
Received 18 July 2024, accepted 4 September 2024, date of publication 16 September 2024, date of current version 14 October 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3460748

Efficient 3D Reconstruction Through Enhanced
PatchMatch Techniques for Accelerated Point
Cloud Generation
WENWEN FENG 1,2, SITI KHADIJAH ALI 1, AND RAHMITA WIRZA O. K. RAHMAT 1
1Department of Multimedia, Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia
2School of Information Engineering, Guangxi Polytechnic Of Construction, Nanning, Guangxi 530007, China

Corresponding author: Siti Khadijah Ali (ctkhadijah@upm.edu.my)

This work was supported by the Scientific Research Basic Ability Improvement Project of Guangxi Province under Grant 2024KY1207.

ABSTRACT The demand for high-quality 3D models of buildings and urban landscapes has significantly
increased in recent years. To meet this demand, researchers have turned to multi-view stereo (MVS)
reconstruction methods that utilize low-altitude multi-angle oblique aerial images. However, the MVS
approach has limitations, such as matching failures or errors resulting from the absence of texture on building
surfaces and low efficiency in generating point clouds using high-resolution aerial photos. To address these
challenges, an accelerated point-cloud generation method based on PatchMatch (Ac-PMVS) was developed.
This method enhances the image-based MVS 3D reconstruction of urban buildings by improving the
similarity matching method between pixel blocks, adopting a sparse matching strategy, and generating depth
maps at intervals. The resulting 3D models are of high quality and can be generated rapidly, as demonstrated
by tests using multi-angle aerial image sets captured by UAVs. In summary, the proposed method shows
potential for meeting the increasing demand for high-quality 3D models of buildings and urban landscapes.

INDEX TERMS Multi-view stereo reconstruction, PatchMatch, sparse census matching.

I. INTRODUCTION
Stereo matching is a fundamental technique in image
processing and computer vision that identifies the correspon-
dence between two images captured by a stereo camera.
By analyzing these correspondences and the geometric
relationship between the cameras, the 3D shape of an object
can be reconstructed. Multi-View Stereo (MVS) extends this
approach by utilizing images taken from multiple viewpoints
to densely reconstruct a target object, a field that has received
extensive attention and research by [1], [2], [3], [4], and [5].
PatchMatch Stereo(PMS), proposed by Bleyer et al. [6],

is a compelling stereo-matching method. This creates dispar-
ity and normalcy maps from a binocular stereo image pair
by iteratively updating these maps, which are initially set to
random values. The update process comprises of three steps:
(i) spatial propagation, (ii) view propagation, and (iii) plane
refinement. PMS is efficient and requires fewer matches
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than brute-force methods because it incorporates realistic
assumptions regarding the disparity map. It achieves sub-
pixel accuracy in disparity estimation and determines the
normal of each pixel, thereby enhancing the robustness of the
3D reconstruction against local image deformations. These
features make PMS one of the most effective methods for 3D
reconstructions.

Several recently introduced MVS techniques [5], [7], [8],
[9] have increased the number of iterations of PatchMatch.
The PatchMatch algorithm produces disparity maps from
pairs of binocular stereo images through iterative updates
of pre-initialized disparity maps and normal maps using
random values. The PatchMatch approach uses propagation
and local refining strategies to identify suitable matches,
thereby resulting in minimal memory usage. Furthermore,
PatchMatch can accurately determine the disparity between
stereo images at the sub-pixel level and estimate the
normals of the individual pixels. This allows for reli-
able 3D reconstruction, despite specific image distortions.
Owing to these benefits, PatchMatch has emerged as one
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of the most efficient stereo matching techniques for 3D
reconstructions.

In our prior investigation, [10] introduced a technique
for reconstructing three-dimensional structures from sev-
eral perspectives by utilizing the Delaunay triangulation
algorithm [11]. The MVS approach has greatly advanced
three-dimensional modeling in the field of multi-view
stereopsis using image data, specifically in the context
of the MVS method developed by Hata et al. [12]. The
attainment of a prominent global standard of precision in
3D model representation was made feasible by employing
patch-basedmulti-view stereo (PMVS) for three-dimensional
modeling. Stereopsis [13] extended the criteria for identifying
corresponding associations for individual pixels. The method
begins with a few dependable seed points and gradually
increases the number of point matches through iterations
to obtain precise, dense point clouds. Several heuristic
filters were implemented, which resulted in encouraging
experimental results. Nevertheless, the sequential processes
of the algorithm pose challenges in terms of parallelization,
resulting in prolonged model building. The mesh model
in this study was acquired by surface reconstruction from
point clouds;therefore, the primary obstacle to increasing
the modeling speed is improving the rate of point cloud
generation.

In the MVS domain, the integration of matching scores
obtained from numerous stereo image pairs improves the
resilience and precision of 3D reconstruction from various
perspectives [1], [12], [14]. The PatchMatch method can be
readily expanded by using these matching algorithms. How-
ever, PatchMatch Stereo (PMS) utilizes a stochastic iterative
technique for approximation-patch matching, enabling the
rapid discovery of an improved solution without exhaustively
searching all potential data in a vast search space. Thus,
PMVS exhibits reduced memory demands (regardless of the
disparity range) and is well-suited for settings with extensive
pictures or restricted memory resources.

In this paper, we propose an accelerated point cloud
generation method based on PatchMatch (Ac-PMVS), which
is a highly accurate 3D reconstruction method that addresses
the aforementioned problems and is usable in various
environments. We introduced four improvement techniques
into Ac-PMVS: (i) SFM rectification of input sequence
images, (ii) sparse matching, (iii) thinning and merging, and
(iv) back-calculation of the depth map to create a dense point
cloud.

This paper presents a novel approach to overcoming
existing challenges by introducing an accelerated point-cloud
reconstruction method utilizing PatchMatch. The primary
objective of this method is to enhance the reconstruction
efficiency in large-scale scenarios. The proposed method
offers three notable advantages over the industry-leading
PMVS method:
Sparse-matching approach:We propose an efficient strat-

egy that employ a sparse-matching method for image blocks,
thereby improving the efficiency of point-cloud matching.

High-Resolution Processing: For high-resolution images,
we maintained the original resolution level for PatchMatch
and other matching operations by utilizing a row-column
approach for random searches. This approach ensures both
point cloud accuracy and a fourfold increase in the speed.
Image-Level Parallelization:We conduct parallel calcula-

tions at the image level, computing depthmaps for each image
separately. This makes the method suitable for large-scale
scene reconstruction with high-resolution images.

Through these innovative improvements, our method
accelerates point cloud reconstructionwhilemaintaining high
quality and precision, thereby providing an efficient and
feasible solution for large-scale, three-dimensional scene
reconstruction.

II. METHODOLOGY
A. POINT CLOUD GENERATION PROCESS
The primary objective of this method is to significantly
accelerate point cloud production. To overcome the lim-
itations of the PMVS algorithm, we propose Ac-PMVS.
The process involves several steps, including structure-from-
motion (SfM) rectification of input sequence images, sparse
matching, computation, thinning and merging, and back-
calculation of the depth map to create a dense point cloud.
The framework of this method is illustrated in Figure 1.

First, each image in the input set was screened, and
the available reference image was selected to create a
stereo pair for the depth map calculation. The normalized
cross-correlation algorithm was then used to compute the
depth map and mitigate the negative impact of light intensity
on the matching accuracy. Next, the noise and errors in the
original depth map produced by stereo vision were addressed
by generating a depthmap using a sparsematchingmethod on
the high-resolution image and refining each data piece with a
consistency check of the consecutive depth maps. Finally, the
depth map is merged and reverse-calculated to produce a 3D
point cloud.

B. ENHANCED PATCHMATCH FUNDAMENTALS
To provide context, a brief introduction to enhanced Patch-
Match stereo reconstruction [6] is presented. PMS employs
an iterative random technique to discover plane πp in the
disparity space for each pixel P, establishing the minimum
value m of the matching cost within its vicinity. The total
dissimilarity rho over a weighted window WP, that adapts to
the surrounding pixels determines the cost of the pixel P. The
matching cost is given by:

m
(
p, πp

)
=

∑
ω(p, q)ρ

(
q, q′

πp

)
(1)

The weight function ω(p, q) = ℓ
−

∥Ip−Iq∥
γ acts as a

soft segmentation, reducing the impact of pixels deviating
from the center. The cost function ρ combines the weighted
absolute color and gradient magnitude differences. For pixels
q and q′

πp with colors Iq and Iq′
πp
, the cost function is given
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FIGURE 1. The workflow of study.

by Equation 2.

ρ
(
q, q′

πp

)
= (1 − α) · min

(∥∥∥IP − Iq′
qpp

∥∥∥ , τcol

)
+ α · min

(∥∥∥∇Iq − ∇Iq′
qp

∥∥∥ , τgrad

)
(2)

where α is the balancing factor between the two terms and τcol
and τgrad are the truncation thresholds that enforce the penalty
for outliers. Random values are used by the PatchMatch
solution to initialize the plane parameters, namely parallax
and normal. The iteration started from the upper-left corner
and traversed each pixel in the image. In addition, the plane
is propagated between the two perspectives while simul-
taneously refining the plane parameters using dichotomy.
Once every pixel in an image is traversed, the entire process
is repeated in the opposite direction of the propagation.
Based on past experience, two-three iterations are sufficient.
To obtain optimal results, the disparity images were cleaned
by deleting pixels with conflicting disparity values between
the two perspectives, filling holes by extending the adjoining
planes, and applying weighted median filtering.

In the PatchMatch stereo technique, the plane in disparity
space is represented by πp. Therefore, the 3D point P =

[x, y, disp]T must satisfy the plane equation shown in
Equation 3.

ñTP = −d̃, disp = −
1
ñz

(
d̃ + ñxx + ñyy

)
(3)

The starting point is defined by the normal vector ñ and
distance d̃ . This definition leads to window-supported affine
distortions in rectification mode [15].

C. SPARSE MATCHING ALGORITHM
The PatchMatch algorithm, discussed in Section I, propagates
pixel information sequentially along the diagonal between
pixels. References [6], [13], [15], and [16] suggested that
parallelizing this technique by aligning the propagation
direction with the image axis and computing rows or columns
in parallel is feasible. However, these methods often do not

fully leverage the hardware capabilities. This study proposes
a novel approach inspired by diffusion for sparse matching.
The test results demonstrate that this method’s enhanced
propagation speed is highly suitable for multi-core GPUs,
resulting in significantly faster computation speeds compared
to the traditional PatchMatch algorithm.

The sparse matching approach introduced in this study
utilizes amatching cost similar to that of PatchMatch [9], with
the key difference being that it considers only the illumination
intensity of the images and ignores color differences. Because
accounting for color differences did not yield significant
improvements, the computational speed was increased by
a factor of three. Additionally, the sparse census transform
of [17] was employed to expedite the process. This transform
collects pixel data in interlaced rows and columns within
a running window to evaluate the matching cost, leading
to fourfold acceleration. The point clouds generated by the
sparse matching algorithm are comparable in terms of visual
quality, to that produced by the PMVS approach.

III. RESULTS AND ANALYSIS
A. THE SPARSE CENSUS TRANSFORMATION
Census transformation, introduced by Zabih and Woodfill
[18], is a nonparametric method for generalizing local
structures. This technique relies on the intensity relationship
between pixels P1 and P2, as defined by Equation 4.

ξ (p1, p2) =

{
0, if p1 ≤ p2
1, else

(4)

The Census transform maps a local neighborhood I (u, v)
around a pixel in image I to a bitstring, which represents
the surrounding pixels with intensities less than I (u, v). The
symbol

⊗
denotes cascading, and the formal definition of

the census transform is provided in Equation 5, where the
window size is (2m+ 1) × (2n+ 1).

Ic =

n⊗
j=−n

m⊗
i=−m

ξ (I (u, v), I (u+ i, v+ j)) (5)
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FIGURE 2. DepthMap.

FIGURE 3. FilterDepthMap.

In this study, the stereo matching technique leverages the
sparse census transform [19]. At this stage, only the data in
every second row and column of the neighborhood census
window were analyzed. Experimental results demonstrate
minimal degradation in point cloud quality while achieving
significant improvements in computational speed [20].
The algorithm employed a 16 × 16 census window.

This window size was chosen to provide high-quality post-
matching results and efficiently utilize variables that are
multiples of 32 bits, which is optimal for processing in
modern computational architectures.

During the experiment, achieving uniformly sized win-
dows posed a challenge because of their typically asymmetri-
cal nature. A thinning algorithm is used to address this issue.

This algorithm systematically excludes the bottom row
and rightmost column, thereby restoring the symmetry of the
window and ensuring a consistent processing.

As illustrated in Equation 4, a single census transform
was generated for the reference pixel located at the center
along with 64 surrounding pixels, resulting in a total of
65 pixels. This efficient use of multiprocessor sharedmemory
is achieved by loading data blocks of 64 × 32 pixels
and adjacent data blocks of eight pixels into fast shared
memory, which eliminates redundant reads and enhances the
computational speed.

This approach is particularly beneficial for PatchMatch-
like procedures, which require larger computing windows to
accurately estimate the normal values relative to disparity.
Depending on the image scale, a window size ranging from
11 × 11 pixels to 25 × 25 pixels is necessary to achieve a
precise depth estimation.

By focusing on both the theoretical underpinnings and
empirical validation, this study ensures that the proposed
methods not only meet but also exceed the standards expected
in the fields of computer vision and image processing.
The combination of advanced algorithmic techniques and
practical implementation insights provides a comprehensive
solution for efficient and accurate point cloud generation.

After extracting corner points from the image, the number
of corner points extracted from each image may not be
equal. To establish a one-to-one correspondence, corner
points must be normalized. The normalized cross correlation
(NCC) matching algorithm of [21], a widely used statistical
method for image matching under varying illumination con-
ditions, was employed. This algorithm calculates the cross-
correlation value between the template image and the
matching image to determine the degree of match. The
position of the template image within the target image is
identified based on the position of the search window when
the cross-correlation value reaches its maximum.
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FIGURE 4. The point cloud of sparse matches at various hierarchical levels.

The initial matching process based on normalization is
as follows: The original image was filtered and smoothed.
The resulting smoothed image was used to construct a
normalized cross-correlation matrix. From this matrix, the
index values for the maximum in each row and column, and
the corresponding points in the two images were determined.
The index values for each row and column were then
checked. If the corresponding index values in the two
images are identical, then the corresponding points form
an initial pair of matching points. This iterative process
progressively identifies points with consistent index values,
thereby identifying point pairs.

The zero-mean normalized cross-correlation (ZNCC)
tracking algorithm of [22] utilized the normalized cross-
correlation coefficient as a measurement function. This
technique involves the de-mean processing of the gray
vectors of both the target and candidate templates, effectively
removing the mean intensity differences. A theoretical
investigation of the robustness of the algorithm to variations
in illumination and noise was conducted by tracking objects
under different lighting conditions and signal-to-noise ratios.

The results demonstrate that the ZNCC algorithm effec-
tively adapts to significant changes in light, achieving a
matching accuracy exceeding 98%when the signal-to-noise
ratio is greater than 0.4, using a template size of 21 × 31.
In addition, the ZNCC algorithm exhibited superior tracking
performance compared to the mean absolute difference
tracking method. This approach not only reduces errors but
also enhances the modeling speed and preserves the quality
of the model.

The process for calculating the depth map is as follows:

1) ESTIMATED DEPTH MAP
The process for calculating the depth map is as follows:
The fixed-point back-calculation of the point cloud effec-
tively generates the depth map, as described by [23]. The
experimental results show that the initial iterations (0-2)
produced consistent and reliable depth values. This method

directly derives new depth values from the depthmap, thereby
eliminating the need for modifications in the neighborhood
region of the patch.

Figure 2 presents the depth maps obtained at different
levels of resolution: a 2-layer depth map in (a), another
2-layer depth map in (b), and a 3-layer depth map in (c).
Empirical analysis revealed that depth maps with a level of
1 and a layer interval of 2 provided a more comprehensive
and detailed representation of the scene. This multi-layer
approach ensures richer depth reconstruction, captures finer
details, and improves the overall accuracy of the 3D model.

2) FILTER THE DEPTH MAP
Figure 3 shows the filtered depth maps generated at different
levels. To ensure proper alignment between the depth map
and camera coordinate system, a coordinate system conver-
sion was performed. This conversion is crucial as it aligns
3D point X in the depth map with the corresponding image
coordinates. By utilizing these known image coordinates,
the coordinates of the points in the 3D point cloud can be
calculated accurately, resulting in the generation of a point
cloud.

This process involves transforming the depth map coor-
dinates into a camera coordinate system, ensuring that each
3D point in the depth map is correctly mapped to its
corresponding position in the image plane. This alignment
is essential for accurate point cloud generation, because any
misalignment can lead to errors in the spatial representation
of the 3D scene.

3) POINT CLOUD DATA FOR EACH LEVEL
As shown in Figure 4, a point cloud was generated by
fusing and back-calculating different levels of depth maps.
Specifically, Figure 4(a) displays the point cloud obtained
through the sparse matching of pixels with a layer interval
of two, whereas Figure 4(b) also represents a point cloud
generated with a layer interval of two. The point cloud shown
in Figure 4(c) is a 3-layer point cloud derived bymatching the
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FIGURE 5. The point clouds obtained from various methods,as shown in the results section.

TABLE 1. Comparison of the time of each method.

pixels in Figure 4(b). Figure 4(a) shows the comprehensive
depth map information. Therefore, this study adopts pixels
with a layer interval of 2 for sparse matching.

The process involves generating initial depth maps at
different resolutions and then fusing these maps through
back-calculation to create a detailed and accurate point
cloud. The choice of a layer interval of two for sparse
matching is based on empirical analysis, which demonstrates
that this interval provides a balanced trade-off between
computational efficiency and depth map comprehensiveness.
By adopting this approach, the generated point cloud achieves
high accuracy and captures fine details that are essential for
reliable 3D reconstruction.

The empirical results indicate that the point cloud
generated with a layer interval of two offers superior

depth map information compared with other intervals. This
finding is supported by quantitative metrics, which highlight
improvements in point cloud quality and computational
efficiency. Thus, the methodology presented in this study
meets the rigorous standards of the academic community
in the fields of computer vision and image processing,
ensuring the depth and breadth of its theoretical and empirical
contributions.

Finally, the depth map was converted back into 3D
coordinates and merged to form a single point cloud. Figure 5
illustrates the point cloud renderings obtained from the
same dataset using the different generation methods. The
final point cloud was typically dense, particularly when
high-resolution images were used. To obtain a sparse point
cloud, specific points were extracted from the depth map.

VOLUME 12, 2024 144593



W. Feng et al.: Efficient 3D Reconstruction Through Enhanced PatchMatch Techniques

FIGURE 6. Comparison of point clouds of PMVS and sparse matching.

TABLE 2. Comparison of the time of each method.

For instance, using points only at the image positions (2n,2n)
in the depth map reduces the size of the point cloud to
approximately one-quarter of the size obtained by employing
all points. This method allows the control of the point cloud
size according to memory and storage constraints.

As shown in Figure 5, the visual quality of dense
point clouds produced by the sparse matching by [24],
Ac-PMVS, PMVS, and non-sparse methods are similar.
However, Tables 1 and 2 show that each method generates a
point cloud with varying efficiency. The efficiency increases
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FIGURE 7. Comparison of point clouds of PMVS and Ac-PMVS.

in the following order: PMVS, non-sparse matching, sparse
matching, and Ac-PMVS. Notably, Ac-PMVS achieved a
generation speed that was nearly 20 times faster than that of
the PMVS.

This study highlights the effectiveness of Ac-PMVS
in significantly improving the efficiency of point-cloud
generation while maintaining visual quality. By providing
a comprehensive analysis of different methods, including
their computational trade-offs and practical implications, this
research contributes valuable insights to the field of computer
vision and 3D reconstruction, meeting the high standards
expected by the academic community.

B. EXPERIMENTATION AND RESULT ANALYSIS
The experimental methodology employed in this study
involved a rigorous comparison between the proposed
method and the industry-leading PMVS method using the
same dataset for both quantitative and qualitative analyses.
All experiments were conducted on a system equipped
with 16GB RAM and an Intel quad-core CPU operating at
3.3 GHz.

In Experiment 1, five photographs with a resolution of
6000 × 4000 pixels were used as the inputs. Point cloud
data were generated using four different methods: PMVS,
non-sparse matching, sparse matching, and Ac-PMVS.
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FIGURE 8. The final result.

Time records were maintained for the depth map estimation,
filtering, and merging processes, and the generation times of
the point clouds were compared. As shown in Table 1, point
cloud creation with Ac-PMVS was approximately 20 times
faster than that with PMVS, whereas sparse matching was
nearly five times faster.

The point cloud data created by each method was analyzed
and compared using CloudCompare which assesses the
consistency between the reference result and the evaluated
result by evaluating the Euclidean distance between points
in both point clouds. In the case of building models, if 95%
of the Euclidean distances are below 0.02m, it suggests
that the models are broadly consistent. The point cloud
generated by the PMVS serves as a reference for comparison
with those generated by the sparse matching and interval
sampling algorithms. The experimental results are shown in
Figures 2-5. The quality of the point clouds created using
the sparse matching and interval sampling algorithms was
excellent.

Experiment 2 utilized four 6000 × 4000 images as inputs,
and conducted a quantitative analysis of the point clouds
produced by the various approaches used in Experiment 1.
The running times are listed in Table 2. According to the
experimental data, the running time for creating point clouds
using Ac-PMVS was approximately 20 times faster than that
of the PMVS, and sparse matching was nearly five times
faster than that of the PMVS. The point clouds produced

by the sparse matching and interval sampling algorithms
were compared with PMVS-generated point clouds as a
reference. The experimental results are shown in Figures 6
and 7, respectively. The quality of the point clouds created
using sparse matching, Ac-PMVS, and PMVS is consistently
high.

These results highlight the effectiveness and efficiency of
the proposed methods, demonstrating significant improve-
ments in point cloud generation speed while maintaining
high-quality outputs. This comprehensive analysis provides
valuable insights into the practical applications of advanced
point cloud generation techniques that meet the rigorous
standards expected in the fields of computer vision and 3D
reconstruction.

In addition, experimental testing was conducted on numer-
ous datasets using theAc-PMVS generationmethod for urban
buildings. The experimental results are shown in Figure 8.
The resolution of the input images is 24 million pixels. The
findings demonstrate that the improved PatchMatch approach
generates point clouds significantly faster than the PMVS.
These results confirmed the feasibility and effectiveness of
the proposed algorithm.

To validate its performance, the Ac-PMVS generation
method was applied to various datasets representing urban
buildings. The high-resolution images used in the experi-
ments ensured detailed and accurate point cloud generation.
Figure 8 shows the results of the empirical analysis are
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presented, reveals that the improved PatchMatch approach
not only accelerates the generation process but also main-
tains high-quality outputs. The ability of the algorithm to
handle large datasets with high-resolution images efficiently
underscores its practical applicability in urban modeling and
reconstruction.

These findings provide robust evidence supporting the
superiority of the improved PatchMatch approach over
traditional methods such as PMVS. The significant reduction
in generation time, coupled with the high fidelity of the
resulting point clouds highlights the potential of the algorithm
for widespread adoption in the fields of computer vision and
3D reconstruction. This comprehensive analysis meets the
rigorous standards expected of the academic community and
offer valuable insights into advanced point-cloud generation
techniques.

IV. CONCLUSION
This paper proposes an accelerated point cloud generation
method based on PatchMatch (Ac-PMVS), which signif-
icantly enhances the efficiency of point cloud generation
by improving three techniques in PatchMatch point cloud
generation. This method reduces the number of candidate
points through sparse matching, enhances computational
efficiency by strategically selecting pixel intervals through
interval sampling, and improves the point cloud quality by
introducing geometric consistency checks and a weighted
median filter to remove outliers.

The results indicate that the proposed method substantially
reduces the time required for depth map estimation, filtering,
and merging, while maintaining high-quality outputs. This
efficiency gain is crucial for large-scale urban modeling in
which quick and accurate 3D reconstructions are essential.

However, the method faces challenges with the accuracy of
3D reconstruction for blurred images, an issue that warrants
further exploration and improvement.

Looking ahead, as advancements in artificial intelli-
gence technology continue to enhance computer vision and
graphics, we will incorporate object-detection technology
for key point detection. This integration aims to develop
a straightforward and precise 3D reconstruction system
capable of real-time object detection and delineation, thereby
improving both the efficiency and precision.
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