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ABSTRACT

Old Jawi Manuscripts (OJM) are crucial to historical studies, 
offering insights into past societies. However, degradation from 
mishandling and environmental factors can impair their legibility. To 
preserve OJM, image inpainting and segmentation are essential for 
restoring corrupted areas and identifying text. Recently, the Gaussian 
Regularization Segmentation (GRS) model has shown effectiveness 
in intensity inhomogeneity grayscale image segmentation, though it 
was not designed for corrupted OJM images. Therefore, this study 
aimed to reformulate the GRS model to restore and segment text 
from real corrupted OJM images. The methodology begins with the 
incorporation of the Mumford-Shah and Bertalmio inpainting models 
into the GRS model as new fitting terms, resulting in the Modified 
Gaussian Regularization Segmentation Mumford-Shah (MGRSM) 
model and the Modified Gaussian Regularization Segmentation 
Bertalmio (MGRSB) model, respectively. MATLAB was used to 
implement these models, and their performance was assessed on 30 
corrupted OJM samples from Malay Ethnomathematics Research 
Group, with expert evaluations and efficiency measured by average 
elapsed time. The MGRSM model achieved 38.4 percent and 
12.4 percent higher overall total scores from experts in terms of 
segmentation accuracy compared to the GRS and MGRSB models, 
respectively. While the GRS model is the fastest, the MGRSM model 
provides superior accuracy, with an average processing time of 9.35 
seconds, making it the most optimal for restoring and segmenting 
OJM images. This approach not only enhances the preservation of 

3



    563      

Journal of ICT, 23, No. 4 (October) 2024, pp: 561-592

historical manuscripts but also provides a practical tool for researchers 
and historians in safeguarding our cultural heritage. 

Keywords: Active contour, historical document, image segmentation, 
image inpainting, old Jawi manuscript.

INTRODUCTION

In the Malay realm, Jawi has persisted for millennia as a form of 
writing, deeply rooted in the region’s history and intimately tied to 
the arrival of Islam. Jawi is a script that utilizes Arabic letters to write 
Malay and several other Malay-speaking languages (Razak, 2016; 
Zainal et al., 2022). Within museums, libraries, and archives, old Jawi 
manuscripts (OJM) are preserved as significant artifacts of national 
heritage, containing invaluable insights into the culture and values 
of historical communities. However, these manuscripts face unique 
challenges in preservation, particularly in image segmentation and 
restoration.

OJM are often affected by various forms of degradation, including light 
exposure, which can permanently fade their colors, and environmental 
factors such as heat, moisture, and microbial growth, all of which can 
lead to text obscurity (Ventzas et al., 2012; Kaur et al., 2020). Unlike 
other historical documents, Jawi manuscripts present additional 
difficulties due to the script’s complexity in combining Arabic 
characters with unique diacritics specific to Malay, complicating the 
segmentation process. Furthermore, the degradation in OJMs tends 
to be non-uniform, with localized damages like scratches and ink 
smudging, making restoration particularly challenging (Razak, 2016). 
Therefore, specialized image inpainting and segmentation techniques 
are crucial to effectively preserve these precious manuscripts.

Image inpainting is the process of completing incomplete visual input 
details. The primary objective is to reconstruct missing portions or 
cracked images so that a casual observer cannot trace the inpainted 
area (Zainal et al., 2022). Recently, image inpainting models have 
been used to remove distracting objects from an image (Yu et 
al., 2019), restore corrupted ancient painting images (Jaidilert & 
Farooque, 2018), and fill up degraded images in ancient Indian 
manuscripts (Kaur et al., 2020). While learning-based approaches by 
Zhao et al. (2019) and Zhang et al. (2020) have shown promising 



564        

Journal of ICT, 23, No. 4 (October) 2024, pp: 561-592

results, they often rely heavily on large datasets. Additionally, user-
guided methods, such as boundary lines, extended directions, guide 
regions, and image exemplars, have been explored by Ashikhmin 
(2001), Hays and Efros (2023), Huang et al. (2013), and Yu et al. 
(2019), but these approaches tend to be structured and lack flexibility 
for content-based adaptability.

Zainal et al. (2022) applied two effective and well-known inpainting 
models, namely the Mumford and Shah (1989) and Bertalmio (2001) 
inpainting models, to restore OJM. They compared the Mumford and 
Bertalmio inpainting models using artificially corrupted OJM images 
rather than real corrupted OJM images and deliberately introduced 
corruption into the OJM images before applying the image restoration 
process. Figure 1 illustrates the example of how the clean OJM image 
was transformed into its artificially corrupted form with a mask.

Figure 1

Example of Clean OJM Image, Mask and Corrupted OJM Image 
Using Mask

(a) Clean OJM Image (b) Mask (c) Corrupted OJM Image 
Using Mask

As shown in Figure 1(a), the process began with a clean OJM 
image, which served as the uncorrupted reference. The image was 
obtained from Malay Ethnomathematics Research Group (Kumpulan 
Penyelidikan Etnomatematik Melayu, 2021). A mask shown in Figure 
1(b) was then applied to simulate corruption by covering specific 
areas of the clean OJM image. This masking introduced controlled 
imperfections, allowing the researchers to create a corrupted OJM 
image, as illustrated in Figure 1(c). 

The advantage of using the procedure was that the researchers could 
compute quantitative metrics such as accuracy, precision, recall, or 
F1 score due to the availability of the ground truth image, which was 
the clean OJM image in Figure 1(a). To compute the quantitative 
metrics of the restoration models’ performance, Zainal et al. (2022) 
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compared the OJM restoration outputs produced by the Mumford and 
Bertalmio inpainting models with the original clean OJM images. 
However, models tested on artificially corrupted images may perform 
differently when faced with genuine corruption. Figure 2 shows an 
example of a real corrupted OJM image obtained from the Kumpulan 
Penyelidikan Etnomatematik Melayu (2021) database. 

Figure 2

An Example of Real Corrupted OJM Image

The image in Figure 2 is an example of an OJM image that had 
already been corrupted by vertical scratches on the left. In this study, 
the Mumford-Shah and Bertalmio image inpainting models were 
employed to restore the real corrupted OJM images. The Mumford-
Shah inpainting model maintains smoothness while preserving sharp 
edges, making it ideal for image restoration. Its robust mathematical 
framework and efficient approximations, like the Ambrosio-Tortorelli 
method, allow for rapid and precise inpainting, even in images with 
intricate details (Zainal et al., 2022). Meanwhile, the Bertalmio 
inpainting model excels at reconstructing damaged or missing 
regions by using anisotropic diffusion, which effectively propagates 
surrounding information while preserving the natural structure and 
boundaries of the image (Barbu, 2018).

Image segmentation is one of the most intricate and crucial challenges 
in image processing. It involves dividing an image into multiple 
components (Azam et al., 2023). This task has become essential to 
a wide range of image-processing applications, including shape 
boundary recognition (Othman et al., 2016), medical imaging 
(Burrows et al., 2024; Mohd Sharif et al., 2024), and machine learning 
(Yousef et al., 2023). As in text recognition applications, image 
segmentation is required to binarize the input image and separate the 
text from the background. One of the successful image segmentation 
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models is the variational active contour model (ACM). The variational 
ACM minimizes the energy functional using variational calculus. It 
effectively drives the motion of contour curves towards the boundaries 
of desired objects and generates satisfying segmentation results 
for images with intensity features of varying intensities. This study 
utilized ACM due to its flexibility and adaptability. These models can 
dynamically adjust contours, handle complex boundaries, and easily 
integrate customized constraints and priors into the energy functionals, 
all within clear and understandable mathematical formulations (Gui et 
al., 2023). 

ACM can be divided into two categories, which are the region-based 
and edge-based approaches (Ali et al., 2018). In this research, we 
focused on active contour region-based approaches as these methods 
outperform the edges-based approach for images with noise and fuzzy 
boundaries (Weng et al., 2021). The Chan-Vese model, created by 
Chan and Vese (2001), is one of the prominent region-based active 
contour models. This piecewise constant model extends the Mumford-
Shah model that Mumford and Shah (1989) developed to a simple 
numerical representation without approximation. However, this 
model struggles with images with varying intensity levels, resulting 
in limited segmentation performance. To overcome this limitation, 
piecewise smooth models have been proposed, but they are often 
slow due to their complex procedures (Tsai et al., 2001; Vese & Chan, 
2002).

The Local Image Fitting (LIF) model, introduced by Zhang et al. (2010), 
has gained significant traction in the field. This model effectively 
addresses the challenges posed by images with varying intensity 
levels and enhances segmentation speed. The LIF model achieves 
this by analyzing the differences between the original grayscale 
image and a locally fitted version. Additionally, the integration of 
a Gaussian function for variational level set regularization further 
boosts processing efficiency. The widespread adoption of the LIF 
model and Gaussian function among researchers is a testament to 
their effectiveness in segmenting images with varying intensity levels 
(Biswas & Hazra, 2021; Fang et al., 2021; Iqbal et al., 2020; Soomro 
et al., 2019; Yang et al., 2020). However, all these ACM models 
can produce over-segmented results when the region of interest 
(foreground) has intensities nearly identical to those of the background 
and when the contours are indistinct (Badshah et al., 2020).
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To address the above problem, Saibin and Jumaat (2023) introduced 
the Gaussian Regularization Segmentation (GRS) model, an active 
contour region-based approach for segmenting regions of interest 
in grayscale images. They integrated local image-fitting energy 
and a distance function into the energy minimization process and 
applied a Gaussian function to regularize the level set function. This 
combination enables the GRS model to effectively handle images 
with varying intensity levels at low computational complexity, even 
when the targeted objects are close to neighboring regions. However, 
the GRS model may not perform optimally on OJM images compared 
to general image types due to their unique characteristics, such as 
intricate script, non-uniform degradation, and localized damage, such 
as scratches. Numerous segmentation models have been utilized in 
the literature on OJM to separate the text from the background. These 
include the thresholding method (Baihaqi et al., 2024; Devadass et al., 
2021; Ismail & Abdullah, 2014; Mahmor et al., 2018; Saddami et al., 
2017; Som et al., 2011; Yahya et al., 2018; Zulcaffle et al., 2010) and 
the combination of vertical histogram projection and sliding window 
technique (Razak, 2016). To the best of our knowledge, no researcher 
had applied a variational active contour model to segment the text of 
the OJM images from its background.

Motivated by this, we proposed modified active contour region-based 
models to effectively restore and segment the text (foreground) in real 
corrupted OJM images. This can be accomplished by reformulating 
the GRS model, where the information from the image inpainting 
techniques, namely the Mumford-Shah and Bertalmio inpainting 
models, were substituted in the fitting term of the GRS model. By 
modifying the GRS model, image quality and segmentation accuracy 
were anticipated to improve. The upcoming section outlines the related 
works and research methodology used to reformulate the proposed 
models. Following that, the experimental results of both the existing 
and proposed models were discussed.

RELATED WORKS

This section reviews the existing literature on segmentation 
techniques for OJM images, focusing on various approaches and 
their effectiveness. It highlights the strengths and limitations of these 
methods, providing a context for the proposed modifications to the 
GRS model. Table 1 summarizes key research studies that focused on 
segmentation methods for OJM.
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Based on Table 1, thresholding is the most commonly used method 
for segmenting Jawi text (foreground) from the background. Som et 
al. (2011) evaluated various thresholding techniques, including the 
Otsu global method and local methods by Niblack and Sauvola. Their 
experimental results showed that local methods, particularly Niblack, 
outperformed global methods in terms of readability, character 
recognition, and computational efficiency. However, the technique 
segments the Jawi text as well as the image noise.

In addition to the findings of Som et al. (2011), Mahmor et al. (2018) 
explored global thresholding methods, including Huang, Kapur, 
Otsu, and Yen, specifically for the Terengganu Inscribed Stone. 
Their study concluded that the Yen method yielded the best results 
for distinguishing foreground from background in Jawi manuscripts. 
However, they also noted that the effectiveness of these methods 
could vary depending on image characteristics, particularly in low-
contrast situations. 

To improve segmentation accuracy, many researchers have focused 
on refining thresholding techniques. For example, Zulcaffle et al. 
(2010) introduced a novel algorithm that combines morphological 
operations with iterative thresholding techniques, outperforming 
traditional methods like Niblack and Sauvola, as validated by visual 
inspection and quantitative metrics. A key strength of this approach is 
its resilience to various types of noise in degraded OJM, significantly 
enhancing text clarity. Additionally, Saddami et al. (2017) proposed 
an improved thresholding method for segmentation, enhancing the 
NICK (an improved version of Niblack) method by dynamically 
calculating boundary values for objects within window values based 
on the image’s standard deviation. This method is particularly effective 
in segmenting text, especially in extracting thin strokes and reducing 
false foreground pixels. However, its limitation lies in the potential 
introduction of noise in empty areas of the OJM images, which may 
affect the overall quality of the segmentation results.

On the other hand, many researchers have combined thresholding 
methods with image enhancement techniques (Devadass et al., 2021; 
Ismail & Abdullah, 2014; Yahya et al., 2018). Recently, Baihaqi et 
al. (2024) integrated thresholding with histogram equalization to 
enhance text visibility in corrupted OJM. Histogram equalization 
improves image quality by reducing foxing and increasing contrast 
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between the text and background. Aside from the thresholding method, 
Razak (2016) introduced a novel segmentation method that combines 
vertical histogram projection with a sliding window technique. This 
approach effectively segments characters in manuscripts by detecting 
the spaces between characters and determining the maximum line 
height for accurate segmentation.

Despite the strengths of all the image segmentation methods 
mentioned above, they share a standard limitation: the absence of 
image inpainting techniques. Image inpainting is designed to restore 
corrupted areas in images. Without this technique, the segmentation 
methods also tend to segment the image noise that makes up the 
corrupted areas, leading to potential inaccuracies in segmenting both 
the corrupted regions and the target areas of Jawi text. Motivated 
by the significant limitations of existing models in restoring and 
segmenting text in real corrupted OJM images, we proposed modified 
active contour region-based models. By reformulating the GRS 
model to incorporate information from image inpainting techniques, 
specifically the Mumford-Shah and Bertalmio models, we aimed to 
address these shortcomings. This integration is anticipated to enhance 
both image quality and segmentation accuracy, making it a crucial 
advancement in the field of image processing and computer vision.

METHODOLOGY

In this section, the research methodology for our proposed models 
was discussed. Figure 3 shows the flow of the methodology involved 
in this study. 

Figure 3

Research Methodology Framework
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As shown in Figure 3, the initial step involved obtaining a set of 30 real 
corrupted OJM images from Kumpulan Penyelidikan Etnomatematik 
Melayu (2021). Subsequently, the procedure involved acquiring the 
new fitting terms of an input OJM image generated by the Mumford-
Shah and Bertalmio inpainting models. These new fitting terms were 
substituted into the energy minimization functional of the GRS model 
to segment the text of OJM images. Finally, the segmentation results 
obtained were evaluated to assess the performance of the proposed 
models. The following sub-section goes over each of these processes 
in depth.

Data Acquisition

This research involved the segmentation of 30 real corrupted images of 
OJM that were obtained from Kumpulan Penyelidikan Etnomatematik 
Melayu (2021). The OJM images were cropped and resized to the size 
of 24196 pixels. We remarked that all 30 cropped OJM images were 
originally corrupted by scratches, as indicated in Figure 2.

Mumford-Shah Inpainting Model

The Mumford-Shah inpainting model is defined in Equation 1:
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The model was effectively solved by an elliptic solver and iteration 
scheme. Details of the algorithm can be found in Tsai et al. (2001), 
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(2015a). The algorithm was implemented in the MATLAB R2021a 
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The first term was the transport equation, which was utilized to provide a smooth solution, and the 
second term was the anisotropic diffusion equation, which prevented level lines from crossing with a 
small weight parameter 0qv  . The model was solved iteratively using the finite difference scheme. 

Details of the algorithm are discussed in Bertalmio (2001) and Schönlieb (2015b). The MATLAB 
R2021a software was used to implement this model.

Formulation of the Proposed Models
In this sub-section, we briefly explained how we reformulated the existing GRS model introduced 

by Saibin and Jumaat (2023). Generally, the GRS model was reformulated according to the following 
steps shown in Figure 4 as follows:
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(8)

And

(9)

The function      is a Gaussian kernel with standard deviation      such 
that:

(10)

where the standard deviation      can be presumed as a scale parameter 
that influences the region scalability from a small neighborhood to the 
entire image domain (Saibin & Jumaat, 2023). 
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where t is denoted as timestep. To ensure the regularity of the level set function  and enhance the 
efficiency of contour evolution, the Gaussian function was convolved with the level set function. The 
resulting output at each iteration served as the initial condition for the subsequent iteration. This cycle 
was repeated for each iteration until the stopping criteria were met, which was either 

1 /k k k tol     or maximum iteration reaching 3000 iterations where 0.005tol  was the

prescribed tolerance value.

Algorithms to Implement the Proposed Models
In this study, the MATLAB R2021a software with an AMD Ryzen 5 3500U with Radeon Vega 

Mobile Gfx CPU running at 2.10 GHz and equipped with 4GB of RAM was utilized to implement the 
proposed models. The computational complexity was approximately 2( )O k N due to solving via the 

gradient descent method where N is the image size with iteration number, k (Zhang et al., 2010).
Algorithm 1 shows the steps associated with the implementation process for the MGRSM model.
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where    is denoted as timestep. To ensure the regularity of the level 
set function   and enhance the efficiency of contour evolution, the 
Gaussian function was convolved with the level set function. The 
resulting output at each iteration served as the initial condition for the 
subsequent iteration. This cycle was repeated for each iteration until 
the stopping criteria were met, which was either                          or 
maximum iteration reaching 3000 iterations where  was the prescribed 
tolerance value.

Algorithms to Implement the Proposed Models

In this study, the MATLAB R2021a software with an AMD Ryzen 5 
3500U with Radeon Vega Mobile Gfx CPU running at 2.10 GHz and 
equipped with 4GB of RAM was utilized to implement the proposed 
models. The computational complexity was approximately  
due to solving via the gradient descent method where     is the image 
size with iteration number, k (Zhang et al., 2010). Algorithm 1 shows 
the steps associated with the implementation process for the MGRSM 
model. 

Algorithm 1: Algorithm to implement the MGRSM model

1)	 Set the value of parameters and define a set of initial markers   
     based on the size of the OJM image.

2)	 Initialize the level set function        such that      is the boundary of 
the initial polygon       construct from the marker set
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from the following scale: 1 (Very Bad), 2 (Bad), 3 (Neutral), 4 (Good) 
and 5 (Very Good). The percentage of the total overall scores given by 
the experts was calculated to evaluate the segmentation performance.

Furthermore, this research also evaluated the efficiency of the 
proposed models by analyzing the elapsed time processing. Accurate 
measurement of elapsed time processing was attained using the ‘tic’ 
and ‘toc’ functions in the MATLAB R2021a software. To ensure 
reliable outcomes, the experiment was repeated three times, and the 
average elapsed time processing was calculated using Equation 19 as 
follows:

(19)

RESULTS AND DISCUSSION

Two experiments were carried out. Firstly, we compared the accuracy 
and efficiency of the segmentation results of 30 real corrupted OJM 
images obtained from the GRS model developed by Saibin and Jumaat 
(2023), along with our two proposed MGRSM and MGRSB models.  
Following the outcomes of the first experiment, we opt for the more 
effective segmentation model between the MGRSM and MGRSB 
models to conduct parameter sensitivity analysis.

For the parameter settings, we maintained a fixed value of epsilon  
  

parameters for all models. However, the specific values of the standard  
deviation   parameter varied between 10 and 50 for each model, 
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models proposed in this study were newly modified active contour 
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RESULTS AND DISCUSSION

Two experiments were carried out. Firstly, we compared the accuracy and efficiency of the 
segmentation results of 30 real corrupted OJM images obtained from the GRS model developed by 
Saibin and Jumaat (2023), along with our two proposed MGRSM and MGRSB models. 
Following the outcomes of the first experiment, we opt for the more effective segmentation model 
between the MGRSM and MGRSB models to conduct parameter sensitivity analysis.

For the parameter settings, we maintained a fixed value of epsilon 1  , tolerance 0.005tol  ,
timestep 0.001t  , theta 5000  , maximum iteration 3000iter  and standard deviation 0.45 
parameters for all models. However, the specific values of the standard deviation  parameter varied 
between 10 and 50 for each model, depending on the individual OJM images.

Experiment 1: Segmentation Results on Real Corrupted OJM Images
As explained in the previous section, the MGRSM and MGRSB models proposed in this study were 

newly modified active contour region-based models. These models incorporate information from image 
inpainting techniques, specifically the Mumford-Shah and Bertalmio inpainting models, respectively, 
into the fitting term of the GRS model. To assess the effectiveness of our proposed models in 
segmenting text on real corrupted OJM images, we compared our MGRSM and MGRSB models against 
the GRS model on a dataset consisting of 30 real corrupted OJM images. To determine the optimal 
model, we aggregated the total scores from all the experts for each segmented OJM image by GRS, 
MGRSM and MGRSB models and recorded the average elapsed time t , as shown in Table 2 as follows. 

Table 2
Overall Total Scores of Expert Evaluations and Average Elapse Time t .

Model Expert 1 Total 
Scores

Expert 2 Total 
Scores

Expert 3 Total 
Scores

Overall Total 
Scores t

GRS 118 70 67 255 7.73

MGRSM 138 112 103 353 9.35

MGRSB 125 96 93 314 15.85

For better visual illustration purposes, we demonstrate the overall total score and the average elapsed 
time using a bar chart as shown in the following Figure 5.

Figure 5
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As shown in Table 2 and Figure 5(a), the overall total score for 
the MGRSM model was the highest, with 353 overall total scores, 
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As shown in Table 2 and Figure 5(a), the overall total score for the MGRSM model was the highest, 

with 353 overall total scores, followed by the MGRSB and GRS models, with 314 and 255 overall total 
scores, respectively. This shows that the MGRSM was approximately 38.4% and 12.4% more accurate 
than the GRS and MGRSB models, respectively. Based on Figure 5(b), the average elapsed time t  for 
the GRS model was the fastest, with 7.73 seconds, followed by the MGRSM model and the MGRSB 
model, with 9.35 and 15. 85 seconds, respectively. It was understood that the slightly longer processing 
for the MGRSM and MGRSB models was primarily due to the incorporation of new fitting terms 
generated by the Mumford-Shah and Bertalmio inpainting models, respectively, in the mathematical 
formulation.  

We chose six (out of 30) samples of real corrupted OJM images to illustrate the segmentation result 
by the GRS, MGRSM and MGRSB models. Figure 6 illustrates the chosen six real corrupted OJM 
images (Image 4, Image 10, Image 12, Image 26, Image 27 and Image 30). 

Figure 6 
 Six Samples of the Real Corrupted OJM Images. 

  
(a) Image 4 (b) Image 10 

  
(c) Image 12 (d) Image 26 

  
(e) Image 27 (f) Image 30 

 
Referring to Figure 6, it is apparent that the OJM images manifested variations in the locations of 

corruption. Each image exhibited distinct areas of corruption, highlighting the heterogeneous nature of 
the corruption patterns present within the OJM dataset utilized in this research.  
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Referring to Figure 6, it is apparent that the OJM images manifested 
variations in the locations of corruption. Each image exhibited distinct 
areas of corruption, highlighting the heterogeneous nature of the 
corruption patterns present within the OJM dataset utilized in this 
research.  
 
Figures 7, 8, 9, 10, 11 and 12 show the binary segmentation results for 
all comparison models for Image 4, Image 10, Image 12, Image 26, 
Image 27 and Image 30, respectively. It is worth noting that for the 
binary segmentation results, we designated the text of the OJM images 
as black (0 in pixels) and the background as white (1 in pixels), given 
that all the text within the OJM images was originally depicted in 
black. 
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Figure 10

Comparison of Binary Segmentation Results for GRS, MGRSM, and 
MGRSB Models on Image 26

Figure 11

Comparison of Binary Segmentation Results for GRS, MGRSM, and 
MGRSB Models on Image 27

Figure 12
Comparison of Binary Segmentation Results for GRS, MGRSM, and 
MGRSB Models on Image 30

As demonstrated in Figures 7, 8, 9, 10, 11 and 12, the binary 
segmentation results achieved by the MGRSM model outperformed 
those of other models, effectively segmenting the text while adeptly 
removing corruption areas from the OJM images. As for the MGRSB 
model, some OJM images still retained remnants of the corruption 
area, resulting in the presence of residual corruption lines. While 
the GRS model managed to segment the text, it also segmented the 
corrupted region due to the absence of the inpainting technique in the 
GRS formulation. Figure 13 demonstrates the zoomed segmentation 
results of Image 4 in Figure 7 for all the comparison models.

27 
 

Figure 10 
 
Comparison of Binary Segmentation Results for GRS, MGRSM, and 
MGRSB Models on Image 26 
 

GRS Model MGRSM Model MGRSB Model 

   
(a) (b) (c) 

 
Figure 11 
 
Comparison of Binary Segmentation Results for GRS, MGRSM, and 
MGRSB Models on Image 27 
 

GRS Model MGRSM Model MGRSB Model 

   
(a) (b) (c) 

 
Figure 12 

Comparison of Binary Segmentation Results for GRS, MGRSM, and 
MGRSB Models on Image 30 
 

GRS Model MGRSM Model MGRSB Model 

   
(a) (b) (c) 

 
As demonstrated in Figures 7, 8, 9, 10, 11 and 12, the binary 
segmentation results achieved by the MGRSM model outperformed 
those of other models, effectively segmenting the text while adeptly 
removing corruption areas from the OJM images. As for the MGRSB 27 
 

Figure 10 
 
Comparison of Binary Segmentation Results for GRS, MGRSM, and 
MGRSB Models on Image 26 
 

GRS Model MGRSM Model MGRSB Model 

   
(a) (b) (c) 

 
Figure 11 
 
Comparison of Binary Segmentation Results for GRS, MGRSM, and 
MGRSB Models on Image 27 
 

GRS Model MGRSM Model MGRSB Model 

   
(a) (b) (c) 

 
Figure 12 

Comparison of Binary Segmentation Results for GRS, MGRSM, and 
MGRSB Models on Image 30 
 

GRS Model MGRSM Model MGRSB Model 

   
(a) (b) (c) 

 
As demonstrated in Figures 7, 8, 9, 10, 11 and 12, the binary 
segmentation results achieved by the MGRSM model outperformed 
those of other models, effectively segmenting the text while adeptly 
removing corruption areas from the OJM images. As for the MGRSB 27 
 

Figure 10 
 
Comparison of Binary Segmentation Results for GRS, MGRSM, and 
MGRSB Models on Image 26 
 

GRS Model MGRSM Model MGRSB Model 

   
(a) (b) (c) 

 
Figure 11 
 
Comparison of Binary Segmentation Results for GRS, MGRSM, and 
MGRSB Models on Image 27 
 

GRS Model MGRSM Model MGRSB Model 

   
(a) (b) (c) 

 
Figure 12 

Comparison of Binary Segmentation Results for GRS, MGRSM, and 
MGRSB Models on Image 30 
 

GRS Model MGRSM Model MGRSB Model 

   
(a) (b) (c) 

 
As demonstrated in Figures 7, 8, 9, 10, 11 and 12, the binary 
segmentation results achieved by the MGRSM model outperformed 
those of other models, effectively segmenting the text while adeptly 
removing corruption areas from the OJM images. As for the MGRSB 



582        

Journal of ICT, 23, No. 4 (October) 2024, pp: 561-592

Figure 13

Zoomed Segmentation Results of OJM Image 4 for GRS, MGRSM and 
MGRSB Models

As shown in Figure 13, although the MGRSB model can remove the 
corruption area comparably to the MGRSM model, it is also slightly 
removed from the text of the OJM image and the circle inside the 
letter ‘mim (م)’ cannot be seen. In contrast, the GRS model clearly 
segmented the entire text and the corruption areas as well. These 
observations are based on experts’ feedback.

The success of the MGRSM model can be attributed to its integration 
of the GRS model, renowned for segmenting intensity inhomogeneity 
images (Saibin & Jumaat, 2023) and the Mumford-Shah inpainting 
model, which is better at restoring images than the Bertalmio inpainting 
model (Zainal et al., 2022). The MGRSM model stands out for its 
ability to reconstruct images by minimizing an energy functional that 
achieves a balance between preserving the original image’s fidelity 
and ensuring smoothness within segmented regions. In contrast to the 
Bertalmio model, which extends linear structures into missing areas 
using partial differential equations (PDEs), the Mumford-Shah model 
excels at preserving sharp edges while seamlessly filling in gaps. 

Despite the MGRSM model’s overall effectiveness in segmenting 
the text of the OJM images, the feedback from the experts revealed 
that there were certain instances where it encountered difficulties in 
accurately segmenting while restoring the text of the corrupted OJM 
images, as shown in Figures 14 and 15.

Based on Figures 14 and 15, the first column displays two real 
corrupted OJM images: Image 9 and Image 29, respectively. Image 
9 displays a large corrupted area relative to the text size while Image 
29 demonstrates a very thin line that corrupted the text. As depicted 
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in Figure 14(c), the MGRSM model could segment almost all the text 
and effectively remove the OJM image’s corruption area. However, it 
also inadvertently removed a portion of the text where the corruption 
overlapped with the text. Conversely, Figure 15(c) illustrates that the 
MGRSM model can segment nearly all the text in the image but also 
segment the corruption line. 

Based on the analysis and comparison of the segmentation results, as 
well as expert evaluations, we can conclude that the proposed MGRSM 
model stands out as the most optimal for restoring and segmenting 
the text of the real corrupted OJM images. Its effectiveness stems 
from its utilization of the GRS model for intensity inhomogeneity 
segmentation, integration of the Mumford-Shah inpainting model for 
image restoration, and implementation of a Gaussian function in the 
level set regularization process. 

Figure 14

Limitation of MGRSM Model in Segmenting OJM Image 9
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Limitation of MGRSM Model in Segmenting OJM Image 29 
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Figure 15

Limitation of MGRSM Model in Segmenting OJM Image 29

Experiment 2: Sensitivity Analysis of Parameter
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Experiment 2: Sensitivity Analysis of Parameter 
 
Since the MGRSM model has been proven to be the most optimal for 
restoring and segmenting the text of the real corrupted OJM images, 
the parameter sensitivity of the MGRSM model will be evaluated, 
focusing specifically on the standard deviation parameter  . The 
MGRSM model depends on the inner and outer local averages. 
Successfully attaining relevant and accurate segmentation results for 
each of the 30 OJM images depends on manually setting this parameter 
  through a trial-and-error process. The parameter   regulated the 
size of the inner and outer local averages within the MGRSM 
formulations, facilitating the local approximation of the contour’s 
inner and outer average intensities in a Gaussian window (Azam et al., 
2023). Figure 16 displays the segmentation results of the MGRSM 
model for Image 4, showcasing the impact of varying values of 
parameters   on the segmentation outcome. 
 
Based on Figure 16, employing too low or low parameter   values 
resulted in unfavorable segmentation outcomes. Conversely, utilizing 
the optimal value of   yielded better segmentation results. 
Interestingly, even with high or too high parameter   values, better 
segmentation outcomes were achieved. Table 3 illustrates the 
efficiency of the MGRSM model in segmenting the text in Image 4, 
considering various values of  .  
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Figure 16

Segmentation Results of Image 4 with Different Parameter      Values 
using MGRSM Model

Image 4 Value of 
Parameter

Binary Segmentation Result

Table 3

Overall Total Scores of Expert Evaluations and Average Elapse Time 

Value of Parameter Average Elapsed Time     (seconds)
Too Low: 14.92

Low: 7.76
Optimum: 8. 37

High: 17.70
Too High: 23.36
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Table 3 
 
Overall Total Scores of Expert Evaluations and Average Elapse Time 
t  
 

Value of Parameter   Average Elapsed Time t  
(seconds) 

Too Low: 1   14.92 
Low: 10   7.76 

Optimum: 20   8. 37 
High: 50   17.70 

Too High: 100   23.36 
 

From the findings presented in Table 3, it can be observed that when 
the value of 10  , the average elapsed time t  was the fastest (7.76 
seconds). However, its corresponding segmentation result was not as 
satisfactory as the optimum, high and too-high values of  . On the 
other hand, the optimal value ( 20  ) required 8.37 seconds, which 
is the fastest compared with 50   and 100  . Therefore, it can be 
concluded that selecting the optimum value of   is crucial for 
obtaining better segmentation results while keeping computational 
costs low when using the MGRSM model. Choosing an incorrect value 
of   can result in undesirable outcomes (when set too low or low) or 
increased computational costs (when set too high or high). 
 
These results have significant practical implications for users of the 
MGRSM model. We highlight the critical importance of selecting the 
correct   value to avoid poor segmentation outcomes or unnecessarily 
long processing times. Automating the selection of   could streamline 
the process, reducing manual effort and enhancing efficiency. 
Additionally, the model's flexibility in handling a range of   values 
suggests its adaptability to other types of images, provided the 
parameter is appropriately adjusted. Overall, this analysis underscores 
the importance of precise parameter tuning to balance segmentation 
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CONCLUSION

The primary objective of this study was to segment the text 
(foreground) of OJM images while restoring the corrupted area. 
To accomplish this goal, we introduced two new modified models: 
the MGRSM and MGRSB models. These models were developed 
by integrating information from the Mumford-Shah and Bertalmio 
inpainting models as new fitting terms into the GRS model formulation, 
respectively. After reformulating two proposed models, we developed 
MATLAB codes and implemented the algorithms on 30 real corrupted 
OJM images using MATLAB R2021a software. After analyzing and 
comparing the segmentation results as well as considering expert 
evaluations, we can infer that the proposed MGRSM model was the 
most optimal in segmenting the text of the OJM images while also 
restoring corrupted areas. Although the MGRSM model demonstrates 
commendable performance, achieving optimal results for each OJM 
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image involves a trial-and-error process to determine the best value 
of the parameter      Despite this need for careful tuning, the MGRSM 
model significantly aids in the preservation and digital restoration 
of valuable manuscripts, ensuring that the textual content remains 
accessible and legible for future generations.

In the future, we aim to extend the MGRSM model into a vector-
valued (color) framework, allowing its application to color 
documentation images without converting to grayscale, thereby 
avoiding data loss. Additionally, the study did not establish a system 
to rank OJM documents by the severity of corruption. Implementing 
such a ranking system would likely require expert evaluation, which 
could be valuable for future studies. We also did not explore the 
proposed model’s sensitivity to different noise types or its adaptability 
to various manuscript styles; areas that future research could address 
to enhance the proposed model’s robustness. Further studies might 
explore alternative inpainting techniques and improve computational 
efficiency by implementing parallel computing.
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