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ABSTRACT Predictive maintenance (PdM) identifies the equipment conditions and forecasts when
maintenance is required to minimize downtime, whis is crucial for medical equipment. This study developed
a machine learning-based PdM for a Computed Tomography (CT) scan machine using Internet of Things
(IoT) sensors to monitor temperature, humidity, current, radiation, and XY-axis acceleration. Data were
collected from January to December 2023 at a hospital in the Klang Valley, Malaysia. The readings were
preprocessed to follow a normal distribution, representing the typical working conditions of the machine.
Owing to limited faulty condition data, synthetic data were generated by expanding the tails of the data
distribution and using a Gaussian noise generator. These synthetic data are vital for training robust machine
learning models. An artificial neural network (ANN) was designed to predict the machine’s breakdown
risk using all sensor parameters as inputs. The ANN model achieved an impressive prediction accuracy of
97.58%, proving its relibility in forecasting breakdowns. The model consistently predicted a high breakdown
risk in November 2023, which was confirmed by a repair report that indicating maintenance was required
in early December 2023. This study demonstrated that integrating IoT sensors with ANN models can
significantly enhance the PdM of medical equipment, reduce downtime, and improve operational efficiency.
These promising results suggest the potential application of this approach in other critical medical devices.

INDEX TERMS Predictive maintenance, CT-scan, artificial neural network, machine learning, synthetic
data, IoT.

I. INTRODUCTION
The medical industry relies heavily on high-end and complex
equipment to provide patients with precise and reliable
health care services. Efficient operation of this equipment is
crucial for effective diagnosis and treatment. According to
World Health Organization (WHO) statistics, over 80% of
medical equipment failures are preventable, with inadequate
maintenance responsible for approximately 60% of all
performance issues [1].

The associate editor coordinating the review of this manuscript and

approving it for publication was Haidong Shao .

Predictive maintenance (PdM) identifies equipment con-
ditions and forecasts when maintenance is required. The
PdM aims to determine the optimal timing for maintenance
actions by utilizing information about the system’s current
health state and historical maintenance data [2]. In the
health industry, Artificial Intelligence (AI) and the Internet
of Things (IoT) have been adopted at many stages and across
various medical diagnostics, as reviewed in [3] and [4].
This demonstrates the acceptance by medical experts, with
AI-based systems being trusted to assist in decision-making.

A case study conducted in [5] observed that Computed
Tomography (CT) scan machines are overused, operating
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at double the recommended usage per day, which could
lead to machine breakdown. The use of CT has increased
rapidly over the years, especially during the pandemic,
as shown in Figure 1, owing to the need for rapid
COVID-19 detection [6]. Therefore, special maintenance
procedures must be implemented to suit the current use
of the equipment. Embarking on a special PdM would
be appropriate for improving the efficiency, lifespan, and
reliability of the equipment given its operation under
abnormal conditions owing to community demand. It has
also been reported that equipment downtime occurs ten and
15 times per year. Breakdowns increase maintenance costs
and reduce community services.

FIGURE 1. Annual change of CT scan machine usage [6].

Different strategies were also proposed in [7] to increase
the efficiency of PdM device management. These strategies
are tailored to both older and newer high-tech devices.
The first strategy considers the results of the performance
verification and safety testing, whereas the second strategy
follows the manufacturer’s recommendations. Currently,
CT scan machines in Malaysia are monitored under Planned
Preventive Maintenance (PPM) and Corrective Maintenance
(CM) [8]. PPM is scheduled maintenance that is normally
repeated every six months to maintain the condition of
the machine and prevent issues from developing. CM, also
known as reactive maintenance, is carried out whenever an
issue is found, that is, whether it has led to a breakdown [9].

Implementing PdM in the medical industry poses several
challenges, including data privacy concerns, the need for
advanced and specialized sensors, and the integration of
new systems with the existing healthcare infrastructure [10].
PdM faces significant challenges when real data on normal
and abnormal equipment behavior are lacking or scarce,
particularly in the case of new systems with no operational
experience [11]. Additionally, the implementation of AI
in healthcare faces challenges, such as conditions external
to the healthcare system, capacity for strategic change
management, and the transformation of healthcare profes-
sions and practice [12], [13]. Addressing these challenges
requires a multifaceted approach that ensures compliance
with healthcare regulations and maintains the safety and

privacy of patient data, while facilitating strategic change and
professional transformation.

Although the PdM in CT scan-machine applications
is relatively new, predictive maintenance is widely used
in other industries [14]. For example, in the automotive
industry, predictive maintenance has been implemented by
analyzing the brand and age of the automotive fleet to
predict certain failures. Consensus Self-Organized Models
(COSMO) accumulate knowledge over time by conducting
exploratory searches for internal local signals and comparing
them with analogous signals from a group of vehicles
performing related tasks. Assuming that most vehicles are
in good condition, COSMO anticipates that maintenance is
required by monitoring and comparing sensor signals [2].

The predictive maintenance system developed in [15]
considers the entire production line based on real-time data
collected from IoT sensors deployed in a factory to detect
abnormalities in the production line machines. The model
estimated the remaining useful time before failure using
101 features fed into a machine-learning (ML) model. The
results indicated that ML models based on three ensemble
learning algorithms (Random Forest, XGBoost, and Gradient
Boosting) outperformed the individual MLP regressor and
supported the relevant content and outputs of the prediction
model to end users through warnings and visual notifications,
depending on user roles and authorizations.

In [16], ML methods such as artificial neural networks
(ANN) and support vector machines (SVM) were integrated
to provide a better maintenance strategy for building facil-
ities. The proposed data-driven PdM planning framework,
based on building information Modelling (BIM) and IoT
technologies for facility maintenance management (FMM),
consists of an information layer and application layer. The
condition of the facility is monitored based on data collected
from deployed sensors, including the temperature, pressure,
and flow rate, obtained from an IoT sensor network. Sensors
monitor the operational conditions of critical components,
and trends in sensor data can indicate the frequency of
abnormal events and component usage patterns.

Hospitals have invested heavily in advanced medical
equipment to ensure accuracy, reliability, and performance
standards [17]. Predictive maintenance enhances the relia-
bility of medical equipment, particularly radiation therapy
accelerators, by predicting component failures before they
cause unscheduled downtime. By employing daily quality
assurance treatments, statistical process control methods,
and a robust alert system, this model successfully detected
95.6% of the errors introduced during testing [18]. Long-
term monitoring is required to confirm the effectiveness of
the model in clinical settings. However, the initial results
indicate a promising approach to maintain continuous, high-
quality patient care. The increasing sophistication of medical
technology has significantly enhanced the health of both
individuals and society.

The integration of ML algorithms and IoT sensors in
PdM involves deploying various sensors to monitor critical
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parameters such as vibration, temperature, pressure, and
velocity, in various applications, such as the semiconductor
industry [19]. The data collected from these sensors are
processed using sophisticated ML algorithms to detect
anomalies and predict potential failures. Algorithms such as
Random Forest, SVM, and ANN have shown effectiveness in
identifying patterns and predicting maintenance requirement.
Figure 2 shows the popularity of the ML model for
the PdM [20].

FIGURE 2. Trend ML model for PdM [20].

The application of ANNmodels in predictive maintenance
offers distinct advantages over traditional methods, due to
their advanced data processing capabilities and adaptability
in complex industrial environments. ANN-driven evaluation
methods, specifically models employing architectures such
as CNN and LSTM, achieve exceptionally high prediction
accuracy, with studies showing a 15% improvement over
conventional methods, reaching a rate of 98.5% accu-
racy even under noisy conditions [21]. This robustness
to data imperfections significantly enhances their real-
world reliability. Additionally, ANN models demonstrate
remarkable efficiency by achieving over 99% accuracy in
classifying motor health, which, combined with their low
computational complexity, makes them ideal for deployment
on edge computing devices, facilitating on-site and real-
time analysis [22]. Leveraging real-time sensor data, ANN
models provide precise failure predictions, contributing to
reduced machine downtime, cost savings, and improved
worker safety by enabling proactive maintenance [23].
Furthermore, hybrid ANN configurations, like CNN-LSTM,
enhance predictive accuracy and reduce model complexity,
outperforming traditional architectures, such as standard
LSTM and GBDT, with an F-Score increase from 93.34% to
97.48% [24].

One of the challenges in developingMLmodels for predic-
tive maintenance is the limited faulty data that can represent
the problems faced by machines [19], [25], [26]. Therefore,
several studies have proposed synthetic data-generation

methods that use various methods to mimic real data. For
example, [27] used synthetic data to train predictive mainte-
nance algorithms in high-reliability analog electronic systems
to ensure their adaptability to upgrades. Themethod for creat-
ing synthetic data involves simulation-assisted failure analy-
sis combined with generative adversarial networks (cGANs).
In addition, [28] performed predictive maintenance on high-
performance computing (HPC) systems, and the use of
synthetic data for this research addressed data imbalance and
label scarcity. Synthetic data can be created using data aug-
mentation techniques such as oversampling and undersam-
pling. Synthetic data provides more efficient access to data
and enables better analytics by addressing privacy concerns
and allowing analysts to work with realistic datasets without
the need for additional consent or privacy measures [29],
[30]. However, a balance between realistic and synthetic data
characteristics must be obtained to ensure that the designed
model is not biased toward the wrong side of the decision.

This study explored the use of ML algorithms and
IoT sensors to develop a predictive maintenance model
for CT scanning machines. Synthetic data were generated
such that the ML model could detect anomalies in sensor
readings, indicating the likelihood of a breakdown. The aim
is to prevent unexpected failures and improve equipment
performance, availability, and dependability. This approach
can help healthcare organizations avoid costly downtimes and
equipment failure during critical procedures. Studies have
shown that PdM can reduce maintenance costs by up to 8%
and production losses by up to 11% [31].

Implementing PdM in CT scans requires technical
advancements, adherence to regulatory standards, and ethical
considerations. Ensuring patient safety, data security, and
compliance with healthcare regulations is critical for the
successful deployment of PdM systems. By addressing these
factors, healthcare providers can leverage the PdM to enhance
the reliability and efficiency of critical medical equipment.

II. METHODOLOGY
Themethodology encompasses several crucial stages, such as
the setup of sensors, as described in [32], data preprocessing,
and development of a machine learning (ML) framework.
Each step was designed according to the scope of the study
and selection of the study site.

A. DATA ACQUISITION
Based on literature review as cited on [32], six sensor
parameters like current, radiation, temperature, humidity,
acceleration on x and y was selected for PdM model.The
radiation sensor is crucial because PdM is applied to
CT scan machines, which emit radiation. It was selected
because, according to a report from the radiologist, radiation
tube always need to be maintained, even when the
equipment is newly replaced. Current was selected as a
parameter for predictive maintenance because it helps detect
electrical anomalies, operational inefficiencies, and potential
equipment failures in the CT scan machine. Acceleration
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sensor was used to check the vibration of CT scan machine,
vibration is crucial parameters for PdM including including
temperature and humidity [33]. The use of cables inside the
CT scan roomwasminimized because it is an emergency area
for patient handling and continuous movement is required.

All sensor data were transmitted to the IoT Gateway using
wireless communication protocols, which is a 4G network.
According to [34], wireless communication transmits infor-
mation through the air using electromagnetic waves such as
radio frequencies, infrared, and satellite signals, eliminating
the need for cables. Maxis Telecommunication was chosen
as the service provider because it shows the strongest signal
during in-house signal measurement compared to Celcom,
even though the CT scan room is located underground. The
incoming data are processed in the IoT gateway to convert
the data formats based on the sensor specifications. Each
type of data sensor is transmitted at different time intervals,
owing to the different sensor specifications. To secure
reliable data transmission, a bridge gateway was used to
transfer the preprocessed data to the network server. The
advantage of a bridge gateway is that it increases flexibility,
adaptability, and cost reduction by providing a uniform-
use interface, detachable architecture for customization, and
protocol translation for accurate data processing [35]. The
network server forwards data to the MongoDB NoSQL
database. MongoDB was used because of its capability to
handle large unstructured data efficiency values. Researchers
have found that each NoSQL database, including MongoDB,
has unique optimization and characteristics that directly
impact performance metrics such as data loading time and
execution times for read and update operations [36]. Data
from this database for the full year 2023 were utilized in this
study to enhancemodel stability and test themachine learning
prediction model.

B. DATA PREPROCESSING
Data preprocessing is a critical phase in any predictive main-
tenance program. It involves cleaning and preparing data to
ensure accuracy, completeness, and in an appropriate format
for analysis [37], [38]. The purpose of data preprocessing is
to convert raw data into a form that can be readily analyzed
using statistical or machine learning methods.

The selected data are plotted in their respective distribu-
tions to represent each feature. During the early development
of the model in [32], the collected data for the development of
the model only represent the normal condition of the machine
because the machine is working well and patient scanning is
performed as usual. Additionally, every reading is collected
at different intervals of time due to the sensor’s capability.
Each reading is recorded in its respective unit, for example,
temperature in degrees Celsius. To develop an ML model
that can predict breakdown, abnormal synthetic data were
generated from real normal data by expanding the head and
tail of the data distribution, as shown in Figure 3. To ensure
that abnormal synthetic data are realistic and useful, they

must be generated within the sensor-detection range. This
involves understanding the limits and characteristics of
the sensors used in data collection to mimic real-world
examples [39]. Real and synthetic data were combined into
a single file, and the total number of data points was 56458.
These data were labeled into two classes: low for normal data
(indicated by 0) and high for abnormal data (indicated by 1).
The conditions for labeling the data were based on literature
review, machine specifications, and sensor readings. All the
labeled data were fed into the ANN model to execute the
training and testing processes. The developed model was
tested and integrated into a live dashboard for real-time
testing.

FIGURE 3. Distribution of real and synthetic data.

The previous dataset used in [32] comprises 5000 synthetic
data points, which are considered small. A synthetic data
generation method was employed to generate new data and
force the dataset to be distributed normally using the mean
and standard deviation values. Consequently, the data were
expanded based on a normal distribution rather than the
original distribution. The aim of this stage is to maintain
the original distribution, making the synthetic data more
realistic and providing a better representation of the real
scenarios. By utilizing a more extensive dataset, spanning
from January 2023 to December 2023, more accurate results
can be obtained. Equation 1 demonstrates the normalization
process of the data, which was then further normalized using
min-max scaling. After this step, noise was added to the
normalized data using Equation 2. The noise was calculated
using Equation 3, where the noise factor was determined
until it reached the maximum value within the range of the
sensor. The tools used for synthetic data generation are listed
in Table 1.

normalized_value =
value − min
max − min

(1)

noisy_value = normalized_value + noise (2)

noise ∼ N (0, σ · noise_factor) (3)

Imbalanced datasets can hinder the ability of ML models
to accurately learn patterns from minority classes, thereby
impacting their predictive performance and leading to skewed
outcomes [40]. By generating synthetic data, the development
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TABLE 1. Tools to create synthetic data using head and tail expansion.

of an ML model will produce better results because ML is
highly dependent on the amount of training data. Synthetic
data for abnormal conditions are highly desirable because all
the collected data are from normal machine conditions. The
balance data is important to ensure the ML model is not bias
into one class only that will produce low accuracy results [41],
[42], this synthetic data generation method is very helpful for
PdM model development.

C. MACHINE LEARNING FRAMEWORK DEVELOPMENT
Developing an Artificial Intelligence (AI) model is a crucial
step in predictive maintenance, because it entails creating a
model capable of accurately forecasting equipment failures
before they occur. This section outlines the creation of an
ANN framework that utilizes IoT data as the input and
machine breakdown risk as the output. Figure 4 shows the
development of the ANN framework, and the completed
ANN framework was presented in [32]. The development
process of machine learning begins with manual collection of
data from the dashboard, as all sensor readings are uploaded
online. Subsequently, data preprocessing was performed to
sort the data, and abnormal synthetic data were generated
to balance the datasets. Based on the original and synthetic
data, ML was trained and tested until acceptable prediction
accuracy was obtained. Once the model is stable and can be
predicted accurately, it is integrated into the dashboard using
the Flask API and the output is displayed.

FIGURE 4. Flowchart for ANN development using IoT sensors data.

The ANN framework received six input fetaures, produced
two outputs (low and high risk of breakdown), and consisted
of two hidden layers. Figure 5 show ANN architecture where
6 dimensions of the input data produced binary output, each
row from this 6 dimensions of data represent the time line
data was collected. All of this data was normalized before

FIGURE 5. Flowchart for ANN development using IoT sensors data.

insert into ML model. In total, 56456 data points were
randomly split into 70% training and 30% testing using
the model_selection.train_test_split function
available in the Scikit-learn library. This ratio of data splitting
was selected because according to [43] and [44], this ratio
of data split is the best to feed into the ML model. The
framework is written using the Python language, TensorFlow
library, and all tools used, as stated in [32].

The ANNmodel in this architecture is structured for binary
classification, featuring two hidden layers with six neurons
each and ReLU activation to capture complex patterns,
and a single-output neuron with a sigmoid activation for
probability-based classification. Themodel is compiled using
the Adam optimizer for efficient weight adjustment, with
binary cross-entropy as the loss function, suitable for binary
outcomes. Training is set for 100 epochs with a batch size
of 32, allowing gradual model optimization. To improve
convergence, the input features are scaled between 0 and 1
using MinMaxScaler. The model’s accuracy is tracked as
a performance metric, while PlotLossesCallback provides
real-time visual feedback on accuracy and loss, supporting
effective model monitoring and fine-tuning during training.

The Sobol method was used to perform a sensitivity
analysis on the selected features, evaluating their individual
and interactive effects on the model’s predictions. The perfor-
mance of the model was measured based on the classification
results and is represented as the percentage of correctly
classified data. A confusion matrix was used to analyze
the assignment of data across all categories. For the binary
classification model, the confusion matrix was visualized as
a 2 × 2 matrix. There are four key variables in the confusion
matrix: True Positive (TP), True Negative (TN), False
Positive (FP), and False Negative (FN). The performance of
the ML model was evaluated using this method.

III. RESULTS
In predictive maintenance, IoT sensor data are analyzed
to detect trends and patterns that may signal upcoming
machine failures. This analysis evaluates the characteristics
of the data, such as the minimum, maximum, and average
sensor readings. By identifying the normal value range for
each sensor and spotting any anomalies, the maintenance
teams can compare the current sensor readings with these
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benchmarks. Any deviation from the norm can help predict
a potential equipment failure.

Figure 6 to 11 show the distribution of features for 2023 fed
into the machine learning (ML) models. The current value is
mostly around 2 to 7A (normal state), and during scanning,
it can reach up to 80A. The radiation value is collected
cumulatively owing to sensor limitations as it accumulates
radiation data for 3 minutes before it can produce the output.
This causes the radiation sensor readings to be very large,
spiking to 2 million uSv/h when the technician performs
weekly calibration of the CT scan machine. This scenario
does not occur when a patient is present, as it is observed that
the radiation detected is up to 600000 uSv/h during patient
scanning. Temperature and humidity readings were obtained
from a sensor unit located inside the CT scan room to
monitor the environment for themachine to operate at optimal
performance. The last sensor was an accelerometer used for
the vibration measurement. It is placed near the rotational
force of the machine because the vibration increases if any
abnormality is detected in relation to the mechanical parts.
The values of vibration vary owing to the vibration produced
during scanning and return to the initial position after
scanning is completed. All of these sensors are non-invasive
because the CT scan machine is under radiology care and is
still under leasing services by the manufacturer. The analysis
of data distribution is important to ensure that the range
of data is consistent throughout the year and to identify

FIGURE 6. Distribution of current value (Amp) vs frequency for year 2023.

FIGURE 7. Distribution of radiation value (uSv/h) vs frequency of
year 2023.

FIGURE 8. Distribution of temperature value (Â◦C) vs frequency for
year 2023.

FIGURE 9. Distribution of humidity value (%) vs frequency for year 2023.

FIGURE 10. Distribution of accelerometer on X-axis vs frequency for
year 2023.

abnormalities in the sensor readings. Table 2 lists the number
of data points and their features for eachmonth. There are sets
of data that are less than the average value owing to system
maintenance, server downtime, and patient emergency, which
causes the sensors that were positioned at the gantry area to
be removed (radiation and acceleration sensors).

By comparing the IoT sensor data with the patient scan
log, it is possible to identify any correlations between specific
sensor readings and the conditions of the machine or the
patients being scanned. Based on this reading validation,
changes in the values of five out of six features can represent
the scanning operation of the CT scan machine: current,
radiation, temperature, humidity, and acceleration at the
Y-axis value. Overall, the data analysis performed on the
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FIGURE 11. Distribution of accelerometer on Y-axis vs frequency for
year 2023.

TABLE 2. The number of iot data points collected for all features in 2023.

IoT sensor readings provided valuable insights into the
performance of the CT scanmachine and potential issues with
the equipment.

The evaluation results reveal that after normalizing the data
using the min-max scaler method and incorporating break-
down risk, the trained model exhibits a remarkable capability
to distinguish between normal and abnormal conditions in
the context of the IoT-connected CT scan machine. Notably,
the results presented in Table 3 demonstrate an average
accuracy of 97.58% across ten iterations during the training
stage, affirming that all features collectively contribute to the
predictive accuracy of the model. This accuracy is higher
than that presented in [32] which is 95.91%. Additionally,
the results show an average binary cross-entropy loss of
7.01% across the ten iterations, indicating that the model’s
predictions closely align with the actual values. The low
binary cross-entropy loss value reinforces the model’s ability
to minimize errors effectively during training, suggesting that
all features contribute not only to high accuracy but also to
reducing prediction error.

Overall, the data analysis performed on the IoT sensor
readings provided valuable insights into the performance
of the CT scan machine and potential issues with the
equipment. To address the need for parameter sensitivity
analysis, a Sobol method assessment was conducted to
evaluate the influence of each input parameter—current,
radiation, temperature, humidity, x, and y on the model’s
predictions. The analysis revealed that radiation is the most

TABLE 3. The ANN performance in 10 iterations of training and testing.

significant parameter, with a first-order sensitivity index
of 0.548, indicating its substantial individual impact on the
model output. Additionally, it demonstrated a high total
sensitivity index of 0.914, which includes interaction effects,
confirming its dominant role in influencing the model.
A notable interaction was observed between radiation and
humidity, with a second-order sensitivity index of 0.366,
while the remaining parameters (current, temperature, x, and
y) showed minimal individual and interaction effects. These
findings underscore that the model is primarily influenced
by radiation, aligning with expectations based on domain
knowledge, and validate the robustness and interpretability
of the modeling approach.

In addition, the confusion matrix depicted in Figure 12
provides visual evidence of the proficiency of the ANN
framework in achieving precise output predictions, as evi-
denced by its consistently low error rate. Specifically, the high
class, which represents a high risk of breakdown, contains
8410 total data points and has a precision of 0.9912. The low
class, which represents a low risk of breakdown, contains
8527 total data points and has a precision value of 0.9994,
indicating nearly perfect classification accuracy. However,
it is important to note that these results are a combination of
real and synthetic data, and may not include outliers or other
types of data that can occur in real-world situations.

FIGURE 12. Confusion matrix of ANN based breakdown predictions.
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When bad data is collected, it typically impacts evaluation
modeling by introducing noise, outliers, or inaccuracies
that can skew predictions, reduce model accuracy, and
undermine the reliability of the results. However, in this
case, the impact of bad data is minimized due to the use
of synthetic data generation that has expanded within the
range of the sensor specifications. This approach ensures
that all data, including potentially faulty data, remains
within the valid sensor range, as the synthetic data aligns
with the sensors’ capability to capture only within their
defined specification limits. By generating synthetic data that
covers the sensor’s entire operational range, consistency and
robustness in the evaluation modeling will be maintained,
effectively neutralizing the adverse effects of bad data.

A sample of the dashboard display is shown in Figure 13,
which shows the sensor monitoring and prediction results
on the right (smart meter with color labels: green, yellow,
and red). Green indicates a low risk of breakdown, whereas
red indicates a high risk. The calculated value of the risk
percentage relies on the measured readings from each sensor
with the same priority level on an hourly basis.

The proposed model in [32] has shown its accuracy when
the prediction of the breakdown results from October 2023
to December 2023 is consistent with the condition of
the machine (as shown in Figure 14 to 16). This study
enhances the model presented in [32], which used data
only from September 2022 to January 2023. The improved

FIGURE 13. Dashboard displays the breakdown prediction result
(top right).

FIGURE 14. Risk of breakdown prediction results in October 2023
(0 is low, 1 is high).

FIGURE 15. Risk of breakdown prediction results in November 2023
(0 is low, 1 is high).

FIGURE 16. Risk of breakdown prediction results in December 2023
(0 is low, 1 is high).

FIGURE 17. Average risk of breakdown prediction results in daily basis
from 1st October until 31st December 2023.

version now incorporates a complete dataset collected from
January to December 2023. Figure 13 represents the normal
working conditions of the CT scan machine, which shows
that the predictions vary from low to high because rapid
changes in the scanning and non-scanning operations produce
variations in the predicted values. In contrast to the October
2023 incidents (Figure 14), the data from November 2023
(shown in Figure 15) indicate that most of the predicted
breakdown risks are constantly high (reading 1.0). The
engineer in charge confirmed that the machine had technical
issues, which led to the reading shown in Figure 16.
Repair work was performed in December 2023 because the
technician detected the problem in early December 2023.
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FIGURE 18. Distribution of temperature reading in October 2023.

FIGURE 19. Distribution of temperature reading in November 2023.

FIGURE 20. Distribution of temperature reading in December 2023.

Figure 17 shows the overall prediction of the breakdown
risk for the three months by calculating the daily average
values. Based on further analysis of the collected data, the
reading that leads to a high risk of breakdown is temperature
values where the machine is working below its optimal
working condition (22◦C up to 26◦C), as stated in [45].
As shown in Figure 18, the normal temperature readings
during October are documented and ranged from 21.6 degree
Celsius to 22.5 degree Celsius. The readings in November
andDecember (Figure 19 and 20, respectively) show readings
below the optimal working condition of the machine, with a
peak at approximately 21◦C.

IV. CONCLUSION
In conclusion, the implementation of an Artificial Neural
Network (ANN) model for predictive maintenance on IoT-
connected CT-scan machines has demonstrated significant
efficacy in predicting potential failures. The model was
trained using synthetic data generated by expanding the head
and tail of the real data, and it considered six different
features, including temperature, humidity, radiation, current,
and acceleration along both the X and Y-axes. The output of
the ANNmodel provided a binary risk assessment, indicating
either a high or a low risk of breakdown. Achieving a
remarkable accuracy of 97.58%, the model has proven to be a
dependable tool for predicting the maintenance requirements
for CT scan machines, thereby enhancing their operational
reliability and reducing unexpected downtimes. This method
has been proven to detect machine breakdowns because
the results show a high risk in November 2023, and the
repair work was performed in December. These results were
obtained based on the model in [32] but retrained with an
extensive number of data points. By identifying potential
breakdowns before they occur, healthcare providers can
minimize downtime and extend the lifespan of equipment,
leading to more efficient and effective patient care. Overall,
the use of ANN models for the predictive maintenance
of medical equipment, such as CT scan machines, has
significant potential to enhance the quality of healthcare and
reduce the costs associated with equipment failures. In the
future, the prediction model will be evaluated in other sites
and hospital settings.
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