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Abstract: In large indoor environments, accurate positioning and tracking of people and autonomous
equipment have become essential requirements. The application of increasingly automated moving
transportation units in large indoor spaces demands a precise knowledge of their positions, for both
efficiency and safety reasons. Moreover, satellite-based Global Positioning System (GPS) signals
are likely to be unusable in deep indoor spaces, and technologies like WiFi and Bluetooth are
susceptible to signal noise and fading effects. For these reasons, a hybrid approach that employs
at least two different signal typologies proved to be more effective, resilient, robust, and accurate
in determining localization in indoor environments. This paper proposes an improved hybrid
technique that implements fingerprinting-based indoor positioning using Received Signal Strength
(RSS) information from available Wireless Local Area Network (WLAN) access points and Wireless
Sensor Network (WSN) technology. Six signals were recorded on a regular grid of anchor points
covering the research surface. For optimization purposes, appropriate raw signal weighing was
applied in accordance with previous research on the same data. The novel approach in this work
consisted of performing a virtual tessellation of the considered indoor surface with a regular set
of tiles encompassing the whole area. The optimization process was focused on varying the size
of the tiles as well as their relative position concerning the signal acquisition grid, with the goal of
minimizing the average distance error based on tile identification accuracy. The optimization process
was conducted using a standard Quantum Particle Swarm Optimization (QPSO), while the position
error estimate for each tile configuration was performed using a 3-layer Multilayer Perceptron (MLP)
neural network. These experimental results showed a 16% reduction in the positioning error when a
suitable tile configuration was calculated in the optimization process. Our final achieved value of
0.611 m of location incertitude shows a sensible improvement compared to our previous results.

Keywords: quantum particle swarm optimization; indoor localization; fingerprinting; WiFi; wireless
sensor network; multilayer perceptron; surface tessellation

1. Introduction

In recent years, the fast development of wireless technologies and their ubiquitous
applications [1–3] have drawn a lot of attention for both outdoor and indoor localization
tracking implementations [4–8]. As far as outdoor applications are concerned, the most
known and popular technology is the satellite-based Global Position System (GPS), which
offers uncountable services in the domains of tourism, navigation, military, etc. [9]. How-
ever, because of the satellite origin of the GPS signals, this technology loses performance
in urban canyons, near tall walls, and in bad weather due to the weakness of the received
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signals, becoming completely useless in many indoor and underground environments. Con-
sequently, GPS becomes an unreliable and ineffective method in scenarios where precise
indoor localization is required [10].

In order to overcome these limitations, wireless technologies are being widely im-
plemented for indoor positioning purposes. These techniques include Radio Frequency
Identification (RFID) [11,12], and Wireless Local Area Networks (WLANs) [13–15], Blue-
tooth [16], Wireless Sensor Networks (WSNs), among others [17–19]. Other methods,
based on the angle-of-arrival and the time-of-arrival, depend on measurements that require
additional hardware and are therefore less common [20,21].

Thanks to the diffusion of smartphones and the availability of free WiFi in most
indoor public spaces, the implementation of many of these communication technologies
can be easily and inexpensively undertaken. As a consequence, location-based services are
rapidly expanding with several benefits, mainly driven by the common availability of the
appropriate hardware, both in terms of signal generation and reception.

The most common approach to infer the position of a receiver in a place where many
wireless signals are available is based on the Received Signal Strength (RSS), which can
be measured without the need to decode any communication feature. Localization is
consequently determined by the pattern matching of the intensity of multiple WLAN
sources [22]. Nevertheless, even the hybrid technology of a WiFi and WLAN combined
approach for indoor positioning algorithms can lead to unavoidable incertitude, mainly
driven by signal instability and fading, reflection on structures, the presence of people, and
possibly autonomous trolleys [23,24]. In this work, the localization approach was based
on the fingerprinting matching process from both WLAN and WSN signals as the basic
scheme of positioning determination. The two technologies complemented each other in
terms of spatial behavior, as WiFi signals penetrate walls, while WLAN presents a shorter
range with a stronger gradient [25].

While a pattern-matching approach is classified as a deterministic algorithm [26], the
spatial distributions of the signal intensities are strongly non-linear in the whole research
space and thus require the implementation of methods such as neural networks and
heuristic optimization techniques. Consequently, an Artificial Neural Network (ANN)
approach guarantees robustness against noise and interference, which are among the major
factors affecting the accuracy of indoor positioning systems.

In this work, we extended the concept of surface tessellation, in which we subdivided
the research area into identical, discrete rectangular tiles. This approach was based on
the idea that most of the time, a coarse location precision was sufficient to infer the actual
position of a receiver and its carrier. In our previous work on research area tessellation [27],
square tiles of 1 m side were considered as proof of concept. The published results, together
with the improvements obtained by signal weighing and an appropriate ANN architecture,
encouraged us to further investigate the tessellation technique for indoor positioning.

The core contributions of this paper are listed as follows:

1. To extend previously published results on the same dataset by joining our signal
optimization results and the concept of tessellation of the search space.

2. To develop an optimization algorithm by investigating a suitable tessellation of the re-
search space to reduce the overall error in the Multilayer Perceptron positioning algorithm.

3. To introduce a heuristic approach for the determination of regular space meshes in general
positioning algorithms. With this fact in mind, a Quantum Particle Swarm Optimization
(QPSO) algorithm was integrated into the positioning neural network application.

The remaining sections of the paper are organized as: Section 2 gives a brief description
of the related work, including our previous analysis of the studied dataset. Section 3
presents in more detail the approach and techniques we used in this research. Here,
particular attention is given to the QPSO process and to the improvement of the MLP
application in space tessellation, which was used in our previously published works.
The following part of this paper presents the results of this study, with references to the
optimization of the MLP and the performance of our proposed QPSO algorithm. The
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achievements of our optimization process are presented and compared with results both
from the literature and from the authors’ previous research. Finally, the conclusions of this
work are briefly discussed, and projects and ideas for future research are introduced.

2. Related Work

WiFi technology has been extensively researched for both communication and indoor
positioning systems. However, relying solely on WiFi can result in poor performance due
to signal fading and distortions caused by infrastructure and human presence. To address
these issues, additional readily available sources of wireless signals, such as magnetic fields,
inertial measurement units, and wireless sensor networks (WSN), have been incorporated.

Chen et al. [28] integrated multiple sensors, including an Inertial Measurement Unit
(IMU), a magnetometer, and a WLAN RSSI (RSS Indicator). They proposed a Euclidean
matching algorithm to estimate the location based on the WiFi signal. The Robust Extended
Kalman Filter algorithm was used to estimate the location based on the IMU sensor. Ad-
ditionally, an enhanced dynamic time-warping algorithm is used to match the magnetic
fingerprint location based on magnetometer measurement. Although multiple sensor
systems improved the accuracy of the positioning system, the computation required user
mobile processing power to obtain the location information, which might be unfeasible for
real-time applications.

Luo et al. [29] proposed a joint WSN–WiFi approach for improving indoor positioning
estimation. The work considered the communication between sensor nodes as well as
between the sensor nodes and the receiver to help with user positioning. The detection
algorithm considered a grid-based search, with the computation cost increasing as the
search location was expanded due to the increment in the number of grids to be considered.
Khan et al. [27] also proposed a WSN–WiFi technique based on a grid search that considered
the floor tile spacing. This technique estimates the location of the user to be within the
respective boundaries of the specific tile’s location based on an appropriately trained
neural network.

Guo et al. [30] included WiFi and cellular telephony network RSS signals in a hybrid
approach for an indoor positioning algorithm. The fingerprinting database was analyzed
by Principal Component Analysis (PCA) with interpolations of the raw data. Subsequently,
data were processed by an ANN separately as cellular signals were first used to provide
coarse training, which was then improved using the WiFi data. This hybrid approach
improved the positioning precision; however, the process was very demanding in terms of
computing time and unsuitable for real-time applications.

The synergy between multiple smartphone sensors was investigated by Gang and
Pyun [31], who joined the signals of Bluetooth, magnetic field sensors, IMU, and a camera
together. Their accomplishments demonstrated the effectiveness of a hybrid approach,
in which combined heterogeneous sources of signals provided better indoor positioning
results. However, their method required a permanent connection to a central server, and
they chose not to use WiFi signals, which were deemed to be variable and unreliable in RSS
fingerprinting algorithms.

This work implements a consolidated hybrid approach as a positioning system by
means of combined RSS signals from WiFi and WSNs in order to improve localization
accuracy in indoor spaces. The utilization of WiFi–WSN signals does not require any
additional computation in end-user devices and can be used for real-time applications.
In this work, we apply the results of our previous research on relative signal weighing
and MLP architecture optimization, which led to an overall significant reduction of the
positioning error on the same dataset [32]. We also utilize a similar algorithm based on
standard QPSO, which we integrate with the MLP neural network in order to improve the
accuracy of the localization system. The detailed method, which aims to find values of
appropriate tile sizes and tessellation corners, is introduced in the next section.
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3. Research Methodology

Due to their widespread deployment and access point availability, WLAN and WSN-
based technologies are gaining interest in the domain of indoor localization and positioning
services. RSS data from WLAN and WSN sources are becoming increasingly important
for refining and improving the accuracy in indoor environments [13,17], particularly when
GPS signals become unreliable or undetectable. In this work, our goal consists of the
implementation of a refinement of previous research, again by using a hybrid indoor
positioning system in which both signals from available WLAN access points and WSN-
based technologies are considered.

In particular, the possibility of further refinement and optimization is based on
two previous distinct works, in which we separately considered the possibility of weighting
the WLAN and WSN source signals and the tessellation of the research space into a regular
grid of square tiles. A preliminary inspection of the collected data confirmed the lack
of linearity of signal intensities with respect to the relative positions inside the research
area. This aspect reinforced the need to process the data by means of a machine learning
approach, in which we included the approach of weighting the available signals from both
WLAN and WSN with the aim of improving indoor positioning accuracy.

The concept of tessellation of the research space is based on the fact that, for many
applications, the precise localization of a signal receiver and its end-user is not required.
Furthermore, any positioning algorithm presented and discussed in the literature carries
an incertitude of the order of magnitude of 1 m. As a result, for most indoor positioning
applications, finite-sized tiling would not become a limiting factor in precision for localiza-
tion purposes, especially in large indoor environments. For this reason, this work focuses
on the optimization of a regular tessellation of the research space, seeking optimal sizes of
rectangular adjacent tiles and the collocation of the corner of the resulting grid.

3.1. Signal Acquisition

In order to address the subject of an accurate indoor positioning system, raw data
collection, and preprocessing are significant steps for location fingerprinting. This study
investigates a collection of data that were measured as RSSI values based on an IEEE
802.11b/g wireless card. RSSI data were acquired at the main basement level of the Faculty
of Engineering and Built Environment at the Universiti Kebangsaan Malaysia (UKM) [33].
In January 2014, data were collected on a single day without interruption. While the
research area was regular in shape and did not present any obstacles, the boundaries were
quite heterogeneous, with research laboratories, furnished offices, lecture halls, structural
pillars, and people occasionally crossing the place. The research area and the schedule of
the data acquisition were purposely chosen in order to reproduce the normal conditions
of a typical working day. This way, disturbances in the signals were taken into account as
they were received and measured.

Figure 1 shows a sketch of the research area and its irregular boundaries. A regular
grid including 96 anchor points encompasses the unobstructed part, in which WLAN
and WSN signals were recorded regardless of people and materials transiting through
the experimental area. For experimental RSS data collection, we selected a regular grid of
96 anchor points for the creation of the fingerprinting database, in an array of 6 × 16 points,
as a consequence of the chosen horizontal and vertical separation between anchor points,
respectively, 1 m and 1.5 m in the directions parallel to the main walls. The height of each
anchor point was strictly kept at the value of 1 m in order to avoid variations in the locally
measured signal intensities and to remove the height as a possible sensitive variable [34].

A Lenovo G580 laptop with a core i5 processor and Windows 7 operating system was
used as a measurement setup. For the collection of RSS data samples, an Atheros AR9285
onboard wireless adaptor based on 802.11n was added. An “inSSIDer” open WiFi Scanner
software (version 4.2) was used, to which some adaptations were executed in order to
create the log files of the measured RSS signals with respect to the visible MAC address
and the time stamp.
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The signal intensities in dB from three available WiFi and four installed WSN signal
sources were recorded simultaneously 300 times for one minute, i.e., every 0.2 s, in each of
the 96 anchor points. Only three signals from the WSN were considered for the database, as
one of the access points was faulty and provided random, unreliable values. The average
of each set of 300 values was used to build the signal intensity database. The stability of all
six available signals was checked through the standard deviation of each set, which was
satisfactorily within 5% of the average value for all anchor points. The acquired data were
organized and saved in a matrix of 96 × 8 elements. The WiFi data were stored in columns
1–3; the WSN data were placed in columns 4–6; and columns 7 and 8 contained the spatial
coordinates of the 96 anchor points. In order to utilize the appropriate signal weighting,
which provided a significant reduction in the positioning error in our previous work [32], it
was strictly necessary to identify and keep the same signal sequence in all matrix columns.
At the same time, the meaning of this research is fundamentally dependent on the constant
positions of all access points and of any other signal source.

3.2. Data Analysis

The procedural scheme of the proposed optimization algorithm is based on a number
of fundamental sections. First, data from hybrid sources were acquired and stored using
fingerprinting and RSS principles. Data were kept as they were recorded, without any
particular preprocessing, any further analysis, or suggestion of a limited database.

The second step consisted of creating a mathematical model for both the distribution
of the signal data and a mainframe for the tessellation of the research space. As the behavior
of the measured signal intensities along the 2D space of the experimental area proved to be
inherently non-linear, a Multilayer Perceptron (MLP) neural network was developed and
trained thanks to its versatility in modeling inherently non-linear data. In consideration of
the supervised training features of any MLP, the target was identified as the preprocessed
position of the 96 anchor points. Given a tessellation configuration with a predetermined
tiling position and corner point, each anchor point would be assigned to the tile to which it
belonged geometrically. The MLP target would then become a set of discrete, integer pairs
of coordinates.

Finally, an optimization algorithm was developed to address the main subject of this
research, i.e., to investigate the possibility of reducing the positioning error through the
MLP by means of an appropriate choice of the tile size and collocation of the tessellation
corner point. Taking into account the number of anchor points and the possible variability
of the tessellation geometry, a heuristic approach to the optimization process was selected.
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A QPSO algorithm was chosen due to its features of rapid convergence to a global op-
timal solution and its relative ease of programming when compared to other available
optimization algorithms [35].

3.3. QPSO Process

The role of the QPSO in data analysis in this research consists of searching for an
appropriate set of four variables that define the tessellation properties of the search space,
namely the tile width and height, and the horizontal and vertical positions with respect to
the bottom-left corner point.

In most “swarm-based” optimization processes, a population of candidate solutions
is first created within a multidimensional search space. Every candidate solution, also
named “individual” or “particle”, is associated with a cost value, which is evaluated
according to the particular optimization task. The resulting individual in this QPSO process
thus becomes a four-dimensional vector of homogeneous geometrical features. At every
iteration, each individual evolves its position in the search space with a law of motion linked
to two attractors, namely its own best value and the overall best value that is calculated
among the whole population and updated at every loop.

The QPSO algorithm, first introduced in 2004 [36,37], is inspired by the Quantum
Mechanics concept that every particle is associated with a wave and the fact that quantum
waves cover all the search space. The position of each individual is updated in the spirit
of Quantum Mechanics and relies heavily on the generation of random numbers. The
position update for each individual is governed by two attractors, the average value of all
N individuals’ best positions:

m =
1
N ∑N

i=1 bi (1)

and a linear combination with random coefficients c1 and c2 of the individual and global best:

pi = (c1bi + c2g)/(c1 + c2) (2)

The position update for iteration (n + 1) is then provided by the following expression,
which identifies the maximum likelihood coordinated where to find the individual:

xi(n + 1) = pi + β(n)·sign(c3 − 0.5)·ln(c4)|m − xi(n)| (3)

where c3 and c4 are uniformly distributed random coefficients and β(n) is a uniformly
decreasing parameter that traditionally starts at β(1) = 1 and reaches β = 0.1 after a preset
number of iterations, at which the algorithm ends.

Considering that the QPSO procedure involves individuals and positions evaluated
by a linear combination of vectors, its applicability is naturally taken into consideration,
as in this work the search space is a subset of the multidimensional set R4. The cost
function f (xi) was evaluated for each individual xi = (wi, hi, ui, vi) using an MLP neural
network, which was designed to provide the most accurate positioning achievable through
appropriate network training.

3.3.1. MLP–ADAM-Based Localization

An Artificial Neural Network approach [38] is justified by the observation that the
variations in each of the six meaningful signals along the research area are strongly non-
linear and unpredictable due to their complexity. A commonly used ANN architecture is
the simple, fully connected, feedforward MLP network, which utilizes non-linear filtering
functions. MLP training is usually performed by the backpropagation technique, which is
a momentum-improved gradient-descent reduction process of the regression error.

The ultimate goal of any MLP training consists of reducing the error computed be-
tween the network output and a preset target in a supervised learning procedure. The
available input data is usually split into two subsets, namely the training data and the test
data. The network is trained by altering the weight matrixes that characterize the MLP



Algorithms 2024, 17, 326 7 of 15

architecture by using the {input vector—expected target} pairs of the training data alone.
The pairs {test output—expected target} are used as a form of quality control for the training
in terms of the verification of the network generalization vs. memorization capabilities.

In this work, three WiFi signals and three WSN signals were collected from 96 anchor
points in a regular array of positions in the research area. All the experimental data were
included in the training set, while the test set was created as a list of 20 points randomly
selected within the experimental area. The test signals were generated by performing
standard bilinear interpolation on the actual measured values in the vertices of the rectangle
containing each of the test points. Figure 2 (left) shows a typical layout of the training and
testing points within the experimental area.
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The preprocessing of the input data before feeding them into the MLP involved
two steps. First, a relative weighting of the signal intensities was applied based on our
previously published results on the same dataset [32]. Specific weights were assigned to
each of the six signals. In the second step, the average of each individual signal intensity
was subtracted from the weighted values to extract and retain their meaningful spatial
variations using the following equation:

S′
j = Sj −

1
N ∑N

i=1 Sji (4)

for j = 1–6 and N = 116, as the 20 test data were included in Equation (4) for consistency
in the training process.

The preprocessing of the target data required the transformation of the available spa-
tial coordinates into a discrete representation, following the concept of surface tessellation.
The tile sizes and the offset position of the tessellation are the goals of the optimization
process of this research. Thus, the transformation from spatial to discrete coordinates is
fundamentally dependent on the individual candidate solutions, which are managed by
the QPSO algorithm. Nonetheless, the preprocessing of the target followed a standard
procedure in which each anchor point is univocally assigned to the tile it lies on geomet-
rically. First, the integer number of tiles Nx and Ny are calculated, respectively, for x and
y directions: {

Nx =
⌈ xmax−u

w
⌉

Ny =
⌈

ymax−v
h

⌉ (5)
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where xmax and ymax are the maximum positional coordinates or any train or test data.
The partial square bracket symbol ⌈·⌉ indicates the rounding up to the next integer, i.e.,
the number of tiles. The values u and v—offset coordinates where the tessellation starts;
w, h—the width and height of the tiles are all passed to the MLP as parameters by the
QPSO algorithm. Consequently, each anchor point or test point of coordinates (xi, yi ) is
associated with the discrete ‘tile’ values:nx =

⌈ x−xo f f
u

⌉
ny =

⌈ y−yo f f
v

⌉ (6)

Figure 2 (right) shows an example of virtual tessellation of the research space, in which
square tiles with a side of 1 m have been superposed on the array of experimental points,
with an offset of 20 cm in both directions, resulting in an array of 6 × 22 tiles.

The last step of the target preprocessing is required by the fact that the output of the
standard MLP network lies in the interval [0, 1], thus a linear normalization of the set of
values nx and ny must be performed according to:n′

x = 0.1 + 0.8 nx−1
Nx−1

n′
y = 0.1 + 0.8 ny−1

Ny−1

(7)

This rescaling guarantees that the set of normalized targets lies in the range [0.1, 0.9],
thus optimizing the performance of the training process of the MLP in terms of computing
speed and target separation.

The training data are used in the standard feed forward-backpropagation learning
process, which aims to find appropriate weight matrices Wk that best model the neural
network on the spatial distribution of the experimental data. The output of the testing data
is used for the training termination criterion, whereas the testing output, calculated with
the same weight matrices, is not used for training. The testing error is obtained and stored,
and the MLP training process is deemed complete when the relative positioning error
reaches its minimum value. The first step of the feedforward phase consists of calculating
the first hidden layer h1 using the whole input data X organized in a matrix of 96 rows—the
signals in each point—and six columns—the six signals in each point—thus using the batch
training process:

h1 = f (XW1) (8)

In this expression, f (·) is the filter or activation function that expresses the non-
linearity feature of an MLP network. In this work, we used the standard sigmoid function
f (x) = 1

1+exp(−x) .
In our previous research using the same experimental data [32], we determined that

the best results were achieved with three hidden layers, thus here we keep the same
architecture for this work. The second and third hidden layers as well as the output are
then calculated according to Equation (9):

hk+1 = f (hkWk+1)
out = f (h3W4)

(9)

The same process is performed separately for the test data. The MLP errors for both
training and testing are calculated as err = 1

2 ∑ ∑(out − tar)2 where the sum extends to
all elements of the output and target matrices. The standard MLP training is based on the
gradient descent process in which the partial derivatives ∆Wk = ∂err/∂Wk of the weight
matrixes are calculated and the weights Wk are updated according to the expression:

W(n+1)
k = W(n)

k + λ∆W(n)
k + η∆W(n−1)

k (10)
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where λ is the learning rate and µ is the momentum, a term that is included to speed up
the training process by taking into account the correction applied at the previous iteration.

In this work, we employed a refinement of the backpropagation algorithm, i.e., the
novel adaptative momentum technique, or ‘adam’ [39], which is a proven method for
expediting the learning process of the MLP. In this process, at every loop the update of
each element in the weight matrices Wk is proportional to the partial derivative ∂err/∂Wkij
through a variable learning rate factor, which increases the training speed in flat regions of
the MLP error. Two constants, β1 and β2, are introduced, as well as a ‘first’ and a ‘second’
set of momentum matrices, η and µ, respectively. The equations for the update of the first
and second momenta are:

η
(n+1)
k = β1η

(n)
k + (1 − β1)∆Wk

µ
(n+1)
k = β2µ

(n)
k + (1 − β2)(∆Wk)

2 (11)

and the weights are updated according to the expression:

W(n+1)
k = W(n)

k − λ
(1 − βn

2)η
(n+1)
k(

1 − βn
1
)√

µ
(n+1)
k

(12)

3.3.2. Positioning Algorithm

In this research work, the positioning algorithm was developed within the frame of a
search space quantization, in which a regular tessellation is generated. Training and testing
points are assumed to belong to a rectangular tile whose spatial coordinates are numbered
with integer values.

The goal of the optimization process consists of finding optimal horizontal and vertical
dimensions for the tiles, as well as an optimal starting point for the surface tessellation. For
any given geometrical configuration, each experimental point belongs to a specific tile. The
MLP was designed with the task of reducing—by Adam-driven descent—the error:

err =
1
2∑ ∑(out − tar)2 (13)

as per the algorithm described in Section 3.3. The process was terminated after a predeter-
mined number of iterations when the minimum value of the real space positioning error for
the test data was supposedly reached. For this reason, several steps had to be performed at
regular intervals during the MLP iterations. First, the output outtest of the test data was
calculated and rescaled by inverting the expressions in Equation (7), and the result was
rounded to the nearest integer in order to identify the output tile the test data was assigned
to. Then, the horizontal and vertical tile mismatches were evaluated for each test point,
with the absolute difference between the output tile numbers [nx,out , ny,out

]
and the target

values
[
nx,tar, ny,tar

]
, which were calculated in Equation (6):{

∆nx = |nx,out − nx,tar|
∆ny =

∣∣ny,out − ny,tar
∣∣ (14)

Finally, the real horizontal and vertical mismatches were calculated, and the error in
the test data was evaluated as the average of the distance errors in Euclidean metrics in the
set of all test points:

errreal = ⟨
√
(w∆nx)

2 +
(
h∆ny

)2⟩ (15)

In order to perform a meaningful comparison between tiles of different dimensions
during the optimization process, an amount was added on the basis that a point randomly
located in a rectangular tile and relocated to the center carries an intrinsic error given by:
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err[h,w] =
x √

x2 + y2dxdy =
1
6

[√
h2 + w2 +

h2

2w
ln

√
h2 + w2 + w

h
+

w2

2h
ln

√
h2 + w2 + h

w

]
(16)

where the integral is calculated in a rectangle of dimensions [h, w].

4. Analysis and Experimental Results

This section is devoted to providing detailed analysis and results obtained using the
proposed algorithm.

4.1. Experimental Setup

In order to achieve the stated goal, a standard QPSO algorithm was designed with
the parameters shown in Table 1, which are used as standard values capable of speeding
up the overall QPSO procedure. The search range for the tile dimensions was limited
to the interval (0.3, 1.2) m for both horizontal and vertical dimensions, while the offset
was limited to the actual tile size to avoid placing tiles without experimental data in the
lower-left corner of the research area.

Table 1. QPSO design and architecture parameters for tile size optimization.

Design Parameters Architecture Parameters

Number of individuals 20 c1 1
Number of iterations 100 c2 1.5

Number of cost calculations 2000 Initial β0 1
Search range (tile size) (0.3, 1.2) Final β0 0.1

The algorithm for the proposed technique was developed in Matlab and ran on a
Windows-based 2.6 GHz Core i7 desktop. The QPSO algorithm, like any other heuristic
optimization process, is supposed to provide better search results using larger populations
and a greater number of generations. However, for this work, each cost calculation took an
average of 50 s; thus, the values reported in Table 1 were accepted as a good compromise
between computing time and the quality of the QPSO capabilities.

The outcome of any MLP is usually heavily dependent on the initial random set of the
training weight matrixes. Consequently, a large amount of MLP training runs are required
to identify suitable initial weight choices and achieve meaningful results.

A number of validation runs were performed to investigate the effect of the random
positioning of the 20 test points inside the research area. In agreement with the investigation
presented in our previous research [32], no meaningful difference was observed in the
positioning error for constant test points versus random ones. Both in these validation runs
and in the actual QPSO algorithm, the MLP was run 1000 times in order to achieve the best
performances, i.e., to identify a suitable set of weights for which the positioning error of
the test population was minimal. For each training run, the profiles of both the training
and testing positioning errors versus the learning iteration were recorded, and the absolute
minimum of the testing error was identified, as shown in Figure 3.

It was observed during the validation runs that the absolute minimum of the test error
was most probably achieved shortly after 4000 iterations. Consequently, it was decided
to stop the MLP learning run after 5000 cycles of feedforward-backpropagation as a good
trade-off between accuracy and total computing time. The cost value for each QPSO
individual was evaluated as the average of the best 50 of 1000 MLP runs, which would
correspond to fortunate initial random choices of the weights.
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4.2. Results

Following the definition of the optimization procedure using a QPSO algorithm and
the technique for calculating the localization error using a standard MLP with an adaptative
backpropagation process, the next step in this research was to select the most appropriate
values for both the QPSO and MLP algorithms. Several parameters can affect the speed
of both processes and strongly alter the total computing time. For the QPSO part, it was
decided to choose the standard parameters found in the literature, namely those reported
in Table 1. The QPSO procedure was repeated for a total of 100 generations, each producing
a new population of 20 vectors of 4 components, recording the size of the tiles as well as
the offset position with respect to the bottom left experimental point.

Due to the QPSO’s nature, the global best individual, i.e., the vector of signal weights
producing the lowest positioning error, was recorded at every stage of the algorithm.
Each vector was first tested under the preset conditions, which limited the tile size to the
interval (0.3, 1.2) m for both horizontal and vertical dimensions and the offset to the tile size.
Each non-compliant configuration was discarded and the generation of a new individual
was repeated until the preset population size was reached. The positioning errors of
the new QPSO generation of individuals were then evaluated by repeating 1000 times
the MLP procedure for each individual and calculating the average of the 50 best test
positioning errors.

Multilayer Perceptron neural networks are subject to several parameters that greatly
affect the training accuracy and the computing time. For this research, it was decided to
refer to the investigation of the validation runs in our previously published research on the
same dataset [32] and to keep the same MLP architecture. In particular, three hidden layers
of 18 hidden units each were retained, as well as the standard sigmoid activation function.
The values of the learning rates and momentum coefficients for the Adam technique were
determined by visual inspection during a small number of dry runs, as well as by measuring
the computing time of individual cost calculations. Moreover, the intensities of the input
signals were weighted, in agreement with our previous results [32]. The set of parameters
for the MLP process are reported in Table 2. Because of the sheer amount of QPSO cost
evaluations and the large number of MLP runs for each individual, the overall computing
time reached about 28 h despite the fact that each MLP training process of 5000 iterations
took only 50 ms to complete.

The output of the MLP process was designed to return the integer values of the tile
positions in the regular array defined by the vectors xi = (wi, hi, ui, vi), both for the train
and the test data points. Equations (14)–(16) were then applied to calculate the actual
position error for both data, while only the test position error was retained as the result of
this research.
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Table 2. MLP design and operational parameters.

Architecture Parameters Training Parameters

Hidden layers 3 Learning rate η = 0.001
Hidden units 18 per layer Momenta Adam values β1 = 0.9, β2 = 0.999

Activation function Logistic sigmoid Runs per individual 1000
Training points 96 Training iterations 5000

Test points 20 Computing time ~28 h

A meaningful comparison of configurations with different tile sizes cannot be done on
the basis of the number of tiles mismatch in either direction alone, as larger tiles might be
correctly identified despite a relevant actual position error. For this reason, the value of the
intrinsic error was taken into account as the average distance between a generic point and
the center of the tile, according to Equation (16). Thus, the actual positioning error errpos,
i.e., the QPSO cost value for an individual becomes:

errpos = errreal + err[h,w] (17)

in which the two parts are defined by Equations (15) and (16).
The value of the resulting positioning error as a function of the QPSO iteration number

is shown in Figure 4 (right). It can be observed that the improvements in the positioning
error take place in stages, in agreement with the discrete exploration technique of the
QPSO. No error improvement was achieved beyond QPSO iteration #56, which provided a
positioning error m measured on test data alone. This value shows an improvement of ~16%
with respect to our previous best result, in which signal weighting was first introduced for
the analysis of the same dataset.
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The final geometrical configuration that led to this positioning error provided a tile
size (w, h) = (0.505, 0.587) m and an offset (u, v) = (0.059, 0.411) m. These values correspond
to a tessellation of 11 tiles horizontally and 40 vertically. The tile size provides an intrinsic
error of 0.209 m as per Equation (16), thus leading to a tile error of 0.402 m. In consideration
of the tile size and the procedure of calculating the positioning error, it can be concluded
that, on average, each test data carries a mismatch of a single tile.

In our previously published work on the same dataset using fixed surface tessella-
tion [27], it was observed that the positioning error was mainly caused by tile mismatches
in the horizontal direction. For this reason, in this research, further attention was given to
the separate contributions to the total positioning error by the horizontal and vertical tile
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mismatches. At every QPSO iteration, the position error in each direction was recorded
for the best individual out of the population of 20. Again, it can be observed that in
the horizontal direction, the partial position error is larger and more widely distributed
compared to the values recorded in the vertical direction. Figure 4 (left) shows that in
the vertical direction, the error does not vary much around 40 cm, while in the horizontal
direction, values are spread in the range of 0.6–1.2 m. Nevertheless, the particularly low
value recorded at QPSO iteration #56 generated the final global best for this research.

A comparison of the results obtained in this research with a selection of relevant
previously published location average errors is presented in Table 3. Our previous work,
based on the same raw data, is included together with other benchmark results available in
the literature, showing a remarkable reduction in the positioning incertitude.

Table 3. Comparison of our obtained results with previously published research.

Reference Chosen Approach and
Implementation

Research Area and
Anchor Points (AP) Error

M. Ficco et al. [40] Source selection, WiFi + Bluetooth 20 m × 21 m, 26 AP >4 m
L. Jiang [26] K-NN modeling, WiFi + RSS 15 m × 40 m, 100 AP 1.70 m

Z. Xiong et al. [41] Particle filter, WiFi + RFID 25 m × 12 m, 80 AP 1.60 m
J. Chen et al. [28] Optimization, IMU + WLAN 90 m path, 113 AP 1.48 m

Z. Farid et al. (same dataset) [33] MLP modeling, WiFi + WSN 6 m × 24 m, 96 AP 1.22 m
I. U. Khan et al. (same dataset) [27] Tessellation, WiFi + WSN 6 m × 24 m, 96 AP 1.01 m
E. Scavino et al. (same dataset) [32] Optimization, WiFi + WSN 6 m × 24 m, 96 AP 0.725 m

This Research (same dataset) Variable tessellation, WiFi + WSN 6 m × 24 m, 96 AP 0.611 m

The proposed method of data analysis does not present any particular challenges,
apart from the extensive computing time. Nevertheless, the actual application of this
technology would require some caveats about the stability and availability of the sources
of the signals. Possible drifts and abrupt variations would render this method less accurate,
thus requiring particular attention to the hardware of the whole installation. Further work
beyond this method should possibly focus on the normalization of the input signals and
the analysis of their spatial distributions.

5. Conclusions

This paper illustrates a QPSO algorithm for an indoor location system based on hybrid
raw RSS signals, namely those from WiFi and WSN sources. The proposed system consid-
ered the possibility of reducing the positioning error by performing a regular tessellation
of the research area in which the raw signals were acquired. Each QPSO individual was
identified as a vector of four values containing the tile size and offset, which unambiguously
determined a tessellation geometry. A Multilayer Perceptron network was developed as a
tool to heuristically predict the positioning error for each QPSO individual. The architecture
of the MLP, as well as the initial raw signal weighting, were kept in agreement with our
previous research, thus allowing a faster network setup and positioning error reduction.
The final results of the optimization process allowed us to identify an optimal geometrical
configuration of the regular surface tessellation in which the positioning error showed
a marked reduction compared to our previous research using the same set of data. We
achieved a final localization accuracy of 0.611 m, representing an improvement of at least
16% compared to our previous best results using the same dataset. This value also marks
an improvement of at least 50% over our initial published analysis of these data.

In addition to determining the overall positioning accuracy, a raw analysis of the spa-
tial source of error was performed in order to identify the contribution along the horizontal
and vertical directions. For every QPSO generation, in the horizontal direction, the error
component was larger by roughly a factor of two compared to the vertical component, thus
providing a large amount of the positioning error.
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The goal of any indoor positioning algorithm consists of reducing the localization
error in real-life scenarios in which randomly set wireless receivers are capable of precisely
inferring their spatial coordinates. To this date, we have analyzed hybrid approaches with
two sources, namely WiFi and WSN, and several algorithms, i.e., signal weighing with
smooth research space and variable tessellation in this work. These results encourage
further investigation, and in future work, all the developed approaches may be joined
together, as well as including further techniques of spatial data analysis or an improved
MLP training process that takes into account the different directional error contributions.
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