083851 (accessed 7 November 2023).

Xie Y, Mu Y, Chen P, Liu Z, Wang Y, Li Q, Li M, Liang J, Zhu J. 2022. Interrupted-time-series
analysis of the immediate impact of COVID-19 mitigation measures on preterm birth in China.
Nature Communications 13(1):5190 DOI 10.1038/s41467-022-32814-y.

Xie C, Wen H, Yang W, Cai J, Zhang P, Wu R, Li M, Huang S. 2021. Trend analysis and forecast
of daily reported incidence of hand, foot and mouth disease in Hubei, China by Prophet model.
Scientific Reports 11:1445 DOI 10.1038/s41598-021-81100-2.

Zhang G, Yu Y, Zhang W, Shang J, Chen S, Pang X, Oeltmann JE, Moonan PK, Chen M,
Zhang F. 2022. Influence of COVID-19 for delaying the diagnosis and treatment of pulmonary
tuberculosis-Tianjin, China. Frontiers in Public Health 10:937844
DOI 10.3389/fpubh.2022.937844.

Zhang Y, Zhang L, Gao W, Li M, Luo Q, Xiang Y, Bao K. 2023. The impact of COVID-19
pandemic on reported tuberculosis incidence and mortality in China: an interrupted time series
analysis. Journal of Global Health 13:0603 DOI 10.7189/jogh.13.06043.

Zhao R, Liu J, Zhao Z, Zhai M, Ren H, Wang X, Li Y, Cui Y, Qiao Y, Ren J, Chen L, Qiu L. 2023.
A hybrid model for tuberculosis forecasting based on empirical mode decomposition in China.
BMC Infectious Diseases 23:665 DOI 10.1186/s12879-023-08609-x.

Zhou J, Chen HJ, Lu TJ, Chen P, Zhuang Y, Li JL. 2023. Impact of COVID-19 prevention and
control on tuberculosis and scarlet fever in China’s Guizhou. Scientific Reports 13(1):9540
DOI 10.1038/s41598-023-36263-5.

Zumla A, Marais BJ, McHugh TD, Maeurer M, Zumla A, Kapata N, Ntoumi F, Chanda-
Kapata P, Mfinanga S, Centis R, Cirillo DM, Petersen E, Hui DS, Ippolito G, Leung CC,
Migliori GB, Tiberi S. 2020. COVID-19 and tuberculosis-threats and opportunities. The
International Journal of Tuberculosis and Lung Disease 24(8):757–760
DOI 10.5588/ijtld.20.0387.

Zhang et al. (2024), PeerJ, DOI 10.7717/peerj.18573 25/25

http://dx.doi.org/10.11591/ijeecs.v28.i1.pp600-610
http://dx.doi.org/10.1016/j.envres.2020.110310
http://dx.doi.org/10.1371/journal.pone.0201987
http://dx.doi.org/10.2147/idr.S238225
http://dx.doi.org/10.1136/bmjopen-2018-024409
https://www.who.int/publications/i/item/9789240083851
https://www.who.int/publications/i/item/9789240083851
http://dx.doi.org/10.1038/s41467-022-32814-y
http://dx.doi.org/10.1038/s41598-021-81100-2
http://dx.doi.org/10.3389/fpubh.2022.937844
http://dx.doi.org/10.7189/jogh.13.06043
http://dx.doi.org/10.1186/s12879-023-08609-x
http://dx.doi.org/10.1038/s41598-023-36263-5
http://dx.doi.org/10.5588/ijtld.20.0387
http://dx.doi.org/10.7717/peerj.18573
https://peerj.com/

	Temporal disruption in tuberculosis incidence patterns during COVID-19: a time series analysis in China
	Introduction
	Materials and Methods
	Results
	Discussion
	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


