
 561

Journal of ICT, 23, No. 4 (October) 2024, pp: 561-592

https://e-journal.uum.edu.my/index.php/jict

JOURNAL OF INFORMATION AND
COMMUNICATION TECHNOLOGY

How to cite this article:
Badarul Azam, A. S., Jumaat, A. K., Badarul Azam, A. B., Mohammad Sabri,
N. A. S., Yahaya, A. M., Ismail, A. T., Abdul Razak, M. A., Maasar, M. A., &
Laham, M. F.(2024). Restoration and segmentation of Old Jawi Manuscripts using
variational image inpainting and active contour models. Journal of Information and
Communication Technology, 23(4), 561­592. https://doi.org/10.32890/jict2024.23.4.1

Restoration and Segmentation of Old Jawi
Manuscripts using Variational Image

Inpainting and Active Contour Models

1Akmal Shafiq Badarul Azam, 2Abdul Kadir Jumaat
3Amisha Balkis Badarul Azam 4Nur Afiqah Sabirah

Mohammad Sabri, 5Amiratul Munirah Yahaya,
6Ahmad Thaqif Ismail, 7Muhammad Anas Abdul Razak,

8Mohd Azdi Maasar & 9Mohamed Faris Laham
1School of Mathematical Sciences, College of Computing,

Informatics and Mathematics,
Universiti Teknologi MARA, Mukah, Malaysia

2,3&4School of Mathematical Sciences,
College of Computing, Informatics and Mathematics, Universiti

Teknologi MARA, Shah Alam, Malaysia
5&6Academy of Contemporary Islamic Studies,

Universiti Teknologi MARA, Shah Alam, Malaysia
7Arabic Language Department,
Academy of Language Studies,

Universiti Teknologi MARA, Mukah, Malaysia
8Mathematical Sciences Studies, College of Computing,

Informatics and Mathematics, Seremban Campus,
Universiti Teknologi MARA, Negeri Sembilan Malaysia

9Institute for Mathematical Research,
Universiti Putra Malaysia, Malaysia

2Institute for Big Data Analytics and Artificial Intelligence
Universiti Teknologi MARA, Shah Alam, Malaysia

562

Journal of ICT, 23, No. 4 (October) 2024, pp: 561-592

1akmalshafiq@uitm.edu.my
*2abdulkadir@tmsk.uitm.edu.my

2020834184@student.uitm.edu.my
 42020834632@student.uitm.edu.my

5amiratul@uitm.edu.my
6thaqif@uitm.edu.my

 7anasrazak@uitm.edu.my
8azdimaasar@tmsk.uitm.edu.my

9mohdfaris@upm.edu.my
*Corresponding author

Received: 17/3/2024 Revised: 3/9/2024 Accepted: 10/10/2024 Published: 28/10/2024

ABSTRACT

Old Jawi Manuscripts (OJM) are crucial to historical studies,
offering insights into past societies. However, degradation from
mishandling and environmental factors can impair their legibility. To
preserve OJM, image inpainting and segmentation are essential for
restoring corrupted areas and identifying text. Recently, the Gaussian
Regularization Segmentation (GRS) model has shown effectiveness
in intensity inhomogeneity grayscale image segmentation, though it
was not designed for corrupted OJM images. Therefore, this study
aimed to reformulate the GRS model to restore and segment text
from real corrupted OJM images. The methodology begins with the
incorporation of the Mumford-Shah and Bertalmio inpainting models
into the GRS model as new fitting terms, resulting in the Modified
Gaussian Regularization Segmentation Mumford-Shah (MGRSM)
model and the Modified Gaussian Regularization Segmentation
Bertalmio (MGRSB) model, respectively. MATLAB was used to
implement these models, and their performance was assessed on 30
corrupted OJM samples from Malay Ethnomathematics Research
Group, with expert evaluations and efficiency measured by average
elapsed time. The MGRSM model achieved 38.4 percent and
12.4 percent higher overall total scores from experts in terms of
segmentation accuracy compared to the GRS and MGRSB models,
respectively. While the GRS model is the fastest, the MGRSM model
provides superior accuracy, with an average processing time of 9.35
seconds, making it the most optimal for restoring and segmenting
OJM images. This approach not only enhances the preservation of

3

 563

Journal of ICT, 23, No. 4 (October) 2024, pp: 561-592

historical manuscripts but also provides a practical tool for researchers
and historians in safeguarding our cultural heritage.

Keywords: Active contour, historical document, image segmentation,
image inpainting, old Jawi manuscript.

INTRODUCTION

In the Malay realm, Jawi has persisted for millennia as a form of
writing, deeply rooted in the region’s history and intimately tied to
the arrival of Islam. Jawi is a script that utilizes Arabic letters to write
Malay and several other Malay-speaking languages (Razak, 2016;
Zainal et al., 2022). Within museums, libraries, and archives, old Jawi
manuscripts (OJM) are preserved as significant artifacts of national
heritage, containing invaluable insights into the culture and values
of historical communities. However, these manuscripts face unique
challenges in preservation, particularly in image segmentation and
restoration.

OJM are often affected by various forms of degradation, including light
exposure, which can permanently fade their colors, and environmental
factors such as heat, moisture, and microbial growth, all of which can
lead to text obscurity (Ventzas et al., 2012; Kaur et al., 2020). Unlike
other historical documents, Jawi manuscripts present additional
difficulties due to the script’s complexity in combining Arabic
characters with unique diacritics specific to Malay, complicating the
segmentation process. Furthermore, the degradation in OJMs tends
to be non-uniform, with localized damages like scratches and ink
smudging, making restoration particularly challenging (Razak, 2016).
Therefore, specialized image inpainting and segmentation techniques
are crucial to effectively preserve these precious manuscripts.

Image inpainting is the process of completing incomplete visual input
details. The primary objective is to reconstruct missing portions or
cracked images so that a casual observer cannot trace the inpainted
area (Zainal et al., 2022). Recently, image inpainting models have
been used to remove distracting objects from an image (Yu et
al., 2019), restore corrupted ancient painting images (Jaidilert &
Farooque, 2018), and fill up degraded images in ancient Indian
manuscripts (Kaur et al., 2020). While learning-based approaches by
Zhao et al. (2019) and Zhang et al. (2020) have shown promising

564

Journal of ICT, 23, No. 4 (October) 2024, pp: 561-592

results, they often rely heavily on large datasets. Additionally, user-
guided methods, such as boundary lines, extended directions, guide
regions, and image exemplars, have been explored by Ashikhmin
(2001), Hays and Efros (2023), Huang et al. (2013), and Yu et al.
(2019), but these approaches tend to be structured and lack flexibility
for content-based adaptability.

Zainal et al. (2022) applied two effective and well-known inpainting
models, namely the Mumford and Shah (1989) and Bertalmio (2001)
inpainting models, to restore OJM. They compared the Mumford and
Bertalmio inpainting models using artificially corrupted OJM images
rather than real corrupted OJM images and deliberately introduced
corruption into the OJM images before applying the image restoration
process. Figure 1 illustrates the example of how the clean OJM image
was transformed into its artificially corrupted form with a mask.

Figure 1

Example of Clean OJM Image, Mask and Corrupted OJM Image
Using Mask

(a) Clean OJM Image (b) Mask (c) Corrupted OJM Image
Using Mask

As shown in Figure 1(a), the process began with a clean OJM
image, which served as the uncorrupted reference. The image was
obtained from Malay Ethnomathematics Research Group (Kumpulan
Penyelidikan Etnomatematik Melayu, 2021). A mask shown in Figure
1(b) was then applied to simulate corruption by covering specific
areas of the clean OJM image. This masking introduced controlled
imperfections, allowing the researchers to create a corrupted OJM
image, as illustrated in Figure 1(c).

The advantage of using the procedure was that the researchers could
compute quantitative metrics such as accuracy, precision, recall, or
F1 score due to the availability of the ground truth image, which was
the clean OJM image in Figure 1(a). To compute the quantitative
metrics of the restoration models’ performance, Zainal et al. (2022)

3

and Shah (1989) and Bertalmio (2001) inpainting models, to restore OJM. They compared the Mumford
and Bertalmio inpainting models using artificially corrupted OJM images rather than real corrupted
OJM images and deliberately introduced corruption into the OJM images before applying the image
restoration process. Figure 1 illustrates the example of how the clean OJM image was transformed into
its artificially corrupted form with a mask.

Figure 1
 Example of Clean OJM Image, Mask and Corrupted OJM Image Using Mask.

(a) Clean OJM Image (b) Mask (c) Corrupted OJM Image
Using Mask

As shown in Figure 1(a), the process began with a clean OJM image, which served as the

uncorrupted reference. The image was obtained from
Malay Ethnomathematics Research Group (Kumpulan Penyelidikan Etnomatematik Melayu, 2021). A
mask shown in Figure 1(b) was then applied to simulate corruption by covering specific areas of the
clean OJM image. This masking introduced controlled imperfections, allowing the researchers to create
a corrupted OJM image, as illustrated in Figure 1(c).

The advantage of using the procedure was that the researchers could compute quantitative metrics
such as accuracy, precision, recall, or F1 score due to the availability of the ground truth image, which
was the clean OJM image in Figure 1(a). To compute the quantitative metrics of the restoration models'
performance, Zainal et al. (2022) compared the OJM restoration outputs produced by the Mumford and
Bertalmio inpainting models with the original clean OJM images. However, models tested on artificially
corrupted images may perform differently when faced with genuine corruption. Figure 2 shows an
example of a real corrupted OJM image obtained from the Kumpulan Penyelidikan Etnomatematik
Melayu (2021) database.

Figure 2
An Example of Real Corrupted OJM Image.

The image in Figure 2 is an example of an OJM image that had already been corrupted by vertical
scratches on the left. In this study, the Mumford-Shah and Bertalmio image inpainting models were
employed to restore the real corrupted OJM images. The Mumford-Shah inpainting model maintains
smoothness while preserving sharp edges, making it ideal for image restoration. Its robust mathematical
framework and efficient approximations, like the Ambrosio-Tortorelli method, allow for rapid and
precise inpainting, even in images with intricate details (Zainal et al., 2022). Meanwhile, the Bertalmio
inpainting model excels at reconstructing damaged or missing regions by using anisotropic diffusion,
which effectively propagates surrounding information while preserving the natural structure and
boundaries of the image (Barbu, 2018).

3

and Shah (1989) and Bertalmio (2001) inpainting models, to restore OJM. They compared the Mumford
and Bertalmio inpainting models using artificially corrupted OJM images rather than real corrupted
OJM images and deliberately introduced corruption into the OJM images before applying the image
restoration process. Figure 1 illustrates the example of how the clean OJM image was transformed into
its artificially corrupted form with a mask.

Figure 1
 Example of Clean OJM Image, Mask and Corrupted OJM Image Using Mask.

(a) Clean OJM Image (b) Mask (c) Corrupted OJM Image
Using Mask

As shown in Figure 1(a), the process began with a clean OJM image, which served as the

uncorrupted reference. The image was obtained from
Malay Ethnomathematics Research Group (Kumpulan Penyelidikan Etnomatematik Melayu, 2021). A
mask shown in Figure 1(b) was then applied to simulate corruption by covering specific areas of the
clean OJM image. This masking introduced controlled imperfections, allowing the researchers to create
a corrupted OJM image, as illustrated in Figure 1(c).

The advantage of using the procedure was that the researchers could compute quantitative metrics
such as accuracy, precision, recall, or F1 score due to the availability of the ground truth image, which
was the clean OJM image in Figure 1(a). To compute the quantitative metrics of the restoration models'
performance, Zainal et al. (2022) compared the OJM restoration outputs produced by the Mumford and
Bertalmio inpainting models with the original clean OJM images. However, models tested on artificially
corrupted images may perform differently when faced with genuine corruption. Figure 2 shows an
example of a real corrupted OJM image obtained from the Kumpulan Penyelidikan Etnomatematik
Melayu (2021) database.

Figure 2
An Example of Real Corrupted OJM Image.

The image in Figure 2 is an example of an OJM image that had already been corrupted by vertical
scratches on the left. In this study, the Mumford-Shah and Bertalmio image inpainting models were
employed to restore the real corrupted OJM images. The Mumford-Shah inpainting model maintains
smoothness while preserving sharp edges, making it ideal for image restoration. Its robust mathematical
framework and efficient approximations, like the Ambrosio-Tortorelli method, allow for rapid and
precise inpainting, even in images with intricate details (Zainal et al., 2022). Meanwhile, the Bertalmio
inpainting model excels at reconstructing damaged or missing regions by using anisotropic diffusion,
which effectively propagates surrounding information while preserving the natural structure and
boundaries of the image (Barbu, 2018).

3

and Shah (1989) and Bertalmio (2001) inpainting models, to restore OJM. They compared the Mumford
and Bertalmio inpainting models using artificially corrupted OJM images rather than real corrupted
OJM images and deliberately introduced corruption into the OJM images before applying the image
restoration process. Figure 1 illustrates the example of how the clean OJM image was transformed into
its artificially corrupted form with a mask.

Figure 1
 Example of Clean OJM Image, Mask and Corrupted OJM Image Using Mask.

(a) Clean OJM Image (b) Mask (c) Corrupted OJM Image
Using Mask

As shown in Figure 1(a), the process began with a clean OJM image, which served as the

uncorrupted reference. The image was obtained from
Malay Ethnomathematics Research Group (Kumpulan Penyelidikan Etnomatematik Melayu, 2021). A
mask shown in Figure 1(b) was then applied to simulate corruption by covering specific areas of the
clean OJM image. This masking introduced controlled imperfections, allowing the researchers to create
a corrupted OJM image, as illustrated in Figure 1(c).

The advantage of using the procedure was that the researchers could compute quantitative metrics
such as accuracy, precision, recall, or F1 score due to the availability of the ground truth image, which
was the clean OJM image in Figure 1(a). To compute the quantitative metrics of the restoration models'
performance, Zainal et al. (2022) compared the OJM restoration outputs produced by the Mumford and
Bertalmio inpainting models with the original clean OJM images. However, models tested on artificially
corrupted images may perform differently when faced with genuine corruption. Figure 2 shows an
example of a real corrupted OJM image obtained from the Kumpulan Penyelidikan Etnomatematik
Melayu (2021) database.

Figure 2
An Example of Real Corrupted OJM Image.

The image in Figure 2 is an example of an OJM image that had already been corrupted by vertical
scratches on the left. In this study, the Mumford-Shah and Bertalmio image inpainting models were
employed to restore the real corrupted OJM images. The Mumford-Shah inpainting model maintains
smoothness while preserving sharp edges, making it ideal for image restoration. Its robust mathematical
framework and efficient approximations, like the Ambrosio-Tortorelli method, allow for rapid and
precise inpainting, even in images with intricate details (Zainal et al., 2022). Meanwhile, the Bertalmio
inpainting model excels at reconstructing damaged or missing regions by using anisotropic diffusion,
which effectively propagates surrounding information while preserving the natural structure and
boundaries of the image (Barbu, 2018).

 565

Journal of ICT, 23, No. 4 (October) 2024, pp: 561-592

compared the OJM restoration outputs produced by the Mumford and
Bertalmio inpainting models with the original clean OJM images.
However, models tested on artificially corrupted images may perform
differently when faced with genuine corruption. Figure 2 shows an
example of a real corrupted OJM image obtained from the Kumpulan
Penyelidikan Etnomatematik Melayu (2021) database.

Figure 2

An Example of Real Corrupted OJM Image

The image in Figure 2 is an example of an OJM image that had
already been corrupted by vertical scratches on the left. In this study,
the Mumford-Shah and Bertalmio image inpainting models were
employed to restore the real corrupted OJM images. The Mumford-
Shah inpainting model maintains smoothness while preserving sharp
edges, making it ideal for image restoration. Its robust mathematical
framework and efficient approximations, like the Ambrosio-Tortorelli
method, allow for rapid and precise inpainting, even in images with
intricate details (Zainal et al., 2022). Meanwhile, the Bertalmio
inpainting model excels at reconstructing damaged or missing
regions by using anisotropic diffusion, which effectively propagates
surrounding information while preserving the natural structure and
boundaries of the image (Barbu, 2018).

Image segmentation is one of the most intricate and crucial challenges
in image processing. It involves dividing an image into multiple
components (Azam et al., 2023). This task has become essential to
a wide range of image-processing applications, including shape
boundary recognition (Othman et al., 2016), medical imaging
(Burrows et al., 2024; Mohd Sharif et al., 2024), and machine learning
(Yousef et al., 2023). As in text recognition applications, image
segmentation is required to binarize the input image and separate the
text from the background. One of the successful image segmentation

3

and Shah (1989) and Bertalmio (2001) inpainting models, to restore OJM. They compared the Mumford
and Bertalmio inpainting models using artificially corrupted OJM images rather than real corrupted
OJM images and deliberately introduced corruption into the OJM images before applying the image
restoration process. Figure 1 illustrates the example of how the clean OJM image was transformed into
its artificially corrupted form with a mask.

Figure 1
 Example of Clean OJM Image, Mask and Corrupted OJM Image Using Mask.

(a) Clean OJM Image (b) Mask (c) Corrupted OJM Image
Using Mask

As shown in Figure 1(a), the process began with a clean OJM image, which served as the

uncorrupted reference. The image was obtained from
Malay Ethnomathematics Research Group (Kumpulan Penyelidikan Etnomatematik Melayu, 2021). A
mask shown in Figure 1(b) was then applied to simulate corruption by covering specific areas of the
clean OJM image. This masking introduced controlled imperfections, allowing the researchers to create
a corrupted OJM image, as illustrated in Figure 1(c).

The advantage of using the procedure was that the researchers could compute quantitative metrics
such as accuracy, precision, recall, or F1 score due to the availability of the ground truth image, which
was the clean OJM image in Figure 1(a). To compute the quantitative metrics of the restoration models'
performance, Zainal et al. (2022) compared the OJM restoration outputs produced by the Mumford and
Bertalmio inpainting models with the original clean OJM images. However, models tested on artificially
corrupted images may perform differently when faced with genuine corruption. Figure 2 shows an
example of a real corrupted OJM image obtained from the Kumpulan Penyelidikan Etnomatematik
Melayu (2021) database.

Figure 2
An Example of Real Corrupted OJM Image.

The image in Figure 2 is an example of an OJM image that had already been corrupted by vertical
scratches on the left. In this study, the Mumford-Shah and Bertalmio image inpainting models were
employed to restore the real corrupted OJM images. The Mumford-Shah inpainting model maintains
smoothness while preserving sharp edges, making it ideal for image restoration. Its robust mathematical
framework and efficient approximations, like the Ambrosio-Tortorelli method, allow for rapid and
precise inpainting, even in images with intricate details (Zainal et al., 2022). Meanwhile, the Bertalmio
inpainting model excels at reconstructing damaged or missing regions by using anisotropic diffusion,
which effectively propagates surrounding information while preserving the natural structure and
boundaries of the image (Barbu, 2018).

566

Journal of ICT, 23, No. 4 (October) 2024, pp: 561-592

models is the variational active contour model (ACM). The variational
ACM minimizes the energy functional using variational calculus. It
effectively drives the motion of contour curves towards the boundaries
of desired objects and generates satisfying segmentation results
for images with intensity features of varying intensities. This study
utilized ACM due to its flexibility and adaptability. These models can
dynamically adjust contours, handle complex boundaries, and easily
integrate customized constraints and priors into the energy functionals,
all within clear and understandable mathematical formulations (Gui et
al., 2023).

ACM can be divided into two categories, which are the region-based
and edge-based approaches (Ali et al., 2018). In this research, we
focused on active contour region-based approaches as these methods
outperform the edges-based approach for images with noise and fuzzy
boundaries (Weng et al., 2021). The Chan-Vese model, created by
Chan and Vese (2001), is one of the prominent region-based active
contour models. This piecewise constant model extends the Mumford-
Shah model that Mumford and Shah (1989) developed to a simple
numerical representation without approximation. However, this
model struggles with images with varying intensity levels, resulting
in limited segmentation performance. To overcome this limitation,
piecewise smooth models have been proposed, but they are often
slow due to their complex procedures (Tsai et al., 2001; Vese & Chan,
2002).

The Local Image Fitting (LIF) model, introduced by Zhang et al. (2010),
has gained significant traction in the field. This model effectively
addresses the challenges posed by images with varying intensity
levels and enhances segmentation speed. The LIF model achieves
this by analyzing the differences between the original grayscale
image and a locally fitted version. Additionally, the integration of
a Gaussian function for variational level set regularization further
boosts processing efficiency. The widespread adoption of the LIF
model and Gaussian function among researchers is a testament to
their effectiveness in segmenting images with varying intensity levels
(Biswas & Hazra, 2021; Fang et al., 2021; Iqbal et al., 2020; Soomro
et al., 2019; Yang et al., 2020). However, all these ACM models
can produce over-segmented results when the region of interest
(foreground) has intensities nearly identical to those of the background
and when the contours are indistinct (Badshah et al., 2020).

 567

Journal of ICT, 23, No. 4 (October) 2024, pp: 561-592

To address the above problem, Saibin and Jumaat (2023) introduced
the Gaussian Regularization Segmentation (GRS) model, an active
contour region-based approach for segmenting regions of interest
in grayscale images. They integrated local image-fitting energy
and a distance function into the energy minimization process and
applied a Gaussian function to regularize the level set function. This
combination enables the GRS model to effectively handle images
with varying intensity levels at low computational complexity, even
when the targeted objects are close to neighboring regions. However,
the GRS model may not perform optimally on OJM images compared
to general image types due to their unique characteristics, such as
intricate script, non-uniform degradation, and localized damage, such
as scratches. Numerous segmentation models have been utilized in
the literature on OJM to separate the text from the background. These
include the thresholding method (Baihaqi et al., 2024; Devadass et al.,
2021; Ismail & Abdullah, 2014; Mahmor et al., 2018; Saddami et al.,
2017; Som et al., 2011; Yahya et al., 2018; Zulcaffle et al., 2010) and
the combination of vertical histogram projection and sliding window
technique (Razak, 2016). To the best of our knowledge, no researcher
had applied a variational active contour model to segment the text of
the OJM images from its background.

Motivated by this, we proposed modified active contour region-based
models to effectively restore and segment the text (foreground) in real
corrupted OJM images. This can be accomplished by reformulating
the GRS model, where the information from the image inpainting
techniques, namely the Mumford-Shah and Bertalmio inpainting
models, were substituted in the fitting term of the GRS model. By
modifying the GRS model, image quality and segmentation accuracy
were anticipated to improve. The upcoming section outlines the related
works and research methodology used to reformulate the proposed
models. Following that, the experimental results of both the existing
and proposed models were discussed.

RELATED WORKS

This section reviews the existing literature on segmentation
techniques for OJM images, focusing on various approaches and
their effectiveness. It highlights the strengths and limitations of these
methods, providing a context for the proposed modifications to the
GRS model. Table 1 summarizes key research studies that focused on
segmentation methods for OJM.

568

Journal of ICT, 23, No. 4 (October) 2024, pp: 561-592

Ta
bl

e
1

Su
m

m
ar

y
of

 R
ec

en
t P

re
vi

ou
s W

or
ks

 o
n

O
JM

 S
eg

m
en

ta
tio

n

A
ut

ho
r (

Ye
ar

)
Se

gm
en

ta
tio

n
M

et
ho

d
St

re
ng

th
Li

m
ita

tio
n

Zu
lc

af
fle

 e
t a

l.
(2

01
0)

N
ov

el
 th

re
sh

ol
di

ng
 a

lg
or

ith
m

 w
ith

 m
or

ph
ol

og
ic

al

op
er

at
io

ns
 a

nd
 it

er
at

iv
e

te
ch

ni
qu

es
Su

pe
rio

r p
er

fo
rm

an
ce

 a
ga

in
st

 n
oi

se
;

 e
nh

an
ce

s t
ex

t c
la

rit
y

In
ef

fe
ct

iv
e

fo
r h

an
dl

in
g

co
rr

up
te

d
pa

rts
 a

s
no

 im
ag

e
in

pa
in

tin
g

te
ch

ni
qu

e
w

as
 u

se
d

So
m

 e
t a

l.
(2

01
1)

Th
re

sh
ol

di
ng

 m
et

ho
ds

: O
ts

u
(g

lo
ba

l),
 N

ib
la

ck
,

an
d

Sa
uv

ol
a

(lo
ca

l)
Lo

ca
l t

hr
es

ho
ld

in
g

en
ha

nc
es

 re
ad

ab
ili

ty
,

pa
rti

cu
la

rly
 N

ib
la

ck
Th

e
te

ch
ni

qu
e

se
gm

en
ts

 th
e

Ja
w

i t
ex

t a
s

w
el

l a
s t

he
 im

ag
e

no
is

e

Is
m

ai
l a

nd
 A

bd
ul

la
h

(2
01

4)
C

om
bi

na
tio

n
of

 G
lo

ba
l e

nh
an

ce
m

en
t a

nd
 lo

ca
l

ad
ap

tiv
e

th
re

sh
ol

di
ng

O
ut

pe
rf

or
m

s e
st

ab
lis

he
d

m
et

ho
ds

;
 e

nh
an

ce
s r

ea
da

bi
lit

y
St

ru
gg

le
s w

ith
 n

oi
sy

 im
ag

es
; i

ne
ffe

ct
iv

e
fo

r h
an

dl
in

g
co

rr
up

te
d

pa
rt

R
az

ak
 (2

01
6)

Ve
rti

ca
l h

is
to

gr
am

 p
ro

je
ct

io
n

an
d

sl
id

in
g

w
in

do
w

te

ch
ni

qu
e

H
ig

h
se

gm
en

ta
tio

n
ac

cu
ra

cy
; i

nn
ov

at
iv

e
ap

pr
oa

ch
Se

gm
en

ts
 im

ag
e

no
is

e/
co

rr
up

te
d

pa
rts

al

on
g

w
ith

 th
e

ta
rg

et
 re

gi
on

s (
Ja

w
i t

ex
t)

Sa
dd

am
i e

t a
l.

(2
01

7)
Im

pr
ov

ed
 th

re
sh

ol
di

ng
: D

yn
am

ic
 b

ou
nd

ar
y

ca
lc

ul
at

io
n

ba
se

d
on

 st
an

da
rd

 d
ev

ia
tio

n
Ef

fe
ct

iv
e

in
-te

xt
 se

gm
en

ta
tio

n;
 re

du
ce

s f
al

se

fo
re

gr
ou

nd
 p

ix
el

s
Po

te
nt

ia
l i

nt
ro

du
ct

io
n

of
 n

oi
se

 in
 e

m
pt

y
ar

ea
s;

 se
gm

en
ts

 n
oi

se
/c

or
ru

pt
ed

 p
ar

ts

al
on

g
w

ith
 th

e
ta

rg
et

 re
gi

on
s (

Ja
w

i t
ex

t)

Ya
hy

a
et

 a
l.

(2
01

8)
A

da
pt

iv
e

Th
re

sh
ol

d
Fi

lte
rin

g
Pr

oc
es

s (
PA

M
)

H
ig

he
r p

re
ci

si
on

 ra
te

; e
ffe

ct
iv

e
te

xt
 e

nh
an

ce
m

en
t

D
oe

s n
ot

 in
co

rp
or

at
e

im
ag

e
in

pa
in

tin
g

te
ch

ni
qu

es
 to

 re
st

or
e

co
rr

up
te

d
ar

ea
s

M
ah

m
or

 e
t a

l.
(2

01
8)

G
lo

ba
l t

hr
es

ho
ld

in
g

m
et

ho
ds

: H
ua

ng
, K

ap
ur

,
O

ts
u

an
d

Ye
n

Ye
n

m
et

ho
d

pr
ov

id
es

 th
e

be
st

 re
su

lts
 fo

r
di

st
in

gu
is

hi
ng

 fo
re

gr
ou

nd
 a

nd
 b

ac
kg

ro
un

d
Pe

rf
or

m
an

ce
 m

ay
 v

ar
y

ba
se

d
on

 im
ag

e
ch

ar
ac

te
ris

tic
s;

 so
m

e
m

et
ho

ds
 le

ss

ef
fe

ct
iv

e
in

 lo
w

 c
on

tra
st

 si
tu

at
io

ns
;

In
ef

fe
ct

iv
e

fo
r h

an
dl

in
g

co
rr

up
te

d
pa

rt
as

no

 im
ag

e
in

pa
in

tin
g

te
ch

ni
qu

e
w

as
 u

se
d

D
ev

ad
as

s e
t a

l.
(2

02
1)

C
om

bi
na

tio
n

of
 th

re
sh

ol
di

ng
 a

nd
 lo

ca
l i

m
ag

e
en

ha
nc

em
en

t m
et

ho
d

Si
m

pl
e

an
d

fa
st

 c
om

pu
ta

tio
n

se
gm

en
ta

tio
n

In
ef

fe
ct

iv
e

fo
r h

an
dl

in
g

co
rr

up
te

d
pa

rt
as

no

 im
ag

e
in

pa
in

tin
g

te
ch

ni
qu

e
w

as
 u

se
d

B
ai

ha
qi

 e
t a

l.
(2

02
4)

C
om

bi
na

tio
n

of
 th

re
sh

ol
di

ng
 m

et
ho

d
w

ith

hi
st

og
ra

m
 e

qu
al

iz
at

io
n

m
et

ho
d

Th
e u

se
 o

f h
ist

og
ra

m
 eq

ua
liz

at
io

n
m

et
ho

d
im

pr
ov

es

im
ag

e q
ua

lit
y

by
 el

im
in

at
in

g
fo

xi
ng

 an
d

im
pr

ov
in

g
th

e c
on

tra
st

be
tw

ee
n

te
xt

 an
d

ba
ck

gr
ou

nd

Se
gm

en
ts

 im
ag

e
no

is
e/

co
rr

up
te

d
pa

rts

al
on

g
w

ith
 th

e
ta

rg
et

 re
gi

on
s (

Ja
w

i t
ex

t)

 569

Journal of ICT, 23, No. 4 (October) 2024, pp: 561-592

Based on Table 1, thresholding is the most commonly used method
for segmenting Jawi text (foreground) from the background. Som et
al. (2011) evaluated various thresholding techniques, including the
Otsu global method and local methods by Niblack and Sauvola. Their
experimental results showed that local methods, particularly Niblack,
outperformed global methods in terms of readability, character
recognition, and computational efficiency. However, the technique
segments the Jawi text as well as the image noise.

In addition to the findings of Som et al. (2011), Mahmor et al. (2018)
explored global thresholding methods, including Huang, Kapur,
Otsu, and Yen, specifically for the Terengganu Inscribed Stone.
Their study concluded that the Yen method yielded the best results
for distinguishing foreground from background in Jawi manuscripts.
However, they also noted that the effectiveness of these methods
could vary depending on image characteristics, particularly in low-
contrast situations.

To improve segmentation accuracy, many researchers have focused
on refining thresholding techniques. For example, Zulcaffle et al.
(2010) introduced a novel algorithm that combines morphological
operations with iterative thresholding techniques, outperforming
traditional methods like Niblack and Sauvola, as validated by visual
inspection and quantitative metrics. A key strength of this approach is
its resilience to various types of noise in degraded OJM, significantly
enhancing text clarity. Additionally, Saddami et al. (2017) proposed
an improved thresholding method for segmentation, enhancing the
NICK (an improved version of Niblack) method by dynamically
calculating boundary values for objects within window values based
on the image’s standard deviation. This method is particularly effective
in segmenting text, especially in extracting thin strokes and reducing
false foreground pixels. However, its limitation lies in the potential
introduction of noise in empty areas of the OJM images, which may
affect the overall quality of the segmentation results.

On the other hand, many researchers have combined thresholding
methods with image enhancement techniques (Devadass et al., 2021;
Ismail & Abdullah, 2014; Yahya et al., 2018). Recently, Baihaqi et
al. (2024) integrated thresholding with histogram equalization to
enhance text visibility in corrupted OJM. Histogram equalization
improves image quality by reducing foxing and increasing contrast

570

Journal of ICT, 23, No. 4 (October) 2024, pp: 561-592

between the text and background. Aside from the thresholding method,
Razak (2016) introduced a novel segmentation method that combines
vertical histogram projection with a sliding window technique. This
approach effectively segments characters in manuscripts by detecting
the spaces between characters and determining the maximum line
height for accurate segmentation.

Despite the strengths of all the image segmentation methods
mentioned above, they share a standard limitation: the absence of
image inpainting techniques. Image inpainting is designed to restore
corrupted areas in images. Without this technique, the segmentation
methods also tend to segment the image noise that makes up the
corrupted areas, leading to potential inaccuracies in segmenting both
the corrupted regions and the target areas of Jawi text. Motivated
by the significant limitations of existing models in restoring and
segmenting text in real corrupted OJM images, we proposed modified
active contour region-based models. By reformulating the GRS
model to incorporate information from image inpainting techniques,
specifically the Mumford-Shah and Bertalmio models, we aimed to
address these shortcomings. This integration is anticipated to enhance
both image quality and segmentation accuracy, making it a crucial
advancement in the field of image processing and computer vision.

METHODOLOGY

In this section, the research methodology for our proposed models
was discussed. Figure 3 shows the flow of the methodology involved
in this study.

Figure 3

Research Methodology Framework

7

characters and determining the maximum line height for accurate segmentation.
Despite the strengths of all the image segmentation methods mentioned above, they share a standard

limitation: the absence of image inpainting techniques. Image inpainting is designed to restore corrupted
areas in images. Without this technique, the segmentation methods also tend to segment the image noise
that makes up the corrupted areas, leading to potential inaccuracies in segmenting both the corrupted
regions and the target areas of Jawi text. Motivated by the significant limitations of existing models in
restoring and segmenting text in real corrupted OJM images, we proposed modified active contour
region-based models. By reformulating the GRS model to incorporate information from image
inpainting techniques, specifically the Mumford-Shah and Bertalmio models, we aimed to address these
shortcomings. This integration is anticipated to enhance both image quality and segmentation accuracy,
making it a crucial advancement in the field of image processing and computer vision.

METHODOLOGY

In this section, the research methodology for our proposed models was discussed. Figure 3 shows
the flow of the methodology involved in this study.

Figure 3
Research Methodology Framework.

As shown in Figure 3, the initial step involved obtaining a set of 30 real corrupted OJM images
from Kumpulan Penyelidikan Etnomatematik Melayu (2021). Subsequently, the procedure involved
acquiring the new fitting terms of an input OJM image generated by the Mumford-Shah and Bertalmio
inpainting models. These new fitting terms were substituted into the energy minimization functional of
the GRS model to segment the text of OJM images. Finally, the segmentation results obtained were
evaluated to assess the performance of the proposed models. The following sub-section goes over each
of these processes in depth.

Data Acquisition
This research involved the segmentation of 30 real corrupted images of OJM that were obtained

from Kumpulan Penyelidikan Etnomatematik Melayu (2021). The OJM images were cropped and
resized to the size of 241 96 pixels. We remarked that all 30 cropped OJM images were originally
corrupted by scratches, as indicated in Figure 2.

Mumford-Shah Inpainting Model
The Mumford-Shah inpainting model is defined in Equation 1:

 571

Journal of ICT, 23, No. 4 (October) 2024, pp: 561-592

As shown in Figure 3, the initial step involved obtaining a set of 30 real
corrupted OJM images from Kumpulan Penyelidikan Etnomatematik
Melayu (2021). Subsequently, the procedure involved acquiring the
new fitting terms of an input OJM image generated by the Mumford-
Shah and Bertalmio inpainting models. These new fitting terms were
substituted into the energy minimization functional of the GRS model
to segment the text of OJM images. Finally, the segmentation results
obtained were evaluated to assess the performance of the proposed
models. The following sub-section goes over each of these processes
in depth.

Data Acquisition

This research involved the segmentation of 30 real corrupted images of
OJM that were obtained from Kumpulan Penyelidikan Etnomatematik
Melayu (2021). The OJM images were cropped and resized to the size
of 24196 pixels. We remarked that all 30 cropped OJM images were
originally corrupted by scratches, as indicated in Figure 2.

Mumford-Shah Inpainting Model

The Mumford-Shah inpainting model is defined in Equation 1:

(1)

where are the weights of the terms. This model
provided two outputs, which were an inpainted image and its
correlated edge image from the input image The initial two terms
assure a smooth output, whereas the last term prevents an overly
smoothing effect. Meanwhile, denotes the norm of the gradient
of the inpainted image and denotes the Euclidean length term.
The model was effectively solved by an elliptic solver and iteration
scheme. Details of the algorithm can be found in Tsai et al. (2001),
Esedoglu and Shen (2002), Shen and Chan (2002) and Schönlieb
(2015a). The algorithm was implemented in the MATLAB R2021a
software.

Bertalmio Inpainting Model

The Bertalmio inpainting model is defined as Equation 2:

(2)

8

 

 

,

2 2

\ \

min (,) ,

(,)
2 2

M

M
Mv

M
M M M

E v

E v v dx v v dx 



   



       
where 0  , 0  and 0  are the weights of the terms. This model provided two outputs, which

were an inpainted image Mv and its correlated edge image  from the input image v . The initial two
terms assure a smooth output, whereas the last term prevents an overly smoothing effect. Meanwhile,

Mv denotes the norm of the gradient of the inpainted image and  denotes the Euclidean length

term. The model was effectively solved by an elliptic solver and iteration scheme. Details of the
algorithm can be found in Tsai et al. (2001), Esedoglu and Shen (2002), Shen and Chan (2002) and
Schönlieb (2015a). The algorithm was implemented in the MATLAB R2021a software.

Bertalmio Inpainting Model
The Bertalmio inpainting model is defined as Equation 2:

((| |))t b b q b bv v v v g v v       .

The first term was the transport equation, which was utilized to provide a smooth solution, and the
second term was the anisotropic diffusion equation, which prevented level lines from crossing with a
small weight parameter 0qv  . The model was solved iteratively using the finite difference scheme.

Details of the algorithm are discussed in Bertalmio (2001) and Schönlieb (2015b). The MATLAB
R2021a software was used to implement this model.

Formulation of the Proposed Models
In this sub-section, we briefly explained how we reformulated the existing GRS model introduced

by Saibin and Jumaat (2023). Generally, the GRS model was reformulated according to the following
steps shown in Figure 4 as follows:

Figure 4
Steps to Reformulate the GRS Model with Image Inpainting Models.

Assume that a marker set   * *, ,1C w x y n      with 1 3n  marker points will be

placed near the boundary of a targeted object in a given image  ,v x y . This marker set C is used to

initialize the level set function. Thus, the energy GRSE minimization functional for the GRS model is
defined in Equation 3:

  

        2

1 2

min ,

1 1 () .
2

GRS

GRS
d

E

E v r H r H d H F d




    




      

14

As shown in Figure 3, the initial step involved obtaining a set of 30
real corrupted OJM images from Kumpulan Penyelidikan
Etnomatematik Melayu (2021). Subsequently, the procedure involved
acquiring the new fitting terms of an input OJM image generated by
the Mumford-Shah and Bertalmio inpainting models. These new
fitting terms were substituted into the energy minimization functional
of the GRS model to segment the text of OJM images. Finally, the
segmentation results obtained were evaluated to assess the
performance of the proposed models. The following sub-section goes
over each of these processes in depth.

Data Acquisition

This research involved the segmentation of 30 real corrupted images
of OJM that were obtained from Kumpulan Penyelidikan
Etnomatematik Melayu (2021). The OJM images were cropped and
resized to the size of 241 96 pixels. We remarked that all 30 cropped
OJM images were originally corrupted by scratches, as indicated in
Figure 2.

Mumford-Shah Inpainting Model

The Mumford-Shah inpainting model is defined in Equation 1:

 

 

,

2 2

\ \

min (,) ,

(,)
2 2

M

M
Mv

M
M M M

E v

E v v dx v v dx 



   



       

where 0  , 0  and 0  are the weights of the terms. This model

provided two outputs, which were an inpainted image Mv and its
correlated edge image  from the input image v . The initial two
terms assure a smooth output, whereas the last term prevents an overly
smoothing effect. Meanwhile, Mv denotes the norm of the gradient

of the inpainted image and  denotes the Euclidean length term. The
14

As shown in Figure 3, the initial step involved obtaining a set of 30
real corrupted OJM images from Kumpulan Penyelidikan
Etnomatematik Melayu (2021). Subsequently, the procedure involved
acquiring the new fitting terms of an input OJM image generated by
the Mumford-Shah and Bertalmio inpainting models. These new
fitting terms were substituted into the energy minimization functional
of the GRS model to segment the text of OJM images. Finally, the
segmentation results obtained were evaluated to assess the
performance of the proposed models. The following sub-section goes
over each of these processes in depth.

Data Acquisition

This research involved the segmentation of 30 real corrupted images
of OJM that were obtained from Kumpulan Penyelidikan
Etnomatematik Melayu (2021). The OJM images were cropped and
resized to the size of 241 96 pixels. We remarked that all 30 cropped
OJM images were originally corrupted by scratches, as indicated in
Figure 2.

Mumford-Shah Inpainting Model

The Mumford-Shah inpainting model is defined in Equation 1:

 

 

,

2 2

\ \

min (,) ,

(,)
2 2

M

M
Mv

M
M M M

E v

E v v dx v v dx 



   



       

where 0  , 0  and 0  are the weights of the terms. This model

provided two outputs, which were an inpainted image Mv and its
correlated edge image  from the input image v . The initial two
terms assure a smooth output, whereas the last term prevents an overly
smoothing effect. Meanwhile, Mv denotes the norm of the gradient

of the inpainted image and  denotes the Euclidean length term. The
14

As shown in Figure 3, the initial step involved obtaining a set of 30
real corrupted OJM images from Kumpulan Penyelidikan
Etnomatematik Melayu (2021). Subsequently, the procedure involved
acquiring the new fitting terms of an input OJM image generated by
the Mumford-Shah and Bertalmio inpainting models. These new
fitting terms were substituted into the energy minimization functional
of the GRS model to segment the text of OJM images. Finally, the
segmentation results obtained were evaluated to assess the
performance of the proposed models. The following sub-section goes
over each of these processes in depth.

Data Acquisition

This research involved the segmentation of 30 real corrupted images
of OJM that were obtained from Kumpulan Penyelidikan
Etnomatematik Melayu (2021). The OJM images were cropped and
resized to the size of 241 96 pixels. We remarked that all 30 cropped
OJM images were originally corrupted by scratches, as indicated in
Figure 2.

Mumford-Shah Inpainting Model

The Mumford-Shah inpainting model is defined in Equation 1:

 

 

,

2 2

\ \

min (,) ,

(,)
2 2

M

M
Mv

M
M M M

E v

E v v dx v v dx 



   



       

where 0  , 0  and 0  are the weights of the terms. This model

provided two outputs, which were an inpainted image Mv and its
correlated edge image  from the input image v . The initial two
terms assure a smooth output, whereas the last term prevents an overly
smoothing effect. Meanwhile, Mv denotes the norm of the gradient

of the inpainted image and  denotes the Euclidean length term. The

14

As shown in Figure 3, the initial step involved obtaining a set of 30
real corrupted OJM images from Kumpulan Penyelidikan
Etnomatematik Melayu (2021). Subsequently, the procedure involved
acquiring the new fitting terms of an input OJM image generated by
the Mumford-Shah and Bertalmio inpainting models. These new
fitting terms were substituted into the energy minimization functional
of the GRS model to segment the text of OJM images. Finally, the
segmentation results obtained were evaluated to assess the
performance of the proposed models. The following sub-section goes
over each of these processes in depth.

Data Acquisition

This research involved the segmentation of 30 real corrupted images
of OJM that were obtained from Kumpulan Penyelidikan
Etnomatematik Melayu (2021). The OJM images were cropped and
resized to the size of 241 96 pixels. We remarked that all 30 cropped
OJM images were originally corrupted by scratches, as indicated in
Figure 2.

Mumford-Shah Inpainting Model

The Mumford-Shah inpainting model is defined in Equation 1:

 

 

,

2 2

\ \

min (,) ,

(,)
2 2

M

M
Mv

M
M M M

E v

E v v dx v v dx 



   



       

where 0  , 0  and 0  are the weights of the terms. This model

provided two outputs, which were an inpainted image Mv and its
correlated edge image  from the input image v . The initial two
terms assure a smooth output, whereas the last term prevents an overly
smoothing effect. Meanwhile, Mv denotes the norm of the gradient

of the inpainted image and  denotes the Euclidean length term. The
14

As shown in Figure 3, the initial step involved obtaining a set of 30
real corrupted OJM images from Kumpulan Penyelidikan
Etnomatematik Melayu (2021). Subsequently, the procedure involved
acquiring the new fitting terms of an input OJM image generated by
the Mumford-Shah and Bertalmio inpainting models. These new
fitting terms were substituted into the energy minimization functional
of the GRS model to segment the text of OJM images. Finally, the
segmentation results obtained were evaluated to assess the
performance of the proposed models. The following sub-section goes
over each of these processes in depth.

Data Acquisition

This research involved the segmentation of 30 real corrupted images
of OJM that were obtained from Kumpulan Penyelidikan
Etnomatematik Melayu (2021). The OJM images were cropped and
resized to the size of 241 96 pixels. We remarked that all 30 cropped
OJM images were originally corrupted by scratches, as indicated in
Figure 2.

Mumford-Shah Inpainting Model

The Mumford-Shah inpainting model is defined in Equation 1:

 

 

,

2 2

\ \

min (,) ,

(,)
2 2

M

M
Mv

M
M M M

E v

E v v dx v v dx 



   



       

where 0  , 0  and 0  are the weights of the terms. This model

provided two outputs, which were an inpainted image Mv and its
correlated edge image  from the input image v . The initial two
terms assure a smooth output, whereas the last term prevents an overly
smoothing effect. Meanwhile, Mv denotes the norm of the gradient

of the inpainted image and  denotes the Euclidean length term. The
14

As shown in Figure 3, the initial step involved obtaining a set of 30
real corrupted OJM images from Kumpulan Penyelidikan
Etnomatematik Melayu (2021). Subsequently, the procedure involved
acquiring the new fitting terms of an input OJM image generated by
the Mumford-Shah and Bertalmio inpainting models. These new
fitting terms were substituted into the energy minimization functional
of the GRS model to segment the text of OJM images. Finally, the
segmentation results obtained were evaluated to assess the
performance of the proposed models. The following sub-section goes
over each of these processes in depth.

Data Acquisition

This research involved the segmentation of 30 real corrupted images
of OJM that were obtained from Kumpulan Penyelidikan
Etnomatematik Melayu (2021). The OJM images were cropped and
resized to the size of 241 96 pixels. We remarked that all 30 cropped
OJM images were originally corrupted by scratches, as indicated in
Figure 2.

Mumford-Shah Inpainting Model

The Mumford-Shah inpainting model is defined in Equation 1:

 

 

,

2 2

\ \

min (,) ,

(,)
2 2

M

M
Mv

M
M M M

E v

E v v dx v v dx 



   



       

where 0  , 0  and 0  are the weights of the terms. This model

provided two outputs, which were an inpainted image Mv and its
correlated edge image  from the input image v . The initial two
terms assure a smooth output, whereas the last term prevents an overly
smoothing effect. Meanwhile, Mv denotes the norm of the gradient

of the inpainted image and  denotes the Euclidean length term. The

8

 

 

,

2 2

\ \

min (,) ,

(,)
2 2

M

M
Mv

M
M M M

E v

E v v dx v v dx 



   



       
where 0  , 0  and 0  are the weights of the terms. This model provided two outputs, which

were an inpainted image Mv and its correlated edge image  from the input image v . The initial two
terms assure a smooth output, whereas the last term prevents an overly smoothing effect. Meanwhile,

Mv denotes the norm of the gradient of the inpainted image and  denotes the Euclidean length

term. The model was effectively solved by an elliptic solver and iteration scheme. Details of the
algorithm can be found in Tsai et al. (2001), Esedoglu and Shen (2002), Shen and Chan (2002) and
Schönlieb (2015a). The algorithm was implemented in the MATLAB R2021a software.

Bertalmio Inpainting Model
The Bertalmio inpainting model is defined as Equation 2:

((| |))t b b q b bv v v v g v v       .

The first term was the transport equation, which was utilized to provide a smooth solution, and the
second term was the anisotropic diffusion equation, which prevented level lines from crossing with a
small weight parameter 0qv  . The model was solved iteratively using the finite difference scheme.

Details of the algorithm are discussed in Bertalmio (2001) and Schönlieb (2015b). The MATLAB
R2021a software was used to implement this model.

Formulation of the Proposed Models
In this sub-section, we briefly explained how we reformulated the existing GRS model introduced

by Saibin and Jumaat (2023). Generally, the GRS model was reformulated according to the following
steps shown in Figure 4 as follows:

Figure 4
Steps to Reformulate the GRS Model with Image Inpainting Models.

Assume that a marker set   * *, ,1C w x y n      with 1 3n  marker points will be

placed near the boundary of a targeted object in a given image  ,v x y . This marker set C is used to

initialize the level set function. Thus, the energy GRSE minimization functional for the GRS model is
defined in Equation 3:

  

        2

1 2

min ,

1 1 () .
2

GRS

GRS
d

E

E v r H r H d H F d




    




      

572

Journal of ICT, 23, No. 4 (October) 2024, pp: 561-592

The first term was the transport equation, which was utilized to
provide a smooth solution, and the second term was the anisotropic
diffusion equation, which prevented level lines from crossing with a
small weight parameter The model was solved iteratively using
the finite difference scheme. Details of the algorithm are discussed
in Bertalmio (2001) and Schönlieb (2015b). The MATLAB R2021a
software was used to implement this model.

Formulation of the Proposed Models

In this sub-section, we briefly explained how we reformulated
the existing GRS model introduced by Saibin and Jumaat (2023).
Generally, the GRS model was reformulated according to the
following steps shown in Figure 4 as follows:

Figure 4

Steps to Reformulate the GRS Model with Image Inpainting Models

Assume that a marker set
 marker points will be placed near the boundary of a targeted
object in a given image This marker set is used to initialize
the level set function. Thus, the energy minimization functional
for the GRS model is defined in Equation 3:

(3)

Initially, the fitting term of the GRS
model in Equation 3 is substituted with the information from two image
inpainting techniques, namely the Mumford-Shah model (Equation 1)

8

 

 

,

2 2

\ \

min (,) ,

(,)
2 2

M

M
Mv

M
M M M

E v

E v v dx v v dx 



   



       
where 0  , 0  and 0  are the weights of the terms. This model provided two outputs, which

were an inpainted image Mv and its correlated edge image  from the input image v . The initial two
terms assure a smooth output, whereas the last term prevents an overly smoothing effect. Meanwhile,

Mv denotes the norm of the gradient of the inpainted image and  denotes the Euclidean length

term. The model was effectively solved by an elliptic solver and iteration scheme. Details of the
algorithm can be found in Tsai et al. (2001), Esedoglu and Shen (2002), Shen and Chan (2002) and
Schönlieb (2015a). The algorithm was implemented in the MATLAB R2021a software.

Bertalmio Inpainting Model
The Bertalmio inpainting model is defined as Equation 2:

((| |))t b b q b bv v v v g v v       .

The first term was the transport equation, which was utilized to provide a smooth solution, and the
second term was the anisotropic diffusion equation, which prevented level lines from crossing with a
small weight parameter 0qv  . The model was solved iteratively using the finite difference scheme.

Details of the algorithm are discussed in Bertalmio (2001) and Schönlieb (2015b). The MATLAB
R2021a software was used to implement this model.

Formulation of the Proposed Models
In this sub-section, we briefly explained how we reformulated the existing GRS model introduced

by Saibin and Jumaat (2023). Generally, the GRS model was reformulated according to the following
steps shown in Figure 4 as follows:

Figure 4
Steps to Reformulate the GRS Model with Image Inpainting Models.

Assume that a marker set   * *, ,1C w x y n      with 1 3n  marker points will be

placed near the boundary of a targeted object in a given image  ,v x y . This marker set C is used to

initialize the level set function. Thus, the energy GRSE minimization functional for the GRS model is
defined in Equation 3:

  

        2

1 2

min ,

1 1 () .
2

GRS

GRS
d

E

E v r H r H d H F d




    




      

8

 

 

,

2 2

\ \

min (,) ,

(,)
2 2

M

M
Mv

M
M M M

E v

E v v dx v v dx 



   



       
where 0  , 0  and 0  are the weights of the terms. This model provided two outputs, which

were an inpainted image Mv and its correlated edge image  from the input image v . The initial two
terms assure a smooth output, whereas the last term prevents an overly smoothing effect. Meanwhile,

Mv denotes the norm of the gradient of the inpainted image and  denotes the Euclidean length

term. The model was effectively solved by an elliptic solver and iteration scheme. Details of the
algorithm can be found in Tsai et al. (2001), Esedoglu and Shen (2002), Shen and Chan (2002) and
Schönlieb (2015a). The algorithm was implemented in the MATLAB R2021a software.

Bertalmio Inpainting Model
The Bertalmio inpainting model is defined as Equation 2:

((| |))t b b q b bv v v v g v v       .

The first term was the transport equation, which was utilized to provide a smooth solution, and the
second term was the anisotropic diffusion equation, which prevented level lines from crossing with a
small weight parameter 0qv  . The model was solved iteratively using the finite difference scheme.

Details of the algorithm are discussed in Bertalmio (2001) and Schönlieb (2015b). The MATLAB
R2021a software was used to implement this model.

Formulation of the Proposed Models
In this sub-section, we briefly explained how we reformulated the existing GRS model introduced

by Saibin and Jumaat (2023). Generally, the GRS model was reformulated according to the following
steps shown in Figure 4 as follows:

Figure 4
Steps to Reformulate the GRS Model with Image Inpainting Models.

Assume that a marker set   * *, ,1C w x y n      with 1 3n  marker points will be

placed near the boundary of a targeted object in a given image  ,v x y . This marker set C is used to

initialize the level set function. Thus, the energy GRSE minimization functional for the GRS model is
defined in Equation 3:

  

        2

1 2

min ,

1 1 () .
2

GRS

GRS
d

E

E v r H r H d H F d




    




      

8

 

 

,

2 2

\ \

min (,) ,

(,)
2 2

M

M
Mv

M
M M M

E v

E v v dx v v dx 



   



       
where 0  , 0  and 0  are the weights of the terms. This model provided two outputs, which

were an inpainted image Mv and its correlated edge image  from the input image v . The initial two
terms assure a smooth output, whereas the last term prevents an overly smoothing effect. Meanwhile,

Mv denotes the norm of the gradient of the inpainted image and  denotes the Euclidean length

term. The model was effectively solved by an elliptic solver and iteration scheme. Details of the
algorithm can be found in Tsai et al. (2001), Esedoglu and Shen (2002), Shen and Chan (2002) and
Schönlieb (2015a). The algorithm was implemented in the MATLAB R2021a software.

Bertalmio Inpainting Model
The Bertalmio inpainting model is defined as Equation 2:

((| |))t b b q b bv v v v g v v       .

The first term was the transport equation, which was utilized to provide a smooth solution, and the
second term was the anisotropic diffusion equation, which prevented level lines from crossing with a
small weight parameter 0qv  . The model was solved iteratively using the finite difference scheme.

Details of the algorithm are discussed in Bertalmio (2001) and Schönlieb (2015b). The MATLAB
R2021a software was used to implement this model.

Formulation of the Proposed Models
In this sub-section, we briefly explained how we reformulated the existing GRS model introduced

by Saibin and Jumaat (2023). Generally, the GRS model was reformulated according to the following
steps shown in Figure 4 as follows:

Figure 4
Steps to Reformulate the GRS Model with Image Inpainting Models.

Assume that a marker set   * *, ,1C w x y n      with 1 3n  marker points will be

placed near the boundary of a targeted object in a given image  ,v x y . This marker set C is used to

initialize the level set function. Thus, the energy GRSE minimization functional for the GRS model is
defined in Equation 3:

  

        2

1 2

min ,

1 1 () .
2

GRS

GRS
d

E

E v r H r H d H F d




    




      

8

 

 

,

2 2

\ \

min (,) ,

(,)
2 2

M

M
Mv

M
M M M

E v

E v v dx v v dx 



   



       
where 0  , 0  and 0  are the weights of the terms. This model provided two outputs, which

were an inpainted image Mv and its correlated edge image  from the input image v . The initial two
terms assure a smooth output, whereas the last term prevents an overly smoothing effect. Meanwhile,

Mv denotes the norm of the gradient of the inpainted image and  denotes the Euclidean length

term. The model was effectively solved by an elliptic solver and iteration scheme. Details of the
algorithm can be found in Tsai et al. (2001), Esedoglu and Shen (2002), Shen and Chan (2002) and
Schönlieb (2015a). The algorithm was implemented in the MATLAB R2021a software.

Bertalmio Inpainting Model
The Bertalmio inpainting model is defined as Equation 2:

((| |))t b b q b bv v v v g v v       .

The first term was the transport equation, which was utilized to provide a smooth solution, and the
second term was the anisotropic diffusion equation, which prevented level lines from crossing with a
small weight parameter 0qv  . The model was solved iteratively using the finite difference scheme.

Details of the algorithm are discussed in Bertalmio (2001) and Schönlieb (2015b). The MATLAB
R2021a software was used to implement this model.

Formulation of the Proposed Models
In this sub-section, we briefly explained how we reformulated the existing GRS model introduced

by Saibin and Jumaat (2023). Generally, the GRS model was reformulated according to the following
steps shown in Figure 4 as follows:

Figure 4
Steps to Reformulate the GRS Model with Image Inpainting Models.

Assume that a marker set   * *, ,1C w x y n      with 1 3n  marker points will be

placed near the boundary of a targeted object in a given image  ,v x y . This marker set C is used to

initialize the level set function. Thus, the energy GRSE minimization functional for the GRS model is
defined in Equation 3:

  

        2

1 2

min ,

1 1 () .
2

GRS

GRS
d

E

E v r H r H d H F d




    




      
8

 

 

,

2 2

\ \

min (,) ,

(,)
2 2

M

M
Mv

M
M M M

E v

E v v dx v v dx 



   



       
where 0  , 0  and 0  are the weights of the terms. This model provided two outputs, which

were an inpainted image Mv and its correlated edge image  from the input image v . The initial two
terms assure a smooth output, whereas the last term prevents an overly smoothing effect. Meanwhile,

Mv denotes the norm of the gradient of the inpainted image and  denotes the Euclidean length

term. The model was effectively solved by an elliptic solver and iteration scheme. Details of the
algorithm can be found in Tsai et al. (2001), Esedoglu and Shen (2002), Shen and Chan (2002) and
Schönlieb (2015a). The algorithm was implemented in the MATLAB R2021a software.

Bertalmio Inpainting Model
The Bertalmio inpainting model is defined as Equation 2:

((| |))t b b q b bv v v v g v v       .

The first term was the transport equation, which was utilized to provide a smooth solution, and the
second term was the anisotropic diffusion equation, which prevented level lines from crossing with a
small weight parameter 0qv  . The model was solved iteratively using the finite difference scheme.

Details of the algorithm are discussed in Bertalmio (2001) and Schönlieb (2015b). The MATLAB
R2021a software was used to implement this model.

Formulation of the Proposed Models
In this sub-section, we briefly explained how we reformulated the existing GRS model introduced

by Saibin and Jumaat (2023). Generally, the GRS model was reformulated according to the following
steps shown in Figure 4 as follows:

Figure 4
Steps to Reformulate the GRS Model with Image Inpainting Models.

Assume that a marker set   * *, ,1C w x y n      with 1 3n  marker points will be

placed near the boundary of a targeted object in a given image  ,v x y . This marker set C is used to

initialize the level set function. Thus, the energy GRSE minimization functional for the GRS model is
defined in Equation 3:

  

        2

1 2

min ,

1 1 () .
2

GRS

GRS
d

E

E v r H r H d H F d




    




      

8

 

 

,

2 2

\ \

min (,) ,

(,)
2 2

M

M
Mv

M
M M M

E v

E v v dx v v dx 



   



       
where 0  , 0  and 0  are the weights of the terms. This model provided two outputs, which

were an inpainted image Mv and its correlated edge image  from the input image v . The initial two
terms assure a smooth output, whereas the last term prevents an overly smoothing effect. Meanwhile,

Mv denotes the norm of the gradient of the inpainted image and  denotes the Euclidean length

term. The model was effectively solved by an elliptic solver and iteration scheme. Details of the
algorithm can be found in Tsai et al. (2001), Esedoglu and Shen (2002), Shen and Chan (2002) and
Schönlieb (2015a). The algorithm was implemented in the MATLAB R2021a software.

Bertalmio Inpainting Model
The Bertalmio inpainting model is defined as Equation 2:

((| |))t b b q b bv v v v g v v       .

The first term was the transport equation, which was utilized to provide a smooth solution, and the
second term was the anisotropic diffusion equation, which prevented level lines from crossing with a
small weight parameter 0qv  . The model was solved iteratively using the finite difference scheme.

Details of the algorithm are discussed in Bertalmio (2001) and Schönlieb (2015b). The MATLAB
R2021a software was used to implement this model.

Formulation of the Proposed Models
In this sub-section, we briefly explained how we reformulated the existing GRS model introduced

by Saibin and Jumaat (2023). Generally, the GRS model was reformulated according to the following
steps shown in Figure 4 as follows:

Figure 4
Steps to Reformulate the GRS Model with Image Inpainting Models.

Assume that a marker set   * *, ,1C w x y n      with 1 3n  marker points will be

placed near the boundary of a targeted object in a given image  ,v x y . This marker set C is used to

initialize the level set function. Thus, the energy GRSE minimization functional for the GRS model is
defined in Equation 3:

  

        2

1 2

min ,

1 1 () .
2

GRS

GRS
d

E

E v r H r H d H F d




    




      
8

 

 

,

2 2

\ \

min (,) ,

(,)
2 2

M

M
Mv

M
M M M

E v

E v v dx v v dx 



   



       
where 0  , 0  and 0  are the weights of the terms. This model provided two outputs, which

were an inpainted image Mv and its correlated edge image  from the input image v . The initial two
terms assure a smooth output, whereas the last term prevents an overly smoothing effect. Meanwhile,

Mv denotes the norm of the gradient of the inpainted image and  denotes the Euclidean length

term. The model was effectively solved by an elliptic solver and iteration scheme. Details of the
algorithm can be found in Tsai et al. (2001), Esedoglu and Shen (2002), Shen and Chan (2002) and
Schönlieb (2015a). The algorithm was implemented in the MATLAB R2021a software.

Bertalmio Inpainting Model
The Bertalmio inpainting model is defined as Equation 2:

((| |))t b b q b bv v v v g v v       .

The first term was the transport equation, which was utilized to provide a smooth solution, and the
second term was the anisotropic diffusion equation, which prevented level lines from crossing with a
small weight parameter 0qv  . The model was solved iteratively using the finite difference scheme.

Details of the algorithm are discussed in Bertalmio (2001) and Schönlieb (2015b). The MATLAB
R2021a software was used to implement this model.

Formulation of the Proposed Models
In this sub-section, we briefly explained how we reformulated the existing GRS model introduced

by Saibin and Jumaat (2023). Generally, the GRS model was reformulated according to the following
steps shown in Figure 4 as follows:

Figure 4
Steps to Reformulate the GRS Model with Image Inpainting Models.

Assume that a marker set   * *, ,1C w x y n      with 1 3n  marker points will be

placed near the boundary of a targeted object in a given image  ,v x y . This marker set C is used to

initialize the level set function. Thus, the energy GRSE minimization functional for the GRS model is
defined in Equation 3:

  

        2

1 2

min ,

1 1 () .
2

GRS

GRS
d

E

E v r H r H d H F d




    




      

8

 

 

,

2 2

\ \

min (,) ,

(,)
2 2

M

M
Mv

M
M M M

E v

E v v dx v v dx 



   



       
where 0  , 0  and 0  are the weights of the terms. This model provided two outputs, which

were an inpainted image Mv and its correlated edge image  from the input image v . The initial two
terms assure a smooth output, whereas the last term prevents an overly smoothing effect. Meanwhile,

Mv denotes the norm of the gradient of the inpainted image and  denotes the Euclidean length

term. The model was effectively solved by an elliptic solver and iteration scheme. Details of the
algorithm can be found in Tsai et al. (2001), Esedoglu and Shen (2002), Shen and Chan (2002) and
Schönlieb (2015a). The algorithm was implemented in the MATLAB R2021a software.

Bertalmio Inpainting Model
The Bertalmio inpainting model is defined as Equation 2:

((| |))t b b q b bv v v v g v v       .

The first term was the transport equation, which was utilized to provide a smooth solution, and the
second term was the anisotropic diffusion equation, which prevented level lines from crossing with a
small weight parameter 0qv  . The model was solved iteratively using the finite difference scheme.

Details of the algorithm are discussed in Bertalmio (2001) and Schönlieb (2015b). The MATLAB
R2021a software was used to implement this model.

Formulation of the Proposed Models
In this sub-section, we briefly explained how we reformulated the existing GRS model introduced

by Saibin and Jumaat (2023). Generally, the GRS model was reformulated according to the following
steps shown in Figure 4 as follows:

Figure 4
Steps to Reformulate the GRS Model with Image Inpainting Models.

Assume that a marker set   * *, ,1C w x y n      with 1 3n  marker points will be

placed near the boundary of a targeted object in a given image  ,v x y . This marker set C is used to

initialize the level set function. Thus, the energy GRSE minimization functional for the GRS model is
defined in Equation 3:

  

        2

1 2

min ,

1 1 () .
2

GRS

GRS
d

E

E v r H r H d H F d




    




      

16

Assume that a marker set   * *, ,1C w x y n      with

1 3n  marker points will be placed near the boundary of a targeted

object in a given image  ,v x y . This marker set C is used to initialize

the level set function. Thus, the energy GRSE minimization functional
for the GRS model is defined in Equation 3:

  

        2

1 2

min ,

1 1 () .
2

GRS

GRS
d

E

E v r H r H d H F d




    




      

Initially, the fitting term       2

1 2 1v r H r H    of the GRS

model in Equation 3 is substituted with the information from two
image inpainting techniques, namely the Mumford-Shah model
(Equation 1) and Bertalmio model (Equation 2). By rewriting
Equations 1 and 2, the image inpainting models are now described as
follows:

a) Mumford-Shah model as represented by Equation 4:

 
,

min (,)
M

M
MS Mv

v E v


 

b) Bertalmio model as represented by Equation 5:

 573

Journal of ICT, 23, No. 4 (October) 2024, pp: 561-592

and Bertalmio model (Equation 2). By rewriting Equations 1 and 2,
the image inpainting models are now described as follows:

a)	 Mumford-Shah model as represented by Equation 4:

(4)
b)	 Bertalmio model as represented by Equation 5:

(5)
This study proposed two modified GRS models concerning two
different image inpainting models based on Equation 4 and Equation
5. In this study, we named the two modified GRS models the Modified
Gaussian Regularization Segmentation Mumford-Shah (MGRSM)
model and the Modified Gaussian Regularization Segmentation
Bertalmio (MGRSB) model.

Upon substitution of Equation 4, which was generated from the
Mumford-Shah model, into the GRS model of Equation 3, we obtained
the first modified model that is the MGRSM model, represented by
Equation 6:

(6)

Similarly, the combination of Equation 5, which was generated from
the Bertalmio model with the GRS model of Equation 3, resulted
in our second modified model that is the MGRSB model defined in
Equation 7:

(7)

Denoted here, is the weightage of the final term of Equations 6
and 7. The interior intensity averages are represented by
while the exterior intensity averages are represented by and in
a local region that are used to address intensity inhomogeneity, which
can be expressed in the following Equations 8, 9, and 10:

16

Assume that a marker set   * *, ,1C w x y n      with

1 3n  marker points will be placed near the boundary of a targeted

object in a given image  ,v x y . This marker set C is used to initialize

the level set function. Thus, the energy GRSE minimization functional
for the GRS model is defined in Equation 3:

  

        2

1 2

min ,

1 1 () .
2

GRS

GRS
d

E

E v r H r H d H F d




    




      

Initially, the fitting term       2

1 2 1v r H r H    of the GRS

model in Equation 3 is substituted with the information from two
image inpainting techniques, namely the Mumford-Shah model
(Equation 1) and Bertalmio model (Equation 2). By rewriting
Equations 1 and 2, the image inpainting models are now described as
follows:

a) Mumford-Shah model as represented by Equation 4:

 
,

min (,)
M

M
MS Mv

v E v


 

b) Bertalmio model as represented by Equation 5:

9

Initially, the fitting term       2

1 2 1v r H r H    of the GRS model in Equation 3 is

substituted with the information from two image inpainting techniques, namely the Mumford-Shah
model (Equation 1) and Bertalmio model (Equation 2). By rewriting Equations 1 and 2, the image
inpainting models are now described as follows:
a) Mumford-Shah model as represented by Equation 4:

 
,

min (,)
M

M
MS Mv

v E v


 

b) Bertalmio model as represented by Equation 5:
((| |))B t b b q b bv v v v v g v v       .

This study proposed two modified GRS models concerning two different image inpainting models
based on Equation 4 and Equation 5. In this study, we named the two modified GRS models the
Modified Gaussian Regularization Segmentation Mumford-Shah (MGRSM) model and the Modified
Gaussian Regularization Segmentation Bertalmio (MGRSB) model.

Upon substitution of Equation 4, which was generated from the Mumford-Shah model, into the
GRS model of Equation 3, we obtained the first modified model that is the MGRSM model, represented
by Equation 6:

  

        
 

1 2

2

1 2 1 2

min , , ,

1, , 1
2

 + .

MGRSM
M M

MGRSM
M M MS M M

d

E r r

E r r v r H r H

H F d




  

 





   






Similarly, the combination of Equation 5, which was generated from the Bertalmio model with the GRS
model of Equation 3, resulted in our second modified model that is the MGRSB model defined in
Equation 7:

  

        
 

1 2

2

1 2 1 2

min , , ,

1, , 1
2

 +

MGRSB
B B

MGRSB
B B B B B

d

E r r

E r r v r H r H

H F d




  

 





   






Denoted here, 0  is the weightage of the final term of Equations 6 and 7. The interior intensity
averages are represented by 1Mr and 1Br while the exterior intensity averages are represented by 2Mr
and 2Br in a local region that are used to address intensity inhomogeneity, which can be expressed in
the following Equations 8, 9, and 10:

     
       

1

2

, * / *

, * 1 / * 1

M MS

M MS

r x y k H v k H

r x y k H v k H

 

 

 

 

   
    

and

     
       

1

2

, * / *

, * 1 / * 1 .

B B

B B

r x y k H v k H

r x y k H v k H

 

 

 

 

       
    

The function k is a Gaussian kernel with standard deviation  such that:
2 2

2
()

2
x y

k e 


 



9

Initially, the fitting term       2

1 2 1v r H r H    of the GRS model in Equation 3 is

substituted with the information from two image inpainting techniques, namely the Mumford-Shah
model (Equation 1) and Bertalmio model (Equation 2). By rewriting Equations 1 and 2, the image
inpainting models are now described as follows:
a) Mumford-Shah model as represented by Equation 4:

 
,

min (,)
M

M
MS Mv

v E v


 

b) Bertalmio model as represented by Equation 5:
((| |))B t b b q b bv v v v v g v v       .

This study proposed two modified GRS models concerning two different image inpainting models
based on Equation 4 and Equation 5. In this study, we named the two modified GRS models the
Modified Gaussian Regularization Segmentation Mumford-Shah (MGRSM) model and the Modified
Gaussian Regularization Segmentation Bertalmio (MGRSB) model.

Upon substitution of Equation 4, which was generated from the Mumford-Shah model, into the
GRS model of Equation 3, we obtained the first modified model that is the MGRSM model, represented
by Equation 6:

  

        
 

1 2

2

1 2 1 2

min , , ,

1, , 1
2

 + .

MGRSM
M M

MGRSM
M M MS M M

d

E r r

E r r v r H r H

H F d




  

 





   






Similarly, the combination of Equation 5, which was generated from the Bertalmio model with the GRS
model of Equation 3, resulted in our second modified model that is the MGRSB model defined in
Equation 7:

  

        
 

1 2

2

1 2 1 2

min , , ,

1, , 1
2

 +

MGRSB
B B

MGRSB
B B B B B

d

E r r

E r r v r H r H

H F d




  

 





   






Denoted here, 0  is the weightage of the final term of Equations 6 and 7. The interior intensity
averages are represented by 1Mr and 1Br while the exterior intensity averages are represented by 2Mr
and 2Br in a local region that are used to address intensity inhomogeneity, which can be expressed in
the following Equations 8, 9, and 10:

     
       

1

2

, * / *

, * 1 / * 1

M MS

M MS

r x y k H v k H

r x y k H v k H

 

 

 

 

   
    

and

     
       

1

2

, * / *

, * 1 / * 1 .

B B

B B

r x y k H v k H

r x y k H v k H

 

 

 

 

       
    

The function k is a Gaussian kernel with standard deviation  such that:
2 2

2
()

2
x y

k e 


 


9

Initially, the fitting term       2

1 2 1v r H r H    of the GRS model in Equation 3 is

substituted with the information from two image inpainting techniques, namely the Mumford-Shah
model (Equation 1) and Bertalmio model (Equation 2). By rewriting Equations 1 and 2, the image
inpainting models are now described as follows:
a) Mumford-Shah model as represented by Equation 4:

 
,

min (,)
M

M
MS Mv

v E v


 

b) Bertalmio model as represented by Equation 5:
((| |))B t b b q b bv v v v v g v v       .

This study proposed two modified GRS models concerning two different image inpainting models
based on Equation 4 and Equation 5. In this study, we named the two modified GRS models the
Modified Gaussian Regularization Segmentation Mumford-Shah (MGRSM) model and the Modified
Gaussian Regularization Segmentation Bertalmio (MGRSB) model.

Upon substitution of Equation 4, which was generated from the Mumford-Shah model, into the
GRS model of Equation 3, we obtained the first modified model that is the MGRSM model, represented
by Equation 6:

  

        
 

1 2

2

1 2 1 2

min , , ,

1, , 1
2

 + .

MGRSM
M M

MGRSM
M M MS M M

d

E r r

E r r v r H r H

H F d




  

 





   






Similarly, the combination of Equation 5, which was generated from the Bertalmio model with the GRS
model of Equation 3, resulted in our second modified model that is the MGRSB model defined in
Equation 7:

  

        
 

1 2

2

1 2 1 2

min , , ,

1, , 1
2

 +

MGRSB
B B

MGRSB
B B B B B

d

E r r

E r r v r H r H

H F d




  

 





   






Denoted here, 0  is the weightage of the final term of Equations 6 and 7. The interior intensity
averages are represented by 1Mr and 1Br while the exterior intensity averages are represented by 2Mr
and 2Br in a local region that are used to address intensity inhomogeneity, which can be expressed in
the following Equations 8, 9, and 10:

     
       

1

2

, * / *

, * 1 / * 1

M MS

M MS

r x y k H v k H

r x y k H v k H

 

 

 

 

   
    

and

     
       

1

2

, * / *

, * 1 / * 1 .

B B

B B

r x y k H v k H

r x y k H v k H

 

 

 

 

       
    

The function k is a Gaussian kernel with standard deviation  such that:
2 2

2
()

2
x y

k e 


 



9

Initially, the fitting term       2

1 2 1v r H r H    of the GRS model in Equation 3 is

substituted with the information from two image inpainting techniques, namely the Mumford-Shah
model (Equation 1) and Bertalmio model (Equation 2). By rewriting Equations 1 and 2, the image
inpainting models are now described as follows:
a) Mumford-Shah model as represented by Equation 4:

 
,

min (,)
M

M
MS Mv

v E v


 

b) Bertalmio model as represented by Equation 5:
((| |))B t b b q b bv v v v v g v v       .

This study proposed two modified GRS models concerning two different image inpainting models
based on Equation 4 and Equation 5. In this study, we named the two modified GRS models the
Modified Gaussian Regularization Segmentation Mumford-Shah (MGRSM) model and the Modified
Gaussian Regularization Segmentation Bertalmio (MGRSB) model.

Upon substitution of Equation 4, which was generated from the Mumford-Shah model, into the
GRS model of Equation 3, we obtained the first modified model that is the MGRSM model, represented
by Equation 6:

  

        
 

1 2

2

1 2 1 2

min , , ,

1, , 1
2

 + .

MGRSM
M M

MGRSM
M M MS M M

d

E r r

E r r v r H r H

H F d




  

 





   






Similarly, the combination of Equation 5, which was generated from the Bertalmio model with the GRS
model of Equation 3, resulted in our second modified model that is the MGRSB model defined in
Equation 7:

  

        
 

1 2

2

1 2 1 2

min , , ,

1, , 1
2

 +

MGRSB
B B

MGRSB
B B B B B

d

E r r

E r r v r H r H

H F d




  

 





   






Denoted here, 0  is the weightage of the final term of Equations 6 and 7. The interior intensity
averages are represented by 1Mr and 1Br while the exterior intensity averages are represented by 2Mr
and 2Br in a local region that are used to address intensity inhomogeneity, which can be expressed in
the following Equations 8, 9, and 10:

     
       

1

2

, * / *

, * 1 / * 1

M MS

M MS

r x y k H v k H

r x y k H v k H

 

 

 

 

   
    

and

     
       

1

2

, * / *

, * 1 / * 1 .

B B

B B

r x y k H v k H

r x y k H v k H

 

 

 

 

       
    

The function k is a Gaussian kernel with standard deviation  such that:
2 2

2
()

2
x y

k e 


 



9

Initially, the fitting term       2

1 2 1v r H r H    of the GRS model in Equation 3 is

substituted with the information from two image inpainting techniques, namely the Mumford-Shah
model (Equation 1) and Bertalmio model (Equation 2). By rewriting Equations 1 and 2, the image
inpainting models are now described as follows:
a) Mumford-Shah model as represented by Equation 4:

 
,

min (,)
M

M
MS Mv

v E v


 

b) Bertalmio model as represented by Equation 5:
((| |))B t b b q b bv v v v v g v v       .

This study proposed two modified GRS models concerning two different image inpainting models
based on Equation 4 and Equation 5. In this study, we named the two modified GRS models the
Modified Gaussian Regularization Segmentation Mumford-Shah (MGRSM) model and the Modified
Gaussian Regularization Segmentation Bertalmio (MGRSB) model.

Upon substitution of Equation 4, which was generated from the Mumford-Shah model, into the
GRS model of Equation 3, we obtained the first modified model that is the MGRSM model, represented
by Equation 6:

  

        
 

1 2

2

1 2 1 2

min , , ,

1, , 1
2

 + .

MGRSM
M M

MGRSM
M M MS M M

d

E r r

E r r v r H r H

H F d




  

 





   






Similarly, the combination of Equation 5, which was generated from the Bertalmio model with the GRS
model of Equation 3, resulted in our second modified model that is the MGRSB model defined in
Equation 7:

  

        
 

1 2

2

1 2 1 2

min , , ,

1, , 1
2

 +

MGRSB
B B

MGRSB
B B B B B

d

E r r

E r r v r H r H

H F d




  

 





   






Denoted here, 0  is the weightage of the final term of Equations 6 and 7. The interior intensity
averages are represented by 1Mr and 1Br while the exterior intensity averages are represented by 2Mr
and 2Br in a local region that are used to address intensity inhomogeneity, which can be expressed in
the following Equations 8, 9, and 10:

     
       

1

2

, * / *

, * 1 / * 1

M MS

M MS

r x y k H v k H

r x y k H v k H

 

 

 

 

   
    

and

     
       

1

2

, * / *

, * 1 / * 1 .

B B

B B

r x y k H v k H

r x y k H v k H

 

 

 

 

       
    

The function k is a Gaussian kernel with standard deviation  such that:
2 2

2
()

2
x y

k e 


 



9

Initially, the fitting term       2

1 2 1v r H r H    of the GRS model in Equation 3 is

substituted with the information from two image inpainting techniques, namely the Mumford-Shah
model (Equation 1) and Bertalmio model (Equation 2). By rewriting Equations 1 and 2, the image
inpainting models are now described as follows:
a) Mumford-Shah model as represented by Equation 4:

 
,

min (,)
M

M
MS Mv

v E v


 

b) Bertalmio model as represented by Equation 5:
((| |))B t b b q b bv v v v v g v v       .

This study proposed two modified GRS models concerning two different image inpainting models
based on Equation 4 and Equation 5. In this study, we named the two modified GRS models the
Modified Gaussian Regularization Segmentation Mumford-Shah (MGRSM) model and the Modified
Gaussian Regularization Segmentation Bertalmio (MGRSB) model.

Upon substitution of Equation 4, which was generated from the Mumford-Shah model, into the
GRS model of Equation 3, we obtained the first modified model that is the MGRSM model, represented
by Equation 6:

  

        
 

1 2

2

1 2 1 2

min , , ,

1, , 1
2

 + .

MGRSM
M M

MGRSM
M M MS M M

d

E r r

E r r v r H r H

H F d




  

 





   






Similarly, the combination of Equation 5, which was generated from the Bertalmio model with the GRS
model of Equation 3, resulted in our second modified model that is the MGRSB model defined in
Equation 7:

  

        
 

1 2

2

1 2 1 2

min , , ,

1, , 1
2

 +

MGRSB
B B

MGRSB
B B B B B

d

E r r

E r r v r H r H

H F d




  

 





   






Denoted here, 0  is the weightage of the final term of Equations 6 and 7. The interior intensity
averages are represented by 1Mr and 1Br while the exterior intensity averages are represented by 2Mr
and 2Br in a local region that are used to address intensity inhomogeneity, which can be expressed in
the following Equations 8, 9, and 10:

     
       

1

2

, * / *

, * 1 / * 1

M MS

M MS

r x y k H v k H

r x y k H v k H

 

 

 

 

   
    

and

     
       

1

2

, * / *

, * 1 / * 1 .

B B

B B

r x y k H v k H

r x y k H v k H

 

 

 

 

       
    

The function k is a Gaussian kernel with standard deviation  such that:
2 2

2
()

2
x y

k e 


 

 9

Initially, the fitting term       2

1 2 1v r H r H    of the GRS model in Equation 3 is

substituted with the information from two image inpainting techniques, namely the Mumford-Shah
model (Equation 1) and Bertalmio model (Equation 2). By rewriting Equations 1 and 2, the image
inpainting models are now described as follows:
a) Mumford-Shah model as represented by Equation 4:

 
,

min (,)
M

M
MS Mv

v E v


 

b) Bertalmio model as represented by Equation 5:
((| |))B t b b q b bv v v v v g v v       .

This study proposed two modified GRS models concerning two different image inpainting models
based on Equation 4 and Equation 5. In this study, we named the two modified GRS models the
Modified Gaussian Regularization Segmentation Mumford-Shah (MGRSM) model and the Modified
Gaussian Regularization Segmentation Bertalmio (MGRSB) model.

Upon substitution of Equation 4, which was generated from the Mumford-Shah model, into the
GRS model of Equation 3, we obtained the first modified model that is the MGRSM model, represented
by Equation 6:

  

        
 

1 2

2

1 2 1 2

min , , ,

1, , 1
2

 + .

MGRSM
M M

MGRSM
M M MS M M

d

E r r

E r r v r H r H

H F d




  

 





   






Similarly, the combination of Equation 5, which was generated from the Bertalmio model with the GRS
model of Equation 3, resulted in our second modified model that is the MGRSB model defined in
Equation 7:

  

        
 

1 2

2

1 2 1 2

min , , ,

1, , 1
2

 +

MGRSB
B B

MGRSB
B B B B B

d

E r r

E r r v r H r H

H F d




  

 





   






Denoted here, 0  is the weightage of the final term of Equations 6 and 7. The interior intensity
averages are represented by 1Mr and 1Br while the exterior intensity averages are represented by 2Mr
and 2Br in a local region that are used to address intensity inhomogeneity, which can be expressed in
the following Equations 8, 9, and 10:

     
       

1

2

, * / *

, * 1 / * 1

M MS

M MS

r x y k H v k H

r x y k H v k H

 

 

 

 

   
    

and

     
       

1

2

, * / *

, * 1 / * 1 .

B B

B B

r x y k H v k H

r x y k H v k H

 

 

 

 

       
    

The function k is a Gaussian kernel with standard deviation  such that:
2 2

2
()

2
x y

k e 


 



574

Journal of ICT, 23, No. 4 (October) 2024, pp: 561-592

(8)

And

(9)

The function is a Gaussian kernel with standard deviation such
that:

(10)

where the standard deviation can be presumed as a scale parameter
that influences the region scalability from a small neighborhood to the
entire image domain (Saibin & Jumaat, 2023).

By variational calculus, the affiliated Euler-Lagrange (EL) equation
for Equation 6 and Equation 7 are defined in Equations 11 and 12,
respectively:

(11)

and

(12)

where the gradient descent flow of Equation 11 and Equation 12 can
be obtained by applying the gradient descent method in Equations 13
and 14 as follows:

(13)

and

(14)

where is denoted as the evolution of with respect to artificial

time . To discretize Equation 13 and Equation 14, a forward finite
difference scheme was employed, yielding the following Equations
15 - 18:

18

a local region that are used to address intensity inhomogeneity, which
can be expressed in the following Equations 8, 9, and 10:

     
       

1

2

, * / *

, * 1 / * 1

M MS

M MS

r x y k H v k H

r x y k H v k H

 

 

 

 

   
    

And

     
       

1

2

, * / *

, * 1 / * 1 .

B B

B B

r x y k H v k H

r x y k H v k H

 

 

 

 

       
    

The function k is a Gaussian kernel with standard deviation  such
that:

2 2

2
()

2
x y

k e 


 



where the standard deviation  can be presumed as a scale parameter
that influences the region scalability from a small neighborhood to the
entire image domain (Saibin & Jumaat, 2023).

By variational calculus, the affiliated Euler-Lagrange (EL) equation
for Equation 6 and Equation 7 are defined in Equations 11 and 12,
respectively:

        1 2 1 21 0MS M M M M dv r H r H r r F            

and

        1 2 1 21 0B B B B B dv r H r H r r F            

where the gradient descent flow of Equation 11 and Equation 12 can 18

a local region that are used to address intensity inhomogeneity, which
can be expressed in the following Equations 8, 9, and 10:

     
       

1

2

, * / *

, * 1 / * 1

M MS

M MS

r x y k H v k H

r x y k H v k H

 

 

 

 

   
    

And

     
       

1

2

, * / *

, * 1 / * 1 .

B B

B B

r x y k H v k H

r x y k H v k H

 

 

 

 

       
    

The function k is a Gaussian kernel with standard deviation  such
that:

2 2

2
()

2
x y

k e 


 



where the standard deviation  can be presumed as a scale parameter
that influences the region scalability from a small neighborhood to the
entire image domain (Saibin & Jumaat, 2023).

By variational calculus, the affiliated Euler-Lagrange (EL) equation
for Equation 6 and Equation 7 are defined in Equations 11 and 12,
respectively:

        1 2 1 21 0MS M M M M dv r H r H r r F            

and

        1 2 1 21 0B B B B B dv r H r H r r F            

where the gradient descent flow of Equation 11 and Equation 12 can 18

a local region that are used to address intensity inhomogeneity, which
can be expressed in the following Equations 8, 9, and 10:

     
       

1

2

, * / *

, * 1 / * 1

M MS

M MS

r x y k H v k H

r x y k H v k H

 

 

 

 

   
    

And

     
       

1

2

, * / *

, * 1 / * 1 .

B B

B B

r x y k H v k H

r x y k H v k H

 

 

 

 

       
    

The function k is a Gaussian kernel with standard deviation  such
that:

2 2

2
()

2
x y

k e 


 



where the standard deviation  can be presumed as a scale parameter
that influences the region scalability from a small neighborhood to the
entire image domain (Saibin & Jumaat, 2023).

By variational calculus, the affiliated Euler-Lagrange (EL) equation
for Equation 6 and Equation 7 are defined in Equations 11 and 12,
respectively:

        1 2 1 21 0MS M M M M dv r H r H r r F            

and

        1 2 1 21 0B B B B B dv r H r H r r F            

where the gradient descent flow of Equation 11 and Equation 12 can

18

a local region that are used to address intensity inhomogeneity, which
can be expressed in the following Equations 8, 9, and 10:

     
       

1

2

, * / *

, * 1 / * 1

M MS

M MS

r x y k H v k H

r x y k H v k H

 

 

 

 

   
    

And

     
       

1

2

, * / *

, * 1 / * 1 .

B B

B B

r x y k H v k H

r x y k H v k H

 

 

 

 

       
    

The function k is a Gaussian kernel with standard deviation  such
that:

2 2

2
()

2
x y

k e 


 



where the standard deviation  can be presumed as a scale parameter
that influences the region scalability from a small neighborhood to the
entire image domain (Saibin & Jumaat, 2023).

By variational calculus, the affiliated Euler-Lagrange (EL) equation
for Equation 6 and Equation 7 are defined in Equations 11 and 12,
respectively:

        1 2 1 21 0MS M M M M dv r H r H r r F            

and

        1 2 1 21 0B B B B B dv r H r H r r F            

where the gradient descent flow of Equation 11 and Equation 12 can 18

a local region that are used to address intensity inhomogeneity, which
can be expressed in the following Equations 8, 9, and 10:

     
       

1

2

, * / *

, * 1 / * 1

M MS

M MS

r x y k H v k H

r x y k H v k H

 

 

 

 

   
    

And

     
       

1

2

, * / *

, * 1 / * 1 .

B B

B B

r x y k H v k H

r x y k H v k H

 

 

 

 

       
    

The function k is a Gaussian kernel with standard deviation  such
that:

2 2

2
()

2
x y

k e 


 



where the standard deviation  can be presumed as a scale parameter
that influences the region scalability from a small neighborhood to the
entire image domain (Saibin & Jumaat, 2023).

By variational calculus, the affiliated Euler-Lagrange (EL) equation
for Equation 6 and Equation 7 are defined in Equations 11 and 12,
respectively:

        1 2 1 21 0MS M M M M dv r H r H r r F            

and

        1 2 1 21 0B B B B B dv r H r H r r F            

where the gradient descent flow of Equation 11 and Equation 12 can

18

a local region that are used to address intensity inhomogeneity, which
can be expressed in the following Equations 8, 9, and 10:

     
       

1

2

, * / *

, * 1 / * 1

M MS

M MS

r x y k H v k H

r x y k H v k H

 

 

 

 

   
    

And

     
       

1

2

, * / *

, * 1 / * 1 .

B B

B B

r x y k H v k H

r x y k H v k H

 

 

 

 

       
    

The function k is a Gaussian kernel with standard deviation  such
that:

2 2

2
()

2
x y

k e 


 



where the standard deviation  can be presumed as a scale parameter
that influences the region scalability from a small neighborhood to the
entire image domain (Saibin & Jumaat, 2023).

By variational calculus, the affiliated Euler-Lagrange (EL) equation
for Equation 6 and Equation 7 are defined in Equations 11 and 12,
respectively:

        1 2 1 21 0MS M M M M dv r H r H r r F            

and

        1 2 1 21 0B B B B B dv r H r H r r F            

where the gradient descent flow of Equation 11 and Equation 12 can

18

a local region that are used to address intensity inhomogeneity, which
can be expressed in the following Equations 8, 9, and 10:

     
       

1

2

, * / *

, * 1 / * 1

M MS

M MS

r x y k H v k H

r x y k H v k H

 

 

 

 

   
    

And

     
       

1

2

, * / *

, * 1 / * 1 .

B B

B B

r x y k H v k H

r x y k H v k H

 

 

 

 

       
    

The function k is a Gaussian kernel with standard deviation  such
that:

2 2

2
()

2
x y

k e 


 



where the standard deviation  can be presumed as a scale parameter
that influences the region scalability from a small neighborhood to the
entire image domain (Saibin & Jumaat, 2023).

By variational calculus, the affiliated Euler-Lagrange (EL) equation
for Equation 6 and Equation 7 are defined in Equations 11 and 12,
respectively:

        1 2 1 21 0MS M M M M dv r H r H r r F            

and

        1 2 1 21 0B B B B B dv r H r H r r F            

where the gradient descent flow of Equation 11 and Equation 12 can 18

a local region that are used to address intensity inhomogeneity, which
can be expressed in the following Equations 8, 9, and 10:

     
       

1

2

, * / *

, * 1 / * 1

M MS

M MS

r x y k H v k H

r x y k H v k H

 

 

 

 

   
    

And

     
       

1

2

, * / *

, * 1 / * 1 .

B B

B B

r x y k H v k H

r x y k H v k H

 

 

 

 

       
    

The function k is a Gaussian kernel with standard deviation  such
that:

2 2

2
()

2
x y

k e 


 



where the standard deviation  can be presumed as a scale parameter
that influences the region scalability from a small neighborhood to the
entire image domain (Saibin & Jumaat, 2023).

By variational calculus, the affiliated Euler-Lagrange (EL) equation
for Equation 6 and Equation 7 are defined in Equations 11 and 12,
respectively:

        1 2 1 21 0MS M M M M dv r H r H r r F            

and

        1 2 1 21 0B B B B B dv r H r H r r F            

where the gradient descent flow of Equation 11 and Equation 12 can

10

where the standard deviation  can be presumed as a scale parameter that influences the region
scalability from a small neighborhood to the entire image domain (Saibin & Jumaat, 2023).

By variational calculus, the affiliated Euler-Lagrange (EL) equation for Equation 6 and Equation 7
are defined in Equations 11 and 12, respectively:

        1 2 1 21 0MS M M M M dv r H r H r r F            
and

        1 2 1 21 0B B B B B dv r H r H r r F            
where the gradient descent flow of Equation 11 and Equation 12 can be obtained by applying the
gradient descent method in Equations 13 and 14 as follows:

        1 2 1 21MS M M M M dv r H r H r r F
t
             

and

        1 2 1 21B B b B B dv r H r H r r F
t
             

where
t



is denoted as the evolution of  with respect to artificial time t . To discretize Equation 13

and Equation 14, a forward finite difference scheme was employed, yielding the following Equations
15 - 18:

     
1

, ,
, 1 2 1 2() 1 ()

k k
i j i j k k k

i j MS M M M M dv r H r H r r F
t

 
    

         

and

     
1

, ,
, 1 2 1 2() 1 ()

k k
i j i j k k k

i j B B B B B dv r H r H r r F
t

 
    

         
.

Lastly, we obtained 1
,
k
i j  by rearranging the above equation as follows:

        1
, , , 1 2 1 21k k k k k

i j i j i j MS M M M M dt v r H r H r r F                 
and

        1
, , , 1 2 1 21k k k k k

i j i j i j B B B B B dt v r H r H r r F                 
.

where t is denoted as timestep. To ensure the regularity of the level set function  and enhance the
efficiency of contour evolution, the Gaussian function was convolved with the level set function. The
resulting output at each iteration served as the initial condition for the subsequent iteration. This cycle
was repeated for each iteration until the stopping criteria were met, which was either

1 /k k k tol     or maximum iteration reaching 3000 iterations where 0.005tol  was the

prescribed tolerance value.

Algorithms to Implement the Proposed Models
In this study, the MATLAB R2021a software with an AMD Ryzen 5 3500U with Radeon Vega

Mobile Gfx CPU running at 2.10 GHz and equipped with 4GB of RAM was utilized to implement the
proposed models. The computational complexity was approximately 2()O k N due to solving via the

gradient descent method where N is the image size with iteration number, k (Zhang et al., 2010).
Algorithm 1 shows the steps associated with the implementation process for the MGRSM model.

10

where the standard deviation  can be presumed as a scale parameter that influences the region
scalability from a small neighborhood to the entire image domain (Saibin & Jumaat, 2023).

By variational calculus, the affiliated Euler-Lagrange (EL) equation for Equation 6 and Equation 7
are defined in Equations 11 and 12, respectively:

        1 2 1 21 0MS M M M M dv r H r H r r F            
and

        1 2 1 21 0B B B B B dv r H r H r r F            
where the gradient descent flow of Equation 11 and Equation 12 can be obtained by applying the
gradient descent method in Equations 13 and 14 as follows:

        1 2 1 21MS M M M M dv r H r H r r F
t
             

and

        1 2 1 21B B b B B dv r H r H r r F
t
             

where
t



is denoted as the evolution of  with respect to artificial time t . To discretize Equation 13

and Equation 14, a forward finite difference scheme was employed, yielding the following Equations
15 - 18:

     
1

, ,
, 1 2 1 2() 1 ()

k k
i j i j k k k

i j MS M M M M dv r H r H r r F
t

 
    

         

and

     
1

, ,
, 1 2 1 2() 1 ()

k k
i j i j k k k

i j B B B B B dv r H r H r r F
t

 
    

         
.

Lastly, we obtained 1
,
k
i j  by rearranging the above equation as follows:

        1
, , , 1 2 1 21k k k k k

i j i j i j MS M M M M dt v r H r H r r F                 
and

        1
, , , 1 2 1 21k k k k k

i j i j i j B B B B B dt v r H r H r r F                 
.

where t is denoted as timestep. To ensure the regularity of the level set function  and enhance the
efficiency of contour evolution, the Gaussian function was convolved with the level set function. The
resulting output at each iteration served as the initial condition for the subsequent iteration. This cycle
was repeated for each iteration until the stopping criteria were met, which was either

1 /k k k tol     or maximum iteration reaching 3000 iterations where 0.005tol  was the

prescribed tolerance value.

Algorithms to Implement the Proposed Models
In this study, the MATLAB R2021a software with an AMD Ryzen 5 3500U with Radeon Vega

Mobile Gfx CPU running at 2.10 GHz and equipped with 4GB of RAM was utilized to implement the
proposed models. The computational complexity was approximately 2()O k N due to solving via the

gradient descent method where N is the image size with iteration number, k (Zhang et al., 2010).
Algorithm 1 shows the steps associated with the implementation process for the MGRSM model.

10

where the standard deviation  can be presumed as a scale parameter that influences the region
scalability from a small neighborhood to the entire image domain (Saibin & Jumaat, 2023).

By variational calculus, the affiliated Euler-Lagrange (EL) equation for Equation 6 and Equation 7
are defined in Equations 11 and 12, respectively:

        1 2 1 21 0MS M M M M dv r H r H r r F            
and

        1 2 1 21 0B B B B B dv r H r H r r F            
where the gradient descent flow of Equation 11 and Equation 12 can be obtained by applying the
gradient descent method in Equations 13 and 14 as follows:

        1 2 1 21MS M M M M dv r H r H r r F
t
             

and

        1 2 1 21B B b B B dv r H r H r r F
t
             

where
t



is denoted as the evolution of  with respect to artificial time t . To discretize Equation 13

and Equation 14, a forward finite difference scheme was employed, yielding the following Equations
15 - 18:

     
1

, ,
, 1 2 1 2() 1 ()

k k
i j i j k k k

i j MS M M M M dv r H r H r r F
t

 
    

         

and

     
1

, ,
, 1 2 1 2() 1 ()

k k
i j i j k k k

i j B B B B B dv r H r H r r F
t

 
    

         
.

Lastly, we obtained 1
,
k
i j  by rearranging the above equation as follows:

        1
, , , 1 2 1 21k k k k k

i j i j i j MS M M M M dt v r H r H r r F                 
and

        1
, , , 1 2 1 21k k k k k

i j i j i j B B B B B dt v r H r H r r F                 
.

where t is denoted as timestep. To ensure the regularity of the level set function  and enhance the
efficiency of contour evolution, the Gaussian function was convolved with the level set function. The
resulting output at each iteration served as the initial condition for the subsequent iteration. This cycle
was repeated for each iteration until the stopping criteria were met, which was either

1 /k k k tol     or maximum iteration reaching 3000 iterations where 0.005tol  was the

prescribed tolerance value.

Algorithms to Implement the Proposed Models
In this study, the MATLAB R2021a software with an AMD Ryzen 5 3500U with Radeon Vega

Mobile Gfx CPU running at 2.10 GHz and equipped with 4GB of RAM was utilized to implement the
proposed models. The computational complexity was approximately 2()O k N due to solving via the

gradient descent method where N is the image size with iteration number, k (Zhang et al., 2010).
Algorithm 1 shows the steps associated with the implementation process for the MGRSM model.

10

where the standard deviation  can be presumed as a scale parameter that influences the region
scalability from a small neighborhood to the entire image domain (Saibin & Jumaat, 2023).

By variational calculus, the affiliated Euler-Lagrange (EL) equation for Equation 6 and Equation 7
are defined in Equations 11 and 12, respectively:

        1 2 1 21 0MS M M M M dv r H r H r r F            
and

        1 2 1 21 0B B B B B dv r H r H r r F            
where the gradient descent flow of Equation 11 and Equation 12 can be obtained by applying the
gradient descent method in Equations 13 and 14 as follows:

        1 2 1 21MS M M M M dv r H r H r r F
t
             

and

        1 2 1 21B B b B B dv r H r H r r F
t
             

where
t



is denoted as the evolution of  with respect to artificial time t . To discretize Equation 13

and Equation 14, a forward finite difference scheme was employed, yielding the following Equations
15 - 18:

     
1

, ,
, 1 2 1 2() 1 ()

k k
i j i j k k k

i j MS M M M M dv r H r H r r F
t

 
    

         

and

     
1

, ,
, 1 2 1 2() 1 ()

k k
i j i j k k k

i j B B B B B dv r H r H r r F
t

 
    

         
.

Lastly, we obtained 1
,
k
i j  by rearranging the above equation as follows:

        1
, , , 1 2 1 21k k k k k

i j i j i j MS M M M M dt v r H r H r r F                 
and

        1
, , , 1 2 1 21k k k k k

i j i j i j B B B B B dt v r H r H r r F                 
.

where t is denoted as timestep. To ensure the regularity of the level set function  and enhance the
efficiency of contour evolution, the Gaussian function was convolved with the level set function. The
resulting output at each iteration served as the initial condition for the subsequent iteration. This cycle
was repeated for each iteration until the stopping criteria were met, which was either

1 /k k k tol     or maximum iteration reaching 3000 iterations where 0.005tol  was the

prescribed tolerance value.

Algorithms to Implement the Proposed Models
In this study, the MATLAB R2021a software with an AMD Ryzen 5 3500U with Radeon Vega

Mobile Gfx CPU running at 2.10 GHz and equipped with 4GB of RAM was utilized to implement the
proposed models. The computational complexity was approximately 2()O k N due to solving via the

gradient descent method where N is the image size with iteration number, k (Zhang et al., 2010).
Algorithm 1 shows the steps associated with the implementation process for the MGRSM model.

 575

Journal of ICT, 23, No. 4 (October) 2024, pp: 561-592

(15)

and

(16)

Lastly, we obtained by rearranging the above equation as follows:

(17)

and

(18)

where is denoted as timestep. To ensure the regularity of the level
set function and enhance the efficiency of contour evolution, the
Gaussian function was convolved with the level set function. The
resulting output at each iteration served as the initial condition for the
subsequent iteration. This cycle was repeated for each iteration until
the stopping criteria were met, which was either or
maximum iteration reaching 3000 iterations where was the prescribed
tolerance value.

Algorithms to Implement the Proposed Models

In this study, the MATLAB R2021a software with an AMD Ryzen 5
3500U with Radeon Vega Mobile Gfx CPU running at 2.10 GHz and
equipped with 4GB of RAM was utilized to implement the proposed
models. The computational complexity was approximately
due to solving via the gradient descent method where is the image
size with iteration number, k (Zhang et al., 2010). Algorithm 1 shows
the steps associated with the implementation process for the MGRSM
model.

Algorithm 1: Algorithm to implement the MGRSM model

1)	 Set the value of parameters and define a set of initial markers
 based on the size of the OJM image.

2)	 Initialize the level set function such that is the boundary of
the initial polygon construct from the marker set

10

where the standard deviation  can be presumed as a scale parameter that influences the region
scalability from a small neighborhood to the entire image domain (Saibin & Jumaat, 2023).

By variational calculus, the affiliated Euler-Lagrange (EL) equation for Equation 6 and Equation 7
are defined in Equations 11 and 12, respectively:

        1 2 1 21 0MS M M M M dv r H r H r r F            
and

        1 2 1 21 0B B B B B dv r H r H r r F            
where the gradient descent flow of Equation 11 and Equation 12 can be obtained by applying the
gradient descent method in Equations 13 and 14 as follows:

        1 2 1 21MS M M M M dv r H r H r r F
t
             

and

        1 2 1 21B B b B B dv r H r H r r F
t
             

where
t



is denoted as the evolution of  with respect to artificial time t . To discretize Equation 13

and Equation 14, a forward finite difference scheme was employed, yielding the following Equations
15 - 18:

     
1

, ,
, 1 2 1 2() 1 ()

k k
i j i j k k k

i j MS M M M M dv r H r H r r F
t

 
    

         

and

     
1

, ,
, 1 2 1 2() 1 ()

k k
i j i j k k k

i j B B B B B dv r H r H r r F
t

 
    

         
.

Lastly, we obtained 1
,
k
i j  by rearranging the above equation as follows:

        1
, , , 1 2 1 21k k k k k

i j i j i j MS M M M M dt v r H r H r r F                 
and

        1
, , , 1 2 1 21k k k k k

i j i j i j B B B B B dt v r H r H r r F                 
.

where t is denoted as timestep. To ensure the regularity of the level set function  and enhance the
efficiency of contour evolution, the Gaussian function was convolved with the level set function. The
resulting output at each iteration served as the initial condition for the subsequent iteration. This cycle
was repeated for each iteration until the stopping criteria were met, which was either

1 /k k k tol     or maximum iteration reaching 3000 iterations where 0.005tol  was the

prescribed tolerance value.

Algorithms to Implement the Proposed Models
In this study, the MATLAB R2021a software with an AMD Ryzen 5 3500U with Radeon Vega

Mobile Gfx CPU running at 2.10 GHz and equipped with 4GB of RAM was utilized to implement the
proposed models. The computational complexity was approximately 2()O k N due to solving via the

gradient descent method where N is the image size with iteration number, k (Zhang et al., 2010).
Algorithm 1 shows the steps associated with the implementation process for the MGRSM model.10

where the standard deviation  can be presumed as a scale parameter that influences the region
scalability from a small neighborhood to the entire image domain (Saibin & Jumaat, 2023).

By variational calculus, the affiliated Euler-Lagrange (EL) equation for Equation 6 and Equation 7
are defined in Equations 11 and 12, respectively:

        1 2 1 21 0MS M M M M dv r H r H r r F            
and

        1 2 1 21 0B B B B B dv r H r H r r F            
where the gradient descent flow of Equation 11 and Equation 12 can be obtained by applying the
gradient descent method in Equations 13 and 14 as follows:

        1 2 1 21MS M M M M dv r H r H r r F
t
             

and

        1 2 1 21B B b B B dv r H r H r r F
t
             

where
t



is denoted as the evolution of  with respect to artificial time t . To discretize Equation 13

and Equation 14, a forward finite difference scheme was employed, yielding the following Equations
15 - 18:

     
1

, ,
, 1 2 1 2() 1 ()

k k
i j i j k k k

i j MS M M M M dv r H r H r r F
t

 
    

         

and

     
1

, ,
, 1 2 1 2() 1 ()

k k
i j i j k k k

i j B B B B B dv r H r H r r F
t

 
    

         
.

Lastly, we obtained 1
,
k
i j  by rearranging the above equation as follows:

        1
, , , 1 2 1 21k k k k k

i j i j i j MS M M M M dt v r H r H r r F                 
and

        1
, , , 1 2 1 21k k k k k

i j i j i j B B B B B dt v r H r H r r F                 
.

where t is denoted as timestep. To ensure the regularity of the level set function  and enhance the
efficiency of contour evolution, the Gaussian function was convolved with the level set function. The
resulting output at each iteration served as the initial condition for the subsequent iteration. This cycle
was repeated for each iteration until the stopping criteria were met, which was either

1 /k k k tol     or maximum iteration reaching 3000 iterations where 0.005tol  was the

prescribed tolerance value.

Algorithms to Implement the Proposed Models
In this study, the MATLAB R2021a software with an AMD Ryzen 5 3500U with Radeon Vega

Mobile Gfx CPU running at 2.10 GHz and equipped with 4GB of RAM was utilized to implement the
proposed models. The computational complexity was approximately 2()O k N due to solving via the

gradient descent method where N is the image size with iteration number, k (Zhang et al., 2010).
Algorithm 1 shows the steps associated with the implementation process for the MGRSM model.

10

where the standard deviation  can be presumed as a scale parameter that influences the region
scalability from a small neighborhood to the entire image domain (Saibin & Jumaat, 2023).

By variational calculus, the affiliated Euler-Lagrange (EL) equation for Equation 6 and Equation 7
are defined in Equations 11 and 12, respectively:

        1 2 1 21 0MS M M M M dv r H r H r r F            
and

        1 2 1 21 0B B B B B dv r H r H r r F            
where the gradient descent flow of Equation 11 and Equation 12 can be obtained by applying the
gradient descent method in Equations 13 and 14 as follows:

        1 2 1 21MS M M M M dv r H r H r r F
t
             

and

        1 2 1 21B B b B B dv r H r H r r F
t
             

where
t



is denoted as the evolution of  with respect to artificial time t . To discretize Equation 13

and Equation 14, a forward finite difference scheme was employed, yielding the following Equations
15 - 18:

     
1

, ,
, 1 2 1 2() 1 ()

k k
i j i j k k k

i j MS M M M M dv r H r H r r F
t

 
    

         

and

     
1

, ,
, 1 2 1 2() 1 ()

k k
i j i j k k k

i j B B B B B dv r H r H r r F
t

 
    

         
.

Lastly, we obtained 1
,
k
i j  by rearranging the above equation as follows:

        1
, , , 1 2 1 21k k k k k

i j i j i j MS M M M M dt v r H r H r r F                 
and

        1
, , , 1 2 1 21k k k k k

i j i j i j B B B B B dt v r H r H r r F                 
.

where t is denoted as timestep. To ensure the regularity of the level set function  and enhance the
efficiency of contour evolution, the Gaussian function was convolved with the level set function. The
resulting output at each iteration served as the initial condition for the subsequent iteration. This cycle
was repeated for each iteration until the stopping criteria were met, which was either

1 /k k k tol     or maximum iteration reaching 3000 iterations where 0.005tol  was the

prescribed tolerance value.

Algorithms to Implement the Proposed Models
In this study, the MATLAB R2021a software with an AMD Ryzen 5 3500U with Radeon Vega

Mobile Gfx CPU running at 2.10 GHz and equipped with 4GB of RAM was utilized to implement the
proposed models. The computational complexity was approximately 2()O k N due to solving via the

gradient descent method where N is the image size with iteration number, k (Zhang et al., 2010).
Algorithm 1 shows the steps associated with the implementation process for the MGRSM model.

10

where the standard deviation  can be presumed as a scale parameter that influences the region
scalability from a small neighborhood to the entire image domain (Saibin & Jumaat, 2023).

By variational calculus, the affiliated Euler-Lagrange (EL) equation for Equation 6 and Equation 7
are defined in Equations 11 and 12, respectively:

        1 2 1 21 0MS M M M M dv r H r H r r F            
and

        1 2 1 21 0B B B B B dv r H r H r r F            
where the gradient descent flow of Equation 11 and Equation 12 can be obtained by applying the
gradient descent method in Equations 13 and 14 as follows:

        1 2 1 21MS M M M M dv r H r H r r F
t
             

and

        1 2 1 21B B b B B dv r H r H r r F
t
             

where
t



is denoted as the evolution of  with respect to artificial time t . To discretize Equation 13

and Equation 14, a forward finite difference scheme was employed, yielding the following Equations
15 - 18:

     
1

, ,
, 1 2 1 2() 1 ()

k k
i j i j k k k

i j MS M M M M dv r H r H r r F
t

 
    

         

and

     
1

, ,
, 1 2 1 2() 1 ()

k k
i j i j k k k

i j B B B B B dv r H r H r r F
t

 
    

         
.

Lastly, we obtained 1
,
k
i j  by rearranging the above equation as follows:

        1
, , , 1 2 1 21k k k k k

i j i j i j MS M M M M dt v r H r H r r F                 
and

        1
, , , 1 2 1 21k k k k k

i j i j i j B B B B B dt v r H r H r r F                 
.

where t is denoted as timestep. To ensure the regularity of the level set function  and enhance the
efficiency of contour evolution, the Gaussian function was convolved with the level set function. The
resulting output at each iteration served as the initial condition for the subsequent iteration. This cycle
was repeated for each iteration until the stopping criteria were met, which was either

1 /k k k tol     or maximum iteration reaching 3000 iterations where 0.005tol  was the

prescribed tolerance value.

Algorithms to Implement the Proposed Models
In this study, the MATLAB R2021a software with an AMD Ryzen 5 3500U with Radeon Vega

Mobile Gfx CPU running at 2.10 GHz and equipped with 4GB of RAM was utilized to implement the
proposed models. The computational complexity was approximately 2()O k N due to solving via the

gradient descent method where N is the image size with iteration number, k (Zhang et al., 2010).
Algorithm 1 shows the steps associated with the implementation process for the MGRSM model.

10

where the standard deviation  can be presumed as a scale parameter that influences the region
scalability from a small neighborhood to the entire image domain (Saibin & Jumaat, 2023).

By variational calculus, the affiliated Euler-Lagrange (EL) equation for Equation 6 and Equation 7
are defined in Equations 11 and 12, respectively:

        1 2 1 21 0MS M M M M dv r H r H r r F            
and

        1 2 1 21 0B B B B B dv r H r H r r F            
where the gradient descent flow of Equation 11 and Equation 12 can be obtained by applying the
gradient descent method in Equations 13 and 14 as follows:

        1 2 1 21MS M M M M dv r H r H r r F
t
             

and

        1 2 1 21B B b B B dv r H r H r r F
t
             

where
t



is denoted as the evolution of  with respect to artificial time t . To discretize Equation 13

and Equation 14, a forward finite difference scheme was employed, yielding the following Equations
15 - 18:

     
1

, ,
, 1 2 1 2() 1 ()

k k
i j i j k k k

i j MS M M M M dv r H r H r r F
t

 
    

         

and

     
1

, ,
, 1 2 1 2() 1 ()

k k
i j i j k k k

i j B B B B B dv r H r H r r F
t

 
    

         
.

Lastly, we obtained 1
,
k
i j  by rearranging the above equation as follows:

        1
, , , 1 2 1 21k k k k k

i j i j i j MS M M M M dt v r H r H r r F                 
and

        1
, , , 1 2 1 21k k k k k

i j i j i j B B B B B dt v r H r H r r F                 
.

where t is denoted as timestep. To ensure the regularity of the level set function  and enhance the
efficiency of contour evolution, the Gaussian function was convolved with the level set function. The
resulting output at each iteration served as the initial condition for the subsequent iteration. This cycle
was repeated for each iteration until the stopping criteria were met, which was either

1 /k k k tol     or maximum iteration reaching 3000 iterations where 0.005tol  was the

prescribed tolerance value.

Algorithms to Implement the Proposed Models
In this study, the MATLAB R2021a software with an AMD Ryzen 5 3500U with Radeon Vega

Mobile Gfx CPU running at 2.10 GHz and equipped with 4GB of RAM was utilized to implement the
proposed models. The computational complexity was approximately 2()O k N due to solving via the

gradient descent method where N is the image size with iteration number, k (Zhang et al., 2010).
Algorithm 1 shows the steps associated with the implementation process for the MGRSM model.

10

where the standard deviation  can be presumed as a scale parameter that influences the region
scalability from a small neighborhood to the entire image domain (Saibin & Jumaat, 2023).

By variational calculus, the affiliated Euler-Lagrange (EL) equation for Equation 6 and Equation 7
are defined in Equations 11 and 12, respectively:

        1 2 1 21 0MS M M M M dv r H r H r r F            
and

        1 2 1 21 0B B B B B dv r H r H r r F            
where the gradient descent flow of Equation 11 and Equation 12 can be obtained by applying the
gradient descent method in Equations 13 and 14 as follows:

        1 2 1 21MS M M M M dv r H r H r r F
t
             

and

        1 2 1 21B B b B B dv r H r H r r F
t
             

where
t



is denoted as the evolution of  with respect to artificial time t . To discretize Equation 13

and Equation 14, a forward finite difference scheme was employed, yielding the following Equations
15 - 18:

     
1

, ,
, 1 2 1 2() 1 ()

k k
i j i j k k k

i j MS M M M M dv r H r H r r F
t

 
    

         

and

     
1

, ,
, 1 2 1 2() 1 ()

k k
i j i j k k k

i j B B B B B dv r H r H r r F
t

 
    

         
.

Lastly, we obtained 1
,
k
i j  by rearranging the above equation as follows:

        1
, , , 1 2 1 21k k k k k

i j i j i j MS M M M M dt v r H r H r r F                 
and

        1
, , , 1 2 1 21k k k k k

i j i j i j B B B B B dt v r H r H r r F                 
.

where t is denoted as timestep. To ensure the regularity of the level set function  and enhance the
efficiency of contour evolution, the Gaussian function was convolved with the level set function. The
resulting output at each iteration served as the initial condition for the subsequent iteration. This cycle
was repeated for each iteration until the stopping criteria were met, which was either

1 /k k k tol     or maximum iteration reaching 3000 iterations where 0.005tol  was the

prescribed tolerance value.

Algorithms to Implement the Proposed Models
In this study, the MATLAB R2021a software with an AMD Ryzen 5 3500U with Radeon Vega

Mobile Gfx CPU running at 2.10 GHz and equipped with 4GB of RAM was utilized to implement the
proposed models. The computational complexity was approximately 2()O k N due to solving via the

gradient descent method where N is the image size with iteration number, k (Zhang et al., 2010).
Algorithm 1 shows the steps associated with the implementation process for the MGRSM model.

10

where the standard deviation  can be presumed as a scale parameter that influences the region
scalability from a small neighborhood to the entire image domain (Saibin & Jumaat, 2023).

By variational calculus, the affiliated Euler-Lagrange (EL) equation for Equation 6 and Equation 7
are defined in Equations 11 and 12, respectively:

        1 2 1 21 0MS M M M M dv r H r H r r F            
and

        1 2 1 21 0B B B B B dv r H r H r r F            
where the gradient descent flow of Equation 11 and Equation 12 can be obtained by applying the
gradient descent method in Equations 13 and 14 as follows:

        1 2 1 21MS M M M M dv r H r H r r F
t
             

and

        1 2 1 21B B b B B dv r H r H r r F
t
             

where
t



is denoted as the evolution of  with respect to artificial time t . To discretize Equation 13

and Equation 14, a forward finite difference scheme was employed, yielding the following Equations
15 - 18:

     
1

, ,
, 1 2 1 2() 1 ()

k k
i j i j k k k

i j MS M M M M dv r H r H r r F
t

 
    

         

and

     
1

, ,
, 1 2 1 2() 1 ()

k k
i j i j k k k

i j B B B B B dv r H r H r r F
t

 
    

         
.

Lastly, we obtained 1
,
k
i j  by rearranging the above equation as follows:

        1
, , , 1 2 1 21k k k k k

i j i j i j MS M M M M dt v r H r H r r F                 
and

        1
, , , 1 2 1 21k k k k k

i j i j i j B B B B B dt v r H r H r r F                 
.

where t is denoted as timestep. To ensure the regularity of the level set function  and enhance the
efficiency of contour evolution, the Gaussian function was convolved with the level set function. The
resulting output at each iteration served as the initial condition for the subsequent iteration. This cycle
was repeated for each iteration until the stopping criteria were met, which was either

1 /k k k tol     or maximum iteration reaching 3000 iterations where 0.005tol  was the

prescribed tolerance value.

Algorithms to Implement the Proposed Models
In this study, the MATLAB R2021a software with an AMD Ryzen 5 3500U with Radeon Vega

Mobile Gfx CPU running at 2.10 GHz and equipped with 4GB of RAM was utilized to implement the
proposed models. The computational complexity was approximately 2()O k N due to solving via the

gradient descent method where N is the image size with iteration number, k (Zhang et al., 2010).
Algorithm 1 shows the steps associated with the implementation process for the MGRSM model.

10

where the standard deviation  can be presumed as a scale parameter that influences the region
scalability from a small neighborhood to the entire image domain (Saibin & Jumaat, 2023).

By variational calculus, the affiliated Euler-Lagrange (EL) equation for Equation 6 and Equation 7
are defined in Equations 11 and 12, respectively:

        1 2 1 21 0MS M M M M dv r H r H r r F            
and

        1 2 1 21 0B B B B B dv r H r H r r F            
where the gradient descent flow of Equation 11 and Equation 12 can be obtained by applying the
gradient descent method in Equations 13 and 14 as follows:

        1 2 1 21MS M M M M dv r H r H r r F
t
             

and

        1 2 1 21B B b B B dv r H r H r r F
t
             

where
t



is denoted as the evolution of  with respect to artificial time t . To discretize Equation 13

and Equation 14, a forward finite difference scheme was employed, yielding the following Equations
15 - 18:

     
1

, ,
, 1 2 1 2() 1 ()

k k
i j i j k k k

i j MS M M M M dv r H r H r r F
t

 
    

         

and

     
1

, ,
, 1 2 1 2() 1 ()

k k
i j i j k k k

i j B B B B B dv r H r H r r F
t

 
    

         
.

Lastly, we obtained 1
,
k
i j  by rearranging the above equation as follows:

        1
, , , 1 2 1 21k k k k k

i j i j i j MS M M M M dt v r H r H r r F                 
and

        1
, , , 1 2 1 21k k k k k

i j i j i j B B B B B dt v r H r H r r F                 
.

where t is denoted as timestep. To ensure the regularity of the level set function  and enhance the
efficiency of contour evolution, the Gaussian function was convolved with the level set function. The
resulting output at each iteration served as the initial condition for the subsequent iteration. This cycle
was repeated for each iteration until the stopping criteria were met, which was either

1 /k k k tol     or maximum iteration reaching 3000 iterations where 0.005tol  was the

prescribed tolerance value.

Algorithms to Implement the Proposed Models
In this study, the MATLAB R2021a software with an AMD Ryzen 5 3500U with Radeon Vega

Mobile Gfx CPU running at 2.10 GHz and equipped with 4GB of RAM was utilized to implement the
proposed models. The computational complexity was approximately 2()O k N due to solving via the

gradient descent method where N is the image size with iteration number, k (Zhang et al., 2010).
Algorithm 1 shows the steps associated with the implementation process for the MGRSM model.

10

where the standard deviation  can be presumed as a scale parameter that influences the region
scalability from a small neighborhood to the entire image domain (Saibin & Jumaat, 2023).

By variational calculus, the affiliated Euler-Lagrange (EL) equation for Equation 6 and Equation 7
are defined in Equations 11 and 12, respectively:

        1 2 1 21 0MS M M M M dv r H r H r r F            
and

        1 2 1 21 0B B B B B dv r H r H r r F            
where the gradient descent flow of Equation 11 and Equation 12 can be obtained by applying the
gradient descent method in Equations 13 and 14 as follows:

        1 2 1 21MS M M M M dv r H r H r r F
t
             

and

        1 2 1 21B B b B B dv r H r H r r F
t
             

where
t



is denoted as the evolution of  with respect to artificial time t . To discretize Equation 13

and Equation 14, a forward finite difference scheme was employed, yielding the following Equations
15 - 18:

     
1

, ,
, 1 2 1 2() 1 ()

k k
i j i j k k k

i j MS M M M M dv r H r H r r F
t

 
    

         

and

     
1

, ,
, 1 2 1 2() 1 ()

k k
i j i j k k k

i j B B B B B dv r H r H r r F
t

 
    

         
.

Lastly, we obtained 1
,
k
i j  by rearranging the above equation as follows:

        1
, , , 1 2 1 21k k k k k

i j i j i j MS M M M M dt v r H r H r r F                 
and

        1
, , , 1 2 1 21k k k k k

i j i j i j B B B B B dt v r H r H r r F                 
.

where t is denoted as timestep. To ensure the regularity of the level set function  and enhance the
efficiency of contour evolution, the Gaussian function was convolved with the level set function. The
resulting output at each iteration served as the initial condition for the subsequent iteration. This cycle
was repeated for each iteration until the stopping criteria were met, which was either

1 /k k k tol     or maximum iteration reaching 3000 iterations where 0.005tol  was the

prescribed tolerance value.

Algorithms to Implement the Proposed Models
In this study, the MATLAB R2021a software with an AMD Ryzen 5 3500U with Radeon Vega

Mobile Gfx CPU running at 2.10 GHz and equipped with 4GB of RAM was utilized to implement the
proposed models. The computational complexity was approximately 2()O k N due to solving via the

gradient descent method where N is the image size with iteration number, k (Zhang et al., 2010).
Algorithm 1 shows the steps associated with the implementation process for the MGRSM model.

10

where the standard deviation  can be presumed as a scale parameter that influences the region
scalability from a small neighborhood to the entire image domain (Saibin & Jumaat, 2023).

By variational calculus, the affiliated Euler-Lagrange (EL) equation for Equation 6 and Equation 7
are defined in Equations 11 and 12, respectively:

        1 2 1 21 0MS M M M M dv r H r H r r F            
and

        1 2 1 21 0B B B B B dv r H r H r r F            
where the gradient descent flow of Equation 11 and Equation 12 can be obtained by applying the
gradient descent method in Equations 13 and 14 as follows:

        1 2 1 21MS M M M M dv r H r H r r F
t
             

and

        1 2 1 21B B b B B dv r H r H r r F
t
             

where
t



is denoted as the evolution of  with respect to artificial time t . To discretize Equation 13

and Equation 14, a forward finite difference scheme was employed, yielding the following Equations
15 - 18:

     
1

, ,
, 1 2 1 2() 1 ()

k k
i j i j k k k

i j MS M M M M dv r H r H r r F
t

 
    

         

and

     
1

, ,
, 1 2 1 2() 1 ()

k k
i j i j k k k

i j B B B B B dv r H r H r r F
t

 
    

         
.

Lastly, we obtained 1
,
k
i j  by rearranging the above equation as follows:

        1
, , , 1 2 1 21k k k k k

i j i j i j MS M M M M dt v r H r H r r F                 
and

        1
, , , 1 2 1 21k k k k k

i j i j i j B B B B B dt v r H r H r r F                 
.

where t is denoted as timestep. To ensure the regularity of the level set function  and enhance the
efficiency of contour evolution, the Gaussian function was convolved with the level set function. The
resulting output at each iteration served as the initial condition for the subsequent iteration. This cycle
was repeated for each iteration until the stopping criteria were met, which was either

1 /k k k tol     or maximum iteration reaching 3000 iterations where 0.005tol  was the

prescribed tolerance value.

Algorithms to Implement the Proposed Models
In this study, the MATLAB R2021a software with an AMD Ryzen 5 3500U with Radeon Vega

Mobile Gfx CPU running at 2.10 GHz and equipped with 4GB of RAM was utilized to implement the
proposed models. The computational complexity was approximately 2()O k N due to solving via the

gradient descent method where N is the image size with iteration number, k (Zhang et al., 2010).
Algorithm 1 shows the steps associated with the implementation process for the MGRSM model.

(continued)

20

where t is denoted as timestep. To ensure the regularity of the level
set function  and enhance the efficiency of contour evolution, the
Gaussian function was convolved with the level set function. The
resulting output at each iteration served as the initial condition for the
subsequent iteration. This cycle was repeated for each iteration until
the stopping criteria were met, which was either 1 /k k k tol    

or maximum iteration reaching 3000 iterations where 0.005tol  was
the prescribed tolerance value.

Algorithms to Implement the Proposed Models

In this study, the MATLAB R2021a software with an AMD Ryzen 5
3500U with Radeon Vega Mobile Gfx CPU running at 2.10 GHz and
equipped with 4GB of RAM was utilized to implement the proposed
models. The computational complexity was approximately 2()O k N

due to solving via the gradient descent method where N is the image
size with iteration number, k (Zhang et al., 2010). Algorithm 1 shows
the steps associated with the implementation process for the MGRSM
model.

Algorithm 1: Algorithm to implement the MGRSM model
1) Set the value of parameters and define a set of initial

markers C based on the size of the OJM image.
2) Initialize the level set function  such that  is the

boundary of the initial polygon G construct from the
marker set C .

3) For 1iteration  to maxit or
1k k

k
tol

 



 
 do

Compute 1()k
Mr  and 2 ()k

Mr  using Equation 8.
Solve the level set function  based on Equation 17.

Regularize  by convolving with k .
end for

20

where t is denoted as timestep. To ensure the regularity of the level
set function  and enhance the efficiency of contour evolution, the
Gaussian function was convolved with the level set function. The
resulting output at each iteration served as the initial condition for the
subsequent iteration. This cycle was repeated for each iteration until
the stopping criteria were met, which was either 1 /k k k tol    

or maximum iteration reaching 3000 iterations where 0.005tol  was
the prescribed tolerance value.

Algorithms to Implement the Proposed Models

In this study, the MATLAB R2021a software with an AMD Ryzen 5
3500U with Radeon Vega Mobile Gfx CPU running at 2.10 GHz and
equipped with 4GB of RAM was utilized to implement the proposed
models. The computational complexity was approximately 2()O k N

due to solving via the gradient descent method where N is the image
size with iteration number, k (Zhang et al., 2010). Algorithm 1 shows
the steps associated with the implementation process for the MGRSM
model.

Algorithm 1: Algorithm to implement the MGRSM model
1) Set the value of parameters and define a set of initial

markers C based on the size of the OJM image.
2) Initialize the level set function  such that  is the

boundary of the initial polygon G construct from the
marker set C .

3) For 1iteration  to maxit or
1k k

k
tol

 



 
 do

Compute 1()k
Mr  and 2 ()k

Mr  using Equation 8.
Solve the level set function  based on Equation 17.

Regularize  by convolving with k .
end for

20

where t is denoted as timestep. To ensure the regularity of the level
set function  and enhance the efficiency of contour evolution, the
Gaussian function was convolved with the level set function. The
resulting output at each iteration served as the initial condition for the
subsequent iteration. This cycle was repeated for each iteration until
the stopping criteria were met, which was either 1 /k k k tol    

or maximum iteration reaching 3000 iterations where 0.005tol  was
the prescribed tolerance value.

Algorithms to Implement the Proposed Models

In this study, the MATLAB R2021a software with an AMD Ryzen 5
3500U with Radeon Vega Mobile Gfx CPU running at 2.10 GHz and
equipped with 4GB of RAM was utilized to implement the proposed
models. The computational complexity was approximately 2()O k N

due to solving via the gradient descent method where N is the image
size with iteration number, k (Zhang et al., 2010). Algorithm 1 shows
the steps associated with the implementation process for the MGRSM
model.

Algorithm 1: Algorithm to implement the MGRSM model
1) Set the value of parameters and define a set of initial

markers C based on the size of the OJM image.
2) Initialize the level set function  such that  is the

boundary of the initial polygon G construct from the
marker set C .

3) For 1iteration  to maxit or
1k k

k
tol

 



 
 do

Compute 1()k
Mr  and 2 ()k

Mr  using Equation 8.
Solve the level set function  based on Equation 17.

Regularize  by convolving with k .
end for

20

where t is denoted as timestep. To ensure the regularity of the level
set function  and enhance the efficiency of contour evolution, the
Gaussian function was convolved with the level set function. The
resulting output at each iteration served as the initial condition for the
subsequent iteration. This cycle was repeated for each iteration until
the stopping criteria were met, which was either 1 /k k k tol    

or maximum iteration reaching 3000 iterations where 0.005tol  was
the prescribed tolerance value.

Algorithms to Implement the Proposed Models

In this study, the MATLAB R2021a software with an AMD Ryzen 5
3500U with Radeon Vega Mobile Gfx CPU running at 2.10 GHz and
equipped with 4GB of RAM was utilized to implement the proposed
models. The computational complexity was approximately 2()O k N

due to solving via the gradient descent method where N is the image
size with iteration number, k (Zhang et al., 2010). Algorithm 1 shows
the steps associated with the implementation process for the MGRSM
model.

Algorithm 1: Algorithm to implement the MGRSM model
1) Set the value of parameters and define a set of initial

markers C based on the size of the OJM image.
2) Initialize the level set function  such that  is the

boundary of the initial polygon G construct from the
marker set C .

3) For 1iteration  to maxit or
1k k

k
tol

 



 
 do

Compute 1()k
Mr  and 2 ()k

Mr  using Equation 8.
Solve the level set function  based on Equation 17.

Regularize  by convolving with k .
end for

20

where t is denoted as timestep. To ensure the regularity of the level
set function  and enhance the efficiency of contour evolution, the
Gaussian function was convolved with the level set function. The
resulting output at each iteration served as the initial condition for the
subsequent iteration. This cycle was repeated for each iteration until
the stopping criteria were met, which was either 1 /k k k tol    

or maximum iteration reaching 3000 iterations where 0.005tol  was
the prescribed tolerance value.

Algorithms to Implement the Proposed Models

In this study, the MATLAB R2021a software with an AMD Ryzen 5
3500U with Radeon Vega Mobile Gfx CPU running at 2.10 GHz and
equipped with 4GB of RAM was utilized to implement the proposed
models. The computational complexity was approximately 2()O k N

due to solving via the gradient descent method where N is the image
size with iteration number, k (Zhang et al., 2010). Algorithm 1 shows
the steps associated with the implementation process for the MGRSM
model.

Algorithm 1: Algorithm to implement the MGRSM model
1) Set the value of parameters and define a set of initial

markers C based on the size of the OJM image.
2) Initialize the level set function  such that  is the

boundary of the initial polygon G construct from the
marker set C .

3) For 1iteration  to maxit or
1k k

k
tol

 



 
 do

Compute 1()k
Mr  and 2 ()k

Mr  using Equation 8.
Solve the level set function  based on Equation 17.

Regularize  by convolving with k .
end for

576

Journal of ICT, 23, No. 4 (October) 2024, pp: 561-592

Algorithm 1: Algorithm to implement the MGRSM model
3) For 1iteration = to maxit or do

Compute and using Equation 8.
Solve the level set function based on Equation 17.
Regularize by convolving with
end for

 The output is defined as the final solution.

Next, we discuss Algorithm 2 for the MGRSB model. All steps in
the MGRSB model were identical to the algorithm in the MGRSM
model except for step 3, where the local inner and intensity averages
were computed using Equation 9 and the level set function evolved
based on Equation 18.

Algorithm 2: Algorithm to implement the MGRSB model
1) Set the value of parameters and define initial set markers based
 on the size of the OJM image.
2) Initialize the level set function such that is the boundary of
 the initial polygon construct from the marker set

3) For do

 Compute and using Equation 9.
 Solve the level set function based on Equation 18.
 Regularize by convolving with
 end for
4)The output is defined as the final solution.

Performance Evaluation

In this research, we assessed the performance of our proposed models
in terms of segmentation accuracy and efficiency results. Since we
utilized the original corrupted OJM images in our research, there
were no ground truth OJM images available. As a result, it was not
possible to use quantitative metrics such as accuracy, precision, recall,
or F1 score. Therefore, we relied on expert evaluation and qualitative
measures for assessing segmentation accuracy. Initially, two experts
from the Academy of Contemporary Islamic Studies (ACIS) and an
expert from the Academy of Language Studies at Universiti Teknologi
MARA (UiTM) were selected. These experts were then instructed to
assess each segmentation output image using a Likert scale ranging

20

where t is denoted as timestep. To ensure the regularity of the level
set function  and enhance the efficiency of contour evolution, the
Gaussian function was convolved with the level set function. The
resulting output at each iteration served as the initial condition for the
subsequent iteration. This cycle was repeated for each iteration until
the stopping criteria were met, which was either 1 /k k k tol    

or maximum iteration reaching 3000 iterations where 0.005tol  was
the prescribed tolerance value.

Algorithms to Implement the Proposed Models

In this study, the MATLAB R2021a software with an AMD Ryzen 5
3500U with Radeon Vega Mobile Gfx CPU running at 2.10 GHz and
equipped with 4GB of RAM was utilized to implement the proposed
models. The computational complexity was approximately 2()O k N

due to solving via the gradient descent method where N is the image
size with iteration number, k (Zhang et al., 2010). Algorithm 1 shows
the steps associated with the implementation process for the MGRSM
model.

Algorithm 1: Algorithm to implement the MGRSM model
1) Set the value of parameters and define a set of initial

markers C based on the size of the OJM image.
2) Initialize the level set function  such that  is the

boundary of the initial polygon G construct from the
marker set C .

3) For 1iteration  to maxit or
1k k

k
tol

 



 
 do

Compute 1()k
Mr  and 2 ()k

Mr  using Equation 8.
Solve the level set function  based on Equation 17.

Regularize  by convolving with k .
end for

20

where t is denoted as timestep. To ensure the regularity of the level
set function  and enhance the efficiency of contour evolution, the
Gaussian function was convolved with the level set function. The
resulting output at each iteration served as the initial condition for the
subsequent iteration. This cycle was repeated for each iteration until
the stopping criteria were met, which was either 1 /k k k tol    

or maximum iteration reaching 3000 iterations where 0.005tol  was
the prescribed tolerance value.

Algorithms to Implement the Proposed Models

In this study, the MATLAB R2021a software with an AMD Ryzen 5
3500U with Radeon Vega Mobile Gfx CPU running at 2.10 GHz and
equipped with 4GB of RAM was utilized to implement the proposed
models. The computational complexity was approximately 2()O k N

due to solving via the gradient descent method where N is the image
size with iteration number, k (Zhang et al., 2010). Algorithm 1 shows
the steps associated with the implementation process for the MGRSM
model.

Algorithm 1: Algorithm to implement the MGRSM model
1) Set the value of parameters and define a set of initial

markers C based on the size of the OJM image.
2) Initialize the level set function  such that  is the

boundary of the initial polygon G construct from the
marker set C .

3) For 1iteration  to maxit or
1k k

k
tol

 



 
 do

Compute 1()k
Mr  and 2 ()k

Mr  using Equation 8.
Solve the level set function  based on Equation 17.

Regularize  by convolving with k .
end for

20

where t is denoted as timestep. To ensure the regularity of the level
set function  and enhance the efficiency of contour evolution, the
Gaussian function was convolved with the level set function. The
resulting output at each iteration served as the initial condition for the
subsequent iteration. This cycle was repeated for each iteration until
the stopping criteria were met, which was either 1 /k k k tol    

or maximum iteration reaching 3000 iterations where 0.005tol  was
the prescribed tolerance value.

Algorithms to Implement the Proposed Models

In this study, the MATLAB R2021a software with an AMD Ryzen 5
3500U with Radeon Vega Mobile Gfx CPU running at 2.10 GHz and
equipped with 4GB of RAM was utilized to implement the proposed
models. The computational complexity was approximately 2()O k N

due to solving via the gradient descent method where N is the image
size with iteration number, k (Zhang et al., 2010). Algorithm 1 shows
the steps associated with the implementation process for the MGRSM
model.

Algorithm 1: Algorithm to implement the MGRSM model
1) Set the value of parameters and define a set of initial

markers C based on the size of the OJM image.
2) Initialize the level set function  such that  is the

boundary of the initial polygon G construct from the
marker set C .

3) For 1iteration  to maxit or
1k k

k
tol

 



 
 do

Compute 1()k
Mr  and 2 ()k

Mr  using Equation 8.
Solve the level set function  based on Equation 17.

Regularize  by convolving with k .
end for

20

where t is denoted as timestep. To ensure the regularity of the level
set function  and enhance the efficiency of contour evolution, the
Gaussian function was convolved with the level set function. The
resulting output at each iteration served as the initial condition for the
subsequent iteration. This cycle was repeated for each iteration until
the stopping criteria were met, which was either 1 /k k k tol    

or maximum iteration reaching 3000 iterations where 0.005tol  was
the prescribed tolerance value.

Algorithms to Implement the Proposed Models

In this study, the MATLAB R2021a software with an AMD Ryzen 5
3500U with Radeon Vega Mobile Gfx CPU running at 2.10 GHz and
equipped with 4GB of RAM was utilized to implement the proposed
models. The computational complexity was approximately 2()O k N

due to solving via the gradient descent method where N is the image
size with iteration number, k (Zhang et al., 2010). Algorithm 1 shows
the steps associated with the implementation process for the MGRSM
model.

Algorithm 1: Algorithm to implement the MGRSM model
1) Set the value of parameters and define a set of initial

markers C based on the size of the OJM image.
2) Initialize the level set function  such that  is the

boundary of the initial polygon G construct from the
marker set C .

3) For 1iteration  to maxit or
1k k

k
tol

 



 
 do

Compute 1()k
Mr  and 2 ()k

Mr  using Equation 8.
Solve the level set function  based on Equation 17.

Regularize  by convolving with k .
end for

20

where t is denoted as timestep. To ensure the regularity of the level
set function  and enhance the efficiency of contour evolution, the
Gaussian function was convolved with the level set function. The
resulting output at each iteration served as the initial condition for the
subsequent iteration. This cycle was repeated for each iteration until
the stopping criteria were met, which was either 1 /k k k tol    

or maximum iteration reaching 3000 iterations where 0.005tol  was
the prescribed tolerance value.

Algorithms to Implement the Proposed Models

In this study, the MATLAB R2021a software with an AMD Ryzen 5
3500U with Radeon Vega Mobile Gfx CPU running at 2.10 GHz and
equipped with 4GB of RAM was utilized to implement the proposed
models. The computational complexity was approximately 2()O k N

due to solving via the gradient descent method where N is the image
size with iteration number, k (Zhang et al., 2010). Algorithm 1 shows
the steps associated with the implementation process for the MGRSM
model.

Algorithm 1: Algorithm to implement the MGRSM model
1) Set the value of parameters and define a set of initial

markers C based on the size of the OJM image.
2) Initialize the level set function  such that  is the

boundary of the initial polygon G construct from the
marker set C .

3) For 1iteration  to maxit or
1k k

k
tol

 



 
 do

Compute 1()k
Mr  and 2 ()k

Mr  using Equation 8.
Solve the level set function  based on Equation 17.

Regularize  by convolving with k .
end for

20

where t is denoted as timestep. To ensure the regularity of the level
set function  and enhance the efficiency of contour evolution, the
Gaussian function was convolved with the level set function. The
resulting output at each iteration served as the initial condition for the
subsequent iteration. This cycle was repeated for each iteration until
the stopping criteria were met, which was either 1 /k k k tol    

or maximum iteration reaching 3000 iterations where 0.005tol  was
the prescribed tolerance value.

Algorithms to Implement the Proposed Models

In this study, the MATLAB R2021a software with an AMD Ryzen 5
3500U with Radeon Vega Mobile Gfx CPU running at 2.10 GHz and
equipped with 4GB of RAM was utilized to implement the proposed
models. The computational complexity was approximately 2()O k N

due to solving via the gradient descent method where N is the image
size with iteration number, k (Zhang et al., 2010). Algorithm 1 shows
the steps associated with the implementation process for the MGRSM
model.

Algorithm 1: Algorithm to implement the MGRSM model
1) Set the value of parameters and define a set of initial

markers C based on the size of the OJM image.
2) Initialize the level set function  such that  is the

boundary of the initial polygon G construct from the
marker set C .

3) For 1iteration  to maxit or
1k k

k
tol

 



 
 do

Compute 1()k
Mr  and 2 ()k

Mr  using Equation 8.
Solve the level set function  based on Equation 17.

Regularize  by convolving with k .
end for

20

where t is denoted as timestep. To ensure the regularity of the level
set function  and enhance the efficiency of contour evolution, the
Gaussian function was convolved with the level set function. The
resulting output at each iteration served as the initial condition for the
subsequent iteration. This cycle was repeated for each iteration until
the stopping criteria were met, which was either 1 /k k k tol    

or maximum iteration reaching 3000 iterations where 0.005tol  was
the prescribed tolerance value.

Algorithms to Implement the Proposed Models

In this study, the MATLAB R2021a software with an AMD Ryzen 5
3500U with Radeon Vega Mobile Gfx CPU running at 2.10 GHz and
equipped with 4GB of RAM was utilized to implement the proposed
models. The computational complexity was approximately 2()O k N

due to solving via the gradient descent method where N is the image
size with iteration number, k (Zhang et al., 2010). Algorithm 1 shows
the steps associated with the implementation process for the MGRSM
model.

Algorithm 1: Algorithm to implement the MGRSM model
1) Set the value of parameters and define a set of initial

markers C based on the size of the OJM image.
2) Initialize the level set function  such that  is the

boundary of the initial polygon G construct from the
marker set C .

3) For 1iteration  to maxit or
1k k

k
tol

 



 
 do

Compute 1()k
Mr  and 2 ()k

Mr  using Equation 8.
Solve the level set function  based on Equation 17.

Regularize  by convolving with k .
end for

20

where t is denoted as timestep. To ensure the regularity of the level
set function  and enhance the efficiency of contour evolution, the
Gaussian function was convolved with the level set function. The
resulting output at each iteration served as the initial condition for the
subsequent iteration. This cycle was repeated for each iteration until
the stopping criteria were met, which was either 1 /k k k tol    

or maximum iteration reaching 3000 iterations where 0.005tol  was
the prescribed tolerance value.

Algorithms to Implement the Proposed Models

In this study, the MATLAB R2021a software with an AMD Ryzen 5
3500U with Radeon Vega Mobile Gfx CPU running at 2.10 GHz and
equipped with 4GB of RAM was utilized to implement the proposed
models. The computational complexity was approximately 2()O k N

due to solving via the gradient descent method where N is the image
size with iteration number, k (Zhang et al., 2010). Algorithm 1 shows
the steps associated with the implementation process for the MGRSM
model.

Algorithm 1: Algorithm to implement the MGRSM model
1) Set the value of parameters and define a set of initial

markers C based on the size of the OJM image.
2) Initialize the level set function  such that  is the

boundary of the initial polygon G construct from the
marker set C .

3) For 1iteration  to maxit or
1k k

k
tol

 



 
 do

Compute 1()k
Mr  and 2 ()k

Mr  using Equation 8.
Solve the level set function  based on Equation 17.

Regularize  by convolving with k .
end for

20

where t is denoted as timestep. To ensure the regularity of the level
set function  and enhance the efficiency of contour evolution, the
Gaussian function was convolved with the level set function. The
resulting output at each iteration served as the initial condition for the
subsequent iteration. This cycle was repeated for each iteration until
the stopping criteria were met, which was either 1 /k k k tol    

or maximum iteration reaching 3000 iterations where 0.005tol  was
the prescribed tolerance value.

Algorithms to Implement the Proposed Models

In this study, the MATLAB R2021a software with an AMD Ryzen 5
3500U with Radeon Vega Mobile Gfx CPU running at 2.10 GHz and
equipped with 4GB of RAM was utilized to implement the proposed
models. The computational complexity was approximately 2()O k N

due to solving via the gradient descent method where N is the image
size with iteration number, k (Zhang et al., 2010). Algorithm 1 shows
the steps associated with the implementation process for the MGRSM
model.

Algorithm 1: Algorithm to implement the MGRSM model
1) Set the value of parameters and define a set of initial

markers C based on the size of the OJM image.
2) Initialize the level set function  such that  is the

boundary of the initial polygon G construct from the
marker set C .

3) For 1iteration  to maxit or
1k k

k
tol

 



 
 do

Compute 1()k
Mr  and 2 ()k

Mr  using Equation 8.
Solve the level set function  based on Equation 17.

Regularize  by convolving with k .
end for

20

where t is denoted as timestep. To ensure the regularity of the level
set function  and enhance the efficiency of contour evolution, the
Gaussian function was convolved with the level set function. The
resulting output at each iteration served as the initial condition for the
subsequent iteration. This cycle was repeated for each iteration until
the stopping criteria were met, which was either 1 /k k k tol    

or maximum iteration reaching 3000 iterations where 0.005tol  was
the prescribed tolerance value.

Algorithms to Implement the Proposed Models

In this study, the MATLAB R2021a software with an AMD Ryzen 5
3500U with Radeon Vega Mobile Gfx CPU running at 2.10 GHz and
equipped with 4GB of RAM was utilized to implement the proposed
models. The computational complexity was approximately 2()O k N

due to solving via the gradient descent method where N is the image
size with iteration number, k (Zhang et al., 2010). Algorithm 1 shows
the steps associated with the implementation process for the MGRSM
model.

Algorithm 1: Algorithm to implement the MGRSM model
1) Set the value of parameters and define a set of initial

markers C based on the size of the OJM image.
2) Initialize the level set function  such that  is the

boundary of the initial polygon G construct from the
marker set C .

3) For 1iteration  to maxit or
1k k

k
tol

 



 
 do

Compute 1()k
Mr  and 2 ()k

Mr  using Equation 8.
Solve the level set function  based on Equation 17.

Regularize  by convolving with k .
end for

20

where t is denoted as timestep. To ensure the regularity of the level
set function  and enhance the efficiency of contour evolution, the
Gaussian function was convolved with the level set function. The
resulting output at each iteration served as the initial condition for the
subsequent iteration. This cycle was repeated for each iteration until
the stopping criteria were met, which was either 1 /k k k tol    

or maximum iteration reaching 3000 iterations where 0.005tol  was
the prescribed tolerance value.

Algorithms to Implement the Proposed Models

In this study, the MATLAB R2021a software with an AMD Ryzen 5
3500U with Radeon Vega Mobile Gfx CPU running at 2.10 GHz and
equipped with 4GB of RAM was utilized to implement the proposed
models. The computational complexity was approximately 2()O k N

due to solving via the gradient descent method where N is the image
size with iteration number, k (Zhang et al., 2010). Algorithm 1 shows
the steps associated with the implementation process for the MGRSM
model.

Algorithm 1: Algorithm to implement the MGRSM model
1) Set the value of parameters and define a set of initial

markers C based on the size of the OJM image.
2) Initialize the level set function  such that  is the

boundary of the initial polygon G construct from the
marker set C .

3) For 1iteration  to maxit or
1k k

k
tol

 



 
 do

Compute 1()k
Mr  and 2 ()k

Mr  using Equation 8.
Solve the level set function  based on Equation 17.

Regularize  by convolving with k .
end for

20

where t is denoted as timestep. To ensure the regularity of the level
set function  and enhance the efficiency of contour evolution, the
Gaussian function was convolved with the level set function. The
resulting output at each iteration served as the initial condition for the
subsequent iteration. This cycle was repeated for each iteration until
the stopping criteria were met, which was either 1 /k k k tol    

or maximum iteration reaching 3000 iterations where 0.005tol  was
the prescribed tolerance value.

Algorithms to Implement the Proposed Models

In this study, the MATLAB R2021a software with an AMD Ryzen 5
3500U with Radeon Vega Mobile Gfx CPU running at 2.10 GHz and
equipped with 4GB of RAM was utilized to implement the proposed
models. The computational complexity was approximately 2()O k N

due to solving via the gradient descent method where N is the image
size with iteration number, k (Zhang et al., 2010). Algorithm 1 shows
the steps associated with the implementation process for the MGRSM
model.

Algorithm 1: Algorithm to implement the MGRSM model
1) Set the value of parameters and define a set of initial

markers C based on the size of the OJM image.
2) Initialize the level set function  such that  is the

boundary of the initial polygon G construct from the
marker set C .

3) For 1iteration  to maxit or
1k k

k
tol

 



 
 do

Compute 1()k
Mr  and 2 ()k

Mr  using Equation 8.
Solve the level set function  based on Equation 17.

Regularize  by convolving with k .
end for

20

where t is denoted as timestep. To ensure the regularity of the level
set function  and enhance the efficiency of contour evolution, the
Gaussian function was convolved with the level set function. The
resulting output at each iteration served as the initial condition for the
subsequent iteration. This cycle was repeated for each iteration until
the stopping criteria were met, which was either 1 /k k k tol    

or maximum iteration reaching 3000 iterations where 0.005tol  was
the prescribed tolerance value.

Algorithms to Implement the Proposed Models

In this study, the MATLAB R2021a software with an AMD Ryzen 5
3500U with Radeon Vega Mobile Gfx CPU running at 2.10 GHz and
equipped with 4GB of RAM was utilized to implement the proposed
models. The computational complexity was approximately 2()O k N

due to solving via the gradient descent method where N is the image
size with iteration number, k (Zhang et al., 2010). Algorithm 1 shows
the steps associated with the implementation process for the MGRSM
model.

Algorithm 1: Algorithm to implement the MGRSM model
1) Set the value of parameters and define a set of initial

markers C based on the size of the OJM image.
2) Initialize the level set function  such that  is the

boundary of the initial polygon G construct from the
marker set C .

3) For 1iteration  to maxit or
1k k

k
tol

 



 
 do

Compute 1()k
Mr  and 2 ()k

Mr  using Equation 8.
Solve the level set function  based on Equation 17.

Regularize  by convolving with k .
end for

20

where t is denoted as timestep. To ensure the regularity of the level
set function  and enhance the efficiency of contour evolution, the
Gaussian function was convolved with the level set function. The
resulting output at each iteration served as the initial condition for the
subsequent iteration. This cycle was repeated for each iteration until
the stopping criteria were met, which was either 1 /k k k tol    

or maximum iteration reaching 3000 iterations where 0.005tol  was
the prescribed tolerance value.

Algorithms to Implement the Proposed Models

In this study, the MATLAB R2021a software with an AMD Ryzen 5
3500U with Radeon Vega Mobile Gfx CPU running at 2.10 GHz and
equipped with 4GB of RAM was utilized to implement the proposed
models. The computational complexity was approximately 2()O k N

due to solving via the gradient descent method where N is the image
size with iteration number, k (Zhang et al., 2010). Algorithm 1 shows
the steps associated with the implementation process for the MGRSM
model.

Algorithm 1: Algorithm to implement the MGRSM model
1) Set the value of parameters and define a set of initial

markers C based on the size of the OJM image.
2) Initialize the level set function  such that  is the

boundary of the initial polygon G construct from the
marker set C .

3) For 1iteration  to maxit or
1k k

k
tol

 



 
 do

Compute 1()k
Mr  and 2 ()k

Mr  using Equation 8.
Solve the level set function  based on Equation 17.

Regularize  by convolving with k .
end for

11

Algorithm 1: Algorithm to implement the MGRSM model

1) Set the value of parameters and define a set of initial markers C based on the
size of the OJM image.

2) Initialize the level set function  such that  is the boundary of the initial
polygon G construct from the marker set C .

3) For 1iteration  to maxit or
1k k

k
tol

 



 
 do

Compute 1()k
Mr  and 2 ()k

Mr  using Equation 8.
Solve the level set function  based on Equation 17.
Regularize  by convolving with k .
end for

4) The output  is defined as the final solution.

Next, we discuss Algorithm 2 for the MGRSB model. All steps in the MGRSB model were identical
to the algorithm in the MGRSM model except for step 3, where the local inner and intensity averages
were computed using Equation 9 and the level set function  evolved based on Equation 18.

Algorithm 2: Algorithm to implement the MGRSB model

1) Set the value of parameters and define initial set markers C based on the size of
the OJM image.

2) Initialize the level set function  such that  is the boundary of the initial
polygon G construct from the marker set C .

3) For 1iteration  to maxit or
1k k

k
tol

 



 
 do

Compute 1()k
Br  and 2 ()k

Br  using Equation 9.
Solve the level set function  based on Equation 18.
Regularize  by convolving with k .
end for

4) The output  is defined as the final solution.

Performance Evaluation
In this research, we assessed the performance of our proposed models in terms of segmentation

accuracy and efficiency results. Since we utilized the original corrupted OJM images in our research,
there were no ground truth OJM images available. As a result, it was not possible to use quantitative
metrics such as accuracy, precision, recall, or F1 score. Therefore, we relied on expert evaluation and
qualitative measures for assessing segmentation accuracy. Initially, two experts from the Academy of
Contemporary Islamic Studies (ACIS) and an expert from the Academy of Language Studies at
Universiti Teknologi MARA (UiTM) were selected. These experts were then instructed to assess each
segmentation output image using a Likert scale ranging from the following scale: 1 (Very Bad), 2 (Bad),
3 (Neutral), 4 (Good) and 5 (Very Good). The percentage of the total overall scores given by the experts

11

Algorithm 1: Algorithm to implement the MGRSM model

1) Set the value of parameters and define a set of initial markers C based on the
size of the OJM image.

2) Initialize the level set function  such that  is the boundary of the initial
polygon G construct from the marker set C .

3) For 1iteration  to maxit or
1k k

k
tol

 



 
 do

Compute 1()k
Mr  and 2 ()k

Mr  using Equation 8.
Solve the level set function  based on Equation 17.
Regularize  by convolving with k .
end for

4) The output  is defined as the final solution.

Next, we discuss Algorithm 2 for the MGRSB model. All steps in the MGRSB model were identical
to the algorithm in the MGRSM model except for step 3, where the local inner and intensity averages
were computed using Equation 9 and the level set function  evolved based on Equation 18.

Algorithm 2: Algorithm to implement the MGRSB model

1) Set the value of parameters and define initial set markers C based on the size of
the OJM image.

2) Initialize the level set function  such that  is the boundary of the initial
polygon G construct from the marker set C .

3) For 1iteration  to maxit or
1k k

k
tol

 



 
 do

Compute 1()k
Br  and 2 ()k

Br  using Equation 9.
Solve the level set function  based on Equation 18.
Regularize  by convolving with k .
end for

4) The output  is defined as the final solution.

Performance Evaluation
In this research, we assessed the performance of our proposed models in terms of segmentation

accuracy and efficiency results. Since we utilized the original corrupted OJM images in our research,
there were no ground truth OJM images available. As a result, it was not possible to use quantitative
metrics such as accuracy, precision, recall, or F1 score. Therefore, we relied on expert evaluation and
qualitative measures for assessing segmentation accuracy. Initially, two experts from the Academy of
Contemporary Islamic Studies (ACIS) and an expert from the Academy of Language Studies at
Universiti Teknologi MARA (UiTM) were selected. These experts were then instructed to assess each
segmentation output image using a Likert scale ranging from the following scale: 1 (Very Bad), 2 (Bad),
3 (Neutral), 4 (Good) and 5 (Very Good). The percentage of the total overall scores given by the experts

11

Algorithm 1: Algorithm to implement the MGRSM model

1) Set the value of parameters and define a set of initial markers C based on the
size of the OJM image.

2) Initialize the level set function  such that  is the boundary of the initial
polygon G construct from the marker set C .

3) For 1iteration  to maxit or
1k k

k
tol

 



 
 do

Compute 1()k
Mr  and 2 ()k

Mr  using Equation 8.
Solve the level set function  based on Equation 17.
Regularize  by convolving with k .
end for

4) The output  is defined as the final solution.

Next, we discuss Algorithm 2 for the MGRSB model. All steps in the MGRSB model were identical
to the algorithm in the MGRSM model except for step 3, where the local inner and intensity averages
were computed using Equation 9 and the level set function  evolved based on Equation 18.

Algorithm 2: Algorithm to implement the MGRSB model

1) Set the value of parameters and define initial set markers C based on the size of
the OJM image.

2) Initialize the level set function  such that  is the boundary of the initial
polygon G construct from the marker set C .

3) For 1iteration  to maxit or
1k k

k
tol

 



 
 do

Compute 1()k
Br  and 2 ()k

Br  using Equation 9.
Solve the level set function  based on Equation 18.
Regularize  by convolving with k .
end for

4) The output  is defined as the final solution.

Performance Evaluation
In this research, we assessed the performance of our proposed models in terms of segmentation

accuracy and efficiency results. Since we utilized the original corrupted OJM images in our research,
there were no ground truth OJM images available. As a result, it was not possible to use quantitative
metrics such as accuracy, precision, recall, or F1 score. Therefore, we relied on expert evaluation and
qualitative measures for assessing segmentation accuracy. Initially, two experts from the Academy of
Contemporary Islamic Studies (ACIS) and an expert from the Academy of Language Studies at
Universiti Teknologi MARA (UiTM) were selected. These experts were then instructed to assess each
segmentation output image using a Likert scale ranging from the following scale: 1 (Very Bad), 2 (Bad),
3 (Neutral), 4 (Good) and 5 (Very Good). The percentage of the total overall scores given by the experts

11

Algorithm 1: Algorithm to implement the MGRSM model

1) Set the value of parameters and define a set of initial markers C based on the
size of the OJM image.

2) Initialize the level set function  such that  is the boundary of the initial
polygon G construct from the marker set C .

3) For 1iteration  to maxit or
1k k

k
tol

 



 
 do

Compute 1()k
Mr  and 2 ()k

Mr  using Equation 8.
Solve the level set function  based on Equation 17.
Regularize  by convolving with k .
end for

4) The output  is defined as the final solution.

Next, we discuss Algorithm 2 for the MGRSB model. All steps in the MGRSB model were identical
to the algorithm in the MGRSM model except for step 3, where the local inner and intensity averages
were computed using Equation 9 and the level set function  evolved based on Equation 18.

Algorithm 2: Algorithm to implement the MGRSB model

1) Set the value of parameters and define initial set markers C based on the size of
the OJM image.

2) Initialize the level set function  such that  is the boundary of the initial
polygon G construct from the marker set C .

3) For 1iteration  to maxit or
1k k

k
tol

 



 
 do

Compute 1()k
Br  and 2 ()k

Br  using Equation 9.
Solve the level set function  based on Equation 18.
Regularize  by convolving with k .
end for

4) The output  is defined as the final solution.

Performance Evaluation
In this research, we assessed the performance of our proposed models in terms of segmentation

accuracy and efficiency results. Since we utilized the original corrupted OJM images in our research,
there were no ground truth OJM images available. As a result, it was not possible to use quantitative
metrics such as accuracy, precision, recall, or F1 score. Therefore, we relied on expert evaluation and
qualitative measures for assessing segmentation accuracy. Initially, two experts from the Academy of
Contemporary Islamic Studies (ACIS) and an expert from the Academy of Language Studies at
Universiti Teknologi MARA (UiTM) were selected. These experts were then instructed to assess each
segmentation output image using a Likert scale ranging from the following scale: 1 (Very Bad), 2 (Bad),
3 (Neutral), 4 (Good) and 5 (Very Good). The percentage of the total overall scores given by the experts

11

Algorithm 1: Algorithm to implement the MGRSM model

1) Set the value of parameters and define a set of initial markers C based on the
size of the OJM image.

2) Initialize the level set function  such that  is the boundary of the initial
polygon G construct from the marker set C .

3) For 1iteration  to maxit or
1k k

k
tol

 



 
 do

Compute 1()k
Mr  and 2 ()k

Mr  using Equation 8.
Solve the level set function  based on Equation 17.
Regularize  by convolving with k .
end for

4) The output  is defined as the final solution.

Next, we discuss Algorithm 2 for the MGRSB model. All steps in the MGRSB model were identical
to the algorithm in the MGRSM model except for step 3, where the local inner and intensity averages
were computed using Equation 9 and the level set function  evolved based on Equation 18.

Algorithm 2: Algorithm to implement the MGRSB model

1) Set the value of parameters and define initial set markers C based on the size of
the OJM image.

2) Initialize the level set function  such that  is the boundary of the initial
polygon G construct from the marker set C .

3) For 1iteration  to maxit or
1k k

k
tol

 



 
 do

Compute 1()k
Br  and 2 ()k

Br  using Equation 9.
Solve the level set function  based on Equation 18.
Regularize  by convolving with k .
end for

4) The output  is defined as the final solution.

Performance Evaluation
In this research, we assessed the performance of our proposed models in terms of segmentation

accuracy and efficiency results. Since we utilized the original corrupted OJM images in our research,
there were no ground truth OJM images available. As a result, it was not possible to use quantitative
metrics such as accuracy, precision, recall, or F1 score. Therefore, we relied on expert evaluation and
qualitative measures for assessing segmentation accuracy. Initially, two experts from the Academy of
Contemporary Islamic Studies (ACIS) and an expert from the Academy of Language Studies at
Universiti Teknologi MARA (UiTM) were selected. These experts were then instructed to assess each
segmentation output image using a Likert scale ranging from the following scale: 1 (Very Bad), 2 (Bad),
3 (Neutral), 4 (Good) and 5 (Very Good). The percentage of the total overall scores given by the experts

11

Algorithm 1: Algorithm to implement the MGRSM model

1) Set the value of parameters and define a set of initial markers C based on the
size of the OJM image.

2) Initialize the level set function  such that  is the boundary of the initial
polygon G construct from the marker set C .

3) For 1iteration  to maxit or
1k k

k
tol

 



 
 do

Compute 1()k
Mr  and 2 ()k

Mr  using Equation 8.
Solve the level set function  based on Equation 17.
Regularize  by convolving with k .
end for

4) The output  is defined as the final solution.

Next, we discuss Algorithm 2 for the MGRSB model. All steps in the MGRSB model were identical
to the algorithm in the MGRSM model except for step 3, where the local inner and intensity averages
were computed using Equation 9 and the level set function  evolved based on Equation 18.

Algorithm 2: Algorithm to implement the MGRSB model

1) Set the value of parameters and define initial set markers C based on the size of
the OJM image.

2) Initialize the level set function  such that  is the boundary of the initial
polygon G construct from the marker set C .

3) For 1iteration  to maxit or
1k k

k
tol

 



 
 do

Compute 1()k
Br  and 2 ()k

Br  using Equation 9.
Solve the level set function  based on Equation 18.
Regularize  by convolving with k .
end for

4) The output  is defined as the final solution.

Performance Evaluation
In this research, we assessed the performance of our proposed models in terms of segmentation

accuracy and efficiency results. Since we utilized the original corrupted OJM images in our research,
there were no ground truth OJM images available. As a result, it was not possible to use quantitative
metrics such as accuracy, precision, recall, or F1 score. Therefore, we relied on expert evaluation and
qualitative measures for assessing segmentation accuracy. Initially, two experts from the Academy of
Contemporary Islamic Studies (ACIS) and an expert from the Academy of Language Studies at
Universiti Teknologi MARA (UiTM) were selected. These experts were then instructed to assess each
segmentation output image using a Likert scale ranging from the following scale: 1 (Very Bad), 2 (Bad),
3 (Neutral), 4 (Good) and 5 (Very Good). The percentage of the total overall scores given by the experts

 577

Journal of ICT, 23, No. 4 (October) 2024, pp: 561-592

from the following scale: 1 (Very Bad), 2 (Bad), 3 (Neutral), 4 (Good)
and 5 (Very Good). The percentage of the total overall scores given by
the experts was calculated to evaluate the segmentation performance.

Furthermore, this research also evaluated the efficiency of the
proposed models by analyzing the elapsed time processing. Accurate
measurement of elapsed time processing was attained using the ‘tic’
and ‘toc’ functions in the MATLAB R2021a software. To ensure
reliable outcomes, the experiment was repeated three times, and the
average elapsed time processing was calculated using Equation 19 as
follows:

(19)

RESULTS AND DISCUSSION

Two experiments were carried out. Firstly, we compared the accuracy
and efficiency of the segmentation results of 30 real corrupted OJM
images obtained from the GRS model developed by Saibin and Jumaat
(2023), along with our two proposed MGRSM and MGRSB models.
Following the outcomes of the first experiment, we opt for the more
effective segmentation model between the MGRSM and MGRSB
models to conduct parameter sensitivity analysis.

For the parameter settings, we maintained a fixed value of epsilon

parameters for all models. However, the specific values of the standard
deviation parameter varied between 10 and 50 for each model,
depending on the individual OJM images.

Experiment 1: Segmentation Results on Real Corrupted OJM
Images

As explained in the previous section, the MGRSM and MGRSB
models proposed in this study were newly modified active contour
region-based models. These models incorporate information from

22

expert from the Academy of Language Studies at Universiti Teknologi
MARA (UiTM) were selected. These experts were then instructed to
assess each segmentation output image using a Likert scale ranging
from the following scale: 1 (Very Bad), 2 (Bad), 3 (Neutral), 4 (Good)
and 5 (Very Good). The percentage of the total overall scores given by
the experts was calculated to evaluate the segmentation performance.

Furthermore, this research also evaluated the efficiency of the
proposed models by analyzing the elapsed time processing. Accurate
measurement of elapsed time processing was attained using the 'tic'
and 'toc' functions in the MATLAB R2021a software. To ensure
reliable outcomes, the experiment was repeated three times, and the
average elapsed time processing was calculated using Equation 19 as
follows:

3

1

1Average Elapsed Time Processing,
3 j

j

t t


 

where
3

1
j

j

t

 represents the sum of three readings of elapsed time

processing.

RESULTS AND DISCUSSION

Two experiments were carried out. Firstly, we compared the accuracy
and efficiency of the segmentation results of 30 real corrupted OJM
images obtained from the GRS model developed by Saibin and Jumaat
(2023), along with our two proposed MGRSM and MGRSB models.
Following the outcomes of the first experiment, we opt for the more
effective segmentation model between the MGRSM and MGRSB
models to conduct parameter sensitivity analysis.

For the parameter settings, we maintained a fixed value of epsilon
1  , tolerance 0.005tol  , timestep 0.001t  , theta 5000  ,

maximum iteration 3000iter  and standard deviation 0.45  22

expert from the Academy of Language Studies at Universiti Teknologi
MARA (UiTM) were selected. These experts were then instructed to
assess each segmentation output image using a Likert scale ranging
from the following scale: 1 (Very Bad), 2 (Bad), 3 (Neutral), 4 (Good)
and 5 (Very Good). The percentage of the total overall scores given by
the experts was calculated to evaluate the segmentation performance.

Furthermore, this research also evaluated the efficiency of the
proposed models by analyzing the elapsed time processing. Accurate
measurement of elapsed time processing was attained using the 'tic'
and 'toc' functions in the MATLAB R2021a software. To ensure
reliable outcomes, the experiment was repeated three times, and the
average elapsed time processing was calculated using Equation 19 as
follows:

3

1

1Average Elapsed Time Processing,
3 j

j

t t


 

where
3

1
j

j

t

 represents the sum of three readings of elapsed time

processing.

RESULTS AND DISCUSSION

Two experiments were carried out. Firstly, we compared the accuracy
and efficiency of the segmentation results of 30 real corrupted OJM
images obtained from the GRS model developed by Saibin and Jumaat
(2023), along with our two proposed MGRSM and MGRSB models.
Following the outcomes of the first experiment, we opt for the more
effective segmentation model between the MGRSM and MGRSB
models to conduct parameter sensitivity analysis.

For the parameter settings, we maintained a fixed value of epsilon
1  , tolerance 0.005tol  , timestep 0.001t  , theta 5000  ,

maximum iteration 3000iter  and standard deviation 0.45 

12

was calculated to evaluate the segmentation performance.
Furthermore, this research also evaluated the efficiency of the proposed models by analyzing the

elapsed time processing. Accurate measurement of elapsed time processing was attained using the 'tic'
and 'toc' functions in the MATLAB R2021a software. To ensure reliable outcomes, the experiment was
repeated three times, and the average elapsed time processing was calculated using Equation 19 as
follows:

3

1

1Average Elapsed Time Processing,
3 j

j

t t


 

where
3

1
j

j

t

 represents the sum of three readings of elapsed time processing.

RESULTS AND DISCUSSION

Two experiments were carried out. Firstly, we compared the accuracy and efficiency of the
segmentation results of 30 real corrupted OJM images obtained from the GRS model developed by
Saibin and Jumaat (2023), along with our two proposed MGRSM and MGRSB models.
Following the outcomes of the first experiment, we opt for the more effective segmentation model
between the MGRSM and MGRSB models to conduct parameter sensitivity analysis.

For the parameter settings, we maintained a fixed value of epsilon 1  , tolerance 0.005tol  ,
timestep 0.001t  , theta 5000  , maximum iteration 3000iter  and standard deviation 0.45 
parameters for all models. However, the specific values of the standard deviation  parameter varied
between 10 and 50 for each model, depending on the individual OJM images.

Experiment 1: Segmentation Results on Real Corrupted OJM Images
As explained in the previous section, the MGRSM and MGRSB models proposed in this study were

newly modified active contour region-based models. These models incorporate information from image
inpainting techniques, specifically the Mumford-Shah and Bertalmio inpainting models, respectively,
into the fitting term of the GRS model. To assess the effectiveness of our proposed models in
segmenting text on real corrupted OJM images, we compared our MGRSM and MGRSB models against
the GRS model on a dataset consisting of 30 real corrupted OJM images. To determine the optimal
model, we aggregated the total scores from all the experts for each segmented OJM image by GRS,
MGRSM and MGRSB models and recorded the average elapsed time t , as shown in Table 2 as follows.

Table 2
Overall Total Scores of Expert Evaluations and Average Elapse Time t .

Model Expert 1 Total
Scores

Expert 2 Total
Scores

Expert 3 Total
Scores

Overall Total
Scores t

GRS 118 70 67 255 7.73

MGRSM 138 112 103 353 9.35

MGRSB 125 96 93 314 15.85

For better visual illustration purposes, we demonstrate the overall total score and the average elapsed
time using a bar chart as shown in the following Figure 5.

Figure 5

578

Journal of ICT, 23, No. 4 (October) 2024, pp: 561-592

image inpainting techniques, specifically the Mumford-Shah and
Bertalmio inpainting models, respectively, into the fitting term of the
GRS model. To assess the effectiveness of our proposed models in
segmenting text on real corrupted OJM images, we compared our
MGRSM and MGRSB models against the GRS model on a dataset
consisting of 30 real corrupted OJM images. To determine the optimal
model, we aggregated the total scores from all the experts for each
segmented OJM image by GRS, MGRSM and MGRSB models and
recorded the average elapsed time t , as shown in Table 2 as follows.

Table 2

Overall Total Scores of Expert Evaluations and Average Elapse Time t

Model Expert 1 Total
Scores

Expert 2 Total
Scores

Expert 3 Total
Scores

Overall Total
Scores t

GRS 118 70 67 255 7.73

MGRSM 138 112 103 353 9.35

MGRSB 125 96 93 314 15.85

For better visual illustration purposes, we demonstrate the overall
total score and the average elapsed time using a bar chart as shown in
the following Figure 5.

Figure 5

Bar Chart for the Overall Total Score of Experts Evaluation and the
Average Elapsed Time

 (a) (b)

As shown in Table 2 and Figure 5(a), the overall total score for
the MGRSM model was the highest, with 353 overall total scores,

13

 Bar Chart for the Overall Total Score of Experts Evaluation and the Average Elapsed Time.

(a) (b)

As shown in Table 2 and Figure 5(a), the overall total score for the MGRSM model was the highest,

with 353 overall total scores, followed by the MGRSB and GRS models, with 314 and 255 overall total
scores, respectively. This shows that the MGRSM was approximately 38.4% and 12.4% more accurate
than the GRS and MGRSB models, respectively. Based on Figure 5(b), the average elapsed time t for
the GRS model was the fastest, with 7.73 seconds, followed by the MGRSM model and the MGRSB
model, with 9.35 and 15. 85 seconds, respectively. It was understood that the slightly longer processing
for the MGRSM and MGRSB models was primarily due to the incorporation of new fitting terms
generated by the Mumford-Shah and Bertalmio inpainting models, respectively, in the mathematical
formulation.

We chose six (out of 30) samples of real corrupted OJM images to illustrate the segmentation result
by the GRS, MGRSM and MGRSB models. Figure 6 illustrates the chosen six real corrupted OJM
images (Image 4, Image 10, Image 12, Image 26, Image 27 and Image 30).

Figure 6
 Six Samples of the Real Corrupted OJM Images.

(a) Image 4 (b) Image 10

(c) Image 12 (d) Image 26

(e) Image 27 (f) Image 30

Referring to Figure 6, it is apparent that the OJM images manifested variations in the locations of

corruption. Each image exhibited distinct areas of corruption, highlighting the heterogeneous nature of
the corruption patterns present within the OJM dataset utilized in this research.

 579

Journal of ICT, 23, No. 4 (October) 2024, pp: 561-592

followed by the MGRSB and GRS models, with 314 and 255
overall total scores, respectively. This shows that the MGRSM was
approximately 38.4 percent and 12.4 percent more accurate than the
GRS and MGRSB models, respectively. Based on Figure 5(b), the
average elapsed time t for the GRS model was the fastest, with 7.73
seconds, followed by the MGRSM model and the MGRSB model,
with 9.35 and 15. 85 seconds, respectively. It was understood that the
slightly longer processing for the MGRSM and MGRSB models was
primarily due to the incorporation of new fitting terms generated by
the Mumford-Shah and Bertalmio inpainting models, respectively, in
the mathematical formulation.

We chose six (out of 30) samples of real corrupted OJM images to
illustrate the segmentation result by the GRS, MGRSM and MGRSB
models. Figure 6 illustrates the chosen six real corrupted OJM images
(Image 4, Image 10, Image 12, Image 26, Image 27 and Image 30).

Figure 6

Six Samples of the Real Corrupted OJM Images

Referring to Figure 6, it is apparent that the OJM images manifested
variations in the locations of corruption. Each image exhibited
distinct areas of corruption, highlighting the heterogeneous nature of

25

Figure 6

Six Samples of the Real Corrupted OJM Images

(a) Image 4 (b) Image 10

(c) Image 12 (d) Image 26

(e) Image 27 (f) Image 30

Referring to Figure 6, it is apparent that the OJM images manifested
variations in the locations of corruption. Each image exhibited distinct
areas of corruption, highlighting the heterogeneous nature of the
corruption patterns present within the OJM dataset utilized in this
research.

Figures 7, 8, 9, 10, 11 and 12 show the binary segmentation results for
all comparison models for Image 4, Image 10, Image 12, Image 26,
Image 27 and Image 30, respectively. It is worth noting that for the
binary segmentation results, we designated the text of the OJM images
as black (0 in pixels) and the background as white (1 in pixels), given
that all the text within the OJM images was originally depicted in
black.

580

Journal of ICT, 23, No. 4 (October) 2024, pp: 561-592

the corruption patterns present within the OJM dataset utilized in this
research.

Figures 7, 8, 9, 10, 11 and 12 show the binary segmentation results
for all comparison models for Image 4, Image 10, Image 12, Image
26, Image 27 and Image 30, respectively. It is worth noting that for
the binary segmentation results, we designated the text of the OJM
images as black (0 in pixels) and the background as white (1 in pixels),
given that all the text within the OJM images was originally depicted
in black.

Figure 7

Comparison of Binary Segmentation Results for GRS, MGRSM, and
MGRSB Models on Image 4

Figure 8

Comparison of Binary Segmentation Results for GRS, MGRSM, and
MGRSB Models on Image 10

Figure 9

Comparison of Binary Segmentation Results for GRS, MGRSM, and
MGRSB Models on Image 12

26

Figure 7

Comparison of Binary Segmentation Results for GRS, MGRSM, and
MGRSB Models on Image 4

GRS Model MGRSM Model MGRSB Model

(a) (b) (c)

Figure 8

Comparison of Binary Segmentation Results for GRS, MGRSM, and
MGRSB Models on Image 10

GRS Model MGRSM Model MGRSB Model

(a) (b) (c)

Figure 9

Comparison of Binary Segmentation Results for GRS, MGRSM, and
MGRSB Models on Image 12

GRS Model MGRSM Model MGRSB Model

(a) (b) (c)

 26

Figure 7

Comparison of Binary Segmentation Results for GRS, MGRSM, and
MGRSB Models on Image 4

GRS Model MGRSM Model MGRSB Model

(a) (b) (c)

Figure 8

Comparison of Binary Segmentation Results for GRS, MGRSM, and
MGRSB Models on Image 10

GRS Model MGRSM Model MGRSB Model

(a) (b) (c)

Figure 9

Comparison of Binary Segmentation Results for GRS, MGRSM, and
MGRSB Models on Image 12

GRS Model MGRSM Model MGRSB Model

(a) (b) (c)

26

Figure 7

Comparison of Binary Segmentation Results for GRS, MGRSM, and
MGRSB Models on Image 4

GRS Model MGRSM Model MGRSB Model

(a) (b) (c)

Figure 8

Comparison of Binary Segmentation Results for GRS, MGRSM, and
MGRSB Models on Image 10

GRS Model MGRSM Model MGRSB Model

(a) (b) (c)

Figure 9

Comparison of Binary Segmentation Results for GRS, MGRSM, and
MGRSB Models on Image 12

GRS Model MGRSM Model MGRSB Model

(a) (b) (c)

 581

Journal of ICT, 23, No. 4 (October) 2024, pp: 561-592

Figure 10

Comparison of Binary Segmentation Results for GRS, MGRSM, and
MGRSB Models on Image 26

Figure 11

Comparison of Binary Segmentation Results for GRS, MGRSM, and
MGRSB Models on Image 27

Figure 12
Comparison of Binary Segmentation Results for GRS, MGRSM, and
MGRSB Models on Image 30

As demonstrated in Figures 7, 8, 9, 10, 11 and 12, the binary
segmentation results achieved by the MGRSM model outperformed
those of other models, effectively segmenting the text while adeptly
removing corruption areas from the OJM images. As for the MGRSB
model, some OJM images still retained remnants of the corruption
area, resulting in the presence of residual corruption lines. While
the GRS model managed to segment the text, it also segmented the
corrupted region due to the absence of the inpainting technique in the
GRS formulation. Figure 13 demonstrates the zoomed segmentation
results of Image 4 in Figure 7 for all the comparison models.

27

Figure 10

Comparison of Binary Segmentation Results for GRS, MGRSM, and
MGRSB Models on Image 26

GRS Model MGRSM Model MGRSB Model

(a) (b) (c)

Figure 11

Comparison of Binary Segmentation Results for GRS, MGRSM, and
MGRSB Models on Image 27

GRS Model MGRSM Model MGRSB Model

(a) (b) (c)

Figure 12

Comparison of Binary Segmentation Results for GRS, MGRSM, and
MGRSB Models on Image 30

GRS Model MGRSM Model MGRSB Model

(a) (b) (c)

As demonstrated in Figures 7, 8, 9, 10, 11 and 12, the binary
segmentation results achieved by the MGRSM model outperformed
those of other models, effectively segmenting the text while adeptly
removing corruption areas from the OJM images. As for the MGRSB 27

Figure 10

Comparison of Binary Segmentation Results for GRS, MGRSM, and
MGRSB Models on Image 26

GRS Model MGRSM Model MGRSB Model

(a) (b) (c)

Figure 11

Comparison of Binary Segmentation Results for GRS, MGRSM, and
MGRSB Models on Image 27

GRS Model MGRSM Model MGRSB Model

(a) (b) (c)

Figure 12

Comparison of Binary Segmentation Results for GRS, MGRSM, and
MGRSB Models on Image 30

GRS Model MGRSM Model MGRSB Model

(a) (b) (c)

As demonstrated in Figures 7, 8, 9, 10, 11 and 12, the binary
segmentation results achieved by the MGRSM model outperformed
those of other models, effectively segmenting the text while adeptly
removing corruption areas from the OJM images. As for the MGRSB 27

Figure 10

Comparison of Binary Segmentation Results for GRS, MGRSM, and
MGRSB Models on Image 26

GRS Model MGRSM Model MGRSB Model

(a) (b) (c)

Figure 11

Comparison of Binary Segmentation Results for GRS, MGRSM, and
MGRSB Models on Image 27

GRS Model MGRSM Model MGRSB Model

(a) (b) (c)

Figure 12

Comparison of Binary Segmentation Results for GRS, MGRSM, and
MGRSB Models on Image 30

GRS Model MGRSM Model MGRSB Model

(a) (b) (c)

As demonstrated in Figures 7, 8, 9, 10, 11 and 12, the binary
segmentation results achieved by the MGRSM model outperformed
those of other models, effectively segmenting the text while adeptly
removing corruption areas from the OJM images. As for the MGRSB

582

Journal of ICT, 23, No. 4 (October) 2024, pp: 561-592

Figure 13

Zoomed Segmentation Results of OJM Image 4 for GRS, MGRSM and
MGRSB Models

As shown in Figure 13, although the MGRSB model can remove the
corruption area comparably to the MGRSM model, it is also slightly
removed from the text of the OJM image and the circle inside the
letter ‘mim (م)’ cannot be seen. In contrast, the GRS model clearly
segmented the entire text and the corruption areas as well. These
observations are based on experts’ feedback.

The success of the MGRSM model can be attributed to its integration
of the GRS model, renowned for segmenting intensity inhomogeneity
images (Saibin & Jumaat, 2023) and the Mumford-Shah inpainting
model, which is better at restoring images than the Bertalmio inpainting
model (Zainal et al., 2022). The MGRSM model stands out for its
ability to reconstruct images by minimizing an energy functional that
achieves a balance between preserving the original image’s fidelity
and ensuring smoothness within segmented regions. In contrast to the
Bertalmio model, which extends linear structures into missing areas
using partial differential equations (PDEs), the Mumford-Shah model
excels at preserving sharp edges while seamlessly filling in gaps.

Despite the MGRSM model’s overall effectiveness in segmenting
the text of the OJM images, the feedback from the experts revealed
that there were certain instances where it encountered difficulties in
accurately segmenting while restoring the text of the corrupted OJM
images, as shown in Figures 14 and 15.

Based on Figures 14 and 15, the first column displays two real
corrupted OJM images: Image 9 and Image 29, respectively. Image
9 displays a large corrupted area relative to the text size while Image
29 demonstrates a very thin line that corrupted the text. As depicted

28

model, some OJM images still retained remnants of the corruption
area, resulting in the presence of residual corruption lines. While the
GRS model managed to segment the text, it also segmented the
corrupted region due to the absence of the inpainting technique in the
GRS formulation. Figure 13 demonstrates the zoomed segmentation
results of Image 4 in Figure 7 for all the comparison models.

Figure 13

Zoomed Segmentation Results of OJM Image 4 for GRS, MGRSM and
MGRSB Models

GRS Model MGRSM Model MGRSB Model

As shown in Figure 13, although the MGRSB model can remove the
corruption area comparably to the MGRSM model, it is also slightly
removed from the text of the OJM image and the circle inside the letter
‘mim (م)’ cannot be seen. In contrast, the GRS model clearly
segmented the entire text and the corruption areas as well. These
observations are based on experts' feedback.

The success of the MGRSM model can be attributed to its integration
of the GRS model, renowned for segmenting intensity inhomogeneity
images (Saibin & Jumaat, 2023) and the Mumford-Shah inpainting
model, which is better at restoring images than the Bertalmio
inpainting model (Zainal et al., 2022). The MGRSM model stands out
for its ability to reconstruct images by minimizing an energy functional
that achieves a balance between preserving the original image's fidelity
and ensuring smoothness within segmented regions. In contrast to the
Bertalmio model, which extends linear structures into missing areas

 583

Journal of ICT, 23, No. 4 (October) 2024, pp: 561-592

in Figure 14(c), the MGRSM model could segment almost all the text
and effectively remove the OJM image’s corruption area. However, it
also inadvertently removed a portion of the text where the corruption
overlapped with the text. Conversely, Figure 15(c) illustrates that the
MGRSM model can segment nearly all the text in the image but also
segment the corruption line.

Based on the analysis and comparison of the segmentation results, as
well as expert evaluations, we can conclude that the proposed MGRSM
model stands out as the most optimal for restoring and segmenting
the text of the real corrupted OJM images. Its effectiveness stems
from its utilization of the GRS model for intensity inhomogeneity
segmentation, integration of the Mumford-Shah inpainting model for
image restoration, and implementation of a Gaussian function in the
level set regularization process.

Figure 14

Limitation of MGRSM Model in Segmenting OJM Image 9

30

Figure 14

Limitation of MGRSM Model in Segmenting OJM Image 9

OJM Image GRS Model MGRSM Model MGRSB Model

(a) (b) (c) (d)

Figure 15

Limitation of MGRSM Model in Segmenting OJM Image 29

OJM Image GRS Model MGRSM Model MGRSB Model

(a) (b) (c) (d)

30

Figure 14

Limitation of MGRSM Model in Segmenting OJM Image 9

OJM Image GRS Model MGRSM Model MGRSB Model

(a) (b) (c) (d)

Figure 15

Limitation of MGRSM Model in Segmenting OJM Image 29

OJM Image GRS Model MGRSM Model MGRSB Model

(a) (b) (c) (d)

584

Journal of ICT, 23, No. 4 (October) 2024, pp: 561-592

Figure 15

Limitation of MGRSM Model in Segmenting OJM Image 29

Experiment 2: Sensitivity Analysis of Parameter

30

Figure 14

Limitation of MGRSM Model in Segmenting OJM Image 9

OJM Image GRS Model MGRSM Model MGRSB Model

(a) (b) (c) (d)

Figure 15

Limitation of MGRSM Model in Segmenting OJM Image 29

OJM Image GRS Model MGRSM Model MGRSB Model

(a) (b) (c) (d)

30

Figure 14

Limitation of MGRSM Model in Segmenting OJM Image 9

OJM Image GRS Model MGRSM Model MGRSB Model

(a) (b) (c) (d)

Figure 15

Limitation of MGRSM Model in Segmenting OJM Image 29

OJM Image GRS Model MGRSM Model MGRSB Model

(a) (b) (c) (d)

31

Experiment 2: Sensitivity Analysis of Parameter

Since the MGRSM model has been proven to be the most optimal for
restoring and segmenting the text of the real corrupted OJM images,
the parameter sensitivity of the MGRSM model will be evaluated,
focusing specifically on the standard deviation parameter  . The
MGRSM model depends on the inner and outer local averages.
Successfully attaining relevant and accurate segmentation results for
each of the 30 OJM images depends on manually setting this parameter
 through a trial-and-error process. The parameter  regulated the
size of the inner and outer local averages within the MGRSM
formulations, facilitating the local approximation of the contour’s
inner and outer average intensities in a Gaussian window (Azam et al.,
2023). Figure 16 displays the segmentation results of the MGRSM
model for Image 4, showcasing the impact of varying values of
parameters  on the segmentation outcome.

Based on Figure 16, employing too low or low parameter  values
resulted in unfavorable segmentation outcomes. Conversely, utilizing
the optimal value of  yielded better segmentation results.
Interestingly, even with high or too high parameter  values, better
segmentation outcomes were achieved. Table 3 illustrates the
efficiency of the MGRSM model in segmenting the text in Image 4,
considering various values of  .

 585

Journal of ICT, 23, No. 4 (October) 2024, pp: 561-592

Figure 16

Segmentation Results of Image 4 with Different Parameter Values
using MGRSM Model

Image 4 Value of
Parameter

Binary Segmentation Result

Table 3

Overall Total Scores of Expert Evaluations and Average Elapse Time

Value of Parameter Average Elapsed Time (seconds)
Too Low: 14.92

Low: 7.76
Optimum: 8. 37

High: 17.70
Too High: 23.36

31

Experiment 2: Sensitivity Analysis of Parameter

Since the MGRSM model has been proven to be the most optimal for
restoring and segmenting the text of the real corrupted OJM images,
the parameter sensitivity of the MGRSM model will be evaluated,
focusing specifically on the standard deviation parameter  . The
MGRSM model depends on the inner and outer local averages.
Successfully attaining relevant and accurate segmentation results for
each of the 30 OJM images depends on manually setting this parameter
 through a trial-and-error process. The parameter  regulated the
size of the inner and outer local averages within the MGRSM
formulations, facilitating the local approximation of the contour’s
inner and outer average intensities in a Gaussian window (Azam et al.,
2023). Figure 16 displays the segmentation results of the MGRSM
model for Image 4, showcasing the impact of varying values of
parameters  on the segmentation outcome.

Based on Figure 16, employing too low or low parameter  values
resulted in unfavorable segmentation outcomes. Conversely, utilizing
the optimal value of  yielded better segmentation results.
Interestingly, even with high or too high parameter  values, better
segmentation outcomes were achieved. Table 3 illustrates the
efficiency of the MGRSM model in segmenting the text in Image 4,
considering various values of  .

32

Figure 16

Segmentation Results of Image 4 with Different Parameter  Values
using MGRSM Model

Image 4
Value of

Parameter


Binary Segmentation
Result

Too Low:
1 

Low:
10 

Optimum
: 20 

High:
50 

Too

High:
100 

33

Table 3

Overall Total Scores of Expert Evaluations and Average Elapse Time
t

Value of Parameter  Average Elapsed Time t
(seconds)

Too Low: 1  14.92
Low: 10  7.76

Optimum: 20  8. 37
High: 50  17.70

Too High: 100  23.36

From the findings presented in Table 3, it can be observed that when
the value of 10  , the average elapsed time t was the fastest (7.76
seconds). However, its corresponding segmentation result was not as
satisfactory as the optimum, high and too-high values of  . On the
other hand, the optimal value (20 ) required 8.37 seconds, which
is the fastest compared with 50  and 100  . Therefore, it can be
concluded that selecting the optimum value of  is crucial for
obtaining better segmentation results while keeping computational
costs low when using the MGRSM model. Choosing an incorrect value
of  can result in undesirable outcomes (when set too low or low) or
increased computational costs (when set too high or high).

These results have significant practical implications for users of the
MGRSM model. We highlight the critical importance of selecting the
correct  value to avoid poor segmentation outcomes or unnecessarily
long processing times. Automating the selection of  could streamline
the process, reducing manual effort and enhancing efficiency.
Additionally, the model's flexibility in handling a range of  values
suggests its adaptability to other types of images, provided the
parameter is appropriately adjusted. Overall, this analysis underscores
the importance of precise parameter tuning to balance segmentation

32

Figure 16

Segmentation Results of Image 4 with Different Parameter  Values
using MGRSM Model

Image 4
Value of

Parameter


Binary Segmentation
Result

Too Low:
1 

Low:
10 

Optimum
: 20 

High:
50 

Too

High:
100 

32

Figure 16

Segmentation Results of Image 4 with Different Parameter  Values
using MGRSM Model

Image 4
Value of

Parameter


Binary Segmentation
Result

Too Low:
1 

Low:
10 

Optimum
: 20 

High:
50 

Too

High:
100 

33

Table 3

Overall Total Scores of Expert Evaluations and Average Elapse Time
t

Value of Parameter  Average Elapsed Time t
(seconds)

Too Low: 1  14.92
Low: 10  7.76

Optimum: 20  8. 37
High: 50  17.70

Too High: 100  23.36

From the findings presented in Table 3, it can be observed that when
the value of 10  , the average elapsed time t was the fastest (7.76
seconds). However, its corresponding segmentation result was not as
satisfactory as the optimum, high and too-high values of  . On the
other hand, the optimal value (20 ) required 8.37 seconds, which
is the fastest compared with 50  and 100  . Therefore, it can be
concluded that selecting the optimum value of  is crucial for
obtaining better segmentation results while keeping computational
costs low when using the MGRSM model. Choosing an incorrect value
of  can result in undesirable outcomes (when set too low or low) or
increased computational costs (when set too high or high).

These results have significant practical implications for users of the
MGRSM model. We highlight the critical importance of selecting the
correct  value to avoid poor segmentation outcomes or unnecessarily
long processing times. Automating the selection of  could streamline
the process, reducing manual effort and enhancing efficiency.
Additionally, the model's flexibility in handling a range of  values
suggests its adaptability to other types of images, provided the
parameter is appropriately adjusted. Overall, this analysis underscores
the importance of precise parameter tuning to balance segmentation

586

Journal of ICT, 23, No. 4 (October) 2024, pp: 561-592

CONCLUSION

The primary objective of this study was to segment the text
(foreground) of OJM images while restoring the corrupted area.
To accomplish this goal, we introduced two new modified models:
the MGRSM and MGRSB models. These models were developed
by integrating information from the Mumford-Shah and Bertalmio
inpainting models as new fitting terms into the GRS model formulation,
respectively. After reformulating two proposed models, we developed
MATLAB codes and implemented the algorithms on 30 real corrupted
OJM images using MATLAB R2021a software. After analyzing and
comparing the segmentation results as well as considering expert
evaluations, we can infer that the proposed MGRSM model was the
most optimal in segmenting the text of the OJM images while also
restoring corrupted areas. Although the MGRSM model demonstrates
commendable performance, achieving optimal results for each OJM

33

Table 3

Overall Total Scores of Expert Evaluations and Average Elapse Time
t

Value of Parameter  Average Elapsed Time t
(seconds)

Too Low: 1  14.92
Low: 10  7.76

Optimum: 20  8. 37
High: 50  17.70

Too High: 100  23.36

From the findings presented in Table 3, it can be observed that when
the value of 10  , the average elapsed time t was the fastest (7.76
seconds). However, its corresponding segmentation result was not as
satisfactory as the optimum, high and too-high values of  . On the
other hand, the optimal value (20 ) required 8.37 seconds, which
is the fastest compared with 50  and 100  . Therefore, it can be
concluded that selecting the optimum value of  is crucial for
obtaining better segmentation results while keeping computational
costs low when using the MGRSM model. Choosing an incorrect value
of  can result in undesirable outcomes (when set too low or low) or
increased computational costs (when set too high or high).

These results have significant practical implications for users of the
MGRSM model. We highlight the critical importance of selecting the
correct  value to avoid poor segmentation outcomes or unnecessarily
long processing times. Automating the selection of  could streamline
the process, reducing manual effort and enhancing efficiency.
Additionally, the model's flexibility in handling a range of  values
suggests its adaptability to other types of images, provided the
parameter is appropriately adjusted. Overall, this analysis underscores
the importance of precise parameter tuning to balance segmentation

 587

Journal of ICT, 23, No. 4 (October) 2024, pp: 561-592

image involves a trial-and-error process to determine the best value
of the parameter Despite this need for careful tuning, the MGRSM
model significantly aids in the preservation and digital restoration
of valuable manuscripts, ensuring that the textual content remains
accessible and legible for future generations.

In the future, we aim to extend the MGRSM model into a vector-
valued (color) framework, allowing its application to color
documentation images without converting to grayscale, thereby
avoiding data loss. Additionally, the study did not establish a system
to rank OJM documents by the severity of corruption. Implementing
such a ranking system would likely require expert evaluation, which
could be valuable for future studies. We also did not explore the
proposed model’s sensitivity to different noise types or its adaptability
to various manuscript styles; areas that future research could address
to enhance the proposed model’s robustness. Further studies might
explore alternative inpainting techniques and improve computational
efficiency by implementing parallel computing.

ACKNOWLEDGMENT

This work was supported by the Pembiayaan Yuran Penerbitan Artikel
(PYPA), Tabung Dana Kecemerlangan Pendidikan (DKP), Universiti
Teknologi MARA (UiTM), Malaysia 2024.

REFERENCES

Ali, H., Rada, L., & Badshah, N. (2018). Image segmentation for
intensity inhomogeneity in presence of high noise. IEEE
Transactions on Image Processing, 27(8), 3729-3738. https://
doi.org/10.1109/TIP.2018.2825101

Ashikhmin, M. (2001). Synthesizing natural textures. In Proceedings
of the 2001 Symposium on Interactive 3D graphics (I3D ‘01)
(pp. 217–226). Association for Computing Machinery. https://
doi.org/10.1145/364338.364405

Azam, A. S. B., Jumaat, A. K., Maasar, M. A., Laham, M. F., &
Rahman, N. N. A. (2023). Local image fitting-based active
contour for vector-valued images. Indonesian Journal of
Electrical Engineering and Computer Science, 32(1), 227-235.
https://doi.org/10.11591/ijeecs.v32.i1.pp227-235

34

accuracy and computational cost, making the MGRSM model a
valuable tool for practical image restoration and segmentation tasks.

CONCLUSION

The primary objective of this study was to segment the text
(foreground) of OJM images while restoring the corrupted area. To
accomplish this goal, we introduced two new modified models: the
MGRSM and MGRSB models. These models were developed by
integrating information from the Mumford-Shah and Bertalmio
inpainting models as new fitting terms into the GRS model
formulation, respectively. After reformulating two proposed models,
we developed MATLAB codes and implemented the algorithms on 30
real corrupted OJM images using MATLAB R2021a software. After
analyzing and comparing the segmentation results as well as
considering expert evaluations, we can infer that the proposed
MGRSM model was the most optimal in segmenting the text of the
OJM images while also restoring corrupted areas. Although the
MGRSM model demonstrates commendable performance, achieving
optimal results for each OJM image involves a trial-and-error process
to determine the best value of the parameter  . Despite this need for
careful tuning, the MGRSM model significantly aids in the
preservation and digital restoration of valuable manuscripts, ensuring
that the textual content remains accessible and legible for future
generations.

In the future, we aim to extend the MGRSM model into a vector-valued
(color) framework, allowing its application to color documentation
images without converting to grayscale, thereby avoiding data loss.
Additionally, the study did not establish a system to rank OJM
documents by the severity of corruption. Implementing such a ranking
system would likely require expert evaluation, which could be valuable
for future studies. We also did not explore the proposed model's
sensitivity to different noise types or its adaptability to various
manuscript styles; areas that future research could address to enhance

588

Journal of ICT, 23, No. 4 (October) 2024, pp: 561-592

Badshah, N., Atta, H., Ali Shah, S. I., Attaullah, S., Minallah, N.,
& Ullah, M. (2020). New local region based model for the
segmentation of medical images. IEEE Access, 8, 175035–
175053. https://doi.org/10.1109/ACCESS.2020.3017805

Baihaqi, Yanti, Y., & Malahayati. (2024). Ancient manuscript
image enhancement method using local and global histogram
equalization. Jurnal Serambi Engineering, 9(3), 102-10263.
https://jse.serambimekkah.id/index.php/jse/article/view/449

Barbu, T. (2018). Second-order anisotropic diffusion-based
framework for structural inpainting. Proceedings of the
Romanian Academy, Series A: Mathematics, Physics, Technical
Sciences, Information Science, 19(2), 329-336. https://acad.ro/
sectii2002/proceedings/doc2018-2/Art03Barbu.pdf

Biswas, S., & Hazra, R. (2021). A level set model by regularizing local
fitting energy and penalty energy term for image segmentation.
Signal Processing, 183, 108043. https://doi.org/10.1016/j.
sigpro.2021.108043

Bertalmio, M. (2001). Processing of flat and non-flat image
information on arbitrary manifolds using partial differential
equations. University of Minnesota. https://www.maths.univ-
evry.fr/pages_perso/vtorri/files/UV/unpaint/thesis-bertalmio.
pdf

Burrows, L., Patel, J., Islim, A. I., Jenkinson, M. D., Mills, S. J., &
Chen, K. (2024). A semi-automatic segmentation method for
meningioma developed using a variational approach model.
The Neuroradiology Journal, 37(2), 199-205. https://doi.
org/10.1177/19714009231224442

Chan, T. F., & Vese, L. A. (2001). Active contours without edges. IEEE
Transactions on Image Processing, 10(2), 266-277. https://doi.
org/10.1109/83.902291

Devadass, V., Bakar, J. A., Harun, N. H., & Zamri, M. F. (2021).
Image enhancement system for the restoration of Old Jawi
Malay manuscripts using binarization method. Journal of
Physics: Conference Series, 1997(1), 012037. https://doi.
org/10.1088/1742-6596/1997/1/012037

Esedoglu, S., & Shen, J. (2002). Digital inpainting based on the
Mumford–Shah–Euler image model. European Journal of
Applied Mathematics, 13(4), 353-370. https://doi.org/10.1017/
S0956792502004904

Fang, J., Liu, H., Liu, J., Zhou, H., Zhang, L., & Liu, H. (2021). Fuzzy
region-based active contour driven by global and local fitting
energy for image segmentation. Applied Soft Computing, 100,
106982. https://doi.org/10.1016/j.asoc.2020.106982

 589

Journal of ICT, 23, No. 4 (October) 2024, pp: 561-592

Gui, L., Ma, J., & Yang, X. (2023). Variational models and
their combinations with deep learning in medical image
segmentation: A survey. In K. Chen, C.-B. Schönlieb, X.-C.
Tai, & L. Younes (Eds.), Handbook of mathematical models
and algorithms in computer vision and imaging: Mathematical
imaging and vision (pp. 1001-1022). Springer International
Publishing. https://doi.org/10.1007/978-3-030-98661-2_109

Hays, J., & Efros, A. A. (2023). Scene completion using
millions of photographs. In Seminal Graphics Papers:
Pushing the Boundaries, Volume 2 (1st ed., pp. 679–
685). Association for Computing Machinery. https://doi.
org/10.1145/3596711.3596783

Huang, J. B., Kopf, J., Ahuja, N., & Kang, S. B. (2013). Transformation
guided image completion. In IEEE International Conference on
Computational Photography (ICCP) (pp. 1-9). IEEE. https://
doi.org/10.1109/ICCPhot.2013.6528313

Iqbal, E., Niaz, A., Memon, A. A., Asim, U., & Choi, K. N. (2020).
Saliency-driven active contour model for image segmentation.
IEEE Access, 8, 208978-208991. https://doi.org/10.1109/
ACCESS.2020.3038945

Ismail, S. M., & Abdullah, S. N. H. S. (2014). Novel binarization
method for enhancing ancient and historical manuscript images.
In Human-inspired computing and its applications (pp. 394-
403). Springer. https://doi.org/10.1007/978-3-319-13647-9_36

Jaidilert, S., & Farooque, G. (2018). Crack detection and images
inpainting method for Thai mural painting images. In
2018 IEEE 3rd International Conference on Image, Vision
and Computing (ICIVC) (pp. 143-148). IEEE. https://doi.
org/10.1109/ICIVC.2018.8492735

Kaur, A., Raj, A., Jayanthi, N., & Indu, S. (2020). Inpainting of irregular
holes in a manuscript using U-Net and partial convolution. In
2020 Second International Conference on Inventive Research
in Computing Applications (ICIRCA) (pp. 526-531). IEEE.
https://doi.org/10.1109/ICIRCA48905.2020.9182917

Kumpulan Penyelidikan Etnomatematik Melayu. (2021). Manuskrip
Melayu. Universiti Putra Malaysia. https://inspem.upm.edu.my/
laboratori/laboratori_etnomatematik_dan_didaktik/kumpulan_
penyelidikan_etnomatematik_melayu_kupelema-54857

Mahmor, N. B., Azmi, M. S. B., & Abdullah, M. B. (2018). Image
thresholding for Malay ancient manuscript (Terengganu
Inscribed Stone). International Journal of Advances in
Computer Science and Technology, 7(10). https://doi.
org/10.30534/ijacst/2018/017102018

590

Journal of ICT, 23, No. 4 (October) 2024, pp: 561-592

Mohd Sharif, N. A., Harun, N. H., & Yusof, Y. (2024). Colour
image enhancement model of retinal fundus image for
diabetic retinopathy recognition. Journal of Information and
Communication Technology, 23(2), 293-334. https://doi.
org/10.32890/jict2024.23.2.5

Mumford, D., & Shah, J. (1989). Optimal approximations by
piecewise smooth functions and associated variational
problems. Communications on Pure and Applied Mathematics,
42, 577-685. https://doi.org/10.1002/cpa.3160420503

Othman, M., Abdullah, S. L. S., Ahmad, K. A., Bakar, M. N. A.,
& Mansor, A. R. (2016). The fusion of edge detection and
mathematical morphology algorithm for shape boundary
recognition. Journal of Information and Communication
Technology, 15(1), 133-144. http://e-journal.uum.edu.my/
index.php/jict/article/view/8175

Razak, Z. (2016). Old Jawi manuscript: Digital recognition [Doctoral
thesis, University of Malaya]. University of Malaya Students’
Repository. http://studentsrepo.um.edu.my/id/eprint/

Saddami, K., Munadi, K., Muchallil, S., & Arnia, F. (2017).
Improved thresholding method for enhancing Jawi binarization
performance. In 2017 14th IAPR International Conference
on Document Analysis and Recognition (ICDAR). https://doi.
org/10.1109/ICDAR.2017.183

Saibin, T. C., & Jumaat, A. K. (2023). Variational selective segmentation
model for intensity inhomogeneous image. Indonesian Journal
of Electrical Engineering and Computer Science, 29(1), 277-
285. https://doi.org/10.11591/ijeecs.v29.i1.pp277-285

Schönlieb, C. B. (2015a). The Mumford-Shah image model for
inpainting. In Partial differential equation methods for
image inpainting. Cambridge University Press. https://doi.
org/10.1017/CBO9780511734304

Schönlieb, C. B. (2015b). Transport inpainting. In Partial differential
equation methods for image inpainting. Cambridge University
Press. https://doi.org/10.1017/CBO9780511734304

Shen, J., & Chan, T. F. (2002). Mathematical models for local nontexture
inpaintings. SIAM Journal on Applied Mathematics, 62(3),
1019-1043. https://doi.org/10.1137/S0036139900368844

Som, H. M., Zain, J. M., & Ghazali, A. J. (2011). Application of
threshold techniques for readability improvement of Jawi
historical manuscript images. Advanced Computing: An
International Journal, 2, 60-69. https://doi.org/10.5121/
acij.2011.2206

 591

Journal of ICT, 23, No. 4 (October) 2024, pp: 561-592

Soomro, S., Munir, A., & Choi, K. N. (2019). Fuzzy C-means
clustering based active contour model driven by edge scaled
region information. Expert Systems with Applications, 120,
387–396. https://doi.org/10.1016/j.eswa.2018.10.052

Tsai, A., Yezzi, A., & Willsky, A. S. (2001). Curve evolution
implementation of the Mumford-Shah functional for image
segmentation, denoising, interpolation, and magnification.
IEEE Transactions on Image Processing, 10(8), 1169-1186.
https://doi.org/10.1109/83.935033

Ventzas, D., Ntogas, N., & Ventza, M. M. (2012). Digital restoration
by denoising and binarization of historical manuscript images.
In D. Ventzas (Ed.), Advanced image acquisition, processing
techniques and applications (pp. 73–108). InTech. https://doi.
org/10.5772/36734

Vese, L. A., & Chan, T. F. (2002). A multiphase level set framework
for image segmentation using the Mumford and Shah model.
International Journal of Computer Vision, 50(3), 271–293.
https://doi.org/10.1023/A:1020874308076

Weng, G., Dong, B., & Lei, Y. (2021). A level set method based on
additive bias correction for image segmentation. Expert Systems
with Applications, 185, 115633. https://doi.org/10.1016/j.
eswa.2021.115633

Yahya, S. R., Omar, K., Abdullah, S., & Sophian, A. (2018). Image
enhancement background for high damage Malay manuscripts
using adaptive threshold binarization. International Journal
on Advanced Science, Engineering and Information
Technology, 8(4-2), 1552-1564. https://core.ac.uk/download/
pdf/296919122.pdf

Yang, Y., Jia, W., & Wu, B. (2020). Simultaneous segmentation and
correction model for color medical and natural images with
intensity inhomogeneity. The Visual Computer, 36, 717-731.
https://doi.org/10.1007/s00371-019-01651-4

Yousef, R., Khan, S., Gupta, G., Siddiqui, T., Albahlal, B. M., Alajlan,
S. A., & Haq, M. A. (2023). U-Net-based models towards
optimal MR brain image segmentation. Diagnostics, 13(9).
https://doi.org/10.3390/diagnostics13091624

Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., & Huang, T. S. (2019). Free-
form image inpainting with gated convolution. In Proceedings
of The IEEE/CVF International Conference on Computer Vision
(pp. 4471-4480). https://doi.org/10.48550/arXiv.1806.03589

Zainal, N. N., Yuri, N. F. M., & Jumaat, A. K. (2022). Restoration
of old Malay Jawi manuscripts using Mumford-Shah and

592

Journal of ICT, 23, No. 4 (October) 2024, pp: 561-592

Bertalmio inpainting models. Malaysian Journal of Computing,
7(1), 1047-1055. https://myjms.mohe.gov.my/index.php/mjoc/
article/view/14882

Zhang, L., Chen, Q., Hu, B., & Jiang, S. (2020). Text-guided
neural image inpainting. In Proceedings of the 28th ACM
International Conference on Multimedia (MM ‘20) (pp. 1302–
1310). Association for Computing Machinery. https://doi.
org/10.1145/3394171.3414017

Zhao, Y., Price, B., Cohen, S., & Gurari, D. (2019). Guided image
inpainting: Replacing an image region by pulling content
from another image. In 2019 IEEE Winter Conference on
Applications of Computer Vision (WACV) (pp. 1514-1523).
IEEE. https://doi.org/10.1109/WACV.2019.00166

Zulcaffle, T. M. A., Othman, A. K., Abidin, W. A. W. Z., Mohammaddan,
S., & Marzuki, A. S. W. (2010). A thresholding algorithm
for text/background segmentation in degraded handwritten
Jawi documents. In 2010 Second International Conference
on Advances in Computing, Control, and Telecommunication
Technologies (pp. 80-84). https://doi.org/10.1109/ACT.2010.43

