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With the recent advances computing technologies nowadays, reverse 
engineering is rapidly developing and has been strongly established many years 
in biomedical industry. Three dimensional geometric modeling is now being 
extensively used in many applications such as surgical planning, rapid 
prototyping, medical implants design, numerical simulation and etc. Thus, mesh 
quality is very crucial especially in finite element analysis in order to produce high 
accuracy results. Re-triangulation surface method is employed to improve the 
mesh quality of the model with certain parameters. The purpose of this study are 
a) to construct a complex three dimensional geometric CAD model of human 
wrist joint which contains cortical and cancellous bones using image-based 
processing method, b) to investigate the effects of triangle reduction, mesh 
smoothing and size of triangle mesh on the accuracy and mesh quality of the 
wrist bones model and c) to optimize the mesh quality using response surface 
methodology (RSM). A three dimensional CAD model of a human wrist joint was 
constructed after conversion model to non-uniform rational B-spline (NURBS). 
Re-triangulation process was carried out by manipulating different values of the 
parameters like geometrical error, smoothing factor and control edge length of 
triangle mesh along with mesh quality analysis in order to get high quality of 
mesh on the triangular surface wrist joint model. Lastly, optimization was 
performed via RSM to optimize the high quality mesh on the triangular surface 
model. In the findings, triangle reduction with geometrical error of 0.05 mm had 
reduced the number of triangles of cortical and cancellous bones to 74.81 % and 
75.34 % respectively while obtained 70.05 % and 68.69 % of high quality of mesh 
on the surface model respectively. In term of accuracy, no significant changed in 
surface area and volume. For mesh smoothing effect, smoothing factor of 0.8 
was selected to obtain 87.53 % and 86.68 % of high quality of mesh on cortical 
and cancellous bones respectively. For control size of triangle mesh, 0.5 mm of 
control edge length of triangle was taken to produce 92.35 % and 92.09 % for 
cortical and cancellous bones respectively. In term of accuracy of the model, the 
surface area and volume of the cortical and cancellous bones had no significant 



© C
OPYRIG

HT U
PM

changed with less than 0.15 % and 0.25 % compared to the initial bones model. 
In RSM optimization, the optimum mesh quality on cortical and cancellous bones 
were 90.74 % and 89.67 % respectively. In conclusions, the mesh quality and 
accuracy of the model show promising results with the process of re-triangulation 
surface and the high quality mesh of optimum models were obtained using RSM. 
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Dengan kemajuan teknologi pengkomputeran pada masa kini, kejuruteraan 
balikan berkembang dengan pesat dan stabil dalam industri bioperubatan. 
Model 3 dimensi (3D)- geometri digunakan secara meluaskan dalam aplikasi 
seperti perancangan operasi, prototaip pantas, reka bentuk implant perubatan, 
simulasi berangka dan lain-lainnya. Dengan itu, kualiti jaringan memainkan 
peranan penting terutamanya dalam analisis unsur terhingga untuk 
menghasilkan keputusan yang mempunyai ketepatan yang tinggi. Kaedah 
triangulasi semula segi tiga pada permukaan dapat meningkatkan kualiti 
jaringan model dengan  parameter tertentu. Tujuan kajian ini adalah a) untuk 
membina model 3 dimensi CAD kompleks pergelangan tangan manusia yang 
mengandungi tulang kortikal dan kanselus dengan menggunakan kaedah 
pemprosesan berasaskan imej, b) untuk menyiasat kesan pengurangan 
segitiga, melicinkan jaringan dan saiz jaringan segi tiga pada ketepatan dan 
kualiti jaringan darimodel tulang pergelangan tangan dan c) untuk 
mengoptimumkan kualiti jaringan dengan menggunakan kaedah gerak balas 
permukaan (RSM). CAD Model geometri tiga dimensi pergelangan tangan 
manusia dibina selepas diikuti dengan penukaran model kepada B-spline 
rasional yang tidak seragam (NURBS). Proses triangulasi semula dilakukan 
dengan memanipulasi nilai-nilai parameter yang berbeza termasuk ralat 
geometri, faktor pelicinan dan panjang pinggir segi tiga kawalan serta analisis 
kualiti jaringan untuk mendapatkan kualiti jaringan yang tinggi (ukuran bentuk 
segi tiga  ≥ 0.8 merupakan ukuran kualiti jaringan yang tinggi) pada model sendi 
pergelangan. Akhir sekali, pengoptimuman dilakukan melalui RSM untuk 
mengoptimumkan kualiti jaringan segi tiga di permukaan model. Dalam kajian 
ini, pengurangan bilangan segi tiga, ralat geometri sebanyak 0.05 mm telah 
mengurangkan bilangan segitiga bagi tulang kortikal dan kanselus sebanyak 
74.81 % dan 75.34 % masing-masing manakala 70.05 % dan 68.69 % 
menunjukkan kualiti jaringan pada model permukaan masing-masing. Dari segi 
ketepatan, tiada perubahan yang ketara di kawasan permukaan dan isi padunya. 
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Untuk kesan melicinkan jaringan, faktor pelicinan 0.8 dipilih untuk mendapatkan 
kualiti jaringan yang tinggi sebanyak 87.53 % dan 86.68 % bagi tulang kortikal 
dan kanselus. Bagi kawalan saiz segi tiga, panjang pinggiran kawalan 0.5 mm 
telah diambil untuk menghasilkan 92.35 % dan 92.09 % mewakili peratusan 
kualiti jaringan yang tinggi bagi tulang kortikal dan tulang kanselus. Dari segi 
ketepatan model, kawasan permukaan dan isi padu tulang kortikal dan kanselus 
menpunyai perubahan kurang daripada 0.15 % dan 0.25 % berbanding dengan 
model awal. Dalam pengoptimuman RSM, kualiti jaringan optimum bagi  tulang 
kortikal dan kanselus adalah sebanyak 90.74 % dan 89.67 %. Kesimpulannya, 
kualiti jaringan dan ketepatan model menunjukkan hasil yang menjanjikan 
dengan proses triangulasi semula dan optimal model yang berkualiti tinggi 
didapati. 
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CHAPTER 1

INTRODUCTION

1.1 Human Wrist Joint

The human wrist joint is an essential joint of the upper extremity and plays a 
significant role in maintaining a normal daily life. It links the forearm to the hand. 
Unlike others bones joint like hip, elbow, shoulder, ankle and knee, wrist joint is 
one of the most complex joint in the anatomy of human. A healthy wrist joint 
should able to perform a normal functional range of motion. These movements 
of the wrist joint are separated into three categories which flexion-extension, 
radial-ulna deviation and forearm pronation-supination. Figure 1.1 illustrates 
these three degrees of freedom.

Figure 1.1 : Palmar view of the right wrist showing anatomical directions 
and rotations (SirkettMullineux et al., 2004)
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1.1.1  Anatomy of Wrist Joint 
 
 
Wrist joint comprises of multiple articulations of the eight carpal bones with the 
distal radius and ulna. The carpal bones are separated into two rows, which are 
the proximal and distal. The proximal row is formed by scaphoid, lunate, pisiform 
and triquetrum while the distal row consists of trapezoid, trapezium, hamate and 
capitate (Bajuri & Kadir, 2012; Gislason et al., 2009).  

 
 

The wrist consists of three main joints which are midcarpal joint, radiocarpal joint 
and distal radioulnar joint. The most movement and critical articulation in the joint 
is the radiocarpal joint, which is a synovial articulation formed by the distal end 
of the radius and the scaphoid, lunate and triquetrum (Bajuri & Kadir, 2012; 
Shepherd & Johnstone, 2002, 2005). 

 
 

 
 

Figure 1.2 : (a) Wrist joint features; (b) the bones; and (c) the X-ray view 
(Pal, 2014) 
 
 
1.1.2  Common Wrist Problems 
 
 
The most common causes of wrist pain are due to highly frequency, duration and 
intensity activities. For examples, certain leisure, and working activities such as 
typing, sewing, cooking, and etc. in longer period and same routine of 
movements may be the factors that cause in wrist pain. Wrist injuries that caused 
by sudden impacts may leads to bone fracture. Besides that, wrist injuries are 
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very common in many sports; either involves repetitive stress or impacts. These 
sports can be consisting of boxing, rugby, badminton, tennis, golf, bowling and 
etc. (Pereira, 2015). Also, some wrist fractures are caused by osteoporosis. In 
other hand, sprains and strains, tendinitis, arthritis and gout are the common 
causes of wrist pain.  

 
 

Meanwhile, Rheumatoid Arthritis is the most common skeletal disease occurred 
in the wrist joint (Bajuri et al., 2011; Stegeman et al., 2005). Patients with this 
wrist disease suffered severe pain, deformity and unable to perform normal 
range of motion. Due to the weakened and damaged ligaments, articular 
cartilages, tendons, joint capsule and together with eroded bones which unable 
to full support within the bones, eventually the wrist joint becomes unstable 
(Bajuri, et al., 2011; Shepherd & Johnstone, 2002; Stegeman, et al., 2005). 
 
 
1.2   Computer-aided Reverse Engineering 
 
 
The process of engineering mainly focuses in designing, manufacturing, 
assembling and maintaining systems and products. Engineering can be divided 
into two types: forward engineering (FE) and reverse engineering (RE). The 
definition of the terms FE and RE are strongly dependent on the end-use 
applications and the field of study. Forward engineering usually can be defined 
as the conventional process of building an original part or total product with own 
ideas, innovative and logically. Meanwhile, reverse engineering is another way 
round. It can be defined as a process of duplicating and existing part, 
subassembly or product, without any technical details such as drawings, bill-of-
material, or without engineering data (Chikofsky & Cross, 1990; Hieu, et al., 2010; 
Raja & Fernandes, 2007; Wang, 2011).  

 
 

Reverse engineering is a multidisciplinary applied science and almost can be 
applicable to every case of fields (Wang, 2011). It is now widely used in many 
areas such as industrial, design and manufacturing, automotive, artistic and 
architectural, software engineering and biomedical (Raja & Fernandes, 2007; 
Šagi et al., 2015; Wang, 2011). In terms of cost and time consuming, this method 
is more preferable than the conventional engineering because it is less 
expensive and time saving in designing part especially in creating a complex 
geometrical model (Raja & Fernandes, 2007; Šagi, et al., 2015). According to 
authors, the definition of computer-aided reverse engineering is a technique to 
create a geometric 3-D model by digitizing the scanned data to form multiple 3-
D points or re-triangulate mesh from the scanned object (Raja & Fernandes, 
2007). This process can be described as follow in Figure 1.3. 
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Figure 1.3 : A flowchart for modeling 3D triangular mesh models with 
different scan data input. (a) Point cloud data as the input. (b) 2-D scan 
images as the input (Raja & Fernandes, 2007) 
 
 
1.3   Three Dimensional Geometric Modeling 
 
 
A three dimensional (3D) geometric model is a digital representation consists of 
geometry data information formed in virtual environment which can be then used 
by computer-aided design, manufacturing and engineering (CAD/CAM/CAE) 
applications (Relvas et al., 2011; Šagi, et al., 2015). 3D geometric modeling has 
been widely used in biomedical with the aid of reverse engineering. Generally, 
patient data or biomedical objects are required in the modeling of 3D geometric 
models. The reconstruction of 3D models normally involved anatomical structure, 
tissues organs, medical implants, surgical planning and biomedical research 
(Hieu et al., 2010; Šagi, et al., 2015).  
 
 
Before 3D geometric modeling of the object is ready for visualization, data 
exchange or manufacturing applications, the geometrical model has to be 
discretized into a 3D polygons mesh or NURBS mesh either from the input of 
point clouds or 2D image planes. For data exchange, different output files are 
converted for different applications purposes. (Bénière et al., 2013; Hieu, et al., 
2010). 
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1.4   Type of Elements 
 
 
There are many type elements available such as triangle and quadrilateral as 
surface mesh in 2D while tetrahedron, hexahedron, pyramid, prism with 
triangular base and arbitrary polyhedron as solid mesh in 3D. Figure 1.4 shows 
different type of elements available. 
 
 

 
 

Figure 1.4 : Type of different elements available (Bakker, 2013) 
 
 
Triangle is the simplest polygon that formed with three vertices and three edges 
connected to each other. Triangular surface mesh is more prefer in geometric 
modeling because of its properties to represent geometries of objects (Hieu, et 
al., 2010). Besides that, it can easily converts to tetrahedral mesh. Due to its 
simple, flexible and quite strong adaptability to complicated boundaries 
properties, tetrahedral mesh are widely used to modeling complex geometries 
objects for numerical simulations (Sun et al., 2010).  
 
 
1.5   Problem Statements 
 
 
The human wrist joint is one of the most complex joint bones that play a 
significant role in maintaining normal daily life activities. Although there have 
been extensive research into the anatomy of the wrist and its separates 
components, the biomechanics of the wrist still has a long way to study and 
understood deeply. Developing a 3 dimensional wrist joint remains high 



© C
OPYRIG

HT U
PM

challenges due to the complex geometry, large amount of articulations, non-
linear properties of supporting soft tissue structures and the inter-relationship 
between all of these components. Therefore, there was noticeably lack of 
literature concerning wrist joint finite element modeling compared to other simple 
joint bones. Additionally, software and hardware computational speed was one 
of the factors leads to less research studies on this field for past decades 
(Gíslason et al., 2010). 
 
 
With the advanced technology recently, reverse engineering was introduced to 
the biomechanical industry, creating a full, geometrically accurate and models 
are more feasible using medical image processing method. However, (Hieu, et 
al., 2010) claimed that it was hard to adequately meet the requirements in data 
processing and geometrical modeling works with a single software. 
Consequently, it depends on the end-use application on the selection of the 
software because the processes of geometrical modeling and data exchange 
among the packages are very complex (Hieu, et al., 2010). 
 
 
The authors claimed that converting triangular surface mesh to tetrahedral (solid 
mesh) outside finite element solver was way easily and better control of the 
density and quality of the surface mesh. Besides, less works to be done after 
imported the model into finite element solver. Hence, this made the process more 
time saving without losing the geometrical integrity (Gíslason, et al., 2010). 
 
 
A tetrahedral mesh is basically formed by using a triangular mesh boundary and 
fill in with volume. If a self-intersection occurred in the boundary of triangular 
mesh, the mesh could not performed a well-defined volumetric mesh, and the 
tetrahedral mesh generator may create severely distorted elements or even fail 
to create a mesh at all. Therefore, it is necessarily to remove a self-intersection 
in a triangular mesh (Yamakawa & Shimada, 2009). 
 
 
Moreover, most of scanned geometry model generated by using image-based 
method were saved in stereolithography (STL) file format often contained 
irregular, highly skewed and too dense of triangles. Such triangulation effectively 
prevents the creation of a good volume mesh. Improper surface mesh could not 
be used in numerical analysis such as finite element analysis (FEA) and 
computational fluid dynamics analysis (CFD) because of the mesh quality of the 
triangles were not sufficient to run an accurate simulation analysis (Magne, 2007). 
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1.6   Objectives 
 
 
The aim of the study is to develop a complex 3D geometric CAD model of human 
wrist joint with high quality triangular surface meshes for future numerical 
simulation research purpose. 
 
 
The objectives of this study are as follows: 
 

1. To construct 3D human wrist joint CAD model which contained cortical 
and cancellous bones using image-based processing method. 
 

2. To investigate the effects of triangle reduction, mesh smoothing and 
control size of triangle mesh with respect to the accuracy and mesh 
quality of the wrist joint model. 

 
3. To optimize high quality triangular mesh using response surface 

methodology (RSM).  
 
 
1.7   Scope of Study 
 
 
First, all of the experiments in this research were performed using computational 
commercials software only. The commercials software that are 3D Doctor (Able 
Software Corp), Geomagic studio (Raindrop Inc.), Materialise 3-matic 
(Materialise, NV Belgium) and Design Expert 6.0 (Stat-Ease). No experiment in 
vivo was tested in the research. Only CT-scan data of a human wrist joint was 
used as resource in developing a 3D geometric wrist joint model. The CT-scan 
data was provided from Hospital Serdang, Selangor. The human wrist joint was 
assumed to be natural and healthy. The reconstruction of the geometric wrist 
joint model was only involved bones. Other tissues like cartilages and ligaments 
were neglected. The geometric wrist joint model was a triangular surface mesh 
model which means it was a shell model. Algorithms development and 
generation of volumetric mesh were not involved in this research. Mainly, this 
research was focused on calculations of mesh quality based on radius ratios of 
the triangle quality metric which found in computer software (Materialise 3-Matic). 
The re-triangulation parameters that are used in the study are geometrical error, 
smoothing factor and control length of a triangle which also provided in the 
computer software (Materialise 3-Matic).  In order to preserve for good quality 
mesh, the parameters setting for re-triangulation process was set at 0.4 in the 
Materialise 3-Matic software so that mesh quality below 0.4 will not create on the 
3D CAD model. Mesh quality of a triangle below radius ratios of 0.4 (<0.4) is 
considered low quality mesh while mesh quality of a triangle equal or above 0.7 
to 1.0 (0.7 ≤ mesh quality ≤ 1.0) is considered as high quality mesh.  Mesh 
convergence study was out of the scope of this study. For future research, this 
model can be used for finite element analysis simulation by converting it into 
volumetric mesh model.  
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1.8   Overview of the Study 
 
 
In chapter one, a brief introduction is described about the human wrist joint, 
computer-aided reverse engineering, three dimensional geometric modeling, 
definition of triangulation mesh and mesh quality.  In chapter two, previous 
studies related to the geometrical modeling using reverse engineering method 
and its biological applications are reviewed. Besides that, this chapter is also 
reviewed some previous works related on modeling of human wrist joint and 
other joint like knee, hip, ankle, shoulder, etc. On the other hand, mesh quality 
assessment of a triangular mesh, re-triangulation method and optimization study 
via response surface methodology are discussed in details. 
 
 
Next, in chapter three it begins with a brief introduction about the research 
methodology and then by describing the work flow of reconstruction of human 
wrist joint model. In the subsequent experiments, three dimensional CAD 
modeling using NURBS fitting method after the surface model is repaired, 
smoothed and refined. After that, Re-triangulation process is taken place with 
the effects of triangle reduction, mesh smoothing and control size of triangle 
mesh. Optimization via response surface methodology is employed in the final 
of this chapter. 
 
 
In chapter 4, results throughout the study are discussed in particular. It begins 
with the reconstruction of 3D human wrist bones model. Then it follows by the 
discussion about the influences of triangle reduction, mesh smoothing and 
control size of triangle mesh in aspects of mesh quality and validation of the 
model based on surface area and volumes after re-triangulation process process. 
Lastly, findings in the development of regression model, parameter study and 
optimization of mesh quality via response surface methodology for each cortical 
and cancellous bones are discussed in details. 
 
 
In the final chapter, conclusion of the study is made and possible 
recommendation for future research is listed. 
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