
Received 21 September 2024, accepted 5 October 2024, date of publication 14 October 2024, date of current version 25 October 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3480829

Enhancing Software Effort Estimation in the
Analogy-Based Approach Through the
Combination of Regression Methods
TAGHI JAVDANI GANDOMANI 1, (Senior Member, IEEE), MAEDEH DASHTI 2,
HAZURA ZULZALIL 3, (Member, IEEE), AND ABU BAKAR MD SULTAN 3
1Department of Computer Science, Faculty of Mathematical Sciences, Shahrekord University, Shahrekord 8818634141, Iran
2Data Science Research Group, Department of Computer Science, Faculty of Mathematical Sciences, Shahrekord University, Shahrekord 8818634141, Iran
3Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia

Corresponding author: Taghi Javdani Gandomani (javdani@sku.ac.ir)

This work was supported in part by the Universiti Putra Malaysia.

ABSTRACT The success of software projects is closely linked to accurate effort estimation, driving
continuous efforts by researchers to refine estimation methods. Among various techniques, the analogy-
based approach has emerged as a widely-used method for software effort estimation. However, there is
still a need to improve its accuracy and reliability. This study aims to enhance software effort estimation
in analogy-based methods by introducing a hybrid approach that combines multiple regression methods
with feature weighting. The proposed approach evaluates various regression models, integrating them with
analogy-based estimation using a weighted combination of project features. The objective is to improve the
precision of effort estimation by optimizing similarity functions and project attribute weights. Experimental
results demonstrate that the hybrid model significantly outperforms traditional analogy-based methods,
achieving superior accuracy across various software project datasets. The findings highlight the potential
of this approach to offer a more dependable foundation for software effort estimation, contributing to the
success of software projects.

INDEX TERMS Software effort estimation, analogy-based software estimation, regression methods,
machine learning.

I. INTRODUCTION
Software effort estimation is a matter of great importance,
as it can play a crucial role in the success or failure
of such projects. Accurate effort estimation is crucial in
determining the outcome of software projects, significantly
impacting their success or failure [1]. Its significance spans
various domains such as project financial planning, strategic
decision-making, and project evaluation and control. The
accuracy of initial cost estimates holds the key to ascertaining
the availability of funds required for project completion.
Additionally, it aids in determining the project’s economic
feasibility facilitating informed resource allocation decisions.

The associate editor coordinating the review of this manuscript and

approving it for publication was Claudia Raibulet .

Factors such as project size, duration, and team struc-
ture wield substantial influence over effort estimation [2].
The correlation between a project’s size and complexity
underscores the necessity of early-stage cost estimates for
larger projects [3], [4]. Moreover, the nature of the project
and organizational strategies employed during planning and
management significantly impact effort estimation accuracy.
Notably, some researchers advocate that precise effort esti-
mation bolsters stakeholder confidence and fosters stronger
business relationships [5].

However, software projects commonly grapple with
discrepancies between estimated and actual costs due to
fluctuating requirements, estimation inaccuracies, technical
challenges, and resource fluctuations [6]. The inherent
reliance on available information sometimes leads to sig-
nificant disparities between estimated and actual costs,

152122

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0002-8333-7957
https://orcid.org/0009-0002-4516-1409
https://orcid.org/0000-0002-1596-4828
https://orcid.org/0000-0002-8962-0112
https://orcid.org/0000-0002-7194-3159

T. Javdani Gandomani et al.: Enhancing Software Effort Estimation in the Analogy-Based Approach

owing to incomplete or restricted access to pertinent
information.

Despite differing perspectives on software effort estima-
tion, Analogy-based estimation (ABE) has gained traction as
a multifaceted technique in software effort estimation [7],
[8], [9], [10]. ABE involves leveraging past projects with
similarities to derive effort estimates for current projects [11].
This method relies heavily on the selection and weighting
of features, which are the attributes or characteristics of
the software projects. Feature weighting determines the
relative importance of each feature in the estimation process.
The goal is to assign appropriate weights to features so
that the most relevant ones have a greater influence on
the estimation outcome. While feature selection involves
identifying the most relevant features to use in the esti-
mation process. The aim is to improve model performance
by eliminating irrelevant or redundant features. Yet, its
seemingly straightforward approach faces challenges arising
from the non-normal distribution of data in software devel-
opment [12]. In response to the unique nature of software
projects, researchers have explored approaches aiming to
enhance estimation accuracy. One prevalent strategy involves
assigning weights to project attributes within the framework
of the analogy-basedmethod [13]. This study aims to evaluate
regression methods and assess their collective impact on
project outcomes by assigning varying weights to key project
characteristics.

The article progresses with the introduction of the analogy-
based method in Section II, followed by an overview of
research within the analogy-based method in Section III.
Section IV introduces the proposed model, while Sec-
tions V and VI delve into experimental design and analysis
of results, respectively. Finally, the article ends with Sec-
tions VII and VIII presenting limitations and conclusion and
key findings, respectively.

II. ANALOGY-BASED ESTIMATION (ABE)
The ABE method stands out for its straightforward and
pragmatic approach. Unlike formula-driven methods, this
technique relies on comparative analysis. Estimating effort
for a new project involves comparing it with completed
projects deemed similar. This process, which is shown in
Figure 1, hinges on information gathered from previous
projects, housedwithin historical datasets or repositories. The
methodology encompasses four key components [14]:

1) Historical dataset: Establishing a historical dataset
forms the bedrock of this approach, derived from either
real or artificial datasets.

2) Identification of project characteristics: Gathering the
traits of a new project aligns with the characteristics
observed in the historical dataset.

3) Utilization of defined similarity functions: Employing
predefined similarity functions, such as Euclidean or
Manhattan distance criteria, aids in identifying projects
akin to the new project in terms of shared attributes.

4) Project effort estimation: Calculating and evaluating
the effort required for the new project entails employing
solution functions like mean and median.

The subsequent sections will delve into a brief exploration
of each component within the ABE system.

FIGURE 1. The ABE process [15].

A. SIMILARITY FUNCTION
In ABE, the function of similarity plays an important role.
This function is applied to determine how similar two
different projects are [16]. The standard formulation of the
similarity function is as follows:

sim
(
p, p′

)
= f (Lsim

(
f1, f ′

1
)
.Lsim

(
f2, f ′

2
)
.Lsim

(
fn, f ′

n
)
)

(1)

In this equation, p and ṕ represent the new and existing
projects in the repository, respectively. The terms, fi,and
f ′
i denote the values of the ith feature for these projects,
while n is the total number of features considered in each
project. The function Lsim() computes the similarity between
corresponding features of the projects. Both Lsim() and f ()
functions define the overarching structure of the similarity
function.

To elaborate, the similarity function begins by assessing
each feature pair from the projects. For every feature i, the
function Lsim

(
fi, f ′

i

)
measures how similar the feature value

fi of the new project is to the feature value f ′
i of the old project.

This process is repeated for all n features. The results are then
aggregated using the function f (), which synthesizes these
individual similarity measures into a single similarity score
for the entire project pair. This comprehensive score helps
in determining how closely the new project resembles the
existing projects, thereby aiding in estimation and decision-
making processes based on past project data.

In our study, we applied several similarity functions
in order to enhance the accuracy of effort estimation for
software. The difference is that, in our research, a feature
weighting method was added and two other parameters, w
and δ were introduced. The weight assigned to each feature
is w, and it takes a value between 0 and 1. Another parameter
is δ, which is introduced as a very small number to avoid a
zero denominator. Each of these similarity functions has seen
considerable usage in the literature, and their applications are

VOLUME 12, 2024 152123

T. Javdani Gandomani et al.: Enhancing Software Effort Estimation in the Analogy-Based Approach

detailed below to provide context and justification for their
inclusion in our study [17].

1) EUCLIDEAN DISTANCE
This distance measure is based on the geographical distance
between two points in multidimensional space. Each feature
is considered a dimension, and the closer these two points
are to each other, the more similar the projects look. The
Euclidean distance criterion formula between two samples,
A and B, is shown in equation (2)

d (A,B) =

√∑n

i=1
wi(Ai − Bi)2 + δ (2)

In this formula, Ai and Bi represent different features in
dimension i and, n is the number of features. The weight
assigned to the ith feature is denoted aswi, and set δ to 0.0001.
This applies to all similarity functions

The Euclidean distance is one of the most popular
similarity measures applied to the software effort estimation
domain. It calculates the straight-line distance between two
points in a multidimensional space. Prior research, including
the work of Shepperd and Schofield [16], justified the
capability of the Euclidean distance function to estimate the
effort, because of its capability to be relatively stable even in
the presence of numerical data and its easy implementation.

2) MANHATTAN DISTANCE
In this distance measure, the distance between two samples
is equal to the sum of the absolute values of the difference in
their corresponding characteristics. The Manhattan distance
criterion formula between two samples A and B is shown in
equation (3).

d (A,B) =

√∑n

i=1
wi |Ai − Bi| + δ (3)

In this formula, Ai and Bi represent different features in
dimension i,and n is the number of features.

The Manhattan distance, also known as the L1 norm, sim-
ply adds up the absolute differences between the coordinates
of two points. This function has been employed in several
studies; for example, Dolado [18] used this to capture the
cumulative differences in attributes and found it useful in
cases where outlier influence needs to be reduced.

3) MAXIMUM-DISTANCE SIMILARITY
This function calculates the similarity between two vectors
or data points based on the maximum distance between
them along any dimension or feature in their respective
coordinates. This is a measure of dissimilarity, where a
higher value indicates greater dissimilarity between vectors.
Mathematically, the similarity function of the maximum
distance between two vectors A and B can be calculated as
follows (equation (4)):

MXD (A,B)

= max (w1 |A1 − B1| .w2 |A2 − B2|wn |An − Bn|)

(4)

where A and B are the two vectors to be compared, and n is
the total number of dimensions or features in the vectors.

4) MAHALANOBIS
Mahalanobis similarity function calculates the Mahalanobis
distance between two data points A and B, taking into account
the correlation between features (through the covariance
matrix) and the independence of scale (through the inverse
covariance matrix). Calculating this similarity function is
given in equation (5).

Mahalanobis (A,B) =

√
(A− B)T .

∑
−1. (A− B) + δ

(5)

where A and B are two data points that are compared.
∑

−1
Indicates the inverse of the covariance matrix, which shows
the correlation between features.

Mahalanobis distance takes into account the correlations
of the data set and is useful for identifying outliers. This
function has been applied in several advanced estimation
models, including the work by Briand et al. [19], who utilized
it to improve the accuracy of effort estimation by considering
the variance and covariance of project attributes.

5) AKRITEAN SIMILARITY FUNCTION
This function, known as the heuristic distance function, is an
innovative approach that combines elements of both the
Euclidean (EUC) and Manhattan (MHT) distance functions.
This combination is designed to take advantage of the
strengths of each distance metric, making it adaptable to
different scenarios, effectively covering both mostly empty
and filled areas in a dataset. It is calculated as equation (6).

AKritean (A.B) = ω1.EUC(A,B) + ω2.MHT (A,B) (6)

where A and B are two data points. ω1 and ω2 are weights
assigned to Euclidean and Manhattan distances, respectively.

In our study, each of the considered similarity functions
has been applied to the comparison of software projects
with respect to their attributes, like lines of code, functional
points, and complexity metrics. The choice of the appropriate
similarity function is one of the important factors that can
noticeably affect the performance of the ABE method. Our
effort estimation model aims at drawing on the respective
strengths of these different similarity functions applied in our
effort, so that it turns out to be more robust. The selection
process for each of these similarity functions was based on
their tested effectiveness found and cited in the literature.

B. K-NEAREST NEIGHBORS (KNN)
The k-Nearest Neighbors (KNN) algorithm plays a signifi-
cant role in ABE. Once the distances are calculated, KNN
identifies the ‘k’ nearest projects (analogies) that are most
similar to the new project. KNN, a sample-based learning
approach, proves to be a robust tool in pattern recognition
and classification tasks. It is especially well-suited for ABE

152124 VOLUME 12, 2024

T. Javdani Gandomani et al.: Enhancing Software Effort Estimation in the Analogy-Based Approach

because it intuitively fits the notion of identification and
exploiting analogies from past projects to estimate effort for
new projects.

One of the main reasons that ABE is vastly dominated by
KNN is the simplicity and effectiveness of the latter. There
are no assumptions made in KNN regarding the underlying
distribution of data, which may turn out quite advantageous
if one considers the variety of software projects. Proximity
is the basic principle on which KNN works, and makes it
very intuitive and easy to implement. This simplicity does not
come at a cost related to its performance. Overall, KNN has
generally demonstrated the capability of returning accurate
and trustworthy estimates in various domains.

The selection of the parameter ‘k’ is a crucial factor in
achieving accurate results. A small ‘k’ can lead to classifi-
cations that are highly sensitive to noise or outliers, while
a large ‘k’ may result in overly generalized decisions that
overlook local nuances in the data. Therefore, determining
an optimal ‘k’ value is essential to strike a balance between
capturing meaningful patterns and avoiding undue influence
from noise. This adaptability in choosing ‘k’ underlines the
versatility of KNN andmakes it rather appropriate for various
contexts within software effort estimation.

Other classification methods, such as Decision Tree (DT),
Support Vector Regression (SVR), Random Forest (RF),
or neural networks, would not usually be used within ABE.
These are techniques that introduce richer model structures
and assumptions that clearly do not match the basic principle
of analogy-based reasoning. Unlike KNN, which makes
direct use of the notion of similarity to past projects, such
alternative methods were designed for predictive modeling
based on feature importance or separation of classes and thus
deviate from the core idea of ABE.

The literature, however, has dramatically favored KNN
with this regard, since it is capable of directly and
interpretably identifying analogies. While other methods
bring along their strengths if they are situated in different
contexts, they generally increase unnecessary complexities
in an ABE process. As such, KNN remains the best choice
for ABE, providing a simple, yet reliable and effective way
of identifying similar software projects and hence effort
estimation based on past experiences.

By keeping a focus on KNN and its benefits, we will make
sure our approach stays very close to conventional ABE; it
gives a blatant reason as to why it should still be used and
also shows its efficiency in this particular domain.

C. SOLUTION FUNCTION
Solution functions play a pivotal role in determining how
effort is estimated from selected historical projects. These
functions encompass methods such as closest analogy,
inverse weighted mean (IWM), mean, and median, each
influencing how the estimated effort aligns with chosen
similar projects [20]. The IWM approach stands out by
assigning distinct weights to each similar project, ensuring

that their impact on the final estimated effort is proportionate
to their similarity with the new project. This weighted
aggregation reflects the significance of each similar project
in contributing to the estimation result. The calculation of the
inverse weighted average is illustrated in equation (7):

Ĉp =

∑n

k=1

Sim(P.Pk)∑n
i=1 Sim(P.Pk)

Cpk (7)

In this equation, P represents the project for which the cost
will be estimated. Pk represents the kth similar project.
Sim (P,Pk) Denotes the similarity between projects P and
Pk . Cpk Indicates the cost of the most similar project to Pk .
The IWM approach intricately balances similarity and cost
considerations, offering a nuanced perspective in estimating
project efforts based on historical data.

D. REGRESSION METHODS IN EFFORT ESTIMATION
Regression, a fundamental statistical method, is employed to
model the relationship between a dependent variable and one
or more independent variables. The primary goal of these
methods is to predict the value of the dependent variable
based on the given independent variables. Noteworthy among
these methods are RF, DT, SVR, and Linear Regression (LR),
each briefly explained below:

1) DECISION TREE (DT)
A DT is a predictive model that employs a tree-like structure
for decision-making. In this method, the dataset is partitioned
based on feature values, creating branches that culminate
in predictions at leaf nodes. Constructed using historical
data from software projects, a DT incorporates project
characteristics such as size, complexity, and development
methodology as attributes. The resulting tree can then predict
the cost of new projects based on their characteristics [21],
[22].

2) RANDOM FOREST (RF)
RF stands out as an ensemble learning method that utilizes
multiple DTs during training and prediction. By combining
predictions from various trees, this method aims to enhance
accuracy and mitigate overfitting. Each tree is trained on a
random subset of data and features, and the final prediction
usually relies on the average (regression) or majority vote
(classification) of all trees. For software effort estimation,
RF can be employed by training the model on project
features. The resulting model can predict effort or cost for
new projects, taking into account the interactions between
attributes [23], [24], [25].

3) SUPPORT VECTOR REGRESSION (SVR)
SVR, a regression technique within the Support Vector
Machine (SVM) framework, aims to find a hyperplane that
best fits data points while minimizing margin violations.
Particularly effective for non-linear relationships between
variables, SVR can be used to estimate software cost. It mod-
els the relationship between project characteristics and cost,

VOLUME 12, 2024 152125

T. Javdani Gandomani et al.: Enhancing Software Effort Estimation in the Analogy-Based Approach

excelling in handling nonlinearity and complex relationships
in data pertinent to software effort estimation [26], [27].

4) LINEAR REGRESSION (LR)
LR, a basic yet powerful technique, models the relationship
between a dependent variable and one or more independent
variables as a linear equation. The objective is to find
coefficients that minimize the difference between actual and
predicted values. Applied to software project characteristics,
LR predicts cost based on these attributes, assuming a
linear relationship. It offers a straightforward approach to
understanding the linear connections between features and
cost [28], [29].

In essence, these regression methods provide a diverse
toolkit for software effort estimation, with each method
possessing unique strengths suitable for various scenarios.

E. ENSEMBLE METHODS IN SOFTWARE EFFORT
ESTIMATION
Ensemble methods in software effort estimation are strategic
approaches that involve integrating the results of multiple
individual models to enhance the accuracy and reliability
of forecasting the effort required for software development.
These methods stem from the concept that combining predic-
tions from diverse models often yields superior performance
compared to relying on a single model. Ensemble methods
are broadly categorized into homogeneous and heterogeneous
groups.

1) HOMOGENEOUS ENSEMBLE METHODS
These methods combine the outputs of learners from the
same base but with different structures or parameters. This
could involve using a singular machine learning technique
with varied configurations or applying different parameters
within a single technique, such as negative correlation checks,
binning methods, or stochastic subspace strategies. The
underlying principle is to aggregate outputs from a single
method but with various adjustments or modifications.

2) HETEROGENEOUS ENSEMBLE METHODS
In contrast, heterogeneous methods combine the outputs of
different machine learning techniques to introduce diversity
in predictions generated by distinct algorithms. Rather than
focusing on variations of a single technique, this approach
integrates outputs from entirely different machine learning
methods.

An extensive analysis of 24 research articles spanning
2000 to 2016 revealed a predominant emphasis on homo-
geneous Ensemble Software Effort Estimation methods in
the literature, constituting 17 of the 24 studies [30]. These
studies commonly utilized machine learning techniques as
base learners. The integration of outputs from these base
learners involved applying a diverse range of aggregation
rules, totaling 12 in number. The choice of aggregation
rules depended on the nature of the machine learning tasks,

whether classification or regression, as well as the specific
combination approach, whether homogeneous or heteroge-
neous. In 2023, Idri et al. [30] updated the 2016 systematic
review with new findings from studies published between
2016 and 2020 [31]. Following established guidelines,
they appraised the 2016 review’s methods and created an
updated protocol. From 3,682 retrieved papers, 30 papers
were selected for detailed analysis. Their findings confirm
that machine learning remains the most common technique
for constructing Effort Estimation Models, with ensemble
techniques outperforming individual models.

Moreover, some innovative methods combine Ensemble
learning with feature selection techniques. For instance,
Kocaguneli et al. [32] introduced a heterogeneous ensemble
approach that incorporated nine distinct machine learning
techniques alongside sequential forward selection (SFS),
a feature selection algorithm. In this method, various
combination rules such as weighted mean, ranked mean, and
inverse were applied to merge the results of these techniques.
Similarly, Hosni et al. [33] investigated the impact of
two filter feature selection methods on a heterogeneous
set comprising four separate machine learning techniques,
aiming to identify the effect of these feature selection
strategies on the set’s performance.

III. RELATED WORK
In the area of software effort estimation, several techniques
have been proposed and enhanced over time. In this section,
a review of the latest related and most relevant works con-
cerning the problem our research tackles is provided, along
with a comparative evaluation underlining the improvements
brought in by our proposed approach.

The ABE is still very much in use as a rather intuitively
appealing and effective approach [8]. The primary technique
within ABE is the KNN algorithm, which has been exten-
sively studied and validated.

More recent developments include improving feature
selection and weighting and incorporating a range of dissimi-
larity metrics to provide better similarity measures [34], [35].
One seminal work by Albrecht and Gaffney [36] introduced
the concept of function points for software estimation and
provided one of the earliest applications of analogy-based
methods. Based on this foundation, our approach is built
with the use of more sophisticated similarity functions and
feature weighting mechanisms in order to achieve increased
accuracy. Shepperd and Schofield [16] also used KNN in
estimation of software projects and proved it effective in
real-world situations. In this paper, we further this work
by investigating optimal values of ‘k’ and refining the
process of measuring similarities, making the estimation
more robust and flexible. While the ABE approach may
appear straightforward in the realm of software development,
its practical implementation faces intricate challenges arising
from the unique characteristics of data distribution.

Some studies have integrated conventional estimation
techniques with machine learning methods to leverage their

152126 VOLUME 12, 2024

T. Javdani Gandomani et al.: Enhancing Software Effort Estimation in the Analogy-Based Approach

individual strengths. Meenakshi and Pareek [37] contributed
a detailed systematic review on estimation of software
effort using deep learning techniques. Their study showed
the potential of deep learning methods in improving effort
estimation by identifying intricate patterns in software
engineering data. In this vein, Li et al. [38] integrated
deep learning into software effort estimation by extracting
semantic features from project descriptions to increase the
accuracy of predictions. Deep-SE applies deep learning for
feature extraction; our approach is oriented to enhancing
analogy-based estimation using optimized KNN. This retains
the interpretability and ease of implementation without the
computational complexity of the deep models. Similarly,
Chen et al. [39] exploited a pre-trained GPT-2 model for the
semantic relationships in software project data and obtained
state-of-the-art results in effort estimation. In particular, our
method complements the strengths of GPT2SP since we offer
a much simpler, but still very effective approach that does not
require significant computational resources and is therefore
more feasible for smaller projects or smaller organizations
with weaker computational capacity.

Researchers have shown that dynamically adjusting the
feature weights during the effort estimation process can
significantly improve the accuracy and reliability of the
results [10], [40]. The inherent complexity of software
projects, influenced by factors extending beyond mere sim-
ilarity, necessitates a nuanced approach to weight evaluation
for ensuring method effectiveness. Indeed, optimization
techniques have emerged as invaluable methods for refining
and enhancing the feature weighting approach in software
estimation models. These techniques play a pivotal role
in calibrating the importance and influence of different
features within the model, thereby elevating the accuracy
and reliability of the estimation process. Moreover, they
underscore the dynamic nature and adaptability of software
estimation, enabling developers and stakeholders to tailor
model behavior to the intricacies of the dataset and project
scope. By meticulously adjusting the weights assigned to
various features, these optimization methods contribute to a
more precise and context-aware estimation process.

A diverse array of optimization techniques is employed in
the field, and notable algorithms include Genetic Algorithms
(GAs) [41], [42], [43] and Differential Evolution (DE) [4],
[44], both drawing inspiration from natural selection. Within
software effort estimation, GAs have proven pivotal in
enhancing the accuracy and reliability of cost forecasting.
The process commences by representing potential solutions
as a set of parameters defining software project features.
An initial population of potential solutions is generated, and
their fitness is assessed using a predefined fitness function,
often based on historical data or other pertinent criteria. The
most suitable solutions, those closely aligned with desired
outcomes, are selected for reproduction through the crossover
operation, simulating genetic recombination. To maintain
genetic diversity, random mutations are introduced. Over
successive generations, GAs guide the algorithm towards an

optimal or near-optimal parameter set, refining the accuracy
of effort estimation by selecting features and weights that best
estimate software project costs. Although GAs and DE are
powerful tools for optimization and could produce suitable
results when used for feature weighting, they come with lim-
itations such as slow convergence, premature convergence,
sensitivity to parameter settings, high computational costs,
and scalability issues.

Swarm intelligence algorithms contribute significantly
to the optimization of software estimation models, with
notable examples including Particle Swarm Optimization
(PSO) algorithms [45], [46] and the Ant Colony Optimization
(ACO) algorithm [47]. In PSO, potential solutions represent-
ing project features are conceptualized as particles moving
through a parameter space. These particles dynamically
adjust their properties based on their best-known position
and the best-known global position. The movement of
particles, guided by a fitness function, aims to minimize
the disparity between predicted and actual costs. PSO
effectively navigates the solution space, iteratively refining
project characteristics to enhance the accuracy of software
cost estimates. Conversely, the ant colony algorithm draws
inspiration from the search behavior of ants. Potential
solutions are envisioned as paths through project features.
Ants, mimicking routing behavior, repetitively select fea-
tures, leaving synthetic pheromones along their chosen paths.
The intensity of these pheromones is influenced by the
quality of the solution. Through iterative convergence, these
algorithms identify optimal or near-optimal sets of project
characteristics. This iterative process significantly improves
the accuracy of software cost estimates, providing valuable
support for informed decision-making in project planning
and management. While swarm intelligence algorithms like
PSO and ACO offer robust mechanisms for optimizing
feature weights, their application in ABE is constrained
by issues such as parameter sensitivity, computational cost,
scalability, premature convergence, and the complexity of
implementation. Addressing these limitations often requires
hybrid approaches, adaptive parameter tuning, and careful
empirical validation to ensure accurate and reliable effort
predictions.

Hybrid methods have been studied in which ABE is
combined with other techniques in a process making use of
multiple estimation strategies. Satapathy and Rath [48] com-
bined ABE with regression models for the enhancement of
the estimation process by using a hybrid approach to address
the limitations of each individual method. Conforming to
a strictly analogical approach, our approach significantly
refines both the processes of similarity assessment and
analogy identification to achieve high accuracy with a
model that is also simple and easy to interpret. On their
part, Jorgensen and Shepperd [49] gave an overview of
different software effort estimation methods and some of
their strengths and weaknesses, including ABE and other
approaches. Our work takes into consideration the findings
presented here, and we have targeted the weaknesses of ABE

VOLUME 12, 2024 152127

T. Javdani Gandomani et al.: Enhancing Software Effort Estimation in the Analogy-Based Approach

identified, most prominently in measurement of similarity
and selection of analogies.

We have tried to propose a new approach introducing a
number of key improvements over the existing approaches.
We increase the robustness and flexibility of the estimation
process by including multiple similarity functions and
optimizing the selection of ‘k’. In this way, this multifaceted
measurement of similarity is more adaptable to different
project characteristics, thus ensuring better performance
across diverse datasets. We further adopt feature weighting to
make sure that only the most relevant project attributes have
priority in their use for the task of increasing the accuracy of
analogy identification. This refactoring gives better emphasis
on the most impacting features and thus warrants a more
accurate and reliable estimate. Our approach is found to
be of wider application among users, without much loss
in accuracy, when compared with deep learning models
that are overwhelmed by computational complexity. Such a
balance between simplicity and high performance makes our
approach suitable for small- and large-scale projects without
large computational resources. On the whole, we are oriented
to present an approach that shall SCE under traditional
KNN-based ABE with visible enhancements in similarity
measurement and feature weighting.

IV. THE PROPOSED MODEL
In this section, we propose a hybrid model that integrates
multiple regression techniques (RF, DT, SVR, and LR) with
the ABE framework. The novelty of our approach lies in the
following key aspects:
Weighted Combination of Regression Methods: Unlike

traditional ensemble methods, which focus on combining
learners from similar classes (homogeneous) or entirely
different machine learning techniques (heterogeneous), our
hybrid model blends regression methods through an opti-
mized weighted averaging technique. The weights for
each regression model are dynamically adjusted based on
historical project data, ensuring a more precise and context-
sensitive estimation process.
Feature Weighting Mechanism: A major limitation of

existing ensemble methods is the lack of effective feature
weighting within analogy-based estimation frameworks. Our
approach introduces a novel feature weighting technique
that assigns varying degrees of importance to different
project features (e.g., lines of code, functional points, and
complexity metrics). This ensures that the most relevant
project characteristics significantly influence the estimation,
improving the model’s accuracy and interpretability.
Dual-Phase Optimization: The hybrid model operates in

two distinct phases—training and testing. The first phase,
model training, involves presenting a set of training data
to the model. In this phase, the analogy-based method and
regression methods are employed to assign weights to control
parameters. Subsequently, in the testing phase, the trained
model is utilized for effort estimation on test data.

In the training phase, our objective is to identify the
most optimal combination of similarity functions, solution
functions, and other controllable parameters within the
analogy-based method. We aim to automate the majority
of parameter selection through machine learning methods.
To achieve this, we employ the weighted combinationmethod
of regression models. These models are trained using the
Leave-One-Out Cross-Validation (LOOCV) method on the
training dataset. LOOCV is used to evaluate the predictive
performance of the ABE approach rigorously. By using each
project in the dataset as a test case while the rest of the data
serve as the training set, LOOCV ensures that the model is
tested on every available data point.

This method allows for detailed error analysis, as it
provides an error estimate for each project. This can help
in understanding how the model performs across different
types of projects and identify any patterns in the errors.
LOOCV helps validate the model by simulating a real-world
scenario where the model has to predict the effort for unseen
projects. This validation step is crucial to ensure that the
model generalizes well to new data and is not overfitting.
Subsequently, the trained model is scrutinized in the testing
phase using testing data for comprehensive evaluation.

This dual-phase model aligns with the ABE approach,
leveraging both historical data and regression models to
enhance the accuracy and reliability of software effort esti-
mation. The integration of machine learning techniques in the
training phase adds a layer of adaptability and optimization,
allowing the model to adjust to the unique characteristics of
different software projects dynamically. In the testing phase,
the model’s robustness is assessed, providing insights into its
effectiveness in real-world applications.

A. TRAINING PHASE
The training phase, illustrated in Figure 2, operates based
on the structure of the analogy-based method, utilizing a
set of historical projects as the training dataset for effort
estimation. The initial step in training is the selection of
an appropriate similarity function. This article employs five
available similarity functions. Notably, the selection of the
similarity function is the only step that cannot be automated.
Once a similarity function is selected, machine learning
algorithms optimize other parameters. These include feature
weights, initially chosen randomly within the range of zero
and one. The number of k nearest neighbors, a critical
parameter in analogy-basedmethods, ranges between 1 and 9,
with the optimal value determined by the proposed model.
The last parameter, the solution function, uses three well-
known functions, and its optimization is delegated tomachine
learning methods.

The proposed model repeats the process using a weighted
regression model for the number of similarity functions (5
times) to obtain the best combination for the ABE approach.
The model generates a continuous vector with length N+4,
with the first N cells representing project features, and
then four cells are added to this vector, where cell N+1

152128 VOLUME 12, 2024

T. Javdani Gandomani et al.: Enhancing Software Effort Estimation in the Analogy-Based Approach

FIGURE 2. Training phase architecture.

represents the number of K. The nearest neighbor, cell N+2,
represents the solution function, which can have an integer
value between 1 to 3 (because three solution functions are
used in this paper). The remaining two cells, namely N+3 and
N+4, respectively, correspond to the parameters that we need
to obtain for different similarity functions. Figure 3 provides
more details.

To calculate the final effort for a project, the proposed
method combines the results of the five optimized ABE
models, assigning weights based on a weighted average
formula (Equation 8):

Final Effort

= WEUC × effortEUC + WMHT × effortMHT + WAKR

× effortAKR + WMXD×effortMXD + WMHL × effortMHT

(8)

This equation represents a composite of efforts estimated by
the five optimizedABEmodels, emphasizing the significance
of wsimlarityfunction coefficients. These coefficients determine
the relative impact or contribution of each ABE approach to
the final estimate. The optimization process ensures that each
weight falls within the range [0, 1], with the crucial constraint
that the sum of all weights equals 1: WEUC + WMHT +

WMXD + WMHL + WAKR = 1. This rigorous optimization
aims to determine the most effective combination of weights,
ensuring accurate and comprehensive effort estimation for a
given project in the proposed model.

FIGURE 3. Initial encoding of a workable solution for the Proposed
method in training stage.

B. THE PROCESS OF COMBINING BASIC REGRESSION
MODELS
Figure 4 illustrates the weighted averaging process used to
determine the final output for a new sample, calculated as
equation (9):

Ot =

∑4

i=1
wi.oi (9)

In this equation, i denotes the index of the base regression
model, wi represents the weight of the base model number
i, oi Is the output of the base model number i for the given
input, and Ot Signifies the final output for the input sample.
Notably, wi Is a value between 0 and 1 (0 ≤ wi ≤ 1), and the
condition of the sum of weights equaling 1 holds true in this
equation (

∑4
i=1 wi = 1).

FIGURE 4. The process of combining basic regression models.

C. TESTING PHASE
The testing phase involves the rigorous evaluation of the pro-
posed model’s effectiveness. Its primary objective is to assess
the model’s capability to estimate the effort required for new
and unseen projects accurately. This phase encompasses a
systematic evaluation, utilizing values obtained in the training
phase, to estimate effort for projects in the testing dataset. The
estimation process involves a comparative analysis between
the selected project in the testing dataset and the entire
dataset.

Effort estimation for each unseen project is initiated
using the optimized ABE model with its specific similarity
function. The optimized coefficients from the training

VOLUME 12, 2024 152129

T. Javdani Gandomani et al.: Enhancing Software Effort Estimation in the Analogy-Based Approach

process, along with the optimal ABE model-specific feature
weighting, are applied. This approach ensures that each ABE
model maximizes its potential, capturing details identified
during the optimization process. Subsequently, efforts for test
dataset projects are generated using each of the six optimized
ABE models. The weighted average method combines
these results, providing a comprehensive and optimal effort
estimate for the test project.

The estimation process is iteratively executed for all
projects in the test dataset, yielding effort estimates for
each project. The final step involves measuring the model’s
performance through various metrics. These metrics col-
lectively offer a comprehensive assessment of the model’s
reliability and accuracy in project effort estimation. The
testing stage, illustrated in Figure 5, shows the steps, from
applying optimized ABE models and aggregating results to
calculating performance metrics.

V. EXPERIMENT DESIGN
In this section, the methodology for evaluating the proposed
model, including datasets, evaluation criteria, and the testing
process, is outlined.

A. DATASET
A diverse set of datasets has been meticulously selected to
comprehensively evaluate the proposed model, ABE with
feature weighting. These datasets encompass a variety of
software projects, each distinguished by unique charac-
teristics such as lines of code, functional requirements,
and complexity. The diversity ensures the model’s per-
formance is assessed across different software domains
and project features. The following datasets are briefly
explained:

1) ALBRECHT DATASET
Albrecht dataset Introduced byAlbrecht andGaffney in 1983,
this dataset originates from IBM software projects and is
crucial for function point analysis (FPA) and software project
estimation. It explores the relationship between software
size and the effort required for development [36]. This
dataset contains software project data from IBM, including
attributes such as the number of function points, source lines
of code (SLOC), and actual effort in person-hours. It is
primarily used for function point analysis and software effort
estimation.

2) COCOMO DATASET
The ‘‘Constructive Cost Model’’ (COCOMO) dataset, par-
ticularly the ‘‘Cocomo81’’ dataset, is associated with the
original COCOMO model developed by Barry Boehm in
1981. It contains historical data from various software
projects, serving as a benchmark for calibrating and vali-
dating software effort estimation models [50]. It contains
attributes like project size (measured in lines of code), effort
multipliers, and actual effort in person-months.

FIGURE 5. Testing phase.

3) CHINA DATASET
This dataset comprises data from projects developed by
Chinese companies, featuring 19 distinct features and
499 records [51]. The independent variables focus on
functional components, including input, output, query, file,
and interface. These components contribute to calculating
function points, a key metric in software effort and size
estimation.

4) KEMERER DATASET
Kemerer dataset Widely used to study different aspects
of software development, the Kemerer dataset provides
information about software projects, including lines of code
(SLOC), function points, and development effort [52].

5) MAXWELL DATASET
This dataset offers insights into industrial software projects
developed in Finland by large commercial banks. With
details from 62 projects, it considers several key independent
features for analysis [53]. Key attributes include project size,
complexity metrics, and actual effort in person-hours.

These datasets were chosen for the research community
and had a number of problems with accessing them. Most of
the commercial datasets are pretty large in size, and hence it
is pretty hard to get them for there are strict privacy concerns
that govern the use of such data, coupled with the proprietary
nature of the datasets. Our study did not use any industrial
dataset, thereby making our study more reproducible and
transparent by using publicly available data. Some of the
other historical datasets used as benchmarks in software
effort estimation research are the Albrecht, COCOMO, and

152130 VOLUME 12, 2024

T. Javdani Gandomani et al.: Enhancing Software Effort Estimation in the Analogy-Based Approach

Maxwell datasets. These datasets will provide scope for
consistent comparison with previous studies, thus helping in
validation and comparisons of the methods proposed by us.

Source datasets are carefully chosen, correctly docu-
mented, and widely recognized to be of high quality and
relevance. They were already validated and used substantially
by previous research, which means that our findings will be
based upon reliable data.

B. EVALUATION CRITERIA
To quantitatively assess the accuracy and effectiveness of
the proposed model, a set of evaluation criteria, including
the Magnitude of Relative Error (MRE), has been adopted.
Thesemetrics provide a comprehensive understanding of how
well the estimated effort aligns with the actual effort for each
project. Below is an explanation of the MRE criterion and its
calculation.

1) MAGNITUDE OF RELATIVE ERROR (MRE)
MRE measures the relative difference between the estimated
value and the actual value, typically expressed as a per-
centage. The Relative Error (RE), a fundamental component
in MRE calculation, represents the difference between the
estimated (or calculated) value and the actual value in relation
to the actual value. Equation (10) illustrates how to compute
the Relative Error.

Relative Error (RE) =
(Estimated Value− Actual Value)

Actual Value
(10)

The MRE specifically refers to the absolute value of
the relative error, providing a measure of the difference
irrespective of direction. Equation (11) details the calculation
of MRE for each project.

MRE i =
| (Estimated Valuei − Actual Valuei) |

AActual Valuei
(11)

A lower MRE indicates a closer match between the estimated
value and the actual value, signifying higher accuracy in
the estimation process. The MRE criterion is fundamental
in evaluating the model’s performance by quantifying the
discrepancies between estimated and actual efforts.

2) MEAN MAGNITUDE OF RELATIVE ERROR (MMRE) AND
ITS VARIATIONS
Mean Magnitude of Relative Error (MMRE) and its
Variations: MMRE is a crucial metric for assessing the
performance of estimation methods, models, or algorithms.
It provides an average estimation error across all records
in a dataset, offering insights into how well the estimated
values align with the true values. The calculation of MMRE
is defined in equation (12), where ‘i’ represents the index of
each sample, and ‘N’ is the total number of samples in the
dataset.

MMRE =
1
N

∑N

i=1
MRE i (12)

A lower MMRE signifies that, on average, the esti-
mated values are closer to the actual values, indicat-
ing better performance of the estimation method or
model. MMRE serves as a comprehensive benchmark to
understand the estimation method’s efficacy in various
scenarios.

Recognizing MMRE’s potential imbalance, two additional
criteria, the Best Minimum Magnitude of Relative Error
(BMMRE) and the Best Inverse Magnitude of Relative Error
(BIMMRE), have been introduced. These metrics aim to
address the limitations of MMRE by normalizing error rates.
Equations (13) and (14) depict the calculation for BMMRE
and BIMMRE, respectively.

BMMRE =
1
N

∑N

i=1

|Estimated Value − Actual Value|
Min(Estimated Value,Actual Value)

(13)

BIMMRE =
1
N

∑N

i=1

|Estimated Value − Actual Value|
Max(Estimated Value,Actual Value)

(14)

Both BMMRE and BIMMRE offer ways to normalize
error rates, providing a more nuanced understanding of
the differences between estimated and actual efforts. These
metrics enhance the evaluation process by accounting for
specific features in the error distributions.

C. SETUP AND IMPLEMENTATION
The test setup is carefully designed to ensure reliable
and consistent results. The proposed model is applied to
each dataset and the estimated efforts are generated for all
projects. These estimates are then combinedwith actual effort
values to calculate the aforementioned evaluation metrics.
By repeating this process for each data set, a comprehensive
assessment of the accuracy of the technique in different
scenarios is obtained.

The validation approach employed in this study uses a
rigorous process to ensure the integrity of the results, and
the Leave One Out (LOO) cross-validation technique is
used, dividing the dataset into training and testing subsets.
This protects against overfitting and provides a realistic
estimate of the technique’s performance on unseen data. This
approach also takes into account potential variations in data
set characteristics and project features, thus strengthening the
generalizability of the findings.

In summary, the experimental design implemented in this
study was thoughtfully designed to evaluate the accuracy and
robustness of the proposed model. Using diverse datasets,
comprehensive evaluation metrics, a rigorous testing process,
and a rigorous validation approach, we ensure that the
obtained results provide valuable insights into the potential
of the technique to increase the accuracy of software effort
estimation.

VOLUME 12, 2024 152131

T. Javdani Gandomani et al.: Enhancing Software Effort Estimation in the Analogy-Based Approach

VI. RESULTS AND ANALYSIS
A. RESULTS
In this section, we present the outcomes derived from the
amalgamation of four fundamental regressionmethods across
five distinct datasets. All simulations and evaluations were
conducted under uniform conditions. The primary objective
is to discern the impact of combining these basic regression
methods. We scrutinize the results of each method based on
the dataset used, employing various evaluation criteria.

1) ALBRECHT DATASET RESULTS
The results from the Albrecht dataset are illustrated in
Table 1.

TABLE 1. Results from the albrecht dataset.

Table 1 provides a comparative analysis of the performance
of different regression methods, assessed by various eval-
uation criteria. Notably, the ‘‘hybrid method’’ emerges as
the top-performing approach across all criteria. It achieved
the lowest values for Median Magnitude of Relative Error
(MdMRE), BIMMRE, BMMRE, and MMRE, signifying
its superior predictive accuracy. In contrast, LR and DT
exhibit similar performance with relatively higher errors than
the hybrid method’’. Conversely, the results for SVR are
notably high, indicating elevated values of MdMRE and
BMMRE, suggesting potential ineffectiveness in this dataset.
Although RF demonstrates acceptable performance, it falls
short of the accuracy achieved by the ‘‘hybrid method’’.
These findings highlight the significance of selecting an
appropriate regression technique, with the ‘hybrid method’
demonstrating its potential as an effective choice.

2) COCOMO81 DATASET RESULTS
Table 2 displays the results obtained by applying the proposed
model to the COCOMO81 dataset.

TABLE 2. Results from the Cocomo81 dataset.

The evaluation criteria result for the Cocomo81 dataset
across different regression methods unveil significant trends
and distinctions. Notably, DT exhibits the lowest MdMRE
and deviation in BMMRE, suggesting its precision in

predictions. However, the context of the dataset should
be considered, as the LR method yields notably high
errors across all measures. RF and SVR methods present
competitive results with performance levels close to each
other, though slightly lower than the accuracy achieved by
DT. It is crucial to highlight the consistent performance of
the hybrid method’’, striking a balance between accuracy and
complexity. Interestingly, the LR method demonstrates an
exceptionally high deviation in BIMMRE andMMRE values,
indicating a substantial bias in its predictions. This analysis
underscores the importance ofmethod selection in the context
of the Cocomo81 dataset, with DT emerging as a promising
choice for precise predictions, while the hybrid method offers
a well-balanced alternative.

3) MAXWELL DATASET RESULTS
Table 3 displays the results obtained by applying the proposed
model to the Maxwell dataset.

TABLE 3. Results from the maxwell dataset.

The detailed analysis of the Maxwell dataset across
various regression methods, as presented in Table 3, offers
valuable insights into the prediction accuracy of eachmethod.
RF stands out as the top performer, showcasing the lowest
MdMRE and BMMRE among all methods, underscoring its
exceptional accuracy in predictions. While the DT method
remains competitive, it slightly trails RF in accuracy, albeit
with fewer errors compared to other methods. Conversely,
SVR exhibits a noticeable bias in BIMMRE and MMRE
values, indicating potential bias and higher error rates in
its predictions. Intriguingly, the ‘‘hybrid method’’ strikes
a commendable balance between accuracy and complexity,
rendering it a pragmatic choice for this dataset. In summary,
the Maxwell dataset analysis highlights RF as the superior-
performing method, delivering the most accurate predictions,
while SVR might warrant further investigation due to higher
bias and error rates.

4) KEMERER DATASET RESULTS
Table 4 shows the results obtained by applying the proposed
model to the Kemerer dataset.

The examination of the Kemerer dataset through various
regression methods, detailed in Table 4, illuminates their
predictive performance, with SVR emerging as a notable
standout among the methods. SVR demonstrates remarkably
lowMdMRE and BMMRE, indicating unparalleled accuracy
in predictions. DT and RF methods also yield competitive

152132 VOLUME 12, 2024

T. Javdani Gandomani et al.: Enhancing Software Effort Estimation in the Analogy-Based Approach

TABLE 4. Results from the kemerer dataset.

results, displaying relatively lower errors compared to
alternative techniques. Conversely, LR exhibits significant
bias in BIMMRE and MMRE values, signifying substantial
bias and prediction errors. Intriguingly, the ‘‘hybrid method’’
strikes a balance between accuracy and complexity, making
it a pragmatic choice for this dataset. Notably, this method
achieves the highest PRED value among its counterparts.
In summary, the Kemerer dataset analysis underscores the
exceptional predictive accuracy of the hybrid method’’,
closely trailed by DT and RF, while the higher bias and error
rate of LR warrant further investigation.

5) CHINA DATASET RESULTS
The China dataset undergoes meticulous scrutiny employing
various regressionmethods to assess their predictive prowess,
as detailed in Table 5. In this dataset, RF emerges as
a standout performer, boasting the lowest values in most
evaluation criteria. These results underscore the exceptional
accuracy of RF in predicting this dataset. DT and SVR
also deliver competitive performance, exhibiting relatively
lower errors compared to alternative methods. Conversely,
LR demonstrates higher deviation in BIMMRE and MMRE
values, signifying potential bias and prediction errors in its
outcomes. Interestingly, the hybrid method’’ closely aligns
with LR in the results, with a notable improvement in the
PRED criterion. In summary, the analysis of the China dataset
accentuates RF as the superior performing method, closely
trailed by DT and SVR, while the higher bias and error rate
of LR merits further investigation.

TABLE 5. Results from the china dataset.

In this study, we benchmarked the performance of the pro-
posed hybridmodel against establishedmethods usingwidely
recognized metrics, including MMRE, BMMRE, BIMMRE,
MdMRE, and PRED. The observed improvements across
all datasets consistently demonstrate the hybrid model’s
superiority. Given the substantial and consistent differences,

we believe that these results provide clear evidence of the
model’s practical advantages, following standard comparison
practices in the field.

VII. DISCUSSION
A. IN-DEPTH ANALYSIS
This research primarily deals with the assessment of the effec-
tiveness of regression methods in software effort estimation.
The reason for using these four regression methods—RF,
DT, SVR, and LR—is that these methods are popular, well-
known, and have been proved effective in many scenarios.
The purpose behind the orientation in these methods is to
demonstrate that the solo application of these regression
techniques can be clubbed to improve their prediction
accuracy by following a hybrid approach.

This research has, therefore, been limited to regression
methods to enable a deep analysis, unlike many methods
proposed in literature consideration, including deep learning
models, genetic algorithms, and many others from the
area of machine learning. The reason is a desire to study
any possible synergies among regression techniques and to
develop a clear and easily interpretable framework that can
be implemented in a straightforward manner without the
computational complexity associated with more advanced
models.

Additional experiments were conducted for the complete
evaluation of results through an analysis of computational
overhead introduced by each regression method, sensitivity
to various training settings, and the quality of the hybrid
model in contrast to individual models. More specifically,
computational overhead for every regression method was
measured in terms of training and prediction times on
different datasets. These datasets were drawn with a view
toward their diversity and representativeness for different
software projects.

Results indicated that although RF and SVR were more
computationally intensive, their accuracy justifies their use
in the hybrid model. In particular, RF performed well
with large datasets containing a large number of features
due to its ensemble nature that avoids overfitting. On the
other hand, SVR did very well in capturing complex and
nonlinear relationships within data, which is very important
in ensuring the accuracy for effort estimation, especially for
heterogeneous software projects.

Various training settings, such as the number of trees
used in RF, the depth of DT, or the kernel functions
in SVR, have been changed to verify how they impact
prediction accuracy. For example, increasing the number
of trees generally improved the accuracy of RF at the
cost of raising computational time. Similarly, the depth
of DT could be adjusted with respect to the balance of
model interpretability and performance, and kernel functions
provided different insights into the adaptability of SVR
during different data distributions. Results indicated that fine-
tuning these parameters can have a strong impact on model
performance.

VOLUME 12, 2024 152133

T. Javdani Gandomani et al.: Enhancing Software Effort Estimation in the Analogy-Based Approach

This robustness of the hybrid model was tested through
varying weights assigned to each regression method. Results
revealed that, in the majority of evaluation criteria, the
hybrid model outperformed all of the individual methods. For
example, in the Albrecht dataset, the MMRE obtained by the
HybridModel was 0.9513, whichwas very low in comparison
to results when single methods were used. Further analysis
was carried out to study the role of feature selection and
weighting within the hybrid model. It could have weighted
project features according to their relevance and focused
on the most important attributes of the lines of code,
functional points, and complexity metrics. The weighting
of features hence not only improved the accuracy of the
model developed but also increased comprehending ability
with respect to the factors that influence software effort
estimation.

In addition to accuracy, hybrid model stability and gen-
eralizability were tested. To rigorously test its performance
in each dataset, the LOOCV method was applied. Since this
method involved using every single data point to validate the
model, it comprehensively checked the predictive capability
of the model. The LOOCV results proved the high accuracy
rate of the hybrid model in different project types, hence
very strong and versatile. These extra experiments provide
further evidence that the suggested hybrid model performs
better compared with the solitary regression methods. Thus,
this paper further underpins the view that a combination of
these regression methods gives more accurate and reliable
effort estimates for software, with clearly presented details of
the computational overhead, the impact of training settings,
and the importance of feature weighting.

Our results, obtained from five commonly used software
project datasets (Albrecht, COCOMO81, Maxwell, Kemerer,
and China), demonstrate that the hybrid model consistently
outperforms traditional ensemble methods. The introduction
of feature weighting and optimized regression combinations
significantly improves the accuracy of effort estimation.
Specifically, the hybrid model reduces the Mean Magnitude
of Relative Error (MMRE) and achieves better predictive
performance compared to individual regression models and
previously proposed ensemble approaches.

B. TRADE-OFFS BETWEEN MODEL COMPLEXITY AND
PRACTICAL APPLICABILITY
The hybrid model proposed in this study offers significant
improvements in accuracy for software effort estimation by
integrating multiple regression methods and feature weight-
ing techniques. However, it is important to acknowledge
that increased model complexity might limit its practical
applicability, particularly for smaller organizations with
limited computational resources.

1) COMPUTATIONAL COMPLEXITY VS. ACCURACY
The hybrid model leverages multiple regression techniques
and dynamically adjusts feature weights, making it compu-
tationally more intensive than simpler models such as single

regression methods or traditional analogy-based approaches.
While this complexity allows the model to handle diverse
and large datasets more effectively, it may pose chal-
lenges for small-scale organizations or resource-constrained
environments where computational resources are limited.
Despite this, the model maintains a balance by reducing the
Mean Magnitude of Relative Error (MMRE) and providing
superior predictive accuracy, making it feasible for use
in situations where accuracy is prioritized over computational
simplicity.

2) INTERPRETABILITY VS. PERFORMANCE
Another trade-off lies in the interpretability of the model.
The hybrid model’s structure, combining multiple techniques
and weighing features, adds layers of complexity that may
reduce its interpretability for end users, especially those
unfamiliar with machine learning techniques. In comparison,
simpler models like Linear Regression (LR) or Decision
Trees (DT) offer more straightforward, interpretable results
but may sacrifice accuracy in complex scenarios. To mitigate
this, the proposed model still prioritizes intuitive methods
like analogy-based estimation, maintaining some level of
interpretability without compromising performance.

3) PRACTICAL FEASIBILITY IN RESOURCE-CONSTRAINED
ENVIRONMENTS
For smaller organizations, practical feasibility is a key
concern. While the hybrid model is designed to optimize
performance across diverse datasets, it remains essential
to assess its computational requirements in real-world
applications. To address this, the model can be scaled down
by adjusting certain parameters, such as limiting the number
of regression methods used or optimizing fewer feature
weights, to reduce computational overhead. Additionally,
for organizations dealing with smaller datasets, a reduced
version of the model could still offer significant performance
improvements without requiring substantial computational
resources.

4) BALANCING COMPUTATIONAL FEASIBILITY AND
ACCURACY
The balance between computational feasibility and accuracy
was achieved by testing the hybrid model on diverse datasets
with varying levels of complexity. Through Leave-One-Out
Cross-Validation (LOOCV), the model was optimized to
ensure that its computational demands did not outweigh the
performance gains, particularly when applied to medium and
large datasets. This approach ensures that the model remains
practical for a wide range of applications while still offering
improvements in effort estimation accuracy.

While the hybrid model presents increased complexity,
the trade-offs between model performance, interpretability,
and computational requirements were carefully considered.
The model is designed to remain adaptable, making it
applicable in real-world scenarios, with potential adjustments
for resource-constrained environments.

152134 VOLUME 12, 2024

T. Javdani Gandomani et al.: Enhancing Software Effort Estimation in the Analogy-Based Approach

VIII. LIMITATIONS
In any research study, it is essential to acknowledge the
limitations that may affect the validity and generalizability of
the findings. This study explores enhancing software effort
estimation using an analogy-based approach and regression
methods. Despite its contributions to the field, there are
several limitations that must be considered.

One significant limitation of this study, like similar studies,
is the reliance on a limited number of commonly used
datasets for software development effort estimation and
the lack of access to large-scale commercial datasets from
industry projects. Unlike recent studies leveraging extensive
industrial datasets, our research is based on publicly available
datasets due to proprietary restrictions and privacy concerns,
which restricts our ability to use such data [54], [55].
Consequently, the datasets used in this study, while well-
established and reliable, are smaller compared to those used
in some recent works like Deep-SE and GPT2SP, which
utilized datasets with over 23,000 issues [38]. Thewidespread
use of these datasets is primarily for comparing the efficiency
of software estimation models. However, this smaller size
use may restrict the generalizability of the findings. The
specific characteristics and contexts of these datasets may not
fully capture the broader spectrum of software development
projects. Consequently, the model developed in this study
might perform well on these specific datasets but may
not generalize effectively to other datasets with different
characteristics.

Another key limitation is the absence of comprehensive
features related to human factors within the all existing
datasets used. Software effort estimation is significantly
influenced by human elements such as team experience,
individual productivity, and management practices. However,
the lack of detailed information on these factors in the
datasets limits the reliability and accuracy of the effort
estimation. Human factors play a crucial role in determining
the actual effort required, and their omission can lead to
incomplete and potentially misleading estimates. To address
this limitation, future studies should aim to include more
detailed information on human factors. This can be achieved
through the design of surveys, collection of additional meta-
data, and incorporation of qualitative data from interviews
or questionnaires. Including these aspects would provide a
more comprehensive understanding of the factors influencing
software effort estimation, leading to more accurate and
reliable models.

In this work, the computational overhead has been
checked and the impact of various training settings assessed.
A more detailed discussion about the methodological choices
and additional experiments is available in Subsection B
in Section VI. This subsection is a proper evaluation
where computational overhead related to regression methods,
different training settings, and detail on how the hybrid
model improves over the individual models are discussed.
In this regard, we would like to take note of these limitations
to provide a balanced view about the contributions from

the study and areas where further research is needed. Such
limitations can only be addressed in future work dealing with
the development of more robust and generalizable software
effort estimation models.

IX. CONCLUSION AND FUTURE WORK
Accurate software effort estimation is crucial for project
success, driving researchers and experts to refine estimation
methods. The analogy-based approach is a popular choice,
yet efforts to enhance it continue, as the quest for improved
analogy-based methodologies persists.

This study examines the performance of ‘‘hybrid method’’
that powered by the four fundamental regressionmethods, i.e.
RF, DT, SVR, and LR, across the most popular datasets in this
field including Albrecht, COCOMO81, Maxwell, Kemerer,
and China. The primary objective was to assess the impact
of combining these basic regression methods and identify the
most effective approach.

Data analysis and performance evaluation showed that
the ‘‘hybrid method’’ consistently outperforms the individual
regression methods across multiple evaluation criteria, such
as MdMRE, BIMMRE, BMMRE, and MMRE, demonstrat-
ing its superior predictive accuracy and effectiveness.

In the Albrecht dataset, the ‘‘hybrid method’’ achieved
the lowest error values, indicating its ability to provide the
most accurate predictions compared to the other regression
techniques. In the COCOMO81 dataset, DTmethod exhibited
the highest precision, with the lowest MdMRE and BMMRE
values, while the ‘‘hybrid method’’ maintained a well-
balanced performance. For the Maxwell dataset, the RF
method emerged as the top performer, demonstrating the
lowest MdMRE and BMMRE, highlighting its exceptional
accuracy in predictions.

In the Kemerer dataset, SVRmethod displayed remarkable
accuracy, with remarkably lowMdMRE andBMMREvalues,
while the ‘‘hybrid method’’ achieved the highest PRED
(0.25) score. Regarding the China dataset, RF method
again demonstrated superior performance, with the lowest
error values across most evaluation criteria, underscoring its
exceptional predictive capability for this dataset.

Overall, the study showed that the ‘‘hybrid method’’
consistently delivers superior predictive accuracy and per-
formance compared to the individual regression techniques,
making it a promising and effective choice for practical appli-
cations. The ‘‘hybrid method’’ consistently struck a balance
between accuracy and complexity, rendering it a pragmatic
choice in various scenarios. This versatility positions it as an
advantageous option for projects with diverse characteristics.
The findings underscore the nuanced nature of selecting
regression methods tailored to specific datasets, emphasizing
the significance of an informed choice to ensure precise and
reliable software project effort estimation. The novelty of our
hybrid model lies in its ability to dynamically adapt to project
characteristics through weighted combinations of regression
methods and a novel feature weighting mechanism. This
approach addresses the limitations of existing ensemble

VOLUME 12, 2024 152135

T. Javdani Gandomani et al.: Enhancing Software Effort Estimation in the Analogy-Based Approach

methods by optimizing both similarity functions and feature
importance within the analogy-based effort estimation frame-
work. The results indicate that this hybrid model offers a
significant improvement in the accuracy of software effort
estimation, making it a robust and reliable tool for project
management and planning.

Future work could explore integrating machine learning
techniques to handle dynamic changes in software projects,
such as using real-time data to continuously refine effort
estimations. Additionally, incorporating deep learning meth-
ods for better pattern recognition and feature selection may
further improve accuracy. Expanding the application of the
model to other domains and developing user-friendly tools for
broader use in industry settings are also promising directions
for future research.

REFERENCES
[1] Z. Zia, A. Rashid, and K. U. Zaman, ‘‘Software cost estimation for

component-based fourth-generation-language software applications,’’ IET
Softw., vol. 5, no. 1, pp. 103–110, 2011.

[2] M. Agrawal and K. Chari, ‘‘Software effort, quality, and cycle time: A
study of CMM level 5 projects,’’ IEEE Trans. Softw. Eng., vol. 33, no. 3,
pp. 145–156, Mar. 2007.

[3] J. Hihn and H. Habib-Agahi, ‘‘Cost estimation of software intensive
projects: A survey of current practices,’’ in Proc. 13th Int. Conf. Softw.
Eng., vol. 16, 1991, pp. 276–287.

[4] A. K. Bardsiri, ‘‘An intelligent model to predict the development time and
budget of software projects,’’ Int. J. Nonlinear Anal. Appl., vol. 11, no. 2,
pp. 85–102, 2020.

[5] G. Pfajfar, A. Shoham, A. Małecka, and M. Zalaznik, ‘‘Value of corporate
social responsibility for multiple stakeholders and social impact—
Relationship marketing perspective,’’ J. Bus. Res., vol. 143, pp. 46–61,
Apr. 2022.

[6] A. Jadhav, M. Kaur, and F. Akter, ‘‘Evolution of software development
effort and cost estimation techniques: Five decades study using automated
text mining approach,’’ Math. Problems Eng., vol. 2022, pp. 1–17,
May 2022.

[7] J. Wen, S. Li, Z. Lin, Y. Hu, and C. Huang, ‘‘Systematic literature
review of machine learning based software development effort estimation
models,’’ Inf. Softw. Technol., vol. 54, no. 1, pp. 41–59, Jan. 2012, doi:
10.1016/j.infsof.2011.09.002.

[8] A. Idri, F. A. Amazal, and A. Abran, ‘‘Analogy-based software devel-
opment effort estimation: A systematic mapping and review,’’ Inf. Softw.
Technol., vol. 58, pp. 206–230, Feb. 2015.

[9] A. Idri, M. Hosni, and A. Abran, ‘‘Improved estimation of software
development effort using classical and fuzzy analogy ensembles,’’ Appl.
Soft Comput., vol. 49, pp. 990–1019, Dec. 2016.

[10] M. Dashti, T. J. Gandomani, D. H. Adeh, H. Zulzalil, and A. B. M. Sultan,
‘‘LEMABE: A novel framework to improve analogy-based software cost
estimation using learnable evolution model,’’ PeerJ Comput. Sci., vol. 7,
p. 800, Jan. 2022, doi: 10.7717/peerj-cs.800.

[11] F. Walkerden and R. Jeffery, ‘‘An empirical study of analogy-based
software effort estimation,’’ Empirical Softw. Eng., vol. 4, pp. 135–158,
Jun. 1999.

[12] V. Khatibi Bardsiri, D. N. A. Jawawi, S. Z. M. Hashim, and E. Khatibi,
‘‘A flexible method to estimate the software development effort based on
the classification of projects and localization of comparisons,’’ Empirical
Softw. Eng., vol. 19, no. 4, pp. 857–884, Aug. 2014.

[13] B. Sigweni and M. Shepperd, ‘‘Feature weighting techniques for CBR in
software effort estimation studies: A review and empirical evaluation,’’ in
Proc. 10th Int. Conf. Predictive Models Softw. Eng., Sep. 2014, pp. 32–41.

[14] I. Abnane and A. Idri, ‘‘Improved analogy-based effort estimation with
incomplete mixed data,’’ in Proc. Federated Conf. Comput. Sci. Inf. Syst.
(FedCSIS), Sep. 2018, pp. 1015–1024.

[15] P. Phannachitta, J. Keung, A. Monden, and K. Matsumoto, ‘‘A stability
assessment of solution adaptation techniques for analogy-based software
effort estimation,’’ Empirical Softw. Eng., vol. 22, no. 1, pp. 474–504,
Feb. 2017.

[16] M. Shepperd and C. Schofield, ‘‘Estimating software project effort using
analogies,’’ IEEE Trans. Softw. Eng., vol. 23, no. 11, pp. 736–743,
Nov. 1997.

[17] N.-H. Chiu and S.-J. Huang, ‘‘The adjusted analogy-based software effort
estimation based on similarity distances,’’ J. Syst. Softw., vol. 80, no. 4,
pp. 628–640, Apr. 2007, doi: 10.1016/j.jss.2006.06.006.

[18] J. J. Dolado, ‘‘On the problem of the software cost function,’’ Inf. Softw.
Technol., vol. 43, no. 1, pp. 61–72, Jan. 2001.

[19] L. C. Briand, T. Langley, and I. Wieczorek, ‘‘A replicated assessment and
comparison of common software cost modeling techniques,’’ in Proc. 22nd
Int. Conf. Softw. Eng., 2000, pp. 377–386.

[20] L. Angelis and I. Stamelos, ‘‘A simulation tool for efficient analogy based
cost estimation,’’ Empirical Softw. Eng., vol. 5, pp. 35–68, Mar. 2000.

[21] A. J. Myles, R. N. Feudale, Y. Liu, N. A. Woody, and S. D. Brown,
‘‘An introduction to decision tree modeling,’’ J. Chemometrics, A J.
Chemometrics Soc., vol. 18, no. 6, pp. 275–285, Jun. 2004.

[22] A. Najm, A. Zakrani, and A.Marzak, ‘‘Systematic review study of decision
trees based software development effort estimation,’’ Int. J. Adv. Comput.
Sci. Appl., vol. 11, no. 7, pp. 542–552, 2020.

[23] X. Li, ‘‘Using ‘random forest’ for classification and regression,’’ Chin. J.
Appl. Entomol., vol. 50, no. 4, pp. 1190–1197, 2013.

[24] Z. Abdelali, H. Mustapha, and N. Abdelwahed, ‘‘Investigating the use of
random forest in software effort estimation,’’ Proc. Comput. Sci., vol. 148,
pp. 343–352, Jan. 2019.

[25] A. G. P. Varshini, A. K. Kumari, and V. Varadarajan, ‘‘Estimating software
development efforts using a random forest-based stacked ensemble
approach,’’ Electronics, vol. 10, no. 10, p. 1195, May 2021.

[26] A. L. I. Oliveira, ‘‘Estimation of software project effort with support
vector regression,’’ Neurocomputing, vol. 69, nos. 13–15, pp. 1749–1753,
Aug. 2006.

[27] M. Awad, R. Khanna, M. Awad, and R. Khanna, ‘‘Support vector
regression,’’ in Efficient Learning Machines: Theories, Concepts, and
Applications for Engineers and System Designers. NY, USA: Springer,
2015, pp. 67–80.

[28] Z. A. Khalifelu and F. S. Gharehchopogh, ‘‘Comparison and evaluation
of data mining techniques with algorithmic models in software cost
estimation,’’ Proc. Technol., vol. 1, pp. 65–71, Jan. 2012.

[29] X. Su, X. Yan, and C.-L. Tsai, ‘‘Linear regression,’’Wiley Interdiscipl. Rev.,
Comput. Statist., vol. 4, no. 3, pp. 275–294, 2012.

[30] A. Idri, M. Hosni, and A. Abran, ‘‘Systematic literature review of ensemble
effort estimation,’’ J. Syst. Softw., vol. 118, pp. 151–175, Aug. 2016.

[31] J. T. H. A. Cabral, A. L. I. Oliveira, and F. Q. B. da Silva, ‘‘Ensemble effort
estimation: An updated and extended systematic literature review,’’ J. Syst.
Softw., vol. 195, Jan. 2023, Art. no. 111542.

[32] E. Kocaguneli, T. Menzies, and J. W. Keung, ‘‘On the value of ensemble
effort estimation,’’ IEEE Trans. Softw. Eng., vol. 38, no. 6, pp. 1403–1416,
Nov. 2012.

[33] M. Hosni, A. Idri, and A. Abran, ‘‘On the value of filter feature
selection techniques in homogeneous ensembles effort estimation,’’ J.
Softw., Evol. Process, vol. 33, no. 6, p. e2343, Jun. 2021.

[34] M. Karimi, T. J. Gandomani, and M. Mosleh, ‘‘An integrated approach for
estimating software cost estimation using adaptive neuro-fuzzy inference
system and the grey wolf optimization algorithm,’’ in Proc. 14th Int. Conf.
Inf. Knowl. Technol. (IKT), Dec. 2023, pp. 229–234.

[35] M. Afshari and T. J. Gandomani, ‘‘Enhancing software effort estimation
with ant colony optimization algorithm and fuzzy-neural networks,’’ in
Proc. 3rd Int. Conf. Distrib. Comput. High Perform. Comput. (DCHPC),
May 2024, pp. 1–6.

[36] A. J. Albrecht and J. E. Gaffney, ‘‘Software function, source lines of code,
and development effort prediction: A software science validation,’’ IEEE
Trans. Softw. Eng., vol. SE-9, no. 6, pp. 639–648, Nov. 1983.

[37] M. Pareek, ‘‘Software effort estimation using deep learning: A gentle
review,’’ in Proc. Int. Conf. Sustain. Innov. Solutions Current Challenges
Eng. Technol. Singapore: Springer, 2023, pp. 351–364.

[38] Y. Li, Z. Ren, Z. Wang, L. Yang, L. Dong, C. Zhong, and H. Zhang, ‘‘Fine-
SE: Integrating semantic features and expert features for software effort
estimation,’’ in Proc. IEEE/ACM 46th Int. Conf. Softw. Eng., Feb. 2024,
pp. 1–12.

[39] M. Chen, A. Radford, R. Child, J. Wu, H. Jun, D. Luan, and I. Sutskever,
‘‘Generative pretraining from pixels,’’ in Proc. Int. Conf. Mach. Learn.,
2020, pp. 1691–1703.

[40] B. B. Sigweni, ‘‘An investigation of feature weighting algorithms and
validation techniques using blind analysis for analogy-based estimation,’’
Doctoral dissertation, Dept. Comput. Sci., Brunel Univ. London, U.K.,
2016.

152136 VOLUME 12, 2024

http://dx.doi.org/10.1016/j.infsof.2011.09.002
http://dx.doi.org/10.7717/peerj-cs.800
http://dx.doi.org/10.1016/j.jss.2006.06.006

T. Javdani Gandomani et al.: Enhancing Software Effort Estimation in the Analogy-Based Approach

[41] S.-J. Huang and N.-H. Chiu, ‘‘Optimization of analogy weights by genetic
algorithm for software effort estimation,’’ Inf. Softw. Technol., vol. 48,
no. 11, pp. 1034–1045, Nov. 2006.

[42] Y. F. Li, M. Xie, and T. N. Goh, ‘‘A study of genetic algorithm for project
selection for analogy based software cost estimation,’’ in Proc. IEEE Int.
Conf. Ind. Eng. Eng. Manage., Dec. 2007, pp. 1256–1260.

[43] Y. F. Li, M. Xie, and T. N. Goh, ‘‘Optimization of feature weights and
number of neighbors for analogy based cost estimation in software project
management,’’ inProc. IEEE Int. Conf. Ind. Eng. Eng.Manage., Dec. 2008,
pp. 1542–1546.

[44] T. R. Benala and R. Mall, ‘‘DABE: Differential evolution in analogy-based
software development effort estimation,’’ Swarm Evol. Comput., vol. 38,
pp. 158–172, Feb. 2018, doi: 10.1016/j.swevo.2017.07.009.

[45] M. Azzeh, A. B. Nassif, S. Banitaan, and F. Almasalha, ‘‘Pareto
efficient multi-objective optimization for local tuning of analogy-based
estimation,’’ Neural Comput. Appl., vol. 27, no. 8, pp. 2241–2265,
Nov. 2016.

[46] D. Wu, J. Li, and C. Bao, ‘‘Case-based reasoning with optimized weight
derived by particle swarm optimization for software effort estimation,’’ Soft
Comput., vol. 22, no. 16, pp. 5299–5310, Aug. 2018.

[47] S. Ranichandra, ‘‘Optimizing non-orthogonal space distance using ACO in
software cost estimation,’’ Mukt. Shabd. J., vol. 9, no. 4, pp. 1592–1604,
2020.

[48] S. M. Satapathy and S. K. Rath, ‘‘Empirical assessment of machine
learning models for agile software development effort estimation using
story points,’’ Innov. Syst. Softw. Eng., vol. 13, nos. 2–3, pp. 191–200,
Sep. 2017.

[49] M. Jorgensen and M. Shepperd, ‘‘A systematic review of software
development cost estimation studies,’’ IEEE Trans. Softw. Eng., vol. 33,
no. 1, pp. 33–53, Jan. 2007.

[50] B. W. Boehm, Software Engineering Economics. Berlin, Germany:
Springer, 2002.

[51] J. Li, G. Ruhe, A. Al-Emran, and M. M. Richter, ‘‘A flexible method for
software effort estimation by analogy,’’ Empirical Softw. Eng., vol. 12,
no. 1, pp. 65–106, Jan. 2007.

[52] C. F. Kemerer, ‘‘An empirical validation of software cost estimation
models,’’ Commun. ACM, vol. 30, no. 5, pp. 416–429, May 1987.

[53] K. Maxwell, L. Van Wassenhove, and S. Dutta, ‘‘Performance evaluation
of general and company specific models in software development effort
estimation,’’ Manage. Sci., vol. 45, no. 6, pp. 787–803, Jun. 1999.

[54] V. Tawosi, R. Moussa, and F. Sarro, ‘‘Agile effort estimation: Have
we solved the problem yet? Insights from a replication study,’’ 2022,
arXiv:2201.05401.

[55] E. M. D. B. Fávero, D. Casanova, and A. R. Pimentel, ‘‘SE3M: A model
for software effort estimation using pre-trained embedding models,’’ Inf.
Softw. Technol., vol. 147, Jul. 2022, Art. no. 106886.

TAGHI JAVDANI GANDOMANI (Senior Mem-
ber, IEEE) received the joint bachelor’s and mas-
ter’s degrees in computer engineering (software)
from the Isfahan University of Technology and
Isfahan University in Isfahan, Iran, and the Ph.D.
degree from Universiti Putra Malaysia (UPM),
in 2014. Currently, he is an Associate Professor of
software engineering with Shahrekord University,
Shahrekord, Iran. In addition to his teaching
and research duties, he leads the Data Science

Research Group, Shahrekord University. His research interests include agile
software development, software process improvement, software project
management, software cost estimation, empirical software engineering, and
the application of artificial intelligence in software engineering.

MAEDEH DASHTI received the M.Sc. degree
in software engineering from Islamic Azad Uni-
versity, Isfahan Branch, Iran, in 2020. She is
currently a Research Assistant with the Data
Science Research Group, Shahrekord University,
Shahrekord, Iran. She has contributed to national
and international research projects, focusing on
AI fairness and the ethical implications of AI
systems. Her research interests include software
cost estimation, machine learning, AI ethics, and

empirical software engineering.

HAZURA ZULZALIL (Member, IEEE) received
the Ph.D. degree in software engineering from
University Putra Malaysia (UPM), Malaysia,
in 2011. She is an Associate Professor with the
Faculty of Computer Science and Information
Technology, UPM. Her research interests include
agile software development, software requirement
engineering, software measurement, and empirical
software engineering. She is a CommitteeMember
of Malaysian Standard for NSC 07/TC 11.

ABU BAKAR MD SULTAN received the B.Sc.
degree from the National University of Malaysia
(UKM), and the master’s and Ph.D. degrees
in software engineering from Universiti Putra
Malaysia (UPM). He is a Professor with the
Faculty of Computer Science and Information
Technology, UPM. He has published many jour-
nals in the field of software engineering. His
current research focuses on software security
and empirical software engineering. His research

projects are supported by a number of Malaysian government research
funding agencies.

VOLUME 12, 2024 152137

http://dx.doi.org/10.1016/j.swevo.2017.07.009

