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A high aspect ratio (HAR) wing model that exhibits geometric nonlinearities has 
been analysed to observe its impact in terms of static and dynamic 
characteristics. The research work was motivated by the lack of study from past 
researchers towards the modal properties of the HAR wing model using 
experimental modal analysis (EMA) in undeformed and deformed configurations. 
The undeformed configuration refers to exclusion of gravitational loading effect 
while deformed configuration considers the gravitational effect in bending 
direction. A number of tip store models was also considered in order to represent 
various degree of bending deformations, which is quantified in terms of tip 
deflection. To idealize an experimental model of HAR wing, the parametric sizing 
was conducted by considering the size of the wind tunnel test section, as well as 
its maximum speed with both undeformed and deformed configurations were 
taken into account. The final wing dimension was then chosen to be of 
800mm×50mm×1.25mm along with three various tip store diameter of 10mm, 
12mm, and 14mm. Following this, the wing model was fabricated to enable the 
EMA testing, ground static testing, and wind tunnel flutter testing to be 
conducted.  
 
 
In terms of EMA testing, the findings confirmed that the chordwise-bending and 
torsion modes for the undeformed configuration changes to chordwise-torsion 
and torsion-chordwise modes respectively when the wing was in the deformed 
configuration. The natural frequency for both chordwise-torsion and torsion-
chordwise modes decreases as the tip deflection increases, with the chordwise-
torsion mode occurs at a much lower frequency than the torsion-chordwise 
mode. This clearly shows that wing in undeformed and deformed configuration 
have different modal characteristics and behave differently. Following this, the 
model updating was employed to bring the FE model closer to its experimental 
counterpart, where the discrepancies in terms of the first seven natural 
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frequencies were minimized from 44% to be about 10% with the magnitude of 
frequencies difference is lesser than 1.5Hz. In addition, good agreement in mode 
shapes were also acquired in terms of modal assurance criterion (MAC) with no 
occurrence in mode shape swap between the experimental and FE models. 
 
 
The updated FE model was further validated against the ground static testing for 
an incremental tip force on the wing model and the result provides a good 
agreement between them in terms of tip deflection. Following this, the wind 
tunnel flutter testing envelope was idealised and the updated FE model has 
successfully predicted the flutter speed of undeformed wing configuration 
whereby the percentage of differences is not more than 10%. Since there is still 
no commercially available software for flutter prediction of deformed wing 
configuration; hence, the available validated numerical solution along with its 
corresponding experimental results may provide a certain degree of insight in 
understanding its flutter characteristics. Based on the finding, the flutter speed 
may unnecessarily decrease when the tip deflection increase although reduction 
in chordwise-torsional mode frequency led to a reduction in the frequency gap 
between the flutter modes. Hence, it is concluded that the flutter speed of the 
deformed HAR wing only reduces until a certain degree of tip deflection and  
beyond this point the flutter speed begins to increase. 
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Model sayap bernisbah bidang tinggi yang menunjukkan ketidakselarian 
geometri telah dianalisis untuk melihat kesannya dari segi ciri statik dan dinamik. 
Kerja penyelidikan ini didorong oleh kekurangan kajian penyelidik terdahulu 
terhadap sifat modal bagi model sayap bernisbah bidang tinggi dengan 
menggunakan ujikaji analisis modal terhadap konfigurasi tidak berubah dan 
berubah bentuk. Konfigurasi tidak berubah bentuk merujuk kepada 
pengecualian kesan beban graviti, manakala konfigurasi berubah bentuk 
mengambil kira kesan graviti pada arah lenturan. Beberapa buah model stor 
hujung juga dipertimbangkan bagi mewakili pelbagai tahap lenturan berubah 
bentuk, yang diukur dari segi pemesongan hujung. Untuk mewujudkan model 
ujikaji bagi sayap bernisbah bidang tinggi, pensaizan parametrik telah 
dikendalikan dengan mempertimbangkan saiz pada bahagian ujian serta 
kelajuan maksimum terowong angin dengan mengambil kira kedua-dua 
konfigurasi tidak berubah dan berubah bentuk. Dimensi muktamad sayap 
kemudiannya dipilih sebagai 800mm×50mm×1.25mm bersama-sama dengan 
tiga stor hujung berdiameter 10mm, 12mm dan 14mm. Berikutan ini, model 
sayap difabrikasi bagi membolehkan ujian ujikaji analisis modal, ujian statik di 
bumi dan ujian kibaran terowong angin dapat dilaksanakan. 
 
 
Dari segi ujian ujikaji analisis modal, hasil kajian mengesahkan bahawa mod 
arah rentas-lenturan dan mod kilasan pada konfigurasi tidak berubah bentuk 
telah bertukar masing-masing menjadi arah rentas-kilasan dan kilasan-arah 
rentas pada konfigurasi berubah bentuk. Frekuensi asli bagi kedua-dua mod 
arah rentas-kilasan dan kilasan-arah rentas berkurangan apabila pemesongan 
hujung dinaikkan, di mana mod arah rentas-kilasan berlaku pada frekuensi yang 
lebih endah berbanding mod kilasan-arah rentas. Ini jelas menunjukkan bahawa 
sayap pada konfigurasi tidak berubah dan berubah bentuk mempunyai 
perbezaan pada ciri modal dan kelakuannya. Berikutan itu, pengemaskinian 
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model telah dilakukan bagi merapatkan model unsur terhingga kepada model 
ujikajinya, dimana percanggahan dari segi tujuh frekuensi asli yang pertama 
telah diminimumkan daripada 44% kepada lebih kurang 10%, dengan magnitud 
perbezaan frekuensi  adalah lebih rendah daripada 1.5Hz. Tambahan lagi, 
persetujuan yang baik telah diperolehi dari segi kriteria jaminan modal tanpa 
kejadian pertukaran bentuk mod di antara model ujikaji dengan model unsur 
terhingga. 
 
 
Model unsur terhingga yang dikemaskini telah disahkan dengan lebih lanjut 
melalui ujian statik di bumi dengan meningkatkan daya hujung dan keputusan di 
antara mereka menunjukkan persetujuan yang baik dari segi pemesongan 
hujung. Berikutan itu, lingkungan ujian kibaran terowong angin telah diwujudkan 
dan model unsur terhingga yang dikemaskini telah berjaya meramal kelajuan 
kibaran bagi sayap berkonfigurasi tidak berubah bentuk yang mana perbezaan 
peratusannya adalah tidak melebihi 10%. Memandangkan masih tiada perisian 
yang tersedia secara komersial bagi ramalan kibaran sayap berkonfigurasi 
berubah bentuk, maka penyelesaian berangka yang telah disahkan berserta 
keputusan daripada ujikaji boleh memberi tahap pengetahuan tertentu terhadap 
pemahaman ciri kibarannya. Daripada penemuan, kelajuan kibaran adalah tidak 
semestinya berkurangan apabila pemesongan hujung ditingkatkan walaupun 
terdapat pengurangan frekuensi mod arah rentas-kilasan yang membawa 
kepada pengurangan jurang frekuensi di antara mod kibaran. Maka, 
kesimpulannya, kelajuan kibaran bagi sayap bernisbah bidang tinggi berubah 
bentuk hanya akan berkurangan sehingga pemesongan hujung mencapai tahap 
tertentu dan selepas itu kelajuan kibaran akan meningkat.   
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CHAPTER 1  
 
 

INTRODUCTION 
 
 

1.1 Background 
  
 
Since the first successful flight by the Wright’s brother back in 1903, the design 
of an airplane has undergone numerous technological advances in order to 
improve its overall efficiency while at the same time reducing its operational cost. 
One of the key parameters is to deal with an aerodynamic shape of an airplane, 
especially on the geometry of the wing. Figure 1.1 illustrates the market trend in 
terms of the wing aspect ratio parameter with respect to its first year of flight. It 
can be observed that over the years, the wing aspect ratio for mid to long haul 
aircraft has been gradually increased, with some cases it was up to 10% 
increases from its previous design [13]. By referring to equation (1-1) [51], it can 
be seen that the relationship between the induced drag and aspect ratio 
parameters are inversely proportional. Hence, increases in wing aspect ratio 
permits in reduction of induced drag, which in turn leads into a higher lift-to-drag 
ratio. In addition, this will also enable improvement in terms of the range and 
endurance of the aircraft. 
 

 
 
Figure 1.1: Comparison of wing aspect ratio over the years   
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𝐶𝑑𝑖
=

𝐶𝑙

𝜋𝐴𝑅𝑒
 (1-1) 

 
 
where; 
 

𝐶𝑑𝑖
 = Induced drag 𝐶𝑙  = Lift coefficient 

𝐴𝑅 = Aspect ratio  𝑒 = Efficiency factor  

 
 
This trend, as described in the previous paragraph, was not only applicable for 
passenger aircraft but also for the unmanned aerial vehicles (UAVs), where 
having a long-range and endurance have become one of the primary criteria in 
designing the UAV. With the recent technology advancement for airborne 
sensors and communication packages, the UAV missions include airborne 
intelligence, surveillance, scientific research, and commercial use. It requires the 
UAV to operate and fly for a very long period at a very high altitude, which 
sometimes can be up to 25 days [53]. Due to this reason, this type of UAV is 
generally known as a High Altitude Long Endurance (HALE) UAV.  
 
 
A number of HALE UAV have been developed over the past decades. For 
instance, Zephyr Stratospheric UAV by Airbus Defence and Space [5] has been 
produced to act as a surveillance platform similar to the satellite while offering 
the flexibility of a UAV and at a much lower cost. In 2010 Airbus launched its first 
high aspect ratio (HAR) model UAV with a wingspan of 25m and a weight of only 
75kg. They also have plans on developing a UAV with a longer wingspan of 33m. 
In August 2010, Global Observer HALE UAV made its first flight [12]. It is built 
for US Defence to perform intelligence, surveillance, and reconnaissance (IRS) 
operations with real-time operation data, which is transmitted to the ground 
control station through a satellite communication data link. Global Observer is 
also equipped with a HAR wing with a wingspan of 48.7m and a weight of 159kg. 
On the other hand, in 2013, another IRS system is launched by the name of 
Orion Unmanned Aircraft System (UAS) [6]. This UAS, which has a wingspan of 
40.2m, also acted as a situational awareness to provide direct support to troops. 
 
 
From here, it can be seen that the HAR wing concept has been steadily gained 

much interest in aerospace fields due to its attractive solution in achieving a 

better lift to weight ratio. Nevertheless, its dynamic characteristics are still 

required to be further explored before a certain level of design maturity on the 

HAR wing concepts can be idealised.   
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1.2 Problem Statement 
 
 
Even though increasing the wing aspect ratio enables more extended range and 
endurance of the aircraft as well as for the UAV, it will cause an issue due to its 
high structural flexibility. This will significantly change the overall dynamic 
behaviour of the wing, which in turn leading to a drastic change in aeroelastic 
characteristics. A notorious example was the catastrophic event of NASA Helios 
Prototype with a HAR wing of 31, which failed and crashed in the Pacific Ocean. 
Various investigations have been conducted, and NASA reported that the aircraft 
failed due to nonlinear instability due to the interaction between flexible structure, 
unsteady aerodynamics, flight control system, propulsion system, environmental 
conditions, and vehicle flight dynamic [55]. Quoted from the report, “Lack of 
adequate analysis methods led to an inaccurate risk assessment of the effects 
of configuration changes leading to an inappropriate decision to fly an aircraft 
configuration highly sensitive to disturbances.” Hence, the most important 
outcome from this event is to develop more advance multidisciplinary method 
that is appropriate to predict a highly flexible wing behaviour.  
 
 
A great deal of work has since been done to study the aeroelasticity of a HAR 
wing. HAR wing that consists of light, slender, and flexible structure has a 
prominent characteristic of geometric nonlinearity, which occurs as the wing is 
highly deflected. These circumstances defy the validity of the conventional linear 
approach; hence, consideration of the nonlinear effect is crucial in order to 
predict the static and dynamic behaviour of the wing system correctly. Relatively 
great studies have been conducted by other research through experimental 
testing to validate the simulation analysis to study the HAR static and dynamic 
behaviours (e.g. [18], [19], [25], [26], [27]). The effect of the slender body at the 
tip of the wing model has also been employed by a number of researchers (e.g. 
[25], [26], [27], [30]) in order to assess the dynamic behaviour of the wing at its 
deformed configuration, which subsequently have been assumed to reduce the 
flutter speed. 
 
 
However, reviews of the literature fails to identify works that include the 
experimental testing of flutter characteristics of wing in the deformed 
configuration with various tip deflections (through the installation of tip slender 
body). There is also no specific work concentrating on the EMA testing that 
compares the modal properties with regards to the tip deflection. Hence, this 
research work focuses on this aspect, including the comparison with other 
researchers in terms of flutter characteristics. 
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1.3 Aim and Objectives 
 
 
The primary aim of this research is to investigate the effect of geometric 
nonlinearities on the dynamic behaviour of the HAR wing for undeformed and 
deformed configurations. This is idealized through the following objectives: 
 

1. To conduct a parametric design study of the HAR wing model for the 
wind tunnel flutter testing through numerical analysis. 
 

2. To compare the modal properties of the HAR wing model between 
the undeformed and deformed configurations through an EMA for 
various tip stores with different tip deflection. 
 

3. To investigate flutter instability for both deformed and undeformed 
configurations through the wind tunnel testing for various tip stores 
and deflections. 

 
 
1.4 Research Questions 
 
 

1. What is the design requirement and design variables for the HAR 
wing model? 
 

2. How to fabricate the HAR wing model with a relatively simple 
process? 
 

3. What are the differences between the undeformed and deformed 
configurations in terms of their modal properties? 
 

4. What are the differences between the undeformed and deformed 
configurations in terms of flutter instability? 
 

5. Does increasing the tip deflection always resulted in lowering the 
flutter speed? 
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1.5 Scope of Work & Limitation 
 
 
In this work, a HAR wing model with various tip store diameter (that is added as 
to represent various tip deflection) is selected to investigate the aeroelastic 
characteristics due to different configurations, namely in undeformed and 
deformed states. The study only highlighted the investigation of the HAR wing, 
which exhibits a geometric nonlinearity without considering the effect of force 
follower. 
 
 
The wing model is a rectangular shape with an aspect ratio of 16, which consists 
of spar, ribs, fairing, and tip store. It is designed based on the size of the wind 
tunnel test section and its maximum operational speed. The flutter speed of the 
wing is made sure to occur within the wind tunnel operational speed of 40 m/s in 
order to make a verification against the numerical value. Therefore, this work is 
limited to only a low subsonic region, whereby the nonlinearity of the flow is not 
accounted for. 
 
 
As there is still no proprietary finite element analysis (FEA) tools that can solve 
for flutter analysis of deformed wing configuration, only flutter analysis for 
undeformed wing configuration could be employed. Hence, studying the modal 
characteristics of the wing model in both configurations through normal mode 
analysis and EMA testing is crucial as it can provide an assumption on the flutter 
modes of the system, which can provide a certain insight in understanding flutter 
characteristics of deformed wing configuration. Typically, flutter modes occur due 
to the coupling between bending and the first torsional modes, and increasing 
the tip deflection will reduce the frequency gap of the flutter modes. Hence, it is 
assumed that the flutter speed for deformed wing configuration to be lower than 
the undeformed wing configuration. During the EMA testing for deformed wing 
configuration, a tri-axial accelerometer is used instead, as the uni-axial 
accelerometer cannot capture the mode shape in the chordwise direction.  
 
  



© C
OPYRIG

HT U
PM

6 

 

1.6 Arrangement of Thesis 
 
 
The whole thesis includes five chapters and is organized as follows: 
 
Chapter 1 describe the trend of HAR wing over the years, the introduction of the 
HAR wing used in past researchers, the current work’s problem statement, 
objectives, and scope and limitation.  
 
 
Chapter 2 covers the literature review from various journal studies and books 
that focuses on recent studies on research topics. It reviews the fundamental 
knowledge of aeroelastic behaviour for a HAR wing that exhibits geometrical 
nonlinearity. 
 
 
Chapter 3 generally describes the simulation and experimental approaches 
employed throughout the studies and discussing its impact in terms of dynamic 
characteristics and flutter instability. 
 
 
Chapter 4 describes the FEA conducted to optimize the sizing of the wing model, 
subsequently selecting the finalized wing model dimensions in detail. This 
chapter is followed by descriptions of the construction phase for the experimental 
model and focuses on the experimental work. The experimental work involves 
EMA and linear and nonlinear ground static testing. Correlation between the 
experimental work and analytical results are presented and discussed, and 
subsequently, the model updating process is also described in this chapter. Next, 
the wing model flight envelope is tested by performing a wind tunnel flutter 
testing.  
 
 
Chapter 5 summarize the research work and conclude the important findings 
based on the analyses and results that have been presented in the previous 
chapter. This chapter provided valuable insight on the achievement of the 
research objectives as well as giving suggestions for future research based on 
the current work.
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